
Received 21 June 2023, accepted 3 August 2023, date of publication 7 August 2023, date of current version 18 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3303087

Blockchain-Assisted Secure Smart Home Network
Using Gradient-Based Optimizer With Hybrid
Deep Learning Model
LATIFAH ALMUQREN 1, KHALID MAHMOOD2, SUMAYH S. ALJAMEEL 3,
AHMED S. SALAMA4, GOUSE PASHA MOHAMMED 5, AND AMANI A. ALNEIL5
1Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2Department of Information Systems, College of Science and Art at Mohayil, King Khalid University, Abha 61421, Saudi Arabia
3SAUDI ARAMCO Cybersecurity Chair, Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin
Faisal University, Dammam 31441, Saudi Arabia
4Department of Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt
5Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

Corresponding author: Khalid Mahmood (kasgr@kku.edu.sa)

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large
group Research Project under grant number (RGP2/112/44). Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2023R349), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. We Would like to thank
SAUDI ARAMCO Cybersecurity Chair for funding this project. This study is partially funded by the Future University in Egypt (FUE).
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

ABSTRACT The Internet of Things (IoT) refers to a technology enabler to enhance the urban physical
architecture and render public services. But, public access to accumulated heterogeneous IoT urban infor-
mation is prone to hackers attacking connected devices to the internet intellectual property as well. IoT
security serves a dynamic part in the smart city. Some IoT devices are connected in smart homes, and
these connections were centred on gateways. In smart homes, the gateways gain a lot of significance; but
their centralized structure causes many security vulnerabilities like availability, integrity, and certification.
Unified ‘‘cloud-like’’ computing networks and Blockchain (BC) type systems should be used to sort
out these problems. Therefore, this article develops a Blockchain-Assisted Secure Smart Home Network
using Gradient Based Optimizer with Hybrid Deep Learning (BSSHN-GBOHDL) model. The presented
BSSHN-GBOHDL technique employs BC technology to improve the confidentiality of the data in the smart
home environment. In addition, the BSSHN-GBOHDL technique identifies malicious activities in the smart
home environment via three sub-processes namely data preprocessing, hybrid deep learning (HDL)-based
malicious activity classification, and GBO-based hyperparameter tuning. The GBO algorithm assists in the
proficient hyperparameter selection of the HDL model, which aids in accomplishing increased detection
efficiency. The experimental validation of the BSSHN-GBOHDL approach is tested on a benchmark
NSL-KDD dataset with 65495 normal and 60743 attack samples. The results highlight the betterment of
the BSSHN-GBOHDL approach over other recent methods with maximum accuracy of 98.29%.

INDEX TERMS Smart homes, Internet of Things, blockchain, network security, deep learning, gradient-
based optimizer.

I. INTRODUCTION
The Internet of Things (IoT) is a blooming phenomenon
with the progression of technological abilities that brings
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low-powered devices and ubiquitous connectivity [1]. In sim-
ple words, IoT is millions of devices linked to the inter-
net. Such IoT gadgets were memory-limited gadgets that
could transmit and collect data over the network without the
support of humans [2]. It presents digital intelligence that
converts urban services and infrastructures. Smart Home can
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be referred to as a private home that receives and sends data in
real-time. It affords intelligent and automatic services by dif-
ferent home devices namely refrigerators, TVs, and lights [3].
The above-mentionedmachines are several home-based com-
munication systems between other environments and devices
without the interference of humans. Users handle the usage
of many home products to control and monitor themselves as
per user settings related to the network configuration of the
home [4]. The most significant factor is the IoT and network
setting of these smart homes. Above all, the network archi-
tecture of the smart home containing embedded computers
is linked to numerous IoT gadgets based on the Internet,
and the communication shifts to wireless [5]. Unlike how
users manipulated all devices, it could be probably able to
handle other devices over gateways, both outside and inside
the smart home. With the convergence of several industries,
hardware advances, and the commercialization of 5G, a more
systematic and potential smart home network configuration
can be expected [6].
Integrity and confidentiality of data need to be guaranteed,

and in smart home networks, the latency and availability of
the services rendered to users should be mainly considered
while meeting other security concerns [7]. To accommodate
the complexities of smart home networks, the manageability
and scalability of systems have to be considered. In recent
times, Blockchain (BC) has become a desirable one and
was used in most of the next-generation applications to
deliver security on a large number of platforms, namely
smart city, IoT, etc. The reason behind this is the BC, which
presents trust-free and decentralized solutions [8], where
online-distributed ledgers were utilized to save data over
the network in a decentralized manner. Existing techniques
make use of a signature-based technique to detect excep-
tional arrangements and for this underlying problem [9]; a
comprehensive Intrusion Detection System (IDS) emerges as
a potential solution. Managing smart BC-based applications
becomes significant by developing versatile and powerful
methods for processing this vast volume of data. Machine
learning (ML) includes machines for reasoning, training, and
performing without interference from humans [10]. The core
objective of ML is to build a productive algorithm to extract
data from input, make predictions, and change outputs over
statistical analysis. ML can process a large amount of data
and take decisions guided by evidence.

This article develops a Blockchain Assisted Secure Smart
Home Network using Gradient Based Optimizer with Hybrid
Deep Learning (BSSHN-GBOHDL) model. The presented
BSSHN-GBOHDL technique employs BC technology to
improve the confidentiality of the data in the smart home
environment. In addition, the BSSHN-GBOHDL technique
identifies malicious activities in the smart home environ-
ment via three sub-processes namely data preprocessing,
HDL-based malicious activity classification, and GBO-based
hyperparameter tuning. The performance validation of the
BSSHN-GBOHDL approach was tested on a benchmark
dataset.

II. RELATED WORKS
In [11], a private BC-based smart home network structure
to estimate IDS enabled with the Fused Real-Time Sequen-
tial Deep ELM (RTS-DELM) method was presented. This
paper establishes the presented technique in BC-based smart
homes for detecting somemalicious actions. Yakub et al. [12]
present a lightweight authentication process which allows
safe D2D interfaces in smart homes. The Ethereum BC
allows the execution of decentralized prototypes and P2P
distributed ledger scheme. Al-Qarafi et al. [13] establish an
OMLIDS-PBIoT approach abbreviated as OptimalML-based
IDS for Privacy-Preserving BIoT with Smart City Envi-
ronment. In achieving that, the projected OMLIDS-PBIoT
system utilizes data pre-processed in a primary step for
converting data into compatible design. Besides, a golden
eagle optimizer (GEO)-oriented FS technique was planned
for deriving suitable feature subsets.

Sohail et al. [14] present amethodwhich assumes either the
problems of explainability of the ANN approach and hyper-
parameter selective for this method that is simply trusted
and modified by consumers of smart home applications.
Besides, this method assumes a subset of the database to bet-
ter hyperparameter selection to decrease the overhead of the
procedure of ANN structure. Azumah et al. [15] introduces a
new DL-based AD technique for predicting cyber-security on
smart home IoT network device and learn novel outliers as it
appears over time utilizing IoT network intrusion databases.
The presentedmethodwas dependent upon a long-termmem-
ory structure that attains an important accuracy enhancement
related to the recent AD methods for IoT networks from
smart homes. Babu et al. [16] examined a permission-based
BC scheme which utilizes the arbiter PUF method for secur-
ing the important pairs of IoT gadgets utilizing lightweight
machinery. A collaborative detection method was primarily
utilized for detecting DDoS on IoT gadgets utilizing the
ML-based ensemble approach that offers a minimum FPR
and optimum detection rate than the other classifier method.
Cheema et al. [17] introduce distributed ML-oriented IDS in
IoT exploiting BC technology. Specifically, spectral parti-
tioning has been projected for separating the IoT network
as autonomous systems (AS) permitting traffic monitoring
for IDS that is applied by the selective AS border region
nodes from distributed systems. The IDS depends onML, but
the SVM system has been trained to exploit well-known IoT
databases and the detection of attackers is presented.

In [18], the BC-enabled IDS was established in this
work dependent upon the Battle Royale Dingo optimizer
(BRDO) focused on the deep stacked network method.
At present, a deep stacked network was executed to detect
the intrusion, and it can be trained depending on the opti-
mizer system to improve detection efficiency. Yang and
Wang [19] progress a privacy-preserving distributed method
which allows users to optimally control their energy usage in
parallel using the smart contract on BC. In [20], an effectual
BC-Assisted Cluster-based IDS for IIoT, named as BAC-IDS
system was developed. The presented BAC-IDS approach
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purposes to cluster IIoT devices to detect intrusions and
enable BC-based secure data broadcast. Abdel-Basset et
al. [21] present a federated DL-based IDS (FED-IDS) to
effectively identify attacks by offloading the learning method
in the server to distributed vehicular edge nodes. FED-
IDS establishes a context-aware transformer network for
learning spatial-temporal representations of vehicular traffic
flows needed to classify distinct types of attacks. Katib and
Ragab [22] propose a hybrid Harris Hawks with sine cosine
and DL-based IDS (H3SC-DLIDS) for the BC-enabled IoT
platform. The purpose of the projected H3SC-DLIDS sys-
tem is to identify the occurrence of DDoS attacks from the
BC-assisted IoT platform.

III. THE PROPOSED MODEL
In this article, we have introduced a new BSSHN-GBODHL
approach for optimal identification of malicious activities
in the smart home environment. Besides, the presented
BSSHN-GBOHDL technique exploited the BC technology
for enhancing the confidentiality of the data in the smart home
environment. Moreover, the BSSHN-GBOHDL technique
identifies malicious activities in the smart home environ-
ment via three sub-processes namely data preprocessing,
HDL-based malicious activity classification, and GBO-based
hyperparameter tuning. Fig. 1 represents the overall flow of
the BSSHN-GBODHL method.

A. BC TECHNOLOGY
The utility of a BC-based system can be smoother by using
the computational technology of BSSHN-GBOHDL [23].
The data confidentiality is improvised while applying the
BSSHN-GBOHDL distributed BC technology. Also, the
BSSHN-GBOHDL model is used for increasing the pace
at which comprehension can be accomplished by further
interchanging knowledge, thus enhancing understanding. It
provides the network structure and framework to design a
decentralized BC application. The study analyzes the deploy-
ment of the BSSHN-GBOHDL structure, which was an
advanced mechanism. The appropriate usage of this tech-
nology is to gather experience from various sources of data
like mobile devices, IoT systems, and sensors. Knowledge is
derived by using this technique for smart applications. The
BC was the basic feature of smart applications. Nevertheless,
for inspection, the BSSHN-GBOHDL technique is utilized
for evaluating and forecasting real-time information. Also,
the BC process every piece of information from the BSSHN-
GBOHDL architecture. The BC technology focuses on the
edge of IoT and includes 3 key components: knowledge archi-
tecture, the BC layer, the BSSHN-GBOHDL infrastructure,
and smart contracts. In this work, several activating mecha-
nisms, large numbers of hidden layers, and hidden neurons
were used for optimizing the security and privacy of smart
homes. In the proposed method, there are three different
stages in analyzing the information: the data preprocessing,
assessment, and acquisition phases. The evaluation layer was
composed of two sublayers: the performance and prediction

layers. Accurate information is attained from actuators and
sensors for the analysis. Next, the information is provided
as raw data and utilized by the collection layer. In the pre-
processing layer, a wide-ranging method for data cleaning
and preparing were used for removing discrepancy. The
BSSHN-GBOHDL model is implemented to increase home
network protection by avoiding invasive or disruptive appli-
cations. We present the following explanation to illuminate
how BCs contribute to secured access.

• First, the user has to determine the access level and
added it to the home service computer. For instance,
at the maximum level, the Admin (owner) was per-
missible, whereas youths, teenagers, adolescents, and
visiting relatives require mid-level permission.

• For a consumer who is authorized to access smart
homes and was utilizing applications inside.

• Visitors and relatives have comparatively poor access
permits. While processing a request from a user, the
home server checks the security access to the repos-
itory. By getting an order from the client, the home
server transfers the encoded password and username to
the BC layer.

• For user and implementation, a BC regulation header
has a collection of authorization rules.

B. DATA PREPROCESSING
Standardization is the transforming process that converts vari-
ables applied in this study to one with a standard deviation of
1 and a mean of 0. The equation is as follows:

xstandardization =
x − mean( )

standard deviation
(1)

X is the value that should be normalized. Mean indicates
the arithmetic means of the distribution. Standard deviation
denotes the standard deviation of the distribution.

C. HDL-BASED CLASSIFICATION
For the identification ofmalicious activities in the smart home
environment, the HDLmodel is used. LSTM is a kind of RNN
which has the potential to learn long-term dependency and
is built to resolve the issue of long-term dependency using
short-term memory tools [24]. LSTM can progress data up
to the long sequence without vanishing gradient; presently,
LSTM is widely applied for encountering the case of data
sequences such as recognition of speech, images’ automatic
annotation, and processing of natural language. LSTM pos-
sess dual property value, the former is the state of hiddenH (t)
which is cell value modified according to the consumed time
and the latter is the cell state C(t) that provides long-term
memory, the cell state changes in horizon form with LSTM
cell top line in the brown rectangular box. LSTM is capable
of erasing or adding data in the state of the cell. The forget
gateF(t) preserves the input connectionX (t) and the previous
hidden stateH (t−1) to the cell stateC(t); this enables the cell
to memorize or forget X(t) and H(t-l) at the required time.
Moreover, the input gate I (t) and Î (t) selects either to pass
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FIGURE 1. Overall flow of the BSSHN-GBODHL approach.

or not the input values towards the cell state C(t). The output
gate O(t) selects the exit relies on the cell state C(t)

F (t) = σ
(
Wf [H (t − 1) ,X (t)] + Bf

)
, (2)

I (t) = σ (Wi [H (t − 1) ,X (t)] + Bi) , (3)

O (t) = σ (WO [H (t − 1) ,X (t)] + BO) , (4)

I (t) = tanh (Wi [H (t − 1) ,X (t)] + Bi) , (5)

C (t) = F (t) .C (t − 1) + I (t) .I (t) , (6)

H (t) = WO (i) . tanh (C (t)) , (7)

From the expression, tanh shows the hyperbolic tangent
function, σ denotes the sigmoid function B andW represents
the weight matrix, correspondingly. It may be considered that
the accurate input dataset and internal state control, which
reflect in the cell state from LSTM’s features, can able to
progress according to the fixed- and variable-length dataset
at the entrance and exit. This benefit is more significant if
LSTM was applied together with other types of DNN than
standalone LSTM.
A hybrid method was a combination of many techniques to

proficiently solve an issue. This method was built for offering
better accuracy compared to the investigated DL and ML
prediction methods. This method was devised for classifica-
tion. This technique has numerous layers of LSTM and CNN.
CNN can cause several helpful features for ensuring poten-
tial prediction related to the kernel size that chooses from

the input data. Moreover, conversely, LSTM can potentially
denote long-term data progress in the input dataset; yet, it was
not capable of removing the input’s dynamic features, which
is required in predicting as potentially as CNN. In the HDL
method, the CNN technique captured the feature vectors, and
outcomes were used as input datasets for the LSTM layer to
learn and augment predictionmethods related to the historical
time series input dataset.

D. GBO-BASED HYPERPARAMETER TUNING
In this work, the GBOmodel is used for the optimal hyperpa-
rameter tuning of the HDL method. GBO is a metaheuristic
algorithm that depends on gradient information and popula-
tion [25]. Despite newmembers ofMAs, GBOwas employed
to various problems since its introduction.
GBO begins parameter initialization with the majority of

MAs. Thus, GBO involves the nP amount of vector agents
in an nV -dimension space that is initialized by the following
expression:

Xn,d = [Xn,1,Xn,2, . . . ,Xn,d ],

n = 1, 2, . . . , nPd = 1, 2, . . . , nV . (8)

The initialization in every population is expressed by.

Xn = Xmin + rand (0, 1) × (Xmax − Xmin) , (9)
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where Xmax represent the maximum population, Xmin denotes
the minimal of decision parameters X , and rand (0, 1) indi-
cates the random integer within [0, 1].

As abovementioned, the GBO begins with a random ini-
tial population and later upgrades every solution based on
gradient specified direction. During the exploration stage,
a random variable ρ1 is applied:

ρ1 = 2 × rand × α − α, (10)

α =

∣∣∣∣β × sin
(
3π
2

+ sin
(

β ×
3π
2

))∣∣∣∣ , (11)

β = βmin + (βmax − βmin) ×

(
1 −

( m
M

))
, (12)

whereM represents the overall iterations,s ρ1 denotes a func-
tion decided by α, α changes based on β, rand indicates an
arbitrarily selected number from zero to one, βmin is equiv-
alent to 0.2 and βmax is equivalent to 1.2, and m means the
present calculation numbers.

The gradient search rule (GSR) is outlined by the New-
ton’s gradient. It makes the GBO technique random through
iteration and it can be expressed as follows

GSR = randn×
21x × xn

(xworst − xbest + ε)
, (13)

In Eq. (13) ε represents a random value from zero to one,
1x is the difference between the optimum solution (xbest )
and a present solution (xmr1), xbest denotes the better solution,
randn shows the random integer, and xworJt shows the worst
solution. The computation of GSR is exploited by Eq. (14).

GSR = randn× ρ1 ×
21x × xn

(xworst − xbest + ε)
. (14)

To change 1x via iteration, δ is determined in the follow-
ing. The computation of 1x is formulated as.

1x = rand (1 :N ) × |step| , (15)

step =
(xbest − xmr1) + δ

2
, (16)

δ = 2 × rand ×

(∣∣∣∣xmr1 + xmr2 + xmr3 + xmr4
4

− xmn

∣∣∣∣) (17)

where r1, r2, r3 and r4 indicate randomly selected from [1,
N⌋, rand(1:N∀) signifies a vector with N∀ dimensions, and
step can be evaluated as Eq. (16).
The GBO exploits directed movement (DM), which con-

verges the local search of xn. The computation can be given
as follows.

DM = rand × ρ2 × (xbest − xn) , (18)

In Eq. (18), rand indicates a uniformly distributed value
from zero to one, ρ2 denotes a random variable, and the
formula of ρ2 can be given as follows.

ρ2 = 2 × rand × α − α. (19)

Eventually, based on the term, the formula of GSR is
calculated as.

x1mn = xmn − GJR+ DM , (20)

x1mn = xmn − randn× ρ1 ×
21x × xmn

(xworst − xbest + ε)

+ rand × ρ2 ×
(
xbθJ t − xmn

)
, (21)

where x1mn denotes the new vector acquired by xmn . Integrating
with GSR and DM , the new solution is computed in the
iteration randomly.

Additionally, the vector xmn takes the place of optimum
solution xbest , and a novel vector x2mn is computed as follows.

x2mn = xbest − randn× ρ1
21x × xmn

(xworst − xbest + ε)

+ rand × ρ2 ×
(
xmr1 − xmr2

)
. (22)

The GBO method improves global search in the explo-
ration level depending on Eq. (21) and improves the local
search in the exploitation level depending on Eq. (22). As per
the preceding vector x1mn and x2mn , the novel solution to x

m+1
n

is generated in the following.

x3mn = xmn − ρ1 ×
(
x2mn − x1mn

)
, (23)

xm+1
n = ra×

(
rb×x1mn +(1 − rb)×x2mn

)
+(1 − ra)×x3mn ,

(24)

where ra and rb denote uniform numbers within [0, 1].
The local escaping operator (LEO) was proposed in the

original GBO to accelerate the convergence rate and prevent
getting trapped in local optima. The newest solution to Xm+1

n
is produced by the LEO operator, with different solutions
(two solutions xmr1 and xmr2, the optimum solution xbθJ t , a
randomly obtained solution xmk , and the random solution X1mn
and X2mn ). The formula of GSR meets the specific condition
and updates the effective existing solution. The description
of pr is a probability value, which decides the probability of
GSR. The LEO can be executed by the subsequent equation.

Xm+1
n

= Xm+1
n + f1 × (u1 × xbest − u2 × xmk ) + f2 × ρ1

×
u3×

(
X2mn −X1mn

)
+u2×

(
xmr1−x

m
r2

)
2

rand<0.5, (25)

Xm+1
n

= xbest + f1 ×
(
u1 × xbest − u2 × xmk

)
+ f2 × ρ1

×
u3 ×

(
X2mn −X1mn

)
+u2×

(
xmr1−x

m
r2

)
2

rand 0.5, (26)

where u1, u2, and u3 denote three random values, which can
be defined in the following, f1 denotes a uniformly distributed
number from −1 to 1, f2 is similar to f1, and.

u1 = L1 × 2 × rand + (1 − L1) , (27)

u2 = L1 × rand + (1 − L1) , (28)

u3 = L1 × rand + (1 − L1) , (29)
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FIGURE 2. Flowchart of GBO.

where rand denotes a parameter ranging from zero to one, and
L1 denotes the binary number, either 0 or 1. Fig. 2 illustrates
the flowchart of GBO.

The preceding solution xmk can be described using Eq. (30),
xpm shows a randomly selected solution and xrand represent
the uniform value between 0 and 1.

xmk =

{
xrand u2< 0.5
xmp otherwise,

(30)

xrand = Xmin + rand × (Xmax − Xmin) . (31)

The fitness selection serves as a significant component
in the GBO technique. Solution encoding is used to assess
the candidate solution’s goodness. Herein, the accuracy value
was the main condition applied to develop a fitness function.

Fitness = max (P) (32)

P =
TP

TP+ FP
(33)

Here, FP signifies the false positive value and TP denotes
the true positive.

IV. RESULTS AND DISCUSSION
In this section, the experimental results are investigated on
the NSL-KDD dataset [26], comprising 126238 samples and
two class labels as represented in Table 1.

The confusion matrices of the BSSHN-GBOHDL tech-
nique on malicious attack recognition are shown in Fig. 3.

TABLE 1. Details of dataset.

FIGURE 3. Confusion matrices of BSSHN-GBOHDL approach (a-b) 70:30
of TRP/TSP and (c-d) 80:20 of TRP/TSP.

FIGURE 4. Classifier outcome of BSSHN-GBOHDL approach on 70% of
TRP.

The figure indicates the accuracy of the BSSHN-GBOHDL
technique on the identification of normal and attack samples.

In Table 2, the overall results of the BSSHN-GBOHDL
technique under 70:30 of TRP/TSP are reported. Fig. 4
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TABLE 2. Classifier outcome of BSSHN-GBOHDL approach on 70:30 of
TRP/TSP.

FIGURE 5. Classifier outcome of BSSHN-GBOHDL approach on 30% of
TSP.

represents the classifier outcome of the BSSHN-GBOHDL
approach under 70% of TRP. The results identify that the
BSSHN-GBOHDL technique recognizes normal and attack
samples proficiently. In addition, it is noticed that the
BSSHN-GBOHDL technique attains an average accuy of
98.16%, precn of 98.19%, recal of 98.16%, Fscore of 98.17%,
and MCC of 96.35%.

Fig. 5 signifies the classifier outcome of the BSSHN-
GBOHDL technique under 30% of TSP. The results iden-
tify that the BSSHN-GBOHDL system recognizes normal
and attack samples proficiently. As well, it is noted that
the BSSHN-GBOHDL method attains an average accuy of
98.29%, precn of 98.34%, recal of 98.29%, Fscore of 98.31%,
and MCC of 96.62%.

In Table 3, the overall results of the BSSHN-GBOHDL
method under 80:20 of TRP/TSP are reported. Fig. 6
denotes the classifier outcome of the BSSHN-GBOHDL
algorithm under 80% of TRP. The results show that the
BSSHN-GBOHDL method recognizes normal and attack
samples proficiently. Moreover, the BSSHN-GBOHDL
approach attains an average accuy of 97.47%, precn of
97.42%, recal of 97.47%, Fscore of 97.44%, and MCC of
94.89%.

Fig. 7 represents the classifier outcome of the BSSHN-
GBOHDL approach under 20% of TSP. The figure exhibits

FIGURE 6. Classifier outcome of BSSHN-GBOHDL approach on 80% of
TRP.

TABLE 3. Classifier outcome of BSSHN-GBOHDL approach on 80:20 of
TRP/TSP.

FIGURE 7. Classifier outcome of BSSHN-GBOHDL approach on 20% of
TSP.

that the BSSHN-GBOHDL technique recognizes nor-
mal and attack samples proficiently. In addition, the
BSSHN-GBOHDL method gains an average accuy of
97.40%, precn of 97.35%, recal of 97.40%, Fscore of 97.36%,
and MCC of 94.75%.

Fig. 8 demonstrates the classifier results of the
BSSHN-GBOHDL technique under 70:30 and 80:20 of
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FIGURE 8. (a-c) PR curve of 70:30 and 80:20; (b-d) ROC curve of 70:30
and 80:20.

FIGURE 9. Accuracy curve of the BSSHN-GBOHDL approach.

TRP/TSP. Figs. 8a-8c demonstrates the PR analysis of
the BSSHN-GBOHDL model under 70:30 and 80:20 of
TRP/TSP. The figures reported that the BSSHN-GBOHDL
model has obtained maximum PR performance under all
classes. Finally, Figs. 8b-8d illustrates the ROC investigation
of the BSSHN-GBOHDL model under 70:30 and 80:20 of
TRP/TSP. The figure depicted that the BSSHN-GBOHDL
method has proficient results with higher ROC values under
distinct class labels.

Fig. 9 scrutinizes the accuracy of the BSSHN-GBOHDL
technique during the training and validation process on the
test dataset. The figure notifies that the BSSHN-GBOHDL
technique reaches increasing accuracy values over increas-
ing epochs. Moreover, the increasing validation accuracy
over training accuracy exhibits that the BSSHN-GBOHDL
approach learns efficiently on the test dataset.

FIGURE 10. Loss curve of the BSSHN-GBOHDL approach.

FIGURE 11. AR and Fscore outcome of BSSHN-GBOHDL approach with
recent algorithms.

The loss analysis of the BSSHN-GBOHDL technique
at the time of training and validation is demonstrated on
the test dataset in Fig. 10. The results indicate that the
BSSHN-GBOHDL technique reaches closer values of train-
ing and validation loss. The BSSHN-GBOHDL technique
learns efficiently on the test dataset.

In Table 4, a brief comparison result analysis of the
BSSHN-GBOHDL technique with recent models is pro-
vided [11]. In Fig. 11, a detailed AR and Fscore assessment
of the BSSHN-GBOHDL method with existing methods is
given. The results indicate that the BSSHN-GBOHDL tech-
nique reaches improved values of AR and Fscore. Based
on AR, the BSSHN-GBOHDL technique offers enhancing
AR of 98.29% while the ANN-based IDS, GAN, DELM,
RTS-DELM, SVD, and DNN models obtain decreasing AR
of 81.43%, 86.09%, 93.52%, 94.85%, 94.83%, and 94.51%
respectively.

Besides, based on Fscore, the BSSHN-GBOHDL tech-
nique offers enhancing Fscore of 98.31% while the ANN-
based IDS, GAN, DELM, RTS-DELM, SVD, and DNN
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TABLE 4. Comparative outcome of BSSHN-GBOHDL technique with
recent algorithms.

FIGURE 12. Precn and Recal outcome of BSSHN-GBOHDL approach with
recent algorithms.

models obtain decreasing Fscore of 82.26%, 88.46%, 93.80%,
94.36%, 97.55%, and 95.94% respectively.

In Fig. 12, a detailed precn and recal assessment of the
BSSHN-GBOHDL method with prevailing approaches is
given. The outcomes indicate that the BSSHN-GBOHDL
technique reaches improved values of precn and recal . Based
on precn, the BSSHN-GBOHDL technique offers to enhance
precn of 98.34% while the ANN-based IDS, GAN, DELM,
RTS-DELM, SVD, and DNNmodels obtain decreasing precn
of 80.74%, 87.48%, 94.75%, 95.20%, 96.11%, and 94.16%
respectively. Besides, based on recal , the BSSHN-GBOHDL
technique offers enhancing recal of 98.29% while the ANN-
based IDS, GAN, DELM, RTS-DELM, SVD, and DNN
models obtain decreasing recal of 81.67%, 87.68%, 94.28%,
94.73%, 96.41%, and 95.21% respectively.

In Table 5 and Fig. 13, the computation time (CT)
examination of the BSSHN-GBOHDL method with existing
approaches is made. The outcomes highlight the improve-
ments of the BSSHN-GBOHDL technique with a minimal
CT of 7.85s. Contrastingly, the ANN-based IDS, GAN,
DELM, RTS-DELM, SVM, and DNN models offer increas-
ing CT values.

FIGURE 13. CT outcome of BSSHN-GBOHDL approach with recent
algorithms.

TABLE 5. CT outcome of BSSHN-GBOHDL approach with recent
algorithms.

These results reassured that the BSSHN-GBOHDL tech-
nique accomplishes maximum performance over other exist-
ing models. These results showcased the better performance
of the BSSHN-GBOHDL technique over other existing tech-
niques. The enhanced performance of the BSSHN-GBOHDL
technique is due to the inclusion of the HDL model and
hyperparameter tuning approach. The design of the GBO
algorithm has a significant impact on the performance of the
model, and selecting the optimal values can lead to better
accuracy.

V. CONCLUSION
In this article, we have introduced a novel BSSHN-GBODHL
approach for optimal identification of malicious activities
in the smart home environment. Besides, the presented
BSSHN-GBOHDL technique exploited the BC technology
for enhancing the confidentiality of the data in the smart home
environment. Moreover, the BSSHN-GBOHDL technique
identifies malicious activities in the smart home environ-
ment via three sub-processes namely data preprocessing,
HDL-based malicious activity classification, and GBO-based
hyperparameter tuning. The experimental result analysis of
the BSSHN-GBOHDL approach is tested on a benchmark
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dataset and the results highlight the betterment of the
BSSHN-GBOHDL technique over other recent approaches
with maximum accuracy of 98.29%. Therefore, the key con-
tribution of combining BC with DL-based malicious activity
detection in a smart home network is the creation of a secure,
decentralized, and privacy-preserving system that leverages
the collective intelligence of devices to detect and mitigate
threats effectively. It enhances the security posture of smart
home networks, safeguards user privacy, and promotes a col-
laborative approach to defending against emerging security
threats. In future, the performance of the BSSHN-GBOHDL
technique can be tested in the smart healthcare environment.
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