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ABSTRACT The nondestructive characteristics of γ -photon imaging technology make it attractive potential
in the industry. However, in industrial detection with a large detection range and high resolution, iteration
method, the image reconstruction algorithm which is most widely used, faces the challenge of an overly
large system matrix, and the current compression algorithms using the geometric symmetry of the positron
emission tomography (PET) system have problems of complex pixel division and recovery mode. Therefore,
this study proposes a lossless compression and linear recovery algorithm of the system matrix based on a
polar adaptive pixel (LCLR-PAP). Based on the structure of the detection ring and rotation of the circle, the
detection field of view (FOV) is designed as a cylinder and the circular slice is divided into several sectors.
The pixels are adaptively divided within the sector to realize the lossless compression of the system matrix
from the structure, and based on which the angle change of pixels can be converted to matrix transformation
to achieve linear recovery. A partial pixel partition is optimized to compensate for the unevenness of the pixel
size in the center of the adaptive image. Experiments show that the LCLR-PAP algorithm can provide an
efficient solution to the large-scale system matrix compression recovery problem, that is, through a simple
and convenient adaptive pixel division with matrix sparsity and axial symmetry, the system matrix can
be compressed to less than 100,000th of the original, and realize the lossless compression and fast linear
recovery.

INDEX TERMS Adaptive pixel, compression algorithm, gamma photon imaging, system matrix.

I. INTRODUCTION
Gamma photon tomography uses paired gamma photons
produced by positron annihilation to observe the internal
state of an object. Gamma photons produced by positron
annihilation have the characteristics of strong penetration
and anti-interference ability [1], can easily pass through the
workpiece to be tested, and can overcome extremely harsh
environments, such as high temperature, high pressure, and
high speed. The positron annihilation technology be utilized
as a good means of industrial nondestructive testing because
of these characteristics [2]. The positron image reconstruction
algorithms are mainly divided into analytical methods and
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iterative methods from the theoretical standpoint. The analyt-
ical method is based on the Fourier central slice theorem, and
the image reconstruction is achieved by back-projection, the
most common of which is the filter back-projection (FBP).
The analytical method has the advantages of fast and simple
reconstruction, but some noise or interference occurs during
data acquisition, so the reconstructed image quality is low [3].
Iterative methods can solve the defects of analytical methods,
which are divided into algebraic iteration and statistical iter-
ation, among which the Maximum Likelihood Expectation
Maximization [4] (MLEM) and Ordered Subset Expectation
Maximized [5] (OSEM) are themost widely used. The system
matrix is an important parameter in an iterative method [6].
The system matrix stores the probability of coincidence

events being detected by each pair of detectors, which is
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the basis of accurate ortho-projection and back-projection
operations in the iterative reconstruction algorithm, and is
directly related to the quality of the output image [7]. With
the continuous maturity of γ -photon tomography technology,
it is possible to apply γ -photon tomography technology in
industrial nondestructive testing. For example, in the inter-
nal diagnosis of aircraft landing gear hydraulic system [8],
high-resolution γ -photon tomography technology can help to
detect cracks; in terms of flow field imaging [9], the high-
resolution γ -photon tomography technology can observe the
situation in the closed cavity, which is conducive to the
analysis of flow field state; in the detection of the flow
field of the engine combustion chamber, the large-diameter
γ -photon tomography technology helps to realize the in-situ
detection without disassembling the object to be measured.
However, industrial nondestructive testing requires a large
detection range and high resolution, increasing the amount
of system matrix data in image reconstruction, which limits
the further development of this technology in industrial non-
destructive testing. Taking the small positron imaging device
as an example, when the number of coincidence events is
156×156×52×52, if the three-dimensional image with the
resolution of 400 × 400 × 52 is taken as the research object,
the number of elements in the system matrix is 5.47 × 1014.
If saved as a single-precision floating-point number, it would
take up about 1.95 PB of space. Even if the study is done
with two-dimensional images, the size of the system matrix
will reach 14.51GB. The huge system matrix may face the
problem that it cannot be loaded into the computer memory
at one time, and at the same time, as the system matrix
increases, the generation of the system matrix will take a
substantial amount of time and occupy a large storage space in
the case of high-resolution image reconstruction, and the time
of image reconstruction will also greatly increase. In theory,
the Monte Carlo simulation method can obtain the best sys-
tem matrix generation accuracy [10], but the generation time
sharply increases in the industry. Therefore, a high-precision
system matrix is difficult to quickly generate and apply to
engineering practice without system matrix compression.
In this paper, we will provide a system matrix compression
method that can greatly compress the computational data and
recover them loss-less, to solve the problems of large system
matrix and large computation, which makes the application
of γ -photon technology in large space and high-resolution
industrial nondestructive testing possible.

In the research on the compression storage of the sys-
tem matrix, the methods used to solve the space occupied
by the system matrix mainly include real-time calculation,
system matrix decomposition, and compression using the
symmetry of the detector structure. The method of real-time
calculation is used to calculate the required system matrix
elements at any time in the reconstruction process. The sys-
tem matrix is calculated in real-time during each forward and
backward projection. In 2008, Kadrams et al. [11] proposed
a rotating and oblique projection method, but the resulting

forward and backward projections may not match. In 2012,
Zhang et al. [12] realized real-time computing of the system
response matrix based on the optimized Siddon algorithm for
list-mode reconstruction. However, the real-time calculation
of the system matrix required a large number of computing
resources, and recalculation was required every time during
the iteration process, which seriously affected the reconstruc-
tion speed [13]. Given that the matrix decomposition can
produce a sparse matrix, the system matrix can be calculated
and stored in advance through the system matrix decompo-
sition method. The implementation of forward and backward
projection only requires sparse matrix and vector multiplica-
tion. In 1998, Qi et al. [14] used the matrix decomposition
method to decompose the system matrix into a geometric
projection matrix, a sinogram fuzzy matrix, and an image
fuzzy matrix. However, this method would result in a large
geometric projection matrix at high-resolution reconstruc-
tion. In 2011, Zhou et al. [15] proposed a new method that
uses a simpler geometric projection matrix to further reduce
the nonzero values. The method of decomposing the system
matrix can greatly reduce the size of the stored systemmatrix,
but it also introduces oversimplification, resulting in a rela-
tively large fuzzy effect on the quality of the reconstructed
image.

Another compression idea is to use some characteristics
of the system matrix itself and reduce them based on the
symmetry of the detector ring structure. The idea of using
the geometric symmetry of the PET system to compress
the matrix is the most direct and has been proven to be
effective [16].In 2003, Rafecas et al. [17] used the inherent
symmetry in the MADPET-II matrix to find four identical
system matrix weight values by dividing the field of view
(FOV) into four equal parts and compressing the system
matrix fourfold. In 2004, Rannou and Chatziioannou [18]
used the rotation symmetry between the detector rings in a
Monte Carlo simulation and compressed the system matrix
to one-eighth of the original by using four cross-axes and
one axial symmetry. In 2011, Scheins et al. [19] segmented
several triangular regions according to the intrinsic symmetry
of the PET system and tangentially subdivided the triangular
slices to obtain specific pixel sizes for achieving multi-fold
compression of the system matrix. The compression rate was
improved compared to the previous ones, but the pixel shapes
were diverse, the division was complicated, and the FOV
edges were not smooth and polygonal. In 2013, Yu et al. [20]
adopted rotating symmetric polygon pixels, established the
geometric definition and index rules of the polygon pixels
and compressed the system matrix by eight times, but there
are still problems such as complex pixel division and uneven
shape. Meanwhile, the system matrix recovery mode of the
index is also complicated. In 2015, Ahmed et al. [21] made
use of the diagonal characteristics of the square to compress
the system matrix eightfold. In 2017, Sun et al. [22] com-
pressed the system matrix multiple times according to the
detector structure and square symmetry, but its pixels did
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not fully coincide in rotation, resulting in recovery errors.
In 2021, Deng et al. [10] calculated only 1/8 of the system
matrix according to the intra-ring symmetry of the rectangu-
lar detector, obtained the SM of other parts through geometric
transformation and compressed the calculation of the system
matrix of slice direction eightfold, but it did not apply to the
polygon detector.

The large-scale compression using geometric symmetry
at present has some problems, such as complicated pixel
division, pixel irregularity, unsmooth edge of the FOV, or
complicated recovery mode. This work proposes a lossless
compression and linear recovery algorithm of the system
matrix based on the polar adaptive pixel to achieve the com-
pression of the system matrix and address the problems in
the compression process. Lossless compression of the system
matrix is realized by circular detection FOV and rotation of
polar coordinates in combination with adaptive pixel divi-
sion. The equivalent relationship between the rotation of the
response line in the polar coordinates and the translation of
the system matrix is obtained on the basis of this model to
realize the rapid recovery of the systemmatrix. The algorithm
is also optimized to solve the problem of uneven center in
adaptive pixel partition. The characteristics of the algorithm
are as follows:

1. The smooth boundary of the polar coordinate circu-
lar FOV ensures the lossless and efficient algorithm from
the structure and provides the prerequisite for the rotation
of pixels; fully utilizes the structural characteristics of the
detector and the rotation of the circle to achieve the rotational
overlap of pixels; maximizes the use of the characteristics of
the positive polygon of the detector to achieve the multi-fold
compression of the system matrix;

2. Adaptive sector ring (sector) pixel shape is simple,
easy to divide, and convenient to store, which can realize
lossless compression of the system matrix. From the storage
and calculation point of view, the image consists of only
the first layer of the sector, and the sector ring in the other
layers, with no other graphics, and the graphics in each layer
are consistent, and each layer only needs to be calculated
once; when storing the graphics, only the number of layers
divided, and the number of pixel divisions in each layer
needs to be stored, and the complete pixel distribution can
be obtained. At the same time, the adaptive pixels not only
ensure the quality requirements of the reconstructed image
but also the pixels at the boundary of the sector are completely
divided, thus realizing the lossless compression of the system
matrix;

3. Due to the polar adaptive pixel, the system matrix
can achieve linear and fast recovery. Based on the Line
of Response (LOR) rotation invariance, only a subset of
the system matrix needs to be stored, and the values of
the system matrix that are not stored can be obtained
from the stored subset by a linear transformation of the
matrix, which avoids the use of auxiliary matrix recovery,
reduces the workload, shortens the recovery time, and avoids
errors.

II. SYSTEM MATRIX COMPRESSION AND RECOVERY
BASED ON A POLAR ADAPTIVE PIXEL
A. STATISTICAL ITERATIVE ALGORITHM
The iterative method is the most widely used reconstruc-
tion algorithm, represented by MLEM and OSEM. The
MLEM [23] algorithm uses maximum likelihood estimation
to reconstruct the image. Pixels will continuously decay and
release positrons. The PET detector detects that the anni-
hilation process of the positrons conforms to the Poisson
distribution and is independent and identically distributed.
The iterative formula of theMLEMalgorithm can be obtained
according to the principle of maximum likelihood:

xk+1
j =

xkj
I∑
i=1

aij

I∑
i=1

aij
yi

J∑
j=1

aijxkj

, (1)

where xk+1
j is the pixel value after the k + 1 iteration of the

reconstructed positron image pixel j, xkj is the pixel value after
the k iteration of the pixel j, yi represents the ith sinogram
component (the detection result of the ith LOR), and aij
represents the ith row and jth column element values of the
system matrix.

In the MLEM reconstruction algorithm, every iteration
needs to traverse each system matrix element and image
pixel, and the convergence speed of the algorithm is slow [4].
On this basis, theOSEM reconstruction algorithm is proposed
[24]. OSEM reconstruction algorithm is the most commonly
used algorithm in the current iteration algorithms, and its
subsets the system matrix and sinusoidal graph based on
the MLEM algorithm. Moreover, the OSEM algorithm can
divide the huge system matrix into N subsets in the way of
ordered subsets to reconstruct the image, which effectively
reduces the number of iterations [25]. A subset iteration of
the OSEM algorithm is equivalent to a complete iteration of
the MLEM algorithm. After completing one iteration of all
subsets, the image reconstruction effect is equivalent to the
effect of N iterations of the MLEM algorithm. However, the
calculation amount is only equivalent to that of one iteration
of the MLEM algorithm.

The selection of subsets in the OSEM reconstruction
algorithm follows the following criteria:

(1) Each subset contains the largest amount of recon-
structed image information and as much projection informa-
tion as possible, and the information in the subset is uniform.

(2) The size of each subset is equal (i.e., each subset
contains the same number of projection angles).

B. CONSTRUCTION OF SYSTEM MATRIX
The system matrix describes the response process of the
detector to the detected space. This matrix is composed of
the mapping relationship between the detector crystal and the
pixels of the area to be reconstructed, and it connects all the
pixels of the reconstructed image with the coincidence events
in the detected space. The system matrix is a 2D matrix, and
1D of the system matrix represents the pixels in the imaging
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field detected by the positron emission tomography system.
The higher the density of pixels, the higher the resolution of
the reconstructed image, and the wider the distribution range
of pixels, the larger the detection field of the imaging system.
The density and range of pixels are related to the physical
structure of the imaging system. The other dimension of the
system matrix represents the coincidence events collected by
the detector of the imaging system. The coincidence events
are determined by the crystal lines on the ring detector.

The system matrix establishes the physical model between
the detector and the measured object. When the image is
reconstructed by an iterativemethod, the systemmatrix estab-
lishes the relationship between the response line and the pixel,
which is the key to the iterative method of image reconstruc-
tion. The formula is expressed as follows:

Y = AX , (2)

where Y = [y1, y2, · · · , yi, · · · , yI ]T is the vectorized sino-
gram of the data collected by the detector after recombination
(I is the number of LOR), X =

[
x1, x2, · · · , xj, · · · , xJ

]T is
the vectorized image pixel (J is the number of pixels), and A
represents the complete system matrix. In the iterative image
reconstruction algorithm, the element value of each system
matrix aij represents the probability that the γ -photon pair
emitted in the space covered by the jth pixel is detected by
the ith crystal pair of the peripheral detector ring:

A =
{
aij

}
. (3)

The element value of the system matrix is the probability
of each pixel annihilation producing γ -photon pairs captured
by the detector crystal. The accuracy of the system matrix
elements will have a direct effect on the quality of the recon-
structed image. Accordingly, the accurate system matrix can
improve the quality of the image reconstruction, indicating
that it is vital in the iterative reconstruction process of the
γ -photon imaging system. Furthermore, the determination of
the system matrix needs to consider the geometric structure
of the detector system and the resolution of the image to
be reconstructed. In practice, the system matrix only needs
to calculate once and can be reused for the same resolution
model. In industrial applications with a large detection range
and a high resolution, the generation of the system matrix
takes a substantial amount of time and occupies huge storage
space and the time of image reconstruction increases. There-
fore, an efficient and convenient system matrix compression
method is needed to make this mechanism applicable to
engineering practice.

C. POLAR ADAPTIVE PIXEL AND SYSTEM MATRIX
COMPRESSION
In the study of the compressed storage of the system matrix,
the idea of using the geometric symmetry of the PET system
to compress the matrix is the most direct and has been proven
to be effective. Given that the positron PET detection rings
are mostly circular, multiple detector rings form a cylinder.

FIGURE 1. Schematic of the cylindrical FOV.

Accordingly, so the optimal imaging region of the γ -photon
detection equipment is also a cylinder. In this work, the
general quadrilateral FOV is improved to a cylindrical FOV,
and the section of the cylindrical FOV is circular. When the
detector has a normal N-edge shape, the compression ratio is
N. The FOV can be divided into N sectors by drawing P rays
from the center of the circular FOV, and the angle between
adjacent rays is the top angle of each sector (θ=2π /N).
Each sector has the same shape and equal area. The polar
coordinate system is introduced on the basis of the circular
FOV to discretize the FOV into a polar coordinate array
(Fig. 1). This study uses the structural characteristics of the
detector and the rotation of the circle, through the rotation
to achieve complete coincidence and the detector’s regular
polygon characteristics to compress the system matrix. Dur-
ing the partition of pixels in the sector, the compressed system
matrix can be recovered losslessly. Thus, the partition of
pixels needs to consider the edge, pixel size, reconstruction
accuracy, etc.

Therefore, this study proposes a system matrix partition
method based on the polar adaptive pixel to compress the sys-
tem matrix. The selection of the system matrix affects the
quality of the reconstruction, and the division of pixels in the
systemmatrix should ensure the accuracy of the reconstructed
image. Since lossless compression is required, it is necessary
to ensure that the pixel area differences are small and that
the boundary pixels of the sector are completely divided.
Therefore, the following principles of adaptive adjustment of
pixels are used to divide the pixels:

(1) The sector ring height of the pixels and the sector
height of the first layer is determined according to the pixel
edge length corresponding to the resolution required for
reconstruction, which guarantees that the height meets the
requirements for the accuracy of the reconstructed image
while not being larger than the spatial resolution of pet,
as shown in the following equation:

h =
R
N

≤ a, (4)

h ≤ q, (5)

where a is the pixel side length corresponding to the resolu-
tion, h is the sector ring height and the first sector height, R
is the radius of FOV, q is the spatial resolution of PET, and
N is the minimum positive integer that makes the inequality
tenable.
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The sector area of the first layer is shown as follows:

S1 =
θ

2
h2, (6)

where θ is the degree of the sector top angle.
The area of the sector ring after the height of each layer is

determined, as shown in the following equation:

Sm =
θ

2

[
(2m− 1) h2

]
, (7)

where m is the number of the sector ring layer. In this case,
if the internal area of each sector ring (sector) is divided
into k1, k2, · · · , kN small sector rings (sector), then its area
is denoted as Smk .

(2) The area of a pixel should not be greater than the area
of a pixel in the Cartesian coordinates equal to its height to
maintain the necessary image resolution [26], which should
meet the following formula:

Smk ≤ a2, (8)

where Smk is the pixel area of the small sector ring (sector) on
themth layer. Then k1, k2, · · · , kN should meet the following
requirements:{

km ≥
θ

2a2
h2 m = 1

km ≥
θ

2a2
[
(2m− 1)h2

]
m ̸= 1

. (9)

(3) The pixel located at the sector boundary overlaps with
the sector boundary. The coincidence of the boundary can
ensure the integrity of the boundary. Accordingly, the bound-
ary can be directly rotated to restore or reconstruct iteration,
simplify the whole calculation process, and avoid the error
brought by the recovery process.

(4) The area difference between the pixels should be small,
and the polar pixel should be ‘‘square’’ as much as possible.
If the sector height is fixed, then the arc length of the small
sector should be equal, which echoes the square pixel in
the Cartesian coordinate system. The small pixel area differ-
ence is conducive to reducing the image quality loss caused
by pixel nonuniformity. Subsequent conversion between the
adaptive and the Cartesian pixels can also keep the image
distortion at a low level.

(5) If the above-mentioned requirements are met, the num-
ber of pixels and the shape number are kept to a minimum,
making it easy to store and calculate. Only two shapes of
pixels exist in the PAP algorithm: sector ring and sector, and
the size of the sector ring (sector) in each layer is the same,
which conforms to the principle of the least number of shapes.
Theoretically, the higher the image resolution is, the more
details the reconstructed image contains. However, the higher
the image resolution is, the worse the image. This condition
is also limited by the spatial resolution of the PET system.
Increasing the number of pixels can improve the resolution,
but the best imaging quality can be obtained when the pixel
size reaches the spatial resolution of the PET system. Further
improving the imaging resolution is no longer necessary.

FIGURE 2. Adaptive pixel segmentation.

Therefore, the minimum number of pixels is enough if the
resolution is satisfied.

The polar adaptive pixel algorithm is proposed based on
the circular polar coordinate FOV. If the FOV is divided
into 12 parts according to the detector arrangement, the pixel
partition is shown in Fig. 2, and each part is exactly equal and
the internal pixel distribution is completely the same, which
can be obtained by rotating the center of the circle, to realize
the rotational symmetric compression of the system matrix.

The use of polar adaptive pixel division can also reduce
the number of graphics and simplify the calculation process.
From the perspective of the number of graphics, the image
only consists of the sector in the first layer and the sector ring
in the other layers, and there are no other graphics, and the
graphics in each layer are consistent. From the perspective of
adaptive pixel calculation and storage, since the graphics in
each layer are consistent, each layer only needs to calculate
one graphic; the radius of the pixels in each layer is deter-
mined, so the pixels only need to be transformed in angle;
the angle transformation in each layer is consistent, and when
storing the graphics, only need to store the number of divided
layers and the number of pixels of each layer to obtain the
complete pixel distribution. From the perspective of system
matrix calculation, due to the rotational coincidence of each
sector, after determining the number of sector segments, only
the system matrix of pixels contained by one sector needs to
be calculated to obtain a complete system matrix. Therefore,
if the FOV is divided into N sectors, the calculation time of
the system matrix will be compressed by N times. From the
perspective of system matrix compression, only the system
matrix of pixels in one sector ring needs to be calculated to
obtain the system matrix of the other parts, and if the FOV is
divided into N sectors, the system matrix will be compressed
N times.

D. LINEAR RECOVERY OF THE COMPRESSED
SYSTEM MATRIX
During the adaptive pixel partitioning, the area of the pixels
in the middle circle of the image is often much smaller
than that of the peripheral pixels, resulting in a difference
in the pixel size. In the model reconstruction without LOR
information at the center, the image reconstruction will not
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FIGURE 3. Schematic of adaptive pixel rotation.

FIGURE 4. Artifacts in the central position of the image and their
formation reasons.

have a quality impact, but if there is image information at the
center, as in Figure 4, the non-uniformity of the pixel size
will cause a black shadow, resulting in image quality loss.
Therefore, this problem in pixel division should be considered
and optimized.

The pixels designed in the central position are not divided
according to the sector ring, but the whole circle (first layer)
or the whole ring. The area division is based on the pixel
size of the Cartesian coordinates, which retains the complete
system matrix, and this part does not participate in pixel
rotation.

If the pixel is divided in the compressed sector, when the
pixel size of a layer is less than 80% of the square pixel with
the same height, then the layer is divided by a complete circle
(ring), as shown in the following formula:

Smk =

{
θ

2km
h2 ≤ 0.8a2 m = 1

θ
2km

[
(2m− 1) h2

]
≤ 0.8a2 m ̸= 1

, (10)

where m is the number of the sector ring layer, and the
maximum mmax of m is taken. When the number of layers is
1, 2 · · ·mmax, the complete circle (ring) is divided into pixels.

The value of the sector segment number k1 in the first layer
is shown as follows:

k1 = round(πh2/a2), (11)

where h is the height of the sector ring and the height of the
first sector, and a is the pixel side length corresponding to the
Cartesian coordinate system.

The area of the complete ring is as follows:

Sm = π
[
(2m− 1) h2

]
, (12)

where m is the number of ring layers.

The other rings are divided into k2, · · · , km, · · · , kmmax

small sector rings with an equal area. Then, the value of km
is:

km = round(Sm/a2). (13)

E. LINEAR RECOVERY OF THE COMPRESSED SYSTEM
MATRIX
In the study of system matrix compression based on rota-
tionally symmetric polygons [20], YU used the polygonal
property of FOV to achieve compression. The system matrix
must be obtained through pixel indexing during the recovery
process. A certain time loss is experienced in the indexing
process, and some labeling principles and indexing rules must
be formulated. However, in the case of rotational symmetry,
certain structural relations must exist between different parts
of the system matrix.

If the PET detector is divided into twelve equal parts
according to its arrangement, then the twelve sectors are
numbered as 1, 2, . . . , and 12. According to the rotational
symmetry, only the system matrix corresponding to one
equal part needs to be retained. Each part only accounts for
one-twelfth of the number of elements of the whole system
matrix. The other parts can be obtained by rotating the pixel
index by 30 ◦, 60 ◦, . . . , 330 ◦, and the pixel rotation and
its corresponding detector also rotate at the same angle. The
corresponding system matrices and their direct values are the
same. Only the translation of the matrix is required.

The systemmatrix of the other sector regions can be recov-
ered by using the rotation symmetry of one sector region.
When two pixels i and i0 at different positions can be obtained
by rotation, and the rotation angle of the two segments is ϕ,
the following relationship is satisfied:

ϕ = mθ, (14)

where m is the sector number difference where the pixel is
located, and θ is the top angle of the sector.

The distance between LORj and LORj0 to the pole is
the same, and the vertical angle satisfies the following
relationship:

α0 =

{
α − ϕ α − mθ ≥ 0
α − ϕ + π α − mθ < 0

. (15)

Take Fig. 5 as an example, the relationship between pixels
i and i0 is: ϕ = 120◦ and α0 = α − 30◦. The overlap area of
pixel i and LORj is rotationally symmetric with that of pixel
i0 and LORj0 .Thus, the corresponding system matrix of pixel
i and LORj has the same value as that of pixel i0 and LORj0 ,
that is, ai,j = ai0,j0 .
In Fig. 6, the orange LOR cluster and orange pixels were

moved to the position of the green LOR cluster and green
pixel by rotating the detector space 30 ◦ counterclockwise.
The mapping relationship between the orange LOR cluster
and the orange pixel is the same as that between the green
LOR cluster and the green pixel due to the synchronous
rotation of the detector and FOV in the whole process. In this
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FIGURE 5. Schematic of the pixel rotation.

FIGURE 6. Schematic of the detector rotation.

way, only part of the system matrix elements formed by the
corresponding relationship between the LOR and the image
pixels can be stored, and the other system matrix elements
can be calculated by rotation during the reconstruction.

When constructing the system matrix, we divide it accord-
ing to angles. The n pairs of the crystals correspond to the n
angles. In this construction, the rotation of the sector blocks
can be transformed into translation and symmetry of the
system matrix.

The PET detector has n pairs of detection rings. Accord-
ingly, each pixel block conducts n cycles for n angles, and
each cycle calculates the system matrix of all LOR corre-
sponding to a certain angle. Every angle corresponds to n
LORs, and each pixel block corresponds to the columnmatrix
of M = n2 elements. Suppose that each sector ring has N1
pixel blocks, and the first sector ring pixel block is numbered
by 1, 2, 3, · · ·N1. Then, the corresponding system matrix of
each pixel block is:

A1 = [a11, a21, · · · , ai1, · · · , aM1]T

A2 = [a12, a22, · · · , ai2, · · · , aM2]T

...
...

AN1 =
[
a1N1 , a2N1 , · · · , aiN1 , · · · , aMN1

]T
. (16)

Therefore, the system matrix of the whole sector ring is:

A =
[
A1,A2, · · · ,AN1

]
. (17)

The numbers of pixel blocks in the second sector are N1 +

1,N1 + 2, · · · , 2N1 − 1, 2N1, which correspond to the first
pixel block one by one, so their corresponding system matrix
also has a corresponding relationship. In the aforementioned
figure, the LORs can be divided into six groups in the circle
divided into twelve equal parts. The system matrix of the
first group of LOR corresponding to the pixel blocks in the
first sector is consistent with the system matrix of the second
group of LOR corresponding to the pixel blocks in the second
sector. Then, the system matrix values of the corresponding
pixel blocks are the same. For example, the system matrix of
the pixel blocks numbered t and pixel blocks numberedN1+t
has the following relation:

AN1+t,2 = At,1, (18)

where Aij is a (n2/6) × 1 matrix, representing the system
matrix of the pixel block corresponding to the jth LOR group
of the ith pixel block.
The system matrix corresponding to other LOR groups has

the following relationship:

AN1+t,3 = At,2
AN1+t,4 = At,3
AN1+t,5 = At,4
AN1+t,6 = At,5. (19)

However, a central symmetry relationship exists in the
system matrix of the sixth LOR group corresponding to
the pixel blocks in the first sector and the system matrix
of the first LOR group corresponding to the pixel blocks in
the second sector because their corresponding LOR groups
in the same angle are the same, but the arrangement of
n LORs at the same angle in the LOR group is opposite.
When the entire circular FOV is divided into 12 blocks,
and every 30 ◦ corresponds to the LOR of n/6 angles,
the above-mentioned central symmetry relationship can be
expressed as
follows:

AN1+t,1,s =


1

1
. .
.

1

 × At,6,s, (20)

where Ai,j,s is an n×1 matrix, representing the system matrix
of pixel blocks corresponding to the sth angle LOR of the jth
group of the ith pixel block.

1
1

. .
.

1

 (n ones), denoted as Dn

The system matrix relationship between the sixth group
LOR corresponding to the pixel block in the first sector and
the first group LOR corresponding to the pixel block in the
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second sector can be expressed as follows:

AN1+t,1 =


Dn

Dn
. . .

Dn

 × At,6. (21)

The complete systemmatrix can be fully represented by the
system matrix of the corresponding pixel in the first sector.
The complete system matrix corresponding to the first sector
is denoted as AN1×M

1 , and the complete system matrix cor-
responding to the second sector is denoted as AN1×M

2 . The
relationship between the two matrixes is as follows:

AN1×M
2 =



Dn
. . .

Dn
1

. . .

1


× AN1×M

1 . (22)

Based on the above-mentioned LOR rotation invariant
property, only a subset of the system matrix is stored (i.e.,
the relationship between the corresponding LOR of a detector
and the adaptive pixel), and the values of the elements of
the system matrix that are not stored are obtained by the
transformation of the stored subset of the system matrix.

F. ADAPTIVE PIXEL MAPPING
The image is usually stored in the computer in the form
of a digital matrix, with the number of pixels in the rows
and columns of the matrix equaling the number of pixels
in the height and width of the image. However, the matrix
and display form of the polar adaptive pixel cannot be the
same as that of the conventional image. Amapping function is
required to convert it to the traditional square pixel structure.

If the sector ring pixel area weighting method is used to
calculate the pixel value, then the weight is considered the
ratio of the overlapping area to the total area of the pixel.
The calculation is highly complex and irregular. When the
square pixel area is smaller than the sector ring pixel area to
a certain extent, the square pixel value can be approximately
replaced by the sector ring pixel value where the center of the
square pixel is located. When the square pixel is subdivided
to a certain extent, the image obtained by this method can
achieve a high conversion quality. In this method, a function
needs to be constructed. The relationship between the square
pixels and the sector ring pixels is determined, as shown in
the following formula:

Rij =

{
1 When square pixel j is in the i th sector ring
0 When square pixel j is not in the i th fan ring

.

(23)

Given that the polar adaptive pixel cannot be represented
by a multi-row and multi-column matrix like the traditional
square pixel, the whole polar adaptive pixel is arranged into

FIGURE 7. Schematic of the mapping.

a column matrix in the iteration process, where n is the
number of pixels. The mapping matrix of the transformation
is introduced, and the transformation can be represented by
the following formula:

Im = Yn × R, (24)

where Yn is the polar coordinate adaptive pixel column
matrix, Im is the square pixel column matrix, and R is the
mapping matrix between them. Im is expressed in the form of
a columnmatrix. Therefore, this matrix needs to be converted
into a picture form and rearranged into a 2D matrix.

When the height of the sector ring is h, a square pixel with
a side length of h/2 is adopted as its mapping target (Fig. 7).
The upper and lower sector ring pixels in the right figure are
sector ring pixels 1 and 2 in the adaptive pixel, respectively.
The center point (orange point) of the four yellow square
pixels on the left is located in sector ring pixel 1. Therefore,
the mapped value of the yellow square pixel is the pixel value
of the sector ring pixel 1, while the center point (dark purple
point) of the four purple square pixels on the left is located
in the sector ring pixel 2, so the mapped value of the purple
square pixel is the pixel value of the sector ring pixel 2.

III. LCLR-PAP ALGORITHM VERIFICATION
A. IMAGE CONVERSION BETWEEN THE POLAR
COORDINATES AND THE CARTESIAN COORDINATES
The computer cannot directly output the image formed by
the adaptive pixels, so it needs to use the mapping function
to convert it into regular square pixels. When the area of the
square pixels is smaller than that of the sector ring pixels,
the adaptive pixel value at the center of the square pixels
can be approximately replaced by the square pixel value.
In this section, the pixel resolution in the diameter direction
of 200 is taken as the research object to discuss the selection
of square pixel resolution. Three concentric ring patterns with
the same ring width are selected as the observation objects in
the experiment. The square pixel size is nearly the same as the
adaptive pixel size (the side length of the square pixel is the
same as the adaptive pixel ring height, and the square pixel
image resolution is 200 × 200), the square pixel size is about
a quarter of the polar coordinate pixel size (the square pixel
image resolution is 400 × 400), and the square pixel size is
about one-ninth of the polar pixel size (the square pixel image
resolution is 600 × 600) for comparison.
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FIGURE 8. Results of the different mapping resolutions.

As shown in Fig. 8, the mapped images of the three res-
olutions show no change in the image shape after mapping,
verifying the correctness of the image mapping conversion.
When the resolution of the square pixels is 200 × 200, the
image has a jagged shape, low conversion accuracy, and
large image quality loss. When the square pixel resolution
is 400 × 400, the black and white junction is smooth, and
only a few jagged edges can be observed by the naked eye.
Accordingly, the image quality is higher, and the conversion
accuracy is better. When the square pixel resolution is 600 ×

600, the conversion effect is better, but a higher resolutionwill
result in a larger mapping matrix. Significantly increasing
the resolution during mapping is unnecessary because the
resolution of the reconstructed image itself is low. Therefore,
choosing the square pixel as twice the polar adaptive pixel is
reasonable.

B. SIMULATION EXPERIMENT RESEARCH
Geant4 is a Monte Carlo application software package devel-
oped by CERN, and it is used to simulate the physical process
of particle transport in matter. GATE (Geant4 Application for
Tomographic Emission) nuclear physics simulation software
based on Geant4 can accurately simulate the physical process
of positron annihilation by using the Monte Carlo method.

In this section, the simulation data obtained by GATE will
be used to compare the image quality of the polar adaptive
pixel reconstruction under different image resolutions. The
PET detector model in the GATE physical simulation is set
according to the Trans-PET system of Suzhou Ruipaining
Company, and the main parameters are shown in Table 1.

The Derenzo model is the measured object used in PET
simulation (Fig. 9). The diameters of the cylinders in the
Derenzo model are 2, 8, 12, and 16 mm from small to large.
In the PET simulation experiment, the activity of nuclide
injected into the Derenzo cylinder is 800 µ Ci, the detector
scanning time is set to 30 s, and the subset of OSEM is 6.

After the simulation experiment, the traditional square
pixel system matrix (T-SM) and the compressed polar

TABLE 1. Parameters of Trans-PET.

FIGURE 9. Derenzo model.

FIGURE 10. Reconstruction effects of two system matrices.

adaptive pixel system matrix (PAP-SM) are used for recon-
struction, and the 29th slice of the Derenzo model is selected
for a comparative study. According to the result of the com-
parison of the images reconstructed with the T-SM and those
reconstructed with the compressed PAP-SM, the latter can
achieve the same effect (Fig. 10). In the 400 × 400 image
reconstruction, the system matrix is compressed by nearly
14.9 times.

We draw the gray value of the pixel wherein the red line
passes through in the reconstructed image into a sectional
curve to compare the difference between the slices of the two
kinds of system matrix reconstruction, as shown in Fig. 11.
The reconstruction effect of the PAP-SM reconstruction is
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FIGURE 11. Section line position and two kinds of system matrix
reconstruction section diagram.

similar to that of the complete T-SM reconstruction, and the
overall change trend is the same. The image reconstructed
by the PAP-SM has a good performance on peak value, indi-
cating that the system matrix has no loss after compression
by this algorithm, and such pixel division is feasible for
reconstruction.

Based on the result of the reconstruction time of the two
systemmatrices, compared with the T-SM, the reconstruction
time required by the PAP-SM is reduced by about 24.8%,
as shown in Fig. 12. This phenomenon occurs because after
the detection field is set to circular, compared with the square
detection field, only fewer pixels can be seen in four corners.
Accordingly, the total number of pixels and the number of
pixels needed to iterate are less. Therefore, the iteration time
is shorter, indicating that the algorithm can not only compress
the system matrix but also reduce the iteration time in the
reconstruction process.

The curves of the number of iterations and the signal-to-
noise ratio (SNR) of the two forms of system matrix recon-
struction are calculated and drawn to verify the convergence
of the algorithm, as shown in Fig. 13. The aforementioned
figure demonstrates that the curve changes of the two forms of
system matrix are similar. The SNR rapidly rises during one
to five iterations and then tends to be flat. After 20 iterations,
the SNR tends to a relatively fixed value. The result of the
comparison of the two curves indicated that the SNR of the
system matrix constructed by using PAP-SM is better than
that of the traditional system matrix. The SNR of 20-40
iterations of the two system matrices is shown in Table 2, and
the average SNR improvement rate is about 4.35%. The pos-
sible reason is that the number of iterative pixels is reduced,
so the impact of some noises in the simulation process is
minimized, demonstrating that the algorithm is feasible in
image reconstruction.

Theoretically, the higher the resolution of the reconstructed
image, the clearer the details. However, the experiment indi-
cated that the higher the resolution of the reconstructed image

FIGURE 12. Comparison of the reconstruction time between the two
matrix systems.

FIGURE 13. Comparison of the reconstruction SNR between the two
matrix systems.

is not the better. The slice images of 200 × 200, 400 × 400,
and 800 × 800 sizes are reconstructed using the PAP-SM,
and the reconstructed image effects under three kinds of
reconstructed image resolutions are compared.

From the reconstructed image shown in Figure 13, it can be
seen that when the size of the reconstructed image is 200 ×

200, all four diameters of cylinders produce large distortion,
and the cylinders with 2 mm diameter have different sizes and
are difficult to distinguish. When the size of the reconstructed
image is 400 × 400, the overall shape of the cylinder is neat,
no obvious deformation occurred, and the spacing between
the cylinders is clear and can be distinguished. In particular,
the overall shape of the cylinder with a 2mmdiameter is clear,
and the reconstruction result is better than that of 200× 200.
However, when the size of the reconstructed image is 800 ×

800, the 2 mm diameter cylinders become somewhat blurred,
and the image as a whole is not clearer. Therefore, we use
400 × 400 reconstructed images for algorithm analysis.

C. OPTIMIZATION RESULTS
In the process of pixel adaptive division, this paper optimizes
the size difference of pixel area in the central position of the
image. As shown in the left figure of Fig. 15, if not optimized,
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TABLE 2. SNR of reconstruction.

FIGURE 14. Image reconstructed by the adaptive system matrix under
three resolutions.

black shadows will be caused due to the non-uniformity of
pixel size, resulting in a loss of image quality.

The system matrix calculation and image reconstruction
are reperformed again according to the above-mentioned
method. The other settings are consistent with the simulation
settings of the Derenzo model except for the system matrix.
The 29th slice after the simulation is selected, as shown in
Fig. 15. The shadow at the center of the reconstructed image
is improved.

We plot the grayscale values of the pixels passing through
the red line in the reconstructed image as the profile curve
to further compare the differences between the reconstructed
slice maps before and after the optimization, as shown in
Fig. 16. The trend of the curve also shows that the closer to
the center, the area difference before the optimization is larger
and the pixel black shadow is more serious. Meanwhile,
the structural similarity (SSIM) is calculated for the recon-
structed images before and after optimization, and the results
are shown in Table 3. The optimized PAP-SM solved the
black shadows problem and improved the structural similarity
of the reconstructed images in the reconstruction process.

D. DISCUSSION
This paper is proposed to address the system matrix of
γ -photon in industrial nondestructive testing applications
facing too large. After calculation, it can be found that the

FIGURE 15. Reconstructed images: (a) before optimization and (b) after
optimization.

FIGURE 16. Section line position and reconstruction section diagram
before and after optimization.

circular slice is divided into N parts by using the optimized
segmentation PAP algorithm, considering only geometric
symmetry. The division depends on the structure of the PET
detector. In this paper according to the PET detector used in
the experiment set N to 12, the system matrix can be com-
pressed to the original 1/ 14.9, and the calculation time of the
high-precision system matrix can be shortened to 1/14.9 of
the original one. Taking the two-dimensional reconstruction
as an example, when the number of coincidence events is
156×156 and the size of the reconstructed image is 400×400,
the size of the system matrix is 14.51GB, which can be
compressed to 4.13MB by combining with the sparsity of the
matrix, achieving a data compression of 3513.3 times; Taking
three-dimensional reconstruction as an example when the
number of coincidence events is 156×156×52×52 and the
size of the reconstructed image is 400× 400× 52, the size of
the system matrix is 1.95PB. Combined with the sparsity and
axial compression of the matrix, the size of the system matrix
can be compressed to 6.94GB, which is enough to import all
into memory (video memory) for subsequent iterative cal-
culations. While compressing the system matrix, this paper
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TABLE 3. SSIM of reconstruction.

proposes a linear recovery algorithm of the system matrix
for the special characteristics of the PAP pixel division, using
the LOR rotation invariance and the rotational overlap of the
detector to represent the recovery of the system matrix by
a matrix multiplication, which solves the complexity of the
existing system matrix recovery algorithm.

In the study, the system matrix after PAP division
(PAP-SM) is reconstructed by iterative method with the tra-
ditional system matrix (T-SM), which is the most widely
used iterative reconstruction algorithm at the present stage,
and their iteration times and SNRs of reconstructed images
are compared. The SNR of the reconstructed image of the
PAP-SM iteration and T-SM both tend to a fixed value after
15-20 iterations, and the fixed value of PAP-SM is slightly
improved compared with the fixed value of T-SM. In the
case of the same number of iterations, the reconstruction
time of PAP-SM is shorter, so PAP-SM is feasible in image
reconstruction.

Meanwhile, for the PAP reconstruction algorithm, this
paper selects the resolution of the reconstructed image. When
the reconstructed image size is 400×400, compared with the
reconstructed images of 200× 200 and 800× 800, the image
reconstruction effect is better. There is no obvious deforma-
tion in the vision, and the interval is clear and distinguishable.
Therefore, the reconstruction resolution of 400×400 and the
corresponding system matrix model are used in this paper.
Aiming at the case of uneven center pixels of the image,
the optimization algorithm of uniform pixels in the center
position is adopted. By comparing the center section line
and structural similarity with the reconstructed image before
optimization, the pixel value step (plunge) of the section line
graph is improved, the overall structural similarity of the
image is increased, and the optimized reconstructed image
can truly reflect the nuclide information at the center of the
image.

IV. CONCLUSION
In this work, a new method is proposed to fully utilize the
rotational invariance of the LOR and the rotation of the detec-
tor FOV to address the following issues: the large detection
range and high resolution of the γ -photon tomography

system; the high-quality system matrix occupies a substantial
amount of storage space; the high precision system matrix
generation takes a long time; and the existing compression
methods of pixel partition or system matrix recovery is com-
plicated. The systemmatrix of the entire FOV can be obtained
by calculating the system matrix from a sector area in the
FOV. This method not only compressed the system matrix
but also greatly reduced the amount of calculation in the
process of establishing the system matrix. Under the design
of polar coordinates and adaptive system matrix, this rotation
will not bring position deviation and pixel edge cutting. The
compression of the system matrix is lossless and the recovery
is quick and direct. Experiments on the compressed polar
adaptive pixel system matrix (PAP-SM) verify the correct-
ness of the lossless recovery of the system matrix and the
effectiveness of the reconstruction, and the reconstruction
speed and image quality are also improved compared with
the image reconstruction of the traditional system matrix
(T-SM). For the problem of black shadows caused by uneven
pixel size in the center of the reconstructed image, the pixel
division in this part is optimized, and the image quality is
significantly improved after the optimization. Therefore, the
proposed algorithm can provide an efficient scheme for solv-
ing the large-scale system matrix compression-recovery, and
a feasible scheme for the application of γ -photon industrial
nondestructive testing and in-situ detection, which is con-
ducive to expanding the application of γ -photon tomography
technology in the industry, and makes it possible to apply
the technology in high-resolution industrial nondestructive
testing.
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