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ABSTRACT Millimeter wave (mm-Wave) radar has been widely employed for non-contact vital sign
detection. This research proposes a novel processing scheme to improve the accuracy and stability of
non-contact heart rate detection. Firstly, we propose an adaptive range bin selection method based on variance
which can select accurate range bins containing phase information of vital signs. Secondly, the smooth
spline is utilized to fit the original phase signal to obtain a relatively pure template signal. Subsequently,
the pure template signal is used as the input signal for the matched filter to convolve with the phase signal.
The matched filtering can eliminate interference and noise such as breathing and random body movements
(RBM). Next, the heartbeat signal is extracted by the Variable Mode Extraction (VME) algorithm. Finally,
anovel frequency measurement technique named as Double-Chirp Z-Transform (Double-CZT) is proposed.
The frequency of the heartbeat signal is measured by the Double-CZT. Compared with the traditional
frequency measurement techniques, the Double-CZT improves the accuracy of frequency measurement
and allows for more accurate heart rate measurements. Many subjects were invited to participate in the
experiment, and the mean absolute error (MAE) of heart rate was less than 1 beat per minute (bpm) on
average. The experimental results demonstrate that the proposed scheme can improve the signal-to-noise
ratio (SNR) of heartbeat signal and provide accurate heart rate estimation.

INDEX TERMS CZT, frequency measurement technique, matched filtering, non-contact heart rate detection,

range bin selection, smooth spline fitting, VME.

I. INTRODUCTION stones and walls plays a vital role in locating and rescuing

Heart rate, being an indicator of heart activity, has been
recognized as a reliable measure of mental stress [1], arrhyth-
mia, alcohol consumption [2], and drowsiness [3]. With the
increasing prevalence of chronic health conditions among
young individuals and the elderly population, there is a
growing demand for long-term health monitoring [4], [5],
[6]. Continuous monitoring of vital signs in drivers has
also become crucial for reducing the occurrence of traffic
accidents. Furthermore, during natural disasters, the ability
to detect heartbeat information through obstacles such as
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victims [7].

Traditional methods for heart rate detection primarily
fall into two categories: sensor-based methods [8] and
vision-based methods [9]. The former belongs to the contact
heart rate detection method, which involves direct contact
with the subject using electrodes, sensors, etc. However,
wearing contact sensors for extended periods can cause dis-
comfort to the subject. Moreover, contact-based detection
methods are limited in their applicability to certain individ-
uals with conditions such as skin diseases and burns. The
latter enables non-contact heart rate detection, allowing for
remote monitoring of vital signs without physical contact
with the subject. However, these methods have limitations in
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environments with smoke or poor lighting, as they may result
in poor performance. Additionally, concerns related to user
privacy may arise with the use of vision-based methods.

With the development of integrated circuit and radar tech-
nology [10], radar has been applied to the field of vital
signs detection, which is an important innovation of radar
technology in the medical field. Compared with the tra-
ditional non-contact detection technology, the radar-based
non-contact vital signs detection technology has stronger
penetration ability and anti-interference ability. Furthermore,
radar-based detection eliminates concerns regarding user pri-
vacy. At present, research on non-contact vital signs detection
based on radar mainly includes two categories: 1) Optimize
hardware devices such as antennas to suppress noise and
improve signal quality. 2) Design and optimize software-level
algorithms in vital signs signal processing to enhance the
accuracy and reliability of vital signs detection [11].

In general, the radars used for non-contact vital signs detec-
tion mainly include continuous wave (CW) radar, impulse
ultrawideband (UWB) radar, and frequency-modulated
continuous-wave (FMCW) radar. CW radar offers high
precision in displacement measurement but lacks ranging
capability and is susceptible to noise [12]. UWB radar
provides high-range resolution and exhibits strong anti-
interference ability. However, it has limitations in frequency
utilization and requires a high sampling rate [13]. In com-
parison, FMCW radar combines the benefits of CW radar
and UWB radar. It offers the sensitivity of CW radar and
the ranging ability of UWB radar while also being compact
and lightweight [14]. Many existing works have verified the
feasibility of heartbeat rate detection using FMCW radar
[15], [16], [17]. During the existing non-contact heartbeat
rate detection process based on FMCW radar, there are three
primary factors that influence the accuracy of heart rate
estimation: 1) The selection of range bins where the human
target is located. 2) The removal of interference and noise
such as respiratory harmonics, cross-tuned signals, and ran-
dom body movements (RBM). 3) The accuracy of frequency
measurement method used for the extracted heartbeat signal.
These factors must be carefully considered during the heart
rate detection process.

To tackle these challenges, this paper proposes a novel
scheme that includes three new methods for heart rate detec-
tion based on 77 GHz FMCW radar. Firstly, the transmit
signal and the echo signal are mixed to generate the inter-
mediate frequency (IF) signal. Subsequently, after Range fast
Fourier transform (Range-FFT) for the IF signal, a static
signal-clutter removal technique is employed to eliminate the
interference of static clutter. Secondly, an adaptive range bin
selection method is proposed, which can adaptively select the
range bin that contains the vital sign information. Then, the
method of matched filtering based on smooth spline fitting is
employed to remove the interference and noise. Based on the
fitting method, combined with matched filtering technology,
the signal-to-noise ratio (SNR) of the heartbeat signal can
be further improved. Next, the Variable Mode Extraction
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(VME) algorithm is used to extract the heartbeat signal.
Finally, a novel frequency measurement method, Double-
Chirp Z-Transform (Double-CZT), is proposed to achieve
high accuracy frequency measurement in a short time win-
dow, enabling real-time heart rate detection.

The remaining sections are organized as follows.
We review the related works in Section II. Section III
presents the basic principles of vital sign measurement
based on FMCW. The proposed method is described in
Section IV. Experiments, results, and conclusion are provided
in Section V, VI, and VII, respectively.

Il. RELATED WORK

One of the advantages of millimeter wave (mm-Wave)
FMCW radar is its high precision and ability to detect
millimeter-scale motion, making it suitable for vital signs
detection in various scenarios. This part will introduce the
related work of vital signs detection using mm-Wave FMCW
radar from three aspects.

A. mm-WAVE RADAR IMAGING

Traditional optical imaging systems are known for their com-
plexity, high cost, vulnerability to environmental conditions
and lighting, and potential infringement on personal privacy.
In contrast, mm-Wave radar imaging systems compensate for
the shortcomings and limitations of optical imaging systems,
making them emerged as the preferred choice for imaging
systems. Additionally, the mm-Wave radar can offer high-
resolution 3D point cloud representations that can be locally
processed using edge artificial intelligence (AI) algorithms
to reconstruct human motion. However, challenges exist due
to factors such as a smaller number of radar antennas and
wide beam width, which can lead to low angular resolution
and difficulty in distinguishing targets. In 2020, Texas Instru-
ments (TT) launched cascaded imaging radar, which employs
hundreds of virtual channels with an azimuth resolution as
low as 1.4 degrees. To improve the accurate perception,
Danzer et al. utilized PointNets for 2D object detection based
on point cloud from mm-Wave radar [18]. Singh et al. [19]
present a human activity recognition approach using 77 GHz
TI IWR1443 mm-Wave radar, achieving over 90% accuracy
in distinguishing five different activities.

B. mm-WAVE RADAR FOR HEALTH-RELATED
APPLICATIONS

The experience of the COVID-19 pandemic has highlighted
the significance of home rehabilitation and health monitor-
ing systems. An and Ogras proposed the mm-Wave-based
Assistive Rehabilitation System (MARS), which employs
convolution neural network (CNN) to estimate the location
of the human dimension. MARS can reconstruct 19 human
joints and their skeleton from the point cloud generated by
mm-Wave radar with an average mean absolute error of
5.87 cm [20]. mm-Wave point cloud technology can provide
valuable information, including distance, speed, and angle of
the target, enabling accurate determination of the location and
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status of the human body. Remote fall detection for the elderly
has emerged as a significant research direction. Ding et al.
developed a fall detection system that accurately detects fall
incidents and distinguishes the direction of the fall with an
accuracy rate exceeding 90% [21]. Additionally, mm-Wave
radar can be utilized for non-contact heart rate detection.
A robot-mounted mm-Wave radar system was proposed to
periodically measure heart rate under various user poses in
[17], The system can also estimate heart rate from the lower
leg while providing an estimation uncertainty.

C. HEART MONITORING ALGORITHMS

The solution for non-contact detection of vital signs based
on mm-Wave radar primarily consists of four modules: signal
preprocessing, interference and noise removal, signal decom-
position, and heart rate measurement [16].

The main objective of the signal preprocessing process is
to extract phase signals that contain vital sign information
from the range bin where the target is located. There are
two primary classic range bin selection approaches based
on energy and variance [22]. The first approach is based on
the fact that periodic movement of the human thorax gener-
ated by heartbeat, respiration, etc., constitutes the majority
of the space’s dynamic component. As a result, the range
bin with the maximum energy inside the radar echo signal
matrix can be chosen as the target bin [16], [23]. The second
approach is based on the echo signal reflected from non-
target objects, which has time-invariant properties and has
been significantly attenuated by static clutter filtering. On the
other hand, the echo signal emitted from the human body
fluctuates significantly, with the variance increasing as the
fluctuation increases. Therefore, the target bin can be cal-
culated by variance. Most previous radar-based heart rate
measurement methods have assumed that the human target
is located at a fixed range bin [24]. However, the accuracy of
the above methods may be significantly affected by RBM and
the target’s considerable respiration. These factors can cause
the range bin where the target is located to change, leading to
potential inaccuracies in the estimation [25].

The chest displacement caused by vital signs is a small
movement of a few centimeters or even a few millimeters.
Therefore, interference and noise such as large-scale RBM
will destroy vital signs and greatly reduce the accuracy of
heart rate detection [23], [26]. In 2016, Ferrears tackled the
interference problem caused by RBM in the vital sign detec-
tion based on FMCW radar by the processing which installs
one radar in front and one radar behind the human body. This
processing reduces the interference of RBM by adding two
radars IF signals [27]. However, the two radars system need
to be measured synchronously, which is difficult to configure
parameters and realize in actual measurement. TI segmented
the phase data by applying a threshold to determine whether
the data falls within the range of heart rate variation. Data
that does not fit within this range, indicating potential damage
caused by exercise, is discarded [16]. However, the discarded
data may potentially contain valuable information about an
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individual’s health status, including indicators of heart dis-
ease. Additionally, discarding this data can lead to a loss of
data continuity, making it challenging to perform dynamic
analysis of heartbeat changes. Lv.et al devised the matched
filtering technology to restore the damaged vital sign signal
by eliminating noise efficiently [26]. However, the effective-
ness of this method is contingent on the purity of the selected
template signal. F. Wang and colleagues employed B-spline
fitting to suppress motion artifacts and obtain a clean phase
signal that reveals vital sign information [28], [29]. However,
only using the fitting method can easily lead to excessive
loss of valuable components in the original phase signal or
incomplete removal of human motion components.

The frequencies of respiratory and heartbeat signals of
healthy adults in the calm state often lie in [0.12, 0.5] Hz and
[0.8, 2] Hz [30], respectively. At present, many time domain
and frequency domain methods have been proposed to extract
heartbeat signals. Reference [31] and TI [16] extract heartbeat
signals through a filter with a cutoff frequency range of [0.8,
2] Hz. However, the heartbeat signal obtained by this method
will be affected by respiratory harmonics, which will affect
the accuracy of heart rate estimation. In the current study,
the mode decomposition methodology is another method to
extract the heartbeat signal from the composite cardiopul-
monary signal. At present, the common mode decomposition
methods are Empirical Mode Decomposition (EMD), Ensem-
ble Empirical Mode Decomposition (EEMD), and Complete
Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN), etc., which decompose the cardiopul-
monary signal into multiple Intrinsic Mode Functions (IMFs)
[32], [33], [34]. However, they all have different degrees
of modal aliasing and noise residual problems. In addition,
Variational Mode Decomposition (VMD) is also used to
monitor the heart rate of people in a static state [35], [36].
However, due to the strong interference of respiratory signal,
the obtained IMF of heartbeat signal still contains residu-
als related to respiration and its harmonics, which affects
the detection of heart rate. Mingxu Xiang presented a fast
Fourier transform-Chirp Z-Transform (FFT-CZT) method for
high-precision frequency measurement and used a notch filter
to remove the respiration interference by filtering the respi-
ration harmonics [37]. However, the heartbeat signal may be
eliminated simultaneously with the respiratory harmonics.

Selecting a high-precision spectrum estimation method
is crucial for accurately estimating the frequency of heart-
beat signals. The fast Fourier transform (FFT) algorithm
is widely used in large datasets and real-time applications
due to its efficiency in calculating signal spectrum. How-
ever, its estimation accuracy is limited. Reference [38] uti-
lized the Multiple Signal Classification (MUSIC) algorithm
to measure the frequency of heartbeat signal. The MUSIC
algorithm is a super-resolution method that can effectively
distinguish multiple signals with close frequencies and accu-
rately estimate signal frequencies. Nonetheless, the MUSIC
algorithm’s spectrum search relies on grid search [39], which
poses significant computational challenges and is difficult to
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FIGURE 1. FMCW radar system block diagram.

implement in real-time scenarios. Another common alterna-
tive is the Chirp Z-Transform (CZT) algorithm [37], which
can analyze a specific frequency band of the signal with high
resolution. It is relatively simpler to implement and has lower
computational complexity. However, the CZT algorithm is
more susceptible to the influence of noise.

On the basis of the TI vital sign detection scheme, the
aforementioned schemes contribute differently to signal pre-
processing, interference and noise removal, signal decompo-
sition, and heart rate frequency estimation. In comparison,
the scheme proposed in this paper can achieve high-precision
heart rate detection even in the presence of RBM. Firstly,
our novel range bin selection method in signal preprocess-
ing accurately selects range bins containing human vital
sign information with less calculation. Secondly, based on
the smooth spline fitting method, combined with matched
filtering technology, we address the potential issues of under-
fitting and overfitting in the fitting process. Thirdly, the
VME algorithm effectively separates heartbeat signal from
the background noise and interference under low computa-
tional complexity. Finally, utilizing Double-CZT for measur-
ing heartbeat signal can further improve the accuracy of heart
rate detection.

IIl. SYSTEM OVERVIEW AND THEORETICAL MODEL

A. SYSTEM OVERVIEW

The FMCW radar system consists of several components,
including a signal generator, power amplifier (PA), low-noise
amplifier (LNA), low-pass (LP) filter, and analog-to-digital
converter (ADC) module [40]. The simplified block diagram
of this system is shown in Fig. 1. In the radar front-end, the
signal generator produces the FMCW signal, which is then
amplified by the PA and transmitted through the transmitting
antenna. The receiving antenna receives the echo signal from
the target, which is subsequently mixed with the local array
signal after amplification by the LNA, resulting in the IF
signal [7].

B. THEORETICAL MODEL
The chirp signal emitted by the FMCW radar is:

5 (1) = Ay exp [j (anmint + nKtz)] 0<i<T, (1)

where fiiy is the starting frequency of the chirp signal, A; is
the amplitude related to the transmitting power, and K is a
positive linear scanning frequency. Assuming that the ini-
tial distance between the human target and the radar is Ry,
when the human target remains relatively stationary and the
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micro-movement of the body surface caused by breathing
and heartbeat is x(¢), then the real-time distance between
the human target and the radar is R(#) = Ro + x(¢). The
echo signal reflected from the human target and modulated
by the thoracic motion will have a delay of T = 2R(t)/c
concerning s(z) and c is the speed of light. Neglecting the
effects of thermal noise and other channel factors, mixing the
transmit signal with the echo signal to obtain the IF signal can
be simplified as [41]:

W) = AArexp (@) +wpt)) T <t <T,  (2)

KRy

wp = 4 —— (3)
C

o) = a2 X0 )

where wy, is the frequency of the IF signal, and ¢(¢) is the
phase of the IF signal. It can be seen that ¢(¢) varies with
x(t) relative to Apax and the higher the operating frequency
of radar, the higher the sensitivity.

To obtain x(¢), we apply the FFT to the IF signal. Each
Range-FFT bin corresponds to a specific distance with an
associated phase similar to ¢(¢). Several chirps are transmit-
ted consecutively to capture time-varying signals, which is
equivalent to the sampling of x(z). As a result, by extract-
ing the phase from the Range-FFT bins that correspond to
the subject, we can retrieve information about physiological
vibrations.

IV. METHODOLOGY

In this paper, we propose a novel scheme for non-contact
heart rate measurement based on FMCW radar. The main
processing flow, as illustrated in Fig. 2, consists of the fol-
lowing steps: radar signal acquisition, signal preprocessing,
noise removal, signal decomposition, and heart rate mea-
surement. Signal preprocessing mainly comprises Range-
FFT, static signal-clutter removal, range bin selection, phase
extraction, phase unwrapping, phase difference, and impulse
noise removal. At first, the transmitted radar signal is mixed
with the echo signal, producing the IF signal, which is then
sampled by ADC to generate a two-dimensional matrix. The
matrix rows correspond to sampled data for each chirp, and
the columns are composed of different frames. These sampled
data undergo preprocessing to obtain the preprocessing sig-
nal. Subsequently, interference and noise such as breathing
and RBM are removed by the method of matched filtering
based on smooth spline fitting. The VME algorithm is then
employed to obtain the heartbeat signal from the output signal
of matched filter. Finally, the heart rate is determined by
measuring the frequency of the extracted heartbeat signal
using the newly proposed Double-CZT method. Each step of
the process is detailed below in further depth.

A. METHODS USED IN SIGNAL PREPROCESSING

1) STATIC SIGNAL-CLUTTER REMOVAL

Assuming that the number of sampled chirps is N and the
number of samples per chirp is M, this results in a raw
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FIGURE 2. Block diagram for heart rate monitoring based on FMCW radar.
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FIGURE 3. The data matrix after Range-FFT.

AD data matrix of size M x N. Range-FFT is employed
for each chirp to obtain the range bins corresponding to the
human target chest cavity. Following the Range-FFT, the
M’ x N dimensional spectrum data matrix R is generated
[42]. In this matrix, the horizontal coordinate represents the
time dimension, i.e., the slow time dimension; the vertical
coordinate represents the distance dimension, i.e., the fast
time dimension. The data matrix after Range-FFT is shown
in Fig. 3.

The data matrix contains multiple reflections from station-
ary objects, generating a strong fixed DC component in the
returned signal. To extract reliable vital sign data from the
data matrix, it is necessary to remove the background noise.
Assuming a static signal propagation environment where the
human target is the only source of motion, the average value
of each row in the matrix is calculated to represent the static
clutter. Subsequently, this average value is subtracted from
each row of the matrix that contains information about chest
motion. After eliminating the static noise, the signal matrix is
represented as follows:

N
1
R [m,n] =R[m,n] — — R [m, 5
[, ) = R [, n] = = > R[m, n] )
n=1
wherem = 1,2--- ,M'andn = 1,2, ---,N. A schematic
representation of the distance-time matrix before and after

the removal of static clutter is depicted in Fig. 4. It can be
noticed that there are many false peaks in Fig. 4(a). However,
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FIGURE 4. Echo pulse 3D distance image: (a) Before static signal-clutter
removal; (b) After static signal-clutter removal.
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FIGURE 5. Samples of date matrix (stable vs. unstable): (a) Stable state;
(b) Unstable state caused by RBM.

in Fig. 4(b), after static signal-clutter removal, the range bins
where the human target is located are more clearly displayed.

2) PROPOSED ADAPTIVE RANGE BIN SELECTION

The vertical coordinates of the data matrix R represent the
distance information of a target. Once the radar module and
its configuration file are determined, the distance represented
by each range bin remains fixed. The targets sat approxi-
mately 1 m in front of the radar in the experiment. One target
remained stationary while the other target moved randomly.
In Fig. 5, the horizontal dashed lines represent the reference
position of the target. In Fig. 5(a), where the target is station-
ary, the range bin of the target remains relatively stable over
time. However, in Fig. 5(b), due to the presence of RBM, the
range bin fluctuates and deviates from the reference position
at some moments.

Considering the limitations of the preceding range bin
selection method, this paper creatively proposes an adaptive
range bin selection method based on phase variance. The
method divides all frames into multiple units, and each unit
consists of K frames. As the range bin varies slightly over a
short period, the range bin selected in the first frame is used
for the latter K — 1 frames within the same unit. The selection
process is mainly divided into two stages. In the first stage, the
initial range bin is selected based on the energy, and the range
bin with the maximum energy is selected. In the second stage,
the selection of range bin is based on the phase variance.
Considering that, when the human body is relatively static,
the range bin changes very little. Hence, in order to reduce
the amount of calculation, the subsequent range bin selection
only considers range bins near the previously selected range
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bin, including a bins before and after it, in a total of 2a +
1 bins. Additionally, to reduce the influence of interference
and noise, the phase changes in the current frame and its
vicinity are taken into account. To be specific, the range of
frame selection spans b frames before and after the current
frame, resulting in a total of 2b + 1 frames. The steps of the
adaptive range bin selection method based on variance are as
follows, which can be mainly divided into three steps.

e Starting from the first frame, all frames are divided into
multiple units, and every unit is composed of K frames. The K
frames in each unit select the same range bin which depends
on the bin selected by the first frame in the unit. Suppose U;
represents the ith unit, R; represents the jth range bin, and F;
represents the rth frame.

e The range bin of all frames in the first unit (Uj) is
selected based on energy.

a) In all range bins, the bin R with the maximum energy
is regarded as the bin where the human target is located, and
select it as the current range bin.

b) The range bin R is not changed in all K frames in Uj.

e The range bin of frames in all units except U; is adap-
tively selected based on phase variance.

a) Take selecting the range bin of the frames in U; as an
example. Suppose that the range bin selected in frames of
Ui—1 is R;. Then the candidate range bins in frames of U; is
[Ri—a, Ri+4], a total of 2a + 1 bins.

b) In U;, the frame selected for the range bin is Fi—1)k+1.
Calculate the phase variance of each candidate range bin
in the range of [F;_1)k+1-p, F(i—1)k+1+p], a total of 2b +
1 frames.

¢) The range bin with the maximum variance is selected
for all frames in U;. In each candidate range bin, the phase
variance calculation formula is as follows:

=(i—DK+1+b _\2
ZZ:(i—l)K+l—b (90; - %)

2b+1

vay = v=j—a,--,jta

(6

where ¢, denotes the phase in the vth bin of the uth frame
and ¢, denotes the average value of the phase in the vth bin
of frames from F(;_ 1)k +1—p t0 F(i— 1)K +1+b-

This method selects the range bin every K frames, thereby
reducing the amount of calculation. Moreover, it considers
not only the frame in which the selection is performed, but
also a short range of nearby frames, which reduces the impact
of interference and noise such as breathing and RBM. Fig. 6
shows the process of selecting the range bin in ith unit.
As shown in Fig. 6, the jth range bin where the body is located
is selected in the (i-2)K+/Ith frame. Based on this, taking
into account the frames indicated by orange lines, the range
bin with the maximum phase variance is selected from the
candidate range bins within the purple ellipse.

After determining the range bins where the human target
is located, the next step is to extract the phase signal from
these bins. In this paper, the phase signal is extracted by
the arctangent algorithm. To ensure the phase signal remains
within [—m, ] when the displacement x(¢) is greater than
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Amax / 4, phase unwrapping is then performed on phase signal
to obtain the unwrapped signal, which represents the periodic
motion of the human thorax in the radar echo signal matrix.
This unwrapped signal contains vital signs that are essential
for later processing stages.

3) PHASE DIFFERENCE AND IMPULSE NOISE REMOVAL

The phase must be deconvoluted due to a breakpoint issue
in the phase derived by the inverse tangent algorithm. The
formula for the algorithm is as follows:

¢m+1)—2m,¢(n+1)—p(n) >n
¢m+1)+2n,¢(n+1) —p(n) < —m
N

To eliminate phase drift and enhance the heartbeat signal
which is usually very small and can be easily masked by back-
ground noise, the phase difference processing is employed on
the unwrapped signal. The process of phase difference is to
subtract the previous phase value from the value of the latter
phase, and the signal after the processing of phase difference
is referred to as phase difference signal.

However, real radar data contain a significant quantity of
non-Gaussian noise, such as electromagnetic interference and
powerful scattered radar echoes, which can still interfere with
the phase difference signal.

In order to further eliminate the non-Gaussian noise and
improve the SNR of heartbeat signal, the impulse noise
removal processing is then performed during the final sig-
nal preprocessing. The resulting signal is referred to as the
preprocessing signal. Fig. 7 illustrates the effectiveness of
impulse noise removal by comparing the phase difference
signal before and after impulse noise removal, i.e., phase
difference signal and preprocessing signal. In Fig. 7(a),
the amplitude of the impulse noise is almost as high as
3 before removal, indicating a significant interference. How-
ever, Fig. 7(b) shows that after impulse noise suppression, the
signal impulse noise is significantly reduced, clearly indicat-
ing the successful suppression of the impulse noise.

¢(n—|—1)=’

B. MATCHED FILTERING BASED ON SMOOTH SPLINE
FITTING

The amplitude of chest vibrations caused by human breathing
is significantly greater than that of the heartbeat. Traditional
methods attempt to directly filter out the heartbeat signal to
eliminate the effect of the breathing signal on heart rate esti-
mation. However, the third and fourth harmonic frequencies
of breathing are very close to the heartbeat frequency, which
can result in false peaks of breathing harmonics appearing
in the heart rate range spectrum [43]. Additionally, uncon-
scious RBM are unavoidable when a person is seating or
standing. RBM can reach several millimeters or even tens of
centimeters, thus the Doppler spectrum of the heartbeat will
be entirely obscured by the signal of broadband noise [44].
To recover the periodicity of the heartbeat signal, previous
methods have used polynomial fitting to eliminate motion
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[45], but the order of the polynomials must be adapted to
the breathing frequency of the human subject [46], which
is impractical. In this paper, we employ matched filtering
to effectively recover the small-amplitude heartbeat signal
in the presence of RBM. To improve the effectiveness of
matched filtering, we utilize smooth spline fitting to remove
the “burr” in the unwrapped signal and obtain a cleaner
template signal. Fig. 8 depicts the matched filtering process
flow.

1) SMOOTH SPLINE FITTING

The term ““spline curve” refers to a curve generated by a
set of control points, and the general shape of the curve is
controlled by these points. Depending on whether the curve
passes through all the control points or not, splines can
be classified as interpolation or approximation splines. For
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interpolation spline fitting, the fitted curve must pass through
all control points; otherwise, it is referred to as approximate
spline fitting. In this paper, the latter is employed, and the
unwrapped signal serves as the control point.

Compared to heartbeat signals, breathing and RBM have
larger distance variations and lower frequencies. In this paper,
the phase variations caused by breathing and RBM are esti-
mated through spline fitting.

To remove breathing and RBM with lower frequency and
larger distance change compared to the heartbeat signal, the
estimation of the phase change caused by breathing and RBM
can be fitted by:

N ) 2 )
min 3 {¢0n =]+ 2 [Fwa @
Y=l

where A > 0 is the smoothing parameter, N is the total
number of samples, and ¢(n) is the unwrapped signal. The
first part of the above equation is used to measure the approxi-
mation of the fitted curve to the original phase, and the second
part is used to measure the smoothness of the curve, which is
the essence of the smoothing spline. f is the estimated value
of the phase change caused by breathing and RBM, defined
as:

N
EOEDIIAG ©)
n=1

where f; () are a set of spline basis function. Assume P =
X « T
[f(n ), - ,f(tN)] , the roughness loss is of the form [28]:

/ #(6)dt = PTAP (10)

where the elements of A are [ f;(1)f;"(t)dt. We can rewrite
(8) as:

min {¢ —ﬁ}T {¢ —13} + APTAP (11)
P

when P* = (I+1A)" !¢, the above equation takes the
minimum value, then the estimated phase change caused by
breathing and RBM is £ (f) = P*Tf(t), where f(t) is the vector
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form of the spline basis function. The residual signal, i.e., the
template signal after interference removal, is [29]:

h(t) = ¢(t) — f (1) (12)

where ¢(?) is the unwrapped signal.

2) MATCHED FILTERING

In signal processing, the matched filter is frequently
employed to maximize the SNR of a target signal in the pres-
ence of noise. It works by convolving the input signal with
a template signal that matches the expected characteristics
of the target signal. By aligning the input signal with the
template signal, the matched filter enhances the recovery of
the signal that resembles the template, resulting in a stronger
representation of the desired signal and a weaker representa-
tion of the noise. This leads to the maximization of the SNR.
In this paper, the heartbeat signal hidden in the preprocessing
signal is recovered using matched filtering, with the residual
signal serving as the template.

The matched filtering result of the vital sign s(¢), which
is named the output signal, is obtained by convolving the
preprocessing signal y(), which is the conjugate timedomain
inversion of the residual signal A(¢), expressed in the formula
as [47]:

s(t) = y(Oh*(—1) 13)

C. VME ALGORITHM

EMD is susceptible to under-envelope, over-envelope, fre-
quency mixing, and endpoint effects. VMD requires speci-
fying the number of mode decompositions in advance [33];
too many modes will result in some false components, while
too few will induce mode mixing. Consequently, VME, a sim-
plified version of VMD, has been introduced [48]. The VME
algorithm employs the same concepts as the Variational VMD
algorithm: Wiener filtering, Hilbert transform, and variational
method [49]. By estimating the mode’s central frequency,
VME extracts eigenmodes with central frequencies close to
a predetermined central frequency. This feature avoids the
requirement to know the required number of VMD modes.
In addition, the computational complexity of extracting cer-
tain modes is drastically decreased. Moreover, it effectively
solves the problems such as endpoint effects and has been
successfully applied in medical and other fields [50]. For
these reasons, this paper selects VME to extract the heartbeat
signal from the phase signal, i.e., the output signal.

The fundamental premise of VME decomposition of the
signal is to solve for the approximation of the mode’s center
frequency and to extract the eigenmodes with the mode’s
center frequency as their center frequency. The particular
procedures are listed below. 1. The core idea of VME is
to construct and solve variational problems, and constrained
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variational models can be constructed as follows:
f@©) =uq@) + fr(t)
. ) 2
i G [(8t L) t] vt
i (o[ o+ #) o]
+ 18113}

where f(¢) is the input signal; uy(¢t) is the desired mode;
f+(¢) is the residual noise signal; § is the Dirac distribution;
wy 1is the approximate center frequency; « is the quadratic
penalty term; and B(¢) is the impulse response of the filter
used.

2. To solve the reconstruction constraint problem, the
quadratic penalty term « and the Lagrangian penalty factor A
are introduced to obtain the augmented Lagrangian function

as follows:
o [(3(:) + i) ud(t):| e vt

+ 1B@HO5 + IIf (1) = wa () + /O3
+ (A0, f (1) = (ua () + £(1)) 15)

3. Using the Fourier transform and the alternating direction
multiplier algorithm to solve the above variational problem,
the alternating update, and can lead to the new expressions as
follows:

(14)

2
L(ug,wg, A) =«

4
TP (s G K (ke
d p—
[1+“2(W—W3“)4}[1+2a<w—wz;>2]
2
00 n+1 d
WZ+1 - Jo~ <W)‘2 W 16
Jo ”ZH(W)) dw
_
Al = g g | L0 ) S
1+a2(w—w3+1)

where 7 is the noise tolerance.

D. SPECTRUM ANALYSIS

In fact, due to the influence of respiratory motion, the
extracted phase consists not only of the respiratory and
heartbeat components but also the harmonic component of
respiration and heartbeat. At this time, the vital signs signal
can be expressed as:

M N
xX(t) =D X, () + D xn, (1)
m=1 n=1

M
= ZA,m sin (27f,,,t + br,,)

m=1
N
+ D A, sin (2t + ¢, (17)
n=1
where x,, () denotes the respiratory component, while x,,, (¢)
denotes the mth harmonic of respiration, A,,, f,,, and ¢y,
are the corresponding amplitude, frequency, and phase. Sim-
ilarly, x;,(¢) denotes the heartbeat component, while xy,, (¢)
denotes the nth harmonic of heartbeat, Ay, f3,, and ¢y, are
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the corresponding amplitude, frequency, and phase. In the
process of measuring heartbeat rate, the third and fourth har-
monics of respiration are typically very close to the heart rate.
Therefore, the resolution and accuracy of frequency mea-
surement must be improved in order to distinguish the heart-
beat signal from respiratory harmonics and other unwanted
components.

Based on CZT [51], the Double-CZT is proposed in this
paper to estimate heart rate in real-time with great precision.
The FFT samples at equal intervals on the unit circle in the
Z-plane, while the CZT samples at equal angular intervals on
any section of the spiral in the Z-plane. Compared with the
traditional FFT, which can only obtain a rough spectrum of
the entire frequency band, CZT can ignore other frequency
bands and only sample in the frequency band of interest,
so CZT has a higher resolution with the same number of
sampling points.

Sampling at equal angles along a segment of the spiral in
the Z-plane, and these sampling points:

. . —k
Zk = AW = A()e‘leo (W067]¢0)
= AgeoW kM k=0,1,--- M —1 (18)

where M is the number of sampling points, Ag is the vector
radius of the initial sampling point, 6y is the phase of the
initial sampling point, ¢q is the angular difference between
adjacent sampling points, and Wy is the elongation of the
spiral. The above parameters are determined according to
practical requirements. At the fixed point z;, we convert the
recovered phase from ¢(n) to ¢(z), which is expressed as:

o(z)
k2

- (Woe—jm) z

N-1 n2 —e=m?
. Z [gg(n) (Aoefeo)_” (Woe—j¢o)2:| (Woe—ﬁpo) 2
n=0
(19)

As can be seen, the starting point zg can be chosen arbitrar-
ily, so that CZT can perform high-resolution analysis of the
input data from any frequency [52].

In many instances of heart rate measurement, CZT cannot
meet the demand of high frequency resolution and measure-
ment accuracy, so we propose the Double-CZT algorithm
in this paper [53]. The Double-CZT, which employs CZT
twice, determined a peak by using the first CZT, and then
the second CZT operation is performed to obtain the final
estimated frequency in the frequency range near the peak. The
specific process of heart rate estimation with Double-CZT
is as follows: Firstly, the CZT is applied to the input signal
to attain the frequency spectrum in the human heart rate in
[fmin»fmax] Hz, and the frequency at the peak spectrum is used
as a rough estimate of the heart rate. The starting point of the
refined spectrum analysis is the frequency corresponding to
the two spectral intervals on the left side of the first CZT peak
spectral line, and the endpoint is the frequency corresponding
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to the two spectral intervals on the right side of the first CZT
peak spectral line. The frequency at the second CZT peak
spectrum line is used as the final estimate of heart rate. The
specific calculation procedure is as follows. For the first time,
N-point CZT is used to process the heartbeat signal with a
sampling frequency of f;, and the frequency resolution is:

fmax _fmin
Af = N (20)

From here we can see that compared with FFT, CZT can
measure frequency in the frequency range we actually care
about. For example, in the above heart rate measurement, the
sampling frequency is 20 Hz, the frequency resolution of CZT
is Af, while the frequency resolution of FFT at the same
number of points is f;/N. The general range of heart rate is
[0.8, 2] Hz, then the frequency resolution of CZT is about
16 times that of FFT.

Considering that the spectral analysis of the signal is imple-
mented on the unit circle, the parameters of the first CZT
algorithm are Ag = 1, Wy = 1, 6y = 27 (fmax — fmin)/(Nf5),
and @9 = 27 fmin/fs. Assuming that the spectral line position
of the maximum peak obtained after the first CZT is Ny, the
frequency scope band range of the second CZT algorithm is
[fmin + V1 — 2) Af, fmin + (N1 + 2) Af]. Also, the value of
6o can be given:

9()227'[

2D
S

where Af’ is the desired frequency resolution, if it can be

achieved after the M-point CZT, then Af’ = 4Af /M. This

can be achieved. Assuming that the spectral line position

maximum peak is Ny, the heartbeat rate can be written as:

Jiy = fmin + (N1 = 2) Af + N2Af (22)

In order to demonstrate the superiority of the Double-CZT
algorithm, we conduct a comparison with FFT, MUSIC [54],
[55], [56], and the CZT algorithm in terms of measurement
accuracy. This comparison is performed by simulating a
noise-added sine wave signal.

The experimental parameters are set as follows. The sine
wave signal s(#) = 0.2sin (27 - 1.2¢) and the signal length
is 64. The number of MUSIC antennas is 8, the number
of snapshots is 8, and the sampling frequency is 10 Hz.
We perform 1000 Monte Carlo simulations of a sine wave
signal at each noise level, using the root mean square error
(RMSE) as the measurement metric, defined as [57]:

1
RMSE = | — > (est(k) — true(k))* 23
v é( (k) — true(k)) (23)
where N is the number of Monte Carlo experiments, est (k)
and true (k) represent the estimated frequency and the true
frequency of the sine wave respectively.

The simulation results illustrated in Fig. 9 reveal that the
RMSE of FFT consistently exceeds that of MUSIC, CZT,
and Double-CZT at any SNR in this experiment. Specifi-
cally, the RMSE of FFT is highest when the SNR lies in
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FIGURE 9. RMSEs of frequency estimation among various methods.

[-15, -5] dB. As the SNR increases, the RMSE of FFT
gradually decreases, but it still remains significantly higher
than that of MUSIC, CZT, and Double-CZT. In the case
of MUSIC, the RMSE is greater than that of CZT and
Double-CZT when the range of SNR is [-15, -2.5] dB.
However, as the SNR increases, the RMSE of MUSIC
becomes lower than that of CZT but still higher than that of
Double-CZT. For CZT, its RMSE is comparable to that of
Double-CZT when the range of SNR is [-15, -5] dB. As the
SNR increases, the benefits of Double-CZT become more
apparent. In this simulation experiment, the average RMSE
values of CZT, FFT, MUSIC, and Double-CZT are 0.081,
0.608, 0.150, and 0.071, respectively. Overall, Double-CZT
offers superior frequency measurement accuracy compared
to the other three methods.

Moreover, in terms of simulation time, MUSIC requires
nearly 20 times longer than CZT and Double-CZT. Although
MUSIC has a smaller frequency measurement error than FFT,
its real-time implementation is challenging due to its mas-
sive computational requirements. This further highlights the
advantages of Double-CZT as proposed in this paper, which
not only delivers minimal frequency measurement errors and
low time consumption but also enables real-time engineering
implementation.

V. EXPERIMENTS
In this paper, we conduct experiments using a Texas Instru-
ments mm-Wave AWR 1642 FMCW radar, which operates
at 77-81 GHz and has two transmit antennas and four receive
antennas, making it a versatile sensor for a variety of appli-
cations. To verify our proposed algorithm, we use a DCA
1000 acquisition board to collect data and transfer the data
to a computer terminal through a USB interface, and then
use MATLAB for simulation and analysis. The configuration
parameters of the FMCW radar used in the experiments are
listed in Table 1, and their descriptions are depicted in Fig. 10.
Fig. 11 shows the real experiment demonstration, with the
subject seated at a distance of approximately 1 m from the
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FIGURE 10. The parameter settings of the sensor.

TABLE 1. Radar parameters.

Parameter Value
Start Frequency, fc 77 GHz
Idle Time, Ti 7 us
Chirp duration, Tc 50 ps
Frequency Bandwidth, B 3.99 GHz
Frame period, Ts 50 ms
Samples per Chirp 200
Frequency Slope 70 MHz

FIGURE 11. Real experiment demonstration.

radar and facing it directly. The subject wore a Polar H10
chest heart rate sensor, which served as a reference for mea-
suring the heartbeat rate. The subject kept their respiratory
and heartbeat signs stable before the test, and remained as
still as possible during the test, with no other human targets
within the sensor’s sensing range. Fig. 12 shows the details of
the experimental equipment, including the radar system and
the chest heart rate sensor.

In order to evaluate the accuracy of heartbeat rate estima-
tion, we use the Polar H10 chest heart rate sensor to measure
heart rate as the reference and adopted the mean absolute
error (MAE) and mean absolute percentage error (MAPE) as
the measurement metric. MAE is defined as [58]:

MAE = ~ i (BPMeg(k) — BPMyue(k))  (24)
- N “~ est true
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e
(b)

FIGURE 12. Experimental equipment: (a) AWR 1642 radar system;
(b) Polar H10 chest heart rate sensor.

TABLE 2. The parameters settings of VME algorithm.

Parameter Value
Omega Int 1.2
Penalty Factor 1000
Tolerance to Noise 0
Tolerance of Convergence Criterion le-7
Data Fidelity Balance Parameters 20000

MAPE is defined as [11]:

1 i (BPMesy(k) — BPMirye (k)

MAPE = —
N BPMirye(k)

(25)
k=1

where N denotes the total number of time windows within the
observation time for each data set, BPMe(k) and BPMeg (k)
are the true heart rate measured by the Polar H10 chest
heart rate sensor and the estimated heart rate obtained by the
algorithm at the kth time window.

We collect signals from 1200 frames, the slow time sam-
pling frequency is 20 Hz, and use VME to extract heart-
beat signal. According to a large number of simulation
experiments, Table 2 gives the optimal parameters of VME
algorithm.

VI. RESULTS

A. ANALYSIS OF ADAPTIVE RANGE BIN SELECTION AND
MATCHED FILTERING BASED ON SMOOTH SPLINE FITTING
1) ADAPTIVE RANGE BIN SELECTION

Let K = 128, a = 5, b = 5 mentioned in Section IV, and
then the spectrum of the extracted phase from the selected
range bins is shown in Fig. 13. The blue dashed line represents
the original energy-based range bin selection method, and
the red solid line represents the adaptive range bin selection
method proposed in this paper. It should be illustrated that the
reference heartbeat rate given by the Polar H10 chest heart
rate sensor is 79 beat per minute (bpm), which corresponds
to a signal frequency of 1.316 Hz. We can observe from
Fig. 13 that the peak frequency of the red line (proposed
method) is 1.317 Hz. On the other hand, the peak in the
blue line is shifted, and the real heartbeat is obscured by
the unwanted signals. Therefore, the range bins selected using
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FIGURE 13. Spectrogram of the phase signals from the range bins
selected by the original method and proposed method.
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FIGURE 14. Unwrapped signal and fitting results.

the proposed method contain more heartbeat information
with less interference.

2) SMOOTH SPLINE FITTING

The results after fitting the unwrapped signal are shown in
Fig. 14. The blue dots represent the original unwrapped signal
and the red solid line shows the fitting results corresponding
to the breathing effect and RBM.

The residual signal is obtained by subtracting the fitting
results from the unwrapped signal. Fig. 15(a) shows the
preprocessing signal, which is the signal after impulse noise
removal shown in Fig. 2, and Fig. 15(b) shows the residual
signal. It can be seen from Fig. 15(a), the preprocessing signal
has no obvious periodicity, and its amplitude varies from -
1.6 rad to 1.2 rad, which is due to the impact of breathing
and RBM. On the contrary, the amplitude of residual signal
does not exceed 0.8 in Fig. 15(b). In addition, the residual
signal exhibits a distinct prototype of the heartbeat signal and
demonstrates periodicity associated with the heartbeat.
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FIGURE 15. Waveform of the preprocessing signal and the residual signal
in the time domain: (a) The preprocessing signal; (b) The residual signal.
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FIGURE 16. Spectrogram of the preprocessing signal and residual signal.

FFT is performed on both the original preprocessing signal
and the residual signal respectively, and their frequency spec-
trums are shown in Fig. 16. The blue dashed line in Fig. 16
represents the spectrum of the original preprocessing signal,
and the purple line represents the spectrum of the residual
signal. The subject’s heart rate, measured by the Polar H10
chest heart rate sensor, is 79 bpm, corresponding to a real
heart rate value of approximately 1.32 Hz. It can be seen
that the heartbeat signal in the original preprocessing signal
is drowned in noise and interference, making it difficult to
extract. Nevertheless, after applying smooth spline fitting to
obtain the residual signal, the lower frequency range, where
respiration occurs, is attenuated. Moreover, the prominent
peaks in the residual signal closely resemble the real heart-
beat frequency measured by the reference sensor. Apparently,
by using smooth spline fitting, the residual signal can exhibit
a characteristic of the heartbeat signal to a large extent.
Consequently, a matched filter can be designed by taking the
residual signal as the template.

3) MATCHED FILTERING

Using the residual signal as a template, a matched filter can be
built and implemented by taking the preprocessing signal as
input. The spectrum of the output signal of the matched filter
is shown in Fig. 17. Notably, the primary peak of the heartbeat
signal is more prominent, while the spurious peaks generated
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FIGURE 17. Spectrogram of the output signal of the matched filter.

by other effects such as respiratory harmonic, RBM, and other
interference have been effectively eliminated. To assess the
efficiency of the matched filtering approach, we performed
1000 simulations and calculated the average runtime. The
average runtime is 0.158 milliseconds, which indicates that
matched filtering can be implemented in real-time. It should
be noted that experiments were done in a PC with Intel (R)
Core (TM) i7-1065G7 CPU @ 1.30GHz 1.50GHz.

To further analyze the effect of the matched filtering,
we use the SNR in the frequency domain for quantitative anal-
ysis. Assuming that the spectral peak in 0.8-2 Hz corresponds
to a spectral line position of Ny, its SNR can be expressed as:

sum( > 8% (No — l))
SNR = 101g = (26)

S2(f) — sum( > S2(No — 1))

i=—5

where S2(f) denotes the total energy of the spectrum and
S2(Np) denotes the energy at the peak of the signal spectrum.
Taking Fig. 16 and Fig. 17 as an example, the SNR of the
preprocessing signal, the residual signal, and the output signal
of the matched filter are -17.78 dB, -11.01 dB, and -6.28 dB,
respectively. This indicates that there is an SNR improvement
of 6.77 dB by adopting the smooth spline fitting. Further-
more, an additional improvement of 4.73 dB is achieved by
employing the matched filtering. Consequently, remarkable
performance improvement in heartbeat rate measurement can
be achieved by adopting the method of matched filtering
based on smooth spline fitting.

In order to further verify the effectiveness of range bin
selection and matched filtering based on smooth spline fitting
method proposed in this paper, we analyze the heartbeat
signal extracted by VME for the following three schemes.
Scheme 1: The range bin is selected by the original energy-
based method, and the preprocessing signal is the VME input
signal. In addition, FFT is chosen as the method for heart rate
estimation. Scheme 2: Different from scheme 1, the range bin
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FIGURE 19. Spectrogram of heartbeat signals obtained by VME.

selection method is the adaptive range bin selection method.
Scheme 3: Different from scheme 2, the method of matched
filtering based on smooth spline fitting is adopted. The brief
flow diagram of these schemes is shown in Fig. 18, which
more clearly shows the differences among the three schemes.

Fig. 19 shows the spectrum of output signal for scheme 1,
scheme 2, and scheme 3, respectively. It can be seen that the
heartbeat signal obtained by scheme 1 contains more clut-
ter (respiratory harmonics, cross-tuned signals, heterodyne
waves from RBM, and other unwanted signals), and the peaks
are not obvious, even a false peak appears. Due to the fact
that the heart rate reference value detected by the Polar H10
chest heart rate sensor is 79 bpm, the peak value of the real
heartbeat signal should be in the vicinity of 1.3 Hz. Scheme 1
yields a spectrogram with the largest peak at 1.377 Hz, i.e.,
a false peak, which will increase the measurement error for
the final heart rate. Scheme 2 shows the proper peak and a
cleaner spectrogram. Consequently, the range bin selection
method proposed in this paper is preferable. Additionally,
scheme 3 effectively suppresses the clutter, resulting in a clear
observation of the peak in the heartbeat signal. Comparing
scheme 2 and scheme 3, it is evident that scheme 3 yields a
purer spectrum with a more pronounced peak. This highlights
the advantages of matched filtering based on smooth spline
fitting.

B. HEART RATE MEASUREMENT ANALYSIS
In each experiment, subjects were examined for one minute,
and 60 continuous heart rate reference values were gathered
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TABLE 3. MAE of heart rate by different schemes (MAE units: bpm).

Subject Scheme 1 Scheme 4 Scheme 5
1 2.6 2.171 1.6
2 8.428 3.6 2.971
3 0.828 0.828 0.742
4 2 1.942 0914
5 2.342 2.142 1.914
Average 3.239 2.136 1.628
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FIGURE 20. Brief flow diagram of various schemes.

via the Polar H10 chest heart rate sensor. During each exper-
iment, the sliding window length and the sliding step length
were set as 512 and 20 [59], respectively, and data to be pro-
cessed slides once every second starting from 26 s. As aresult,
35 continuous heart rate values were obtained. To illustrate
the effectiveness of the proposed algorithms, we analyze the
MAE of the heart rate estimated by various schemes.

1) PERFORMANCE IMPROVEMENT BY USING MATCHED
FILTERING BASED ON SMOOTH FITTING

To exhibit the validity of the smooth spline fitting and the
matched filtering based on smooth spline fitting, we compare
and analyze the MAE of scheme 1, scheme 4, and scheme 5.
Scheme 4: Different from scheme 1, the input signal of VME
is a residual signal. Scheme 5: Different from scheme 4, the
input signal of VME is the output signal of the matched filter.
We use the MAE obtained from scheme 1, scheme 4, and
scheme 5 to demonstrate the effect of fitting and matching
respectively. The brief flow diagram of these schemes is
shown in Fig. 20. Table 3 exhibits the MAE of scheme 1,
scheme 4, and scheme 5, respectively. The average MAEs
of heart rate obtained by three schemes mentioned above are
3.239 bpm, 2.136 bpm, and 1.628 bpm, respectively. The
results show that the average MAE is reduced from 3.239 bpm
to 2.136 bpm by using smooth spline fitting. Moreover, based
on smooth spline fitting, the average MAE can be further
decreased to 1.628 bpm by adopting matched fitting.

We have verified the effectiveness of the method of
matched filtering based on spline fitting from three aspects:
SNR, the spectrum of the heartbeat signal, and the MAE
of heart rate. To be specific, the SNR of the output sig-
nal of the matched filter is improved, the spectrum of the
heartbeat signal extracted by VME is cleaner, and the heart
rate measurement error is smaller under the same conditions.
It can be concluded that estimation accuracy can be improved
significantly by using smooth spline fitting, and remarkable
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TABLE 4. MAE of heart rate by different frequency measurement
methods (MAE units: bpm).

Subject Scheme 5 Scheme 6 Scheme 7
1 2.6 1.057 0.742
2 1.828 0.711 0.514
3 1.057 1.028 0.6
4 1.571 0.542 0.485
5 2.428 1.542 1.085
Average 1.896 0.976 0.685

improvement can be further attained by adopting matched
filtering on the basis of smooth spline fitting.

2) PERFORMANCE IMPROVEMENT BY USING DOUBLE-CZT
Scheme 6: Different from scheme 5, CZT is selected as
the heart rate estimation method. Scheme 7: Different from
scheme 5, Double-CZT proposed in this paper is selected as
the heart rate estimation method. We prove the superiority of
Double-CZT in heart rate estimation from the MAE obtained
by scheme 5, scheme 6, and scheme 7. The brief flow diagram
of the schemes is shown in Fig. 21. Table 4 exhibits the MAE
of scheme 5, scheme 6, and scheme 7, respectively.

According to Table 4, the average MAEs of heart rate
obtained by three schemes mentioned above are 1.896 bpm,
0.976 bpm, and 0.685 bpm, respectively. The results show
that the average MAE is reduced from 1.896 bpm to
0.976 bpm by using CZT. Moreover, the average MAE can
be further decreased to 0.685 bpm by adopting Double-CZT.
In short, Double-CZT outperforms FFT and CZT in heart
rate estimation. To provide a visual comparison of the dif-
ferent frequency measurement methods, we selected a set of
representative data from Table 4 for analysis. The resulting
curves of heart rate versus time are presented in Fig. 22.
It can be seen that the heart rate estimate by Double-CZT
frequency measurement closely follows the reference value,
effectively reflecting the current heart rate fluctuations. Con-
versely, FFT exhibits significant deviations from the refer-
ence heart rate value in the 25th-35th sliding windows, and
CZT shows notable deviations in the 5th-7th and 29th-32th
sliding windows.

3) PERFORMANCE IMPROVEMENT BY ADOPTING ADAPTIVE
RANGE BIN SELECTION

Scheme 8: Differs from scheme 7 in that it employs the
adaptive range bin selection method. We demonstrate the
effectiveness of the proposed method by comparing the MAE
obtained by scheme 7 and scheme 8. The brief flow diagram
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TABLE 5. MAE of heart rate by different range bin selection methods
(MAE units: bpm).

Subject Scheme 7 Scheme 8
1 3.142 0.6
2 1.057 0.711
3 1.342 0.828
4 0.714 0.457
5 3.142 1.714
Average 1.879 0.862

of the schemes is shown in Fig. 23, and Table 5 presents the
MAE value of both schemes.

The results presented in Table 5 highlight the significant
impact of the adaptive range bin selection method on the
accuracy of heart rate estimation. Scheme 8, which uses the
proposed method, achieves an average MAE of 0.862 bpm,
while scheme 7, which uses the traditional range bin selection
method, has an average MAE of 1.879 bpm. This demon-
strates that the adaptive range bin selection method can
improve the accuracy of heart rate estimation by approx-
imately 1 bpm under the same conditions. Furthermore,
Table 5 demonstrates that the MAE of scheme 7 is as high
as 3 bpm. This finding shows that the traditional range bin
selection method fails to correctly select the bins where the
human body is located. As a result, the VME algorithm
cannot extract the heartbeat signal effectively, leading to a
significant discrepancy between the estimated heart rate and
the reference heart rate.
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TABLE 6. Estimation results of heart rate under different schemes.

Ref. [11] Ref. [16] Ref. [24] Ref. [28] Ref. [37] Our Work
Subject  Gender BMI

MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE | MAE | MAPE

(bpm) | (%) | (bpm) | (%) | (bpm) | (%) | (bpm) | (%6) | (bpm) | (%) | (bpm) | (%)

1 Male 22.8 2.371 32 3.285 445 2.485 3.39 1.371 1.87 0.685 0.93 0.285 0.39

2 Male 20.1 7.542 12.97 | 3.314 5.69 2.942 5.02 7.885 13.36 | 7.857 13.45 1.8 4.24

3 Male 24 24.114 34 7.085 10 3.485 4.92 2.885 4.07 1.628 2.29 0.828 1.16

4 Male 25.6 8.257 10.26 | 2.542 3.17 2.457 3.06 1 1.25 0.657 0.82 0.628 0.78

5 Male 21.7 6.6 7.77 1.314 1.55 5.257 6.21 3.8 448 0.914 1.08 0.886 0.85

6 Female 20.3 11.057  13.56 | 5914 7.3 6.428 7.96 2.514 3.1 2.428 3.02 0.8 0.98

7 Female 21 2.8 3.85 4.542 6.21 2914 3.99 2.057 2.81 1 1.37 0.685 0.9

8 Female 232 2.457 3.12 2.6 3.28 2.6 3.28 0.714 0.86 0.914 0.93 0.714 0.43

9 Female 19.8 2971 4.24 5.085 8.1 19.171 3039 | 4.058 7.73 4.142 6.59 0.885 0.99

10 Female 18.7 1.485 1.87 4.714 5.8 9.657 12.06 1.657 2.07 7.657 9.56 0.714 0.89
Average 6.965 9.484 | 4.039  5.555 5.739 8.028 2.794 4.16 2.788 4.004 | 0.822 1.161
Standard Deviation 6.463 9.113 1.656 2406 | 4.985 7.895 2 3.597 2.681 4.185 0.365 1.051

Based on the discussions presented in Section VI, it can

90 - |:‘|Av:erage ot‘f estimalted hea‘rt rate [
be concluded that the adaptive range bin selection method £ i’vr;’:azz‘omfcrmc heart rate
can make the spectrum of the heartbeat signal cleaner and 851 + 1
improve the heart rate estimation accuracy. In short, we illus- wl e % % % |

trate the effectiveness of the range bin selection method
proposed in this paper from the perspectives of the spectrum
of heartbeat signal and MAE of heart rate.

Heartbeats (bpm)
o
b
b
i
=5

70 b
C. PERFORMANCE ANALYSIS OF THE WHOLE SCHEME 65 1
PROPOSED
In this section, we conducted a comprehensive analysis of the “ |
proposed scheme. Firstly, we compared the estimated heart sst 8

rate of each subject at each moment with the reference heart
rate. Secondly, we compared the heart rate estimation results
of our scheme with existing works, including results from
actual simulations and reported. This comparison involved
metrics such as MAE and the standard deviation (SD).
Through these comparisons and evaluations, we empha-
sized the superiority and contribution of our proposed
scheme.

1 2 3 4 5 6 7 8 9 10
Subjects

FIGURE 24. Average of estimated heart rate using the proposed scheme
versus that of the reference.

2) COMPARISON OF HEART RATE ESTIMATION RESULTS
FROM DIFFERENT SCHEMES FOR EACH SUBJECT
To show the superiority of our proposed scheme, we mainly

1) ANALYSIS OF HEART RATE ESTIMATION RESULTS OF OUR compare the performance of the proposed scheme 8 with

WORK FOR EACH SUBJECT

Fig. 24 exhibits a bar graph illustrating the average estimated
heart rate using our proposed scheme for ten subjects, and
the average reference heart rate is represented by a pen-
tagram. The error bar in Fig. 24 refers to the maximum
deviation between the estimated and reference heart rate
for each subject. It can be observed that the average esti-
mated heart rate of the subjects closely aligns with the aver-
age reference heart rate, and the deviation at each moment
is minimal. These findings affirm the effectiveness of our
scheme in accurately capturing the trends of real heart rate
fluctuations.
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the existing classical works. Tests were conducted on a ran-
domly selected group of ten subjects. It is important to note
that, in order to demonstrate the universality of the pro-
posed scheme, we split the data for validation and test. The
validation data from our database was used to verify the effec-
tiveness of the proposed algorithms split-step as mentioned
above. The test data was used to compare the whole scheme
with existing schemes. The results are shown in Table 6. It can
be seen that the average MAEs of [11], [16], [24], [28], and
[37] and our work are 6.965 bpm, 4.039 bpm, 5.739 bpm,
2.794 bpm, 2.788 bpm, and 0.822 bpm, respectively. Obvi-
ously, significant improvement in the estimation accuracy
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TABLE 7. Comparison of the proposed with the other existing works.

Ref. Radar Range (m) Errr(;:eo(f;:):art
[4] FMCW 0.5 3.02
[5] CW 0.5-1.5 35
[38] FMCW 0.6-0.8 4.19-6.95
[41] FMCW 1.7 20
[60] FMCW 0.28-0.7 2.925
[61] FMCW 0-5 3.85
[62] FMCW 1.4 2.4

Our Work FMCW 1 1.161

of heart rate can be achieved by adopting our scheme.
Furthermore, the stability of each scheme was assessed by
calculating the SD of MAE:s for the ten subjects, as shown
in Table 7. The SD values for [11], [16], [24], [28], and
[37] and our work are 6.463, 1.656, 4.985, 2, 2.681, and
0.365, respectively. Specifically, the MAE of our work ranges
from 0.285 bpm to 1.8 bpm, indicating only a slight vari-
ation in estimation accuracy for each subject. In contrast,
in other works such as [11], the MAE for the ten subjects
ranges from 1.485 bpm to 24.114 bpm, and the MAE of
[24] ranges from 2.457 bpm to 19.171 bpm. This result
demonstrates that our proposed scheme is less affected by
user heterogeneity, and have excellent stability and reliability.
The MAPE for each group of experiments is also presented
in Table 6, further highlighting the superior performance of
the proposed scheme in terms of both the average and SD of
MAPEs. In summary, the proposed scheme has high accuracy
and good algorithm stability under the same conditions after
numerous experiments. Therefore, the proposed scheme has
great potential for practical applications.

3) COMPARISON OF OUR RESULTS WITH EXISTING WORKS
REPORTED

According to the heart rate estimation errors reported in stud-
ies, another comparison results with several existing works
based on radar system are summarized in Table 7. It can be
found that our proposed work exhibits higher accuracy in
heart rate detection.

D. EFFECTS OF DISTANCE AND ORIENTATION

This section focuses on investigating the impact of the dis-
tance and orientation between the FMCW radar and the sub-
ject on the accuracy of heart rate estimation. Fig. 25(a) and (b)
illustrate two different setups, one with subjects seated face-
to-face and the other with subjects seated back-to-back with
the radar. The subjects were monitored at five locations
within a range of 0.5 m to 2.5 m from the radar. Table 8
shows the MAE and MAPE for one subject, and Fig. 26(a)
displays the distribution of MAEs at different distances when
the subject was seated facing the radar. Similarly, Fig. 26(b)
presents the MAE distribution at different distances when
the subject was seated with their back against the radar. The
pentagrams in Fig. 26 represent the average MAEs. It can be
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FIGURE 25. Experimental setup: (a) The subjects were seated face-to-face
with the radar at different distances; (b) The subjects were seated
back-to-back with the radar at different distances.
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FIGURE 26. Distribution of MAEs at different distances and orientations:
(a) The subjects were seated face-to-face with the radar at different
distances; (b) The subjects were seated back-to-back with the radar at
different distances.

Distance (m)

observed that the heart rate estimation accuracy can reach
98% within a range of 1.5 m, as the distance increases to
2.5 m, the estimation accuracy gradually decreases but still
achieves 96.5%. Extensive experiments demonstrate that the
optimal distance for accurate estimation of the heart rate is
1 m. Furthermore, it can be concluded that the accuracy of
heart rate estimation is similar for both facing and backing
scenarios. Therefore, in practical applications, the choice of
performing heart rate detection from the front or back can be
based on specific requirements.

E. EFFECTS OF ANGLES

This section investigates the influence of the angle between
the radar’s transmission antenna directional vector and the
subject on the accuracy of heart rate estimation. Fig. 27 shows
the subjects were seated at angles of 0°, 15°, and 30° with
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TABLE 8. Heart rate estimation results for different distances and
orientations.

Distance (m) Orientation MAE (bpm) MAPE (%)

05 Front 0.885 1.25
i Back 0.942 1.33
1 Front 0.714 0.89
Back 0.682 0.97

15 Front 1.057 1.54
) Back 1.285 1.67
) Front 1.885 2.52
Back 1.628 2.18

25 Front 2.257 3.44
i Back 2.6 3.37

-

FMCW Radar

FIGURE 27. Experimental setup: The subjects were seated at different
angles with a distance of 1 m from the radar.
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FIGURE 28. Distribution of MAEs when the subjects were seated at
different angles with a distance of 1 m from the radar.

respect to the radar, at a distance of 1 m. Table 9 presents
the MAE and MAPE for one subject. The distribution of
MAE:s at different angles is depicted in Fig. 28, with the pen-
tagrams representing the average MAEs. To be specific, the
average MAEs at 0°, 15°, and 30° are 0.614 bpm, 0.928 bpm,
and 1.242 bpm, respectively. Apparently, the average MAE
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TABLE 9. Heart rate estimation results for different angles.

Angle (°) Distance (m) MAE (bpm) MAPE (%)
0 1 0.571 0.76
15 1 0.914 1.23
30 1 1.657 222

gradually increases as the angle increases. This result can be
attributed to the decrease in antenna gain. However, the error
of our work remains acceptable within the radar’s 60° view-
ing angle range.

VIi. CONCLUSION

In this paper, a new scheme for heart rate detection is
proposed, which consists of three new signal processing
methods. Firstly, the adaptive range bin selection method is
proposed taking the phase change in multiple frames into
consideration. Therefore, the range bins containing phase
information of vital signs can be found in the presence
of RBM, which is validated from two facets of frequency
spectrum analysis and estimation accuracy of heartbeat rate.
Secondly, we adopt smooth spline fitting and matched filter-
ing to suppress interference and noise. Experiment results and
theoretical analysis demonstrate that SNR of the heartbeat
signal can be greatly improved and an accuracy heart rate
estimation can be achieved. It is worth mentioning that the
method has low computation burden and less running time.
Finally, Double-CZT is proposed for improving the perfor-
mance of spectrum analysis, and simulation results show
that high estimation accuracy of frequency can be achieved.
Extensive experiments are done to analyze performance of
the new scheme. The average MAE of the heartbeat rate is
less than 0.9 bpm, also MAEs vary slightly in different exper-
iments, and the standard deviation is 0.365, which indicate
the proposed scheme can achieve high precision and stable
heart rate detection. Compared to traditional schemes, the
estimation accuracy of heartbeat rate can be greatly improved.
Overall, the proposed scheme has very good performance
in heartbeat rate estimation and considerable potential in
real-time heart rate detection.
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