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ABSTRACT The modulator distortion feature of the existing specific emitter identification (SEI) based
on constellation contains the inherent carrier frequency offset of the receiver and transmitter, and the
influence of the frequency offset on the feature distribution cannot be completely eliminated even by using
high-precision frequency synchronization technology. Therefore, this paper presents a novel SEI method
based on a differential constellation. On the basis of constructing the modulator distortion signal model,
the demodulated signal is differentially processed to form a differential constellation. By comprehensively
comparing the difference between the differential demodulation constellation and the ideal constellation,
the maximum likelihood method is used to separate the frequency offset in the baseband signal from the
modulator distortion feature vector. A new modulator distortion feature representation is designed, which
completely eliminates the influence of the carrier frequency offset on the distortion feature distribution of
the modulator. Subsequently, a random forest classifier based on a decision tree was constructed to learn
the individual differences in the distortion features. Compared with existing identification methods, the
fingerprint features extracted by this method are completely independent of the frequency offset of the signal
examples, and the influence of the frequency offset on the recognition is eliminated. Our results show that the
mean and variance of the feature vector distribution proposed in the method do not change with the frequency
offset, the stable and high-precision identification of eight sources can be achieved under different carrier
frequency offset conditions, and the accuracy can reach more than 90%.

INDEX TERMS Differential constellation, modulator distortion, radio-frequency fingerprinting (RFF),
random forest, specific emitter identification (SEI).

I. INTRODUCTION in military and civilian fields, such as battlefield spectrum

Specific emitter identification (SEI) is possible because of
unique radio-frequency fingerprinting, which describes the
differences between emitters of the same type. Owing to
the benign hardware imperfections inherent to the analog
components of emitters, the final radio-frequency (RF) signal
inevitably parasitizes the unique radio-frequency character-
istics of the emitter, which is also called radio-frequency
fingerprinting. Radio-frequency fingerprinting is unique,
independent of transmission, and difficult to forge; there-
fore, the identification technique has been widely adopted

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono

management, wireless network security, and the Internet of
things (IOT).

SEI is essentially a pattern recognition problem that
focuses on fingerprinting extraction. In previous open
research, features may be predefined or inferred. Predefined
features are related to well-understood signal characteris-
tics known prior to signal recording. The inferred features
are extracted from the signals by means of some spec-
tral transformations. According to the different sources of
radio-frequency fingerprinting, SEI can be summarized into
three categories: information-based identification, transient-
based fingerprinting identification, and steady-state finger-
printing identification, as shown in Fig. 1. Information-based
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identification belongs to the software-based recognition,
which is a method of identification using communication
connotation information, e.g. Wright [1], Guo and Chiueh [2].
Transient-based identification and steady-state identifica-
tion belong to the physical layer waveform identification.
Transient-based identification uses the transient waveform
difference caused by benign hardware imperfections inherent
to the emitters, e.g., Ureten and Serinken [3]. According
to the different manifestations of the received signal sam-
ples, steady-state identification can be divided into waveform
domain recognition, modulation domain recognition, and
other domain recognition. Waveform domain techniques use
signal samples from the time or frequency domain as the
basic blocks of representation, e.g., Dbendorfer et al. [4] and
Patel [5]. Modulation domain techniques use IQ samples
to represent the most basic signals, e.g., Peng et al. [6], [7].
Other domain techniques use high-order transformation
samples as the most basic representation blocks, e.g.,
Han et al. [8] and Yuan et al. [9].
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FIGURE 1. RF fingerprinting identification categories diagram.

A. INFORMATION-BASED IDENTIFICATION

In traditional wireless networks, device identification and
authentication are primarily realized through mechanisms
such as identity authentication. Wright [1], Guo and Chi-
ueh [2], and Hall [10] discussed approaches for detecting
the presence of multiple IEEE 802.11 devices using the
same MAC address by analyzing frame sequence numbers.
Similarly, Franklin et al. proposed a technique to identify
devices based on differences in the MAC layer behavior,
which depends on the combination of the chipset, firmware,
and device driver [11]. Because these approaches are usually
configured using bit-level information, they can be circum-
vented by changing the computer configuration or behavior,
thus rendering the wireless network vulnerable to attack.

B. TRANSIENT-BASED IDENTIFICATION
Transient-based identification technology is an important
physical layer waveform identification method. In previous
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research, different transient-based identification methods
have been adopted for different RF signals. Toonstra and
Kinsner investigated the transient radiometric signatures of
FM signals [12]. In addition, the effectiveness of tran-
sient identification methods for Bluetooth, radio frequency
identification (RFID), and WSN devices has been demon-
strated [13], [14], [15], [16], [17]. Ureten and Serinken con-
structed a probabilistic neural network to distinguish between
eight IEEE 802.11b Wi-Fi cards by using a transient ampli-
tude signal [3]. However, using transients for identification
appears to be difficult, as indicated by the imperfect perfor-
mance of existing schemes even in modest-sized evaluations.

C. STEADY-STATE IDENTIFICATION

Steady-state identification in the waveform, modulation,
or other domains also plays an important role in SEI devel-
opment. Waveform domain techniques use signal samples
in the time and frequency domains as the basic blocks of
representation, which provides the most flexibility at the cost
of complexity. In earlier studies, Remley et al. identified
different WLAN transmitters by observing waveform and
spectral differences [18], proving the feasibility of waveform
domain identification. However, direct recognition based
on time-domain communication waveforms is susceptible
to modulation symbol interference. Therefore, subsequent
studies have demonstrated that the commonly used identifi-
cation technology for WPAN devices (such as ZigBee and
Z-Wave) requires dividing the fixed header portions of the
signal (such as the preamble portions) into multiple sam-
ples of equal size to calculate the statistical values (such
as variance, skewness, kurtosis), instantaneous amplitude,
or phase [4], [5], [19], [20], and then using machine-learning
classifiers to distinguish devices.

Unlike waveform domain identification, other domain
identification techniques use domain-transformed signal
samples as basic blocks of representation. Fingerprint
features were obtained by exploring higher-order spec-
tral transformation inference. Han et al. focused on a
bi-spectrum-based method for the RF fingerprinting iden-
tification of communication transmitters [8]. Yuan et al. [9]
and Zhang et al. [21] studied the individual identification
methods of devices based on the Hilbert-Huang transform.
Acosta et al. studied an RFID fingerprinting identification
method based on wavelet transform [22]. Satija et al. inves-
tigated an emitter identification method based on variational
mode decomposition (VMD) and spectrum under Rayleigh
fading channels [23].

Modulation-domain identification techniques use 1I/Q sig-
nal examples and demodulation information to realize radio-
metric identification. This technique does not require signal
samples to have a fixed header, and is not affected by random
symbol modulation. Brik et al. proposed a passive radiometric
device identification system (PARADIS) that differentiated
138 wireless devices with an accuracy of > 99% [24]. The
characteristics are imperfections in the modulation domain,
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such as frequency offset, I/Q origin offset, error vector mag-
nitude, magnitude, and phase errors.

Huang and Zheng investigated and analyzed RF finger-
printing based on constellation errors, constructed modulator
distortion models, and accurately identified seven TDMA
satellite terminals [25]. Pan investigated and analyzed RF
fingerprinting based on signal trajectory images and iden-
tified seven model terminals [26]. Peng et al. proposed a
ZigBee device identification algorithm based on a differential
constellation trace figure(DCTF) to achieve 93.8% accuracy
on 54 devices under the condition of 15 dB SNR [6], [7].
Liu and Doherty studied the recognition problem based on
nonlinear power amplifier fingerprinting and constructed a
nonlinear power amplifier model using Taylor series [27].
Polak and Goeckel focused on the recognition problem based
on oscillator phase noise [28]. Zhang and Li proposed a
novel SEI method based on feature diagram superposition,
which can better reflect the fingerprint features of different
emitters [29].

In recent years, deep learning has achieved a series of
breakthroughs in machine vision and speech recognition,
which has motivated scholars to use deep neural networks for
modulation recognition [30], [31] and radar waveform recog-
nition [32], [33]. As the differences between individual trans-
mitters are subtle, SEI using deep learning is still at a nascent
stage. Merchant et al. focused on a framework for training
convolutional neural networks using time-domain complex
baseband error signals and identified seven ZigBee devices
with a recognition accuracy of 92.29% [34]. Restuccia et
al. proposed a DeepRadiolD identification system based on
deep learning, which improves the accuracy of identifica-
tion by dynamically optimizing the wireless channel [35].
Sankhe et al. [36], Riyaz et al. [37] proposed an ORACLE
recognition system that directly trains a convolutional neural
network using raw IQ signals and achieved 99% recognition
accuracy for 16-bit similar devices under laboratory condi-
tions. Pan et al. investigated a technique using Hilbert-Huang
transformed examples to train a residual neural network to
achieve high identification [38]. Liu et al. proposed a method
that treats the signals at different times as signals of separate
domains, and resolves the influence of time on the SEI by
eliminating the factors of different domains [39]. It should
be noted that the architecture of a CNN is more suitable
than waveforms for extracting features from images. This
implies that the aforementioned methods cannot maximize
the powerful self-learning capabilities of CNN.

In existing steady-state recognition methods, radiometric
identification technology based on the waveform domain
usually uses only the header part of the RF signal to avoid
interference from the modulation symbol. Radiometric iden-
tification technology based on other domains not only relies
on the existing tools of signal processing but also faces
the problem of excessive computation of feature extraction.
Radiometric identification technology based on deep learning
also faces the interference of random symbol modulation and
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cannot physically interpret the recognition results; therefore,
it cannot maximize identification performance. Unlike the
aforementioned methods, modulation domain identification
technology adopts the method of demodulation before extrac-
tion, converts the feature extraction object into constellation,
and then compares the differences between demodulation
constellation and ideal constellation to achieve the extrac-
tion of subtle features. The existing methods usually directly
extract the modulator distortion feature after compensating
for the carrier frequency deviation, but none of the carrier
frequency offset compensation methods can completely elim-
inate the frequency offset.

To overcome the influence of carrier frequency offset on
identification performance, this paper proposes a novel iden-
tification algorithm based on modulator distortion charac-
teristics, which belongs to modulation domain identification
technology. By comprehensively comparing the difference
between the differential demodulation constellation and the
ideal constellation, a new representation vector of the dis-
tortion characteristics of the modulator is designed based on
the received signal preprocessing, which ensures that the dis-
tortion feature vector is independent of the carrier frequency
offset. Then, a random forest classifier based on a decision
tree was constructed to learn the individual differences in
the distortion fingerprinting vector of the modulator, and
individual recognition based on the IQ distortion feature was
realized.

The main contributions are summarized as follows:

1) The differential constellation is used as the basic rep-
resentation block of feature extraction, which lays the foun-
dation for RF fingerprinting extraction of the modulator
independent of the carrier frequency offset. To the best of
our knowledge, this is the first attempt to use a differential
constellation to extract the distortion fingerprints of the mod-
ulator.

2) By comprehensively comparing the difference between
the difference decomposition constellation and the ideal
constellation, the carrier frequency offset in the baseband
signal is separated from the distortion characteristics of the
modulator, a new modulator distortion vector is designed,
and its calculation process is derived in detail for the first
time.

3) We further investigated the performance of our
algorithm in the presence of different carrier frequency off-
sets. The simulation results show that the proposed approach
has a stable accuracy under different carrier frequency offsets
and strong practicability and robustness.

Table 1 summarizes the most relevant related works,
including data on the scale of evaluation.

The remainder of this paper is organized as follows.
Section II briefly describes the proposed signal model.
Section III presents an identification method based on the dis-
tortion characteristics of the modulator. Section IV presents
the experimental results. Finally, we conclude the paper in
Section V.
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TABLE 1. Comparison of this paper with related ideas.

Technique

Feature Type

Classifier type

Identity Model

Evaluation scale

Franklin et. al.[11]
Toonstra et al.[12]
V. Brik et. al.[24]
Y Huang et. al.[25]
L. Peng et. al.[6]
X. Zhang et. al.[29]
Y. Pan [26]

This paper

Soft-based meas.
RF fingerprinting
RF fingerprinting
RF fingerprinting
RF fingerprinting
RF fingerprinting
RF fingerprinting
RF fingerprinting

N/A

Neural Networks
Machine learning
Machine learning
Deeplearning
Deeplearning
Machine learning
Machine learning

Compliance with 802.11 standard

Transient properties

Modulation accuracy; Constellation
Modulation accuracy; Constellation
Modulation accuracy; Differential Constellation
Modulation accuracy; Constellation
Modulation accuracy; Constellation
Modulation accuracy; Differential Constellation

17 802.11 NICs

5 radio transmitters

138 802.11 NICs

7 TDMA satellite terminals
54 ZigBee devices

7 model terminals

7 model terminals

8 model terminals
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FIGURE 2. Common transmitter impairments and their sources.

Amplifier

As a general convention, we use the following notations
throughout the paper: the real part of the complex number,
e {-}, conjugate, {-}*, Transpose, {}T, and sum, sum (-).

Il. SIGNAL MODEL

Owing to the benign hardware imperfections inherent to the
analog components of the transmitter, the signal contains
hardware fingerprinting of the transmitter. Fig. 2 presents
a typical transmitter design and illustrates the likely causes
of common impairments. The portions before the digital-to-
analog transition of the transmitter are digital components
and their imperfections do not exist. The portions after the
digital-to-analog converter are analog components, which
have benign hardware imperfections inherent to normal vari-
ations in the physical properties of such components. This
section focuses on the distortion of the IQ modulator and
describes the sources of the distortion of the modulator by
constructing a signal-generation model of the IQ modulator
with impairments.

The output signal of an ideal modulator has character-
istics of equal amplitude, complete quadrature, and zero
mean. However, in the actual transmitter path, distortion of
the IQ modulator causes 1Q imbalance and DC, which is
unavoidable. Therefore, the distortion of the modulator can
characterize the differences in the emitters. Impairments from
the modulator include (1) I/Q gain mismatch, where the
amplitudes of the I/Q signals are different; (2) quadrature
errors, where the phase difference between the 1Q signals
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is not equal to 90°; and (3) DC offset, generated by carrier
leakage from the mixer.

The output signal of the I/Q modulator with impairments
is expressed as:

Z (t) = sp (t) cos (2mfet + S/p) — sp (1) sin 27fet — S /)
(D

where
S0 =GoY.  ht—kKD+0, (),
o =" Oh(t—KT)+0g (1),

s; (1) and sg (t) denote the baseband signals. f. is the
carrier frequency of the transmitter. ¢ denotes quadrature
error. The Gy = G / Gy is an 1/Q gain imbalance. T is the
symbol period. / () represents the shaping pulse. Iy and QO
are encoded symbols on the I and Q paths.

Oy (t) and Og (1) are the DC offsets of paths I and Q
respectively. Normally, the DC offsets O; (¢) and O (t) are
constants, that is, O; (t) = Oy, Og (t) = Og.

The output complex signal representation respectively is

Z@0=Re{(11p 1) + p2p* (1) + &) XL ()
where,

pn1=0.5(Gyjo + 1) cos (s /2)+0.5; (Gijo — 1) sin (¢ /2)
n2=0.5(Grjo — 1) cos (¢ /2)40.5j (Grjp + 1) sin (¢ /2) ,
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FIGURE 3. Block diagram of classifier based on RF fingerprinting.

& = Gyjg- 01 +jOg is a complex direct current(DC) offset.
¢ is the initial phase. p (f) denotes the complex baseband
signal, for MPSK signals, it is expressed as:

P =D"" exh(t—kT - 1),

cx = Iy +j - O is a complex modulation symbol.

Equation (2) represents a complex signal-generation model
for a modulator with impairments. We observed from (2)
that the output signal is closely related to the transmission
frequency f., complex baseband signal p (¢), time ¢, and
modulator impairment characteristics denoted by i, u2
and &.

Ill. FEATURES EXTRACTION AND IDENTIFICATION

RF signals are affected by many factors during the prop-
agation process, resulting in differences in the amplitude,
frequency, and phase of the signal. In this study, timing,
synchronization, and difference processing are carried out
in the process of feature extraction, and we design a new
feature vector of the modulator, whose distribution is free
from the influence of the carrier frequency offset, random
symbol modulation, and other factors.

After receiving the RF signal, the receiver performs pre-
processing such as down-conversion, normalization, filtering,
and time synchronization to convert the RF signal into a base-
band waveform signal. Different baseband signals inevitably
carry different carrier frequency offsets. The baseband signal
is sent to the forward demodulation module to obtain the
demodulation code stream and the corresponding demodu-
lation constellation carrying carrier frequency offsets, which
are processed differently between symbols to obtain the
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differential constellation such that the feature extraction
object is converted from the baseband signal waveform into
a differential constellation. Then, the demodulation code
stream and differential demodulation constellation are used
to calculate the maximum likelihood estimation, and the dis-
tortion characteristic vector of the IQ modulator is obtained
independently of the carrier frequency offset. Finally, the
distortion features were sent to the trained random forest clas-
sifier for identification. The recognition process is illustrated
in Fig. 3.

A. PREPROCESSING

In the process of signal propagation and reception, unstable
factors such as channel changes, carrier frequency changes,
and differences in the acquisition time. These unstable fac-
tors affect the amplitude, delay, frequency, and phase of
a signal at different times. These influences may cause
instability in fingerprinting generated by the same emitter.
Preprocessing can eliminate the influence of these unsta-
ble factors and improve the stability and resolution of the
fingerprinting.

Different feature extraction methods require different pre-
processing steps. The preprocessing in this study included
down-conversion, signal detection normalization, time syn-
chronization, and filtering to form a time-aligned baseband
signal example. A preprocessing block diagram for this study
is shown in Fig. 4.

Because the various frequency impairments between the
receiver and transmitter are not zero, the baseband signal after
preprocessing inevitably has a carrier frequency offset. In the
white Gaussian channel, the preprocessed complex baseband
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FIGURE 4. Preprocessing block diagram.
signal for a burst signal can be expressed as:

2(t) = (m1p () + pap™ (1) + &) AT L (1) (3)

where fo = f.r — fer 1s the deviation between the receiver
frequency f.r and transmitter frequency f.r. Owing to man-
ufacturing imperfections, f.r and for deviate with a slight
frequency offset. ¢ is the phase deviation. 7 (f) is zero-mean
Gaussian white noise.

From (3), we observed that the preprocessed baseband
signal is a non-zero frequency signal with a carrier frequency

OffA.

B. FEATURE EXTRACTION
The purpose of the feature extraction is to obtain a map that
maps the signal waveform into a vector that can characterize
different transmitters. In this section, the preprocessed signal
is demodulated, differentiated, and extracted, and then the
maximum likelihood estimation algorithm is used to map the
sample signal to a modulator distortion vector independent of
the carrier frequency offset.

The first is demodulation processing, in which the demod-
ulation constellation can be expressed as:

20 = (1cn + pach +£) ST g, 4

where z, is the coordinate of the demodulation constella-
tion point, (ulcn + nach + é) denotes the amplitude of the
demodulated constellation point, and ¢, can be obtained by
demodulation and assuming that the demodulation is error-
free. 1, is zero-mean Gaussian white noise. f, is the fre-
quency offset after carrier synchronization. Where n denotes
the sampling time. If a single signal contains a total of
N modulation symbols, then the constellation Z after the
demodulation of a single signal example has a total of N
sampling points, thatis, Z = {z,},n=0,1,2,--- ,N — 1.

From (4), we observe that the signal example after demod-
ulation contains a phase rotation factor, &/ (2nf3n+¢) Because
the frequency offset f, is non-zero, the example signal after
demodulation will rotate and accumulate with the increase in
sampling time n, which leads to the correlation of the charac-
teristic distribution of the modulator distortion fingerprinting
extracted by the existing method with the carrier frequency
offset. Therefore, the influence of carrier frequency offset
should be considered when extracting the distortion features
of the modulator.

The demodulated constellation Z is treated with
equal-interval differential processing. Because the Gaussian
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white noise is much smaller than the amplitude of the demod-
ulated signal, ignoring the cross term between the signal
and noise, the differential demodulation constellation of the
example can be expressed as:

Dy = zpyan - ZZ

M1 CrAnCyy + I41 I Crt- AnC

+1E cpran + MZ/LTC;_FA,,C;

FU2UGC anCn + 1287 C
+Euic, +Epsen + EE

o/ 2/ n) + v

&)

Here, v, = mn, - n;. Because the preprocessed com-
plex baseband signal z(¢#) obeys a Gaussian distribution,
the demodulated signal z, obeys a Gaussian distribution,
and the differential demodulation signal D,, obeys a Gaus-
sian distribution. Assuming that the differential interval
is An = 1, there are N — 1 samples of the differ-
ential demodulation signal of a single example, that is,
D={D,},n=0,1,2,--- ,N = 2.

To extract the modulator distortion eigenvector, the differ-
ential demodulation signal D is represented as a matrix as
follows:

D=Go +v (6)

where,

D = [DyD; Dy Dya] isa (W—1) x 1 vector,
representing a differential demodulation constellation.

G = [ci-cier-coeref-cief-eocichepl]isa
(N — 1) x 9 matrix composed of modulation symbols.

co = [co crcy - cN_z]T isan (N — 1) x 1 vector, and
C = [C] cp C3 +--
(N — 1) x 1 vector.

0 = M) [l paph miE* popf poph ma* Eut

Eus E(‘E*] isa9 x 1 vector.

From (6), it can be seen that # can be calculated from the
differential demodulation constellation D, carrier frequency
offset f A, and demodulation symbol ¢p and ¢;. Because the
differential demodulation signal D,, obeys a Gaussian distri-
bution, the maximum likelihood estimation method was used
to estimate the parameter # as follow:

CN—1 ]T isan (N — 1) x 1 vector. 1is a

b= (GHG)A G" (D) )

The estimated parameter 6 contains the phase rotation
factor &(27/4) . To avoid the influence of the distortion eigen-
vector by the phase rotation factor &/ (27/4), @ was normalized
in this study. The eigenvector of the modulator distortion is

Fo=0 /sum (é)
[y s & oy :
B poph pof* Ept Epl %] ®
wum (mufl" + il + piEF + pap+ )
Wops + Mo +EpuT +Eps + EET
The eigenvector Fy is a 9-dimensional column vector, and
is only related to the distortion of the modulator; therefore,
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this study uses Fy as the eigenvector of modulator distortion
to identify.

C. CLASSIFIER MODEL

In recent years, the study of the random forest classification
method has become a research hotspot in the field of machine
learning and has been widely used in many fields, such as
finance, ecology, and network security. The random forest
classifier is an ensemble-learning method based on a deci-
sion tree. Some scholars have optimized and improved the
standard random forest classification algorithm to improve
the classification. Paul et al. proposed an improved random
forest classifier for classification with minimal trees to reduce
classification errors [40]. Liu et al. proposed a random forest
algorithm integrating decision trees and optimal trees, which
introduced the ID3 algorithm to improve the classification
accuracy [41]. Yuan et al. proposed an overlap-imbalance-
sensitive random forest (OIS-RF) method that optimizes
random forest performance [42]. The research focus of this
study was not on the classifier model; therefore, this study
adopted the standard random forest classification method for
recognition. To achieve a better recognition performance,
this study built a complete random forest classifier based on
10 decision trees. The input eigenvector of the classifier is a
complex vector Fyg of the size 9 x 1:

IV. PERFORMANCE ANALYSIS

To make the experiments easy to understand and repeatable,
we conducted experiments using simulated RF signals of
multiple emitters and used the recognition method in this
study to achieve accurate identification. In addition, the supe-
riority of the proposed method is verified by comparing it
with the recognition performance of the modulator distortion
feature vector mentioned in [26].

The experimental conditions were set as follows: according
to the distortion signal model in Section II, eight emitter
signals were generated, each emitter signal was added to
the carrier frequency offset in the range of -6 Hz to 6 Hz,
and the frequency offset interval was 2 Hz, resulting in
a total of seven frequency offsets. Each emitter generated
200 examples under a single carrier frequency offset for
a total of 11200 examples. QPSK modulation, number of
symbols per example L=1000, symbol rate of 100k Baud,
carrier frequency of 350kHz, sampling rate of 10 MHz, raised
cosine shaping filter with a roll-off factor of 0.35 was used,
and the signal-to-noise ratio(SNR) was 20 dB. Thus each
example contains 100000 sampling points. The parameters
of the distortion model are listed in Table 2.

In this study, the frequency offset refers to the base-
band signal frequency after frequency compensation. The
frequency offset after carrier synchronization is typically on
the order of Hz. According to the signal in this section,
in a single example, a frequency offset of 6 Hz can cause a
21.6° phase rotation. It is sufficient to prove the influence of
frequency offset on recognition performance, therefore, the
carrier frequency offset is set from -6 Hz to 6 Hz.
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A. FEATURES DISTRIBUTION WITH DIFFERENT
FREQUENCY OFFSETS

To analyze the influence of different frequency offsets on the
distortion vector Fg of the modulator in this study, we ana-
lyzed the vector distribution and second-order statistics of
the eigenvector to compare the fingerprint distribution of the
emitters under different carrier frequency offset conditions.

First, the distribution of the eigenvectors at different fre-
quency offsets was observed. Because all components of
vector are Gaussian distribution.

Consider the second component of Fy, denoted as Fya,
as an example. This section compares the distribution of Fyo
when the frequency offset is -6 Hz and 0 Hz, as shown in
Fig. 5. Each point in Fig. 5 represents a feature extracted from
an example, where points of the same shape represent the
same emitter. Therefore, each figure in Fig. 5(a) and Fig. 5(b)
contains eigenvalues for a total of 1600 examples from eight
emitters, each with 200 eigenpoints.

Comparing Fig. 5(a) and Fig. 5(b), it can be seen that,
taking the 2nd emitter as an example, regardless of whether
the carrier frequency offset is -6 Hz or 0 Hz, the real part of the
eigenvalues is distributed between 0.25-0.35, and the imagi-
nary part is distributed between -0.06-0.08. In other words,
when the carrier frequency offset changes, the distribution
of the IQ distortion features in this study does not change.
In addition, it can be seen from Fig. 5 that regardless of
whether the frequency offset is -6 Hz or 0 Hz, the I1Q distortion
of different emitters is distributed in different regions; that is,
different emitters can be distinguished by the characteristic
vector of each emitter.

Next, the change in the mean and variance of eigenvectors
Fgy with carrier frequency offset was analyzed. Fig. 6(a)
shows the mean of the eigenvector Fy, for each emitter at
different frequency offsets. Each point in the figure represents
the mean of all 200 signal examples for an emitter at a fixed
frequency offset, and the points with the same shape represent
the mean of the fingerprint characteristics of the same emitter,
that is, Fig. 6(a) contains a total of 56 points. Fig. 6(b) shows
the variance of each emitter characteristic vs. the carrier
frequency offset, where each point represents the variance of
all the features of an emitter at different frequency offsets,
and the points of the same shape represent the variance of the
same emitter.

As shown in Fig. 6(a), the mean values of the different
frequency offsets of the same emitter are clustered together.
and do not change with the carrier frequency offset. As shown
in Fig. 6(b), the variance of the features of the same emitter
does not change with the frequency offset; that is, finger-
printing of the same emitter under different carrier frequency
offset conditions does not diverge with the frequency offset.
In summary, the feature distribution did not shift or spread
with a change in the carrier frequency offset. This is because
the feature vector proposed in this paper theoretically ensures
that it is independent of the carrier frequency offset, which
solves the problem that the frequency offset encountered by
the traditional method cannot be completely eliminated and
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TABLE 2. Parameters of different transmitter.

Sources ID 1 2 3 4 5 6 7 8
g 0.0209 -0.0122 -0.0087 -0.0035 0.0006 0.005 0.0139 0.0174
G/ 1.565 1.68 1.64 1.64 1.5 1.475 1.45 1.41
GQ 1.65 1.565 1.565 1.6 1.49 1.5 1.5 1.5
01 -0.02 -0.0128  -0.0083  -0.0038 0.0007 0.0052 0.0097 0.0142
OQ -0.01 -0.0123  -0.0078 -0.0033 0.0012 0.0057 0.0102 0.0147
makes the vector better reflect the distortion characteristics Frequency Offset-GHz
f the emitters.
of the emitters il
B. IDENTIFICATION PERFORMANCE WITH THE SAME il |
CARRIER FREQUENCY OFFSET 004 .
To investigate the identification performance when the car- el
rier frequency offset is constant, this experiment takes the » Of ;
dataset with a frequency offset of -6 Hz as the benchmark = 002t
dataset and uses the random forest classifier for identification. 004+
There were 1600 examples of eight emitters in the benchmark |
dataset, 70% of which were randomly selected as the training i
set, and the remaining examples were used as the test set. sl
Because the samples in the test set were randomly selected, '
the total number of samples for each emitter in the test set was %4 03 02 o1 0 01 o0z 03 04
inconsistent, and the numbers of examples in the test set for seal
the st to 8th emitters were 58, 56, 69, 62, 56, 65, 53, and @
61, respectively. Characterization of emitter identification Frequency Offset:0Hz
performance based on the precision and overall accuracy of a il
single emitter. 0’06
The overall accuracy of the classification recognition is the ’
ratio of the number of correctly classified examples to the il
total number of examples in the dataset. 002
o0 or
Accuracy = (TP +TN) /(TP + TN + FP+FN)  (9) LI N
where TP represents true positives, TN represents true nega- -0.04 -
tives, FP represents false positives, and FN represents false -0.06 -
negatives. where TP+TN is the number of correctly classified 0,08+ R
examples. TP + TN + FP + FN represents the total number il
of examples in a dataset. B . . . | ‘ ‘
Precision is represented as: 04 03 02 01 0| 01 02 03 04
real
(10) (b)

Precision = TP /(TP + FP)

For the identification performance of emitters with a fre-
quency offset of -6Hz, the overall accuracy of the eight emit-
ters was 94.1%, that is, the identification method proposed in
this study can accurately identify the emitter under the condi-
tion that the carrier frequency offset is unchanged. As shown
in Fig. 7, the correct identification rate of 1st emitter was
93%, the probability of error identification as 8th emitter was
3%, and the probability of error identification as 7th emitter
was 4%, which corresponds to the feature distribution in
Fig. 5(b). In Fig. 5(b), the feature distributions of 1st emitter
and 8th emitter partially overlap, which easily causes the
classifier to identify errors. Comparing Fig. 7 and Fig. 5(b),
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FIGURE 5. Distribution of Fy, with different frequency offsets: (a) -6Hz
frequency offset and (b) OHz frequency offset.

it can be seen that when the frequency offset is constant and
the characteristic distribution of the emitters overlaps, the
performance of the classifier decreases.

C. INFLUENCE OF FREQUENCY OFFSET ON
IDENTIFICATION PERFORMANCE

To investigate the recognition performance of the identifica-
tion method proposed in this paper when the carrier frequency
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FIGURE 6. Statistics for different frequency offsets: (a) mean, and
(b) variance.

offset changes. In this experiment, Pan [26] and the direct
classification of raw data were compared with the method
used in this study. In [26], the traditional frequency offset
compensation method was used to extract the vector of mod-
ulator distortion for classification. The direct classification
method for raw data involves directly identifying the demod-
ulated constellation without feature extraction. The method
proposed in this study extracts a modulator distortion vector
that is independent of the carrier frequency offset for clas-
sification. The classifiers of the three recognition methods
are random forest classifiers, and all classifiers use 70% of
all examples with a carrier frequency offset of -6 Hz as the
training set to complete the training. The remaining 30% of
examples with a carrier frequency offset of -6 Hz and all
examples with a carrier frequency offset of -4 Hz, -2 Hz,
0 Hz, 2 Hz, 4 Hz, and 6 Hz were used as the test set to
complete the recognition accuracy test. In this experiment,
the overall accuracy was used to characterize the identifi-
cation performance of all emitters under frequency-offset
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FIGURE 8. Overall accuracy with different carrier frequency offsets.

conditions. Through the recognition accuracy under different
frequency offset conditions, the emitter recognition perfor-
mance of different carriers was verified.

Fig. 8 shows the influence of different carrier frequency
offsets on the identification performance. The horizontal axis
represents the frequency offset between the example in the
test set and that in the training set. The vertical axis represents
the overall identification accuracies of the eight emitters.

It can be seen from Fig. 8 that the recognition accuracy of
the direct classification method of raw data is stable between
20%-30%, although the raw data contain all the fingerprint
information, and its recognition accuracy does not change
with the change in frequency offset. However, the overall
recognition accuracy of the method is poor, mainly because
the original data after demodulation is directly used without
feature extraction for identification, and the original data
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cannot explicitly present all fingerprint information; there-
fore, the recognition accuracy rate is low overall. The method
in [26] adopts the modulator distortion vector after frequency
compensation, and although frequency compensation is car-
ried out in the feature extraction process, the influence of
frequency offset cannot be completely eliminated. Therefore,
when the frequency offset between the recognition and train-
ing examples exists, the recognition accuracy rate decreases,
and the larger the offset, the lower the recognition accuracy
rate, which affects the actual performance of the recognition
model. For the method proposed in this paper, when the
difference between the carrier frequency of the example to
be identified and the carrier frequency of the training set is
within 12 Hz, the recognition accuracy is stable at approx-
imately 90%, and does not change with the increase in the
frequency offset; therefore, the recognition method in this
study does not need to consider the actual change in the
carrier frequency offset.

V. CONCLUSION

This paper proposes a specific emitter identification method
based on differential constellation and applies differential
processing technology to separate and extract modulator
distortion features. We design a new modulator distortion
fingerprint vector that is independent of the carrier frequency
offset. In contrast to the existing modulator distortion finger-
print extraction method which requires high-precision carrier
synchronization, this technique does not need to accurately
compensate for the frequency offset of the constellation.
As long as the demodulation symbol and demodulation signal
can be obtained, the modulator distortion feature can be
extracted, and the training of the random forest classifier
can be completed to achieve accurate identification of mul-
tiple emitters. Experimental results show that the proposed
technique can significantly improve the SEI performance
compared to existing algorithms.
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