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ABSTRACT The technology of non-contact heart rate detection has been proven of great use. However, it is
still limited by several challenges, particularly the influence of human motion and random disturbances,
which significantly degrade the accuracy of the measurement. To address these challenges, this paper
proposes a novel scheme for heart rate detection. Firstly, the proposed scheme utilizes the Multi-Channel
Averaging (MCA) technique to improve the signal-to-noise ratio (SNR) of the extracted phase signal from
the echoes in the multiple receivers, and a high-pass filter to roughly extract a heartbeat signal. Secondly,
to suppress motion artifacts (MA) in the heartbeat signal caused by human motion, the Adaptive Param-
eter Selection for Expectation-Maximization (APSEM) method is proposed. Further, a novel processing
sub-framework which combines the Kalman filtering, the Variational Mode Extraction (VME) algorithm,
and the Rife spectral analysis method (called KFRV method) is proposed to mitigate the effect of random
disturbances and achieve accurate frequency estimation. Experimental results using the Polar H10 heart rate
sensor as a reference show that the proposed scheme achieves accurate heart rate detection in the presence of
human motion, with the Mean Absolute Error (MAE) of less than 2.5 beats per minute (bpm), which is much
better than traditional schemes. Compared to traditional methods, the proposed scheme exhibits negligible
loss in heart rate detection under static state, with an average MAE of 0.99 bpm. Overall, the experimental
results demonstrate the applicability of the proposed scheme for accurate heart rate detection in both human
motion and static states.

INDEX TERMS APSEM method, frequency-modulated continuous-wave (FMCW) radar, human motion,
KFRV method, MCA, non-contact heart rate detection.

I. INTRODUCTION
Heart rate (HR) is a crucial component of human vital signs
which reflects an individual’s physiological state. Conven-
tional HR detection techniques rely on electrocardiogram
(ECG) or photoplethysmography (PPG) [1], but these meth-
ods require physical contact with the subject, causing dis-
comfort and potential allergy risks [2], [3], [4]. To improve
the universality of long-term vital sign monitoring, research
on non-contact vital sign monitoring has become a crucial
area in both academia and industry [5]. Several non-contact
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vital sign monitoring systems have been developed using
optical imaging, acoustic vibration, electromagnetic waves,
and other methods [6], [7], [8]. Bio-radars have demonstrated
advantages in non-contact, non-invasive, and scalable vital
sign monitoring. They have been applied in various fields,
including post-disaster survivor detection, sleep monitoring,
and driver health evaluation in vehicles [9], [10], [11].

The radar used in non-contact vital sign monitoring is
mainly composed of continuous-wave (CW) radar, impulse
radio ultra-wideband (IR-UWB) radar, and frequency-
modulated continuous-wave (FMCW) radar. In comparison
to CW Doppler radar and IR-UWB radar, FMCW radar can
divide the acquired radar signal intomultiple ranges and angle
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scales, and the captured information has more details [12].
Detection of vital signs using FMCW radar has become
a growing area of research [13], [14], [15]. The integra-
tion of millimeter-wave (mm-wave) technology has further
advanced this field. Respiration and heartbeat cause local
vibrations on the body surface with amplitudes of approxi-
mately 5 mm and 200 µm ∼ 500 µm, respectively [16]. Due
to its ability to detect small amplitude vibrations, mm-wave
FMCW radar can accurately monitor vital signs.

In the current research, the advancement of various meth-
ods such as the Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise (CEEMDAN), the Variational
Modal Decomposition (VMD), and others have led to the
maturity of heart rate monitoring in the presence of the human
body in a static state [17], [18], [19], [20], [21]. However,
one of the significant challenges in non-contact vital sign
monitoring is to achieve accurate heart rate estimation in
the presence of human motion. The amplitude of human
motion can interfere strongly with vital sign signals as it
is much larger than the amplitude of chest displacement
caused by the latter [22], [23]. Lv et al. proposed a novel
scheme to enhance vital signals by utilizing theMatched filter
(MF) technique to effectively eliminate interference caused
by large-scale random human motion [22]. The proposed
scheme operated on the fundamental principle of matched
filter, which enables recovery of the input signal’s informa-
tion that exhibits maximum correlation with a pure template
signal. By multiplying the input signal with a pure template
signal devoid of human motion interference, the technique
amplified the useful signal component while suppressing
the noise component. Nevertheless, the effectiveness of this
scheme was contingent on the purity of the selected template
signal. In practical scenarios, the selected template signal
may not be entirely free from the human motion, and the har-
monics of the vital signal and various forms of inherent noise
can further degrade the template’s purity. This limitation can
significantly affect the performance of the MF-based vital
signal enhancement scheme. Wu et al. introduced a vital sign
signal enhancement algorithm, the Multichannel-weighted
Kalman Smoother (MCKS), which was designed to tackle
the issue of singular values resulting from random body
movements (RBM) during the vital sign monitoring [23].
The MCKS algorithm employed multiple channels of echo
signals and reduced the weight of observation vectors that
contain singular values through smoothing. However, the
efficacy of RBM suppression using this method is influenced
by the initial parameters. Inappropriate selection of initial
parameters may result in incomplete RBM suppression. F.
Wang and colleagues applied a MA filtering technique that
employs B-spline fitting to effectively eliminate the signifi-
cant interference caused by human motion [24]. The method
involved employing a B-spline curve fitting strategy to model
the human motion signal in the time domain, and then sub-
tracting the fitted motion signal from the original phase signal
to achieve motion artifacts removal. However, this method
may be susceptible to issues of over-fitting and under-fitting,

which can lead to excessive loss of valuable components in
the original phase signal or incomplete removal of the human
motion components. Moreover, random disturbances such as
impulse noise can also degrade the accuracy of heart rate
detection.

To overcome the above challenges, a novel scheme for
heart rate detection using 77 GHz FMCW radar is proposed.
The proposed scheme utilizes a multi-step signal processing
method to obtain a stable and accurate heart rate estimation.
Initially, the phase signal of the range bin where the human
body is located is extracted through the signal pre-processing
step. The signal-to-noise ratio (SNR) of the phase signal is
then improved using Multi-Channel Averaging (MCA) and
a rough heart rate signal is extracted through a high-pass
filter. To address the interference caused by human motion
on heart rate estimation, the Adaptive Parameter Selection for
Expectation-Maximization (APSEM) method is employed to
filter out the motion artifacts (MA) in the heartbeat signal.
The proposed APSEM method effectively suppresses the
singular values in the heartbeat signal, resulting in a reduced
impact of human motion on the accuracy of heart rate detec-
tion. Further, a novel processing framework is proposed for
heart rate tracking to achieve a more stable and accurate
heart rate estimation. This processing framework which is
called the KFRV method combines the Kalman filtering,
the Rife spectral analysis method, and the Variational Mode
Extraction (VME) algorithm, to suppress the effect of random
disturbances on heart rate estimation and reduce heart rate
deviation during heart rate detection.

The content of this paper is organized as follows: Section II
introduces the preliminaries including the FMCW radar sys-
tem and the fundamental theory. In Section III, the radar
signal preprocessing, the APSEM method, and the KFRV
method are presented. Section IV describes experiment set-
tings parameters and results. Finally, conclusions are given
in the last section.

II. PRINCIPLE OF NONCONTACT HEART RATE DETECTION
BASED ON FMCW RADAR
The fundamental principle underlying the non-contact detec-
tion of vital signs using FMCW radar technology involves
capturing the phase variation resulting from the motion of a
target. As illustrated in Fig.1, a simplified block diagram of an
FMCWradar system designed for human vital signs detection
consists of several key components, including a signal gener-
ator, a power amplifier (PA), a low-noise amplifier (LNA),
a low-pass filter, and an analog-to-digital converter (ADC)
module.

The transmitted chirp signal can be approximately
expressed as

xT (t) = AT exp
(
j(2π fmint + πKt2)

)
, 0 < t < Tr (1)

where fmin is the start frequency and K is the frequency
modulation slope. AT represents the magnitude associated
with the transmit power and Tr stand for the duration of a
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FIGURE 1. FMCW radar system block diagram.

single chirp. The signal is transmitted from the transmitting
antenna (TX) to the front of the object. Afterward, the phase
of xT (t) is modulated by the cardiopulmonary movement r(t)
due to lung and heart. The reflected signal of the receiver
antenna (RX) can be expressed as

xR(t) = AR exp
{
j
(
2π fmin(t − τ )+ πK (t − τ )2

)}
,

0 < t < Tr (2)

τ (t) =
2R(t)
c

(3)

where τ (t) and c are the round-trip time and the velocity
of the electromagnetic wave, respectively. The echo signal
xR(t) can be regarded as a time delay version of xT (t), with
a time delay τ (t) caused by the constant distance r0 and the
cardiopulmonarymovement r(t) [25]. By using the frequency
mixing changed into an intermediate frequency (IF) signal,
the IF signal is shown by (4).

SIF (t) = ATAR exp
{
j
(
2πKτ t + 2π fminτ − πKτ 2

)}
≈ ATAR exp(j(2π fminτ + 2πKτ t))

≈ ATAR exp(j(ψ(t)+ 2π fIF t)), τ < t < Tr (4)

ψ(t) = 4π
r0 + r(t)

λ
, fIF =

2Kr0
c

(5)

In (4), the term πKτ 2 can be neglected as the order of
magnitude for this term is 10−6. From (5), we can find that
the change of ψ(t) is apparent along with r(t) relative to λ
at a settled distance r0. So, we select the phase to detect the
chest wall displacement caused by heartbeat and respiration.

III. THE PROPOSED SCHEME FOR HEART RATE
DETECTION
In this study, a novel scheme for heart rate detection
using 77 GHz FMCW radar is proposed to tackle the issue
of low accuracy in heart rate measurement caused by human
motion in indoor environments. The proposed scheme utilizes
a multi-step signal process to obtain a stable and accurate
heart rate estimation. Initially, the phase signal of the range
bin where the human body is located is extracted through
the signal pre-processing step. The SNR of the phase signal
is then improved using MCA, and a fourth-order Butter-
worth high-pass filter with a cutoff frequency of 0.8 Hz was
employed to extract the heartbeat signal roughly.

FIGURE 2. Signal processing flow.

To address the interference caused by human motion on
heart rate estimation, we propose a novel method based
on an adaptive initial parameters selection method and the
Expectation-Maximization (EM) algorithm (called APSEM
method) to filter out the MA in the heartbeat signal. The
proposed ASPEMmethod effectively suppresses the singular
values in the heartbeat signal, decreasing the effect of human
motion on the accuracy of heart rate detection. Further,
a novel processing sub-framework called the KFRV method
is proposed for heart rate tracking to achieve a more stable
and accurate heart rate estimation. This method combines the
Kalman filtering, the Rife frequency measurement algorithm,
and the VME algorithm, to suppress the effect of random
disturbances on heart rate estimation and reduce heart rate
deviation during heart rate detection. The flow chart of the
proposed non-contact heart rate detection scheme is depicted
in Fig.2. And the functionality of these signal processing
steps is explained in the following paragraph.

A. SIGNAL PREPROCESSING
After sampling the beat signal, the Range-Fast Fourier Trans-
form (Range-FFT) is applied to the samples of each chirp
to extract the distance information of each object in the
environment. The range bin corresponding to the target object
is then selected. To enhance the accuracy of the range bin
selection and reduce the clutter interference reflected from
the static object in the measurement environment, a static
clutter filtering technique is employed to eliminate the back-
ground noise. It is important to note that the phase of the
echo signal reflected from static objects remains constant,
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FIGURE 3. The Range-FFT results. (a) The Range-FFT results without
filtering static clutter. (b) The Range-FFT results of filtering static clutter.

while human motion, such as body movements, breathing,
and heartbeats, can result in changes in the distance between
the radar antenna and the subject, leading to a varying phase
of the echo signal [24]. Therefore, the background profile can
be estimated by computing the average of the received pulses
over a slow time interval and it can be denoted as

C(m) =
1
N

∑N

i=1
R(m, i) (6)

wherem is the sampling point over fast-time, i is the sampling
point over slow-time. Then, all the received pulses subtract
the background profile, and the received pulses after filtering
out static clutter can be expressed as

R̂(m, i) = R(m, i)− C(m) (7)

The Range-FFT of a radar signal is depicted in Fig.3, show-
casing the comparison between the signal before and after
static clutter removal. As evident from the figure, the removal
of static clutter results in a significant reduction in back-
ground noise, thereby improving the visibility of the infor-
mation related to the micro-motion target.

After filtering out static clutter, the range bin associated
with the target object is selected, and the corresponding phase
information is extracted for further analysis. Since this study
focuses on the detection of vital signs for humans in the
presence of body movements, the range bin in which the
human is located changes over time. Therefore, it is neces-
sary to update the range bin associated with the human at
regular intervals to ensure accurate extraction of vital sign
information. The range bin selectionmethod employed in this
study is as follows: every 128 frames, the same range bin is
chosen. The selected range bin for each 128-frame segment
corresponds to the range bin with the highest peak amplitude
of the Range-FFT result for the first frame’s data, until the
next 128 frames when the range bin is updated, and so forth.

The phase value extracted directly from the data is always
between [−π, π], and the phase fluctuation caused by the
displacement of the chest wall often exceeds this range, so the
phase information obtained will have a serious wrapping phe-
nomenon. To solve this problem, the unwrapping operation
is needed to obtain the actual chest wall displacement curve.
The specific process is: when the difference between the two
continuous phases jumps larger than−π or π , the latter phase
adds or subtracts 2π .

FIGURE 4. Raw data. (a) Raw data for four channels. (b) Raw data after
MCA. (c) Raw data after High-Pass filter.

B. MULTI-CHANNEL AVERAGE AND ROUGH EXTRACTION
OF HEARTBEAT SIGNAL
In the context of non-contact vital sign detection using radar
systems, multiple receiving antennas can be employed to
enhance the vital signal. The echoes obtained at each antenna
contain both coherent signal components and non-coherent
noise. To improve the SNR, MCA is a commonly employed
technique in array signal processing [26]. In the case
of 77 GHz FMCW radar systems with a multi-transmitter-
multi-receiver configuration, echoes received from different
transmitter-receiver pairs for a given human target contain
similar heartbeat waveforms. Thus, combining the echo sig-
nals from multiple channels can improve the quality of the
heartbeat signal and increase the reliability of heart rate esti-
mation.

In this study, a system that consists of one transmitter
and four receivers was utilized. After preprocessing, the
phase data of the four channels were extracted. Then, after
performing MCA on the phase data, a fourth-order Butter-
worth high-pass filter with a cutoff frequency of 0.8 Hz was
employed to extract the heartbeat signal roughly. The results
are depicted in Fig.4. As illustrated in Fig.4(a), the phase data
of the four channels exhibit a high level of similarity. The
phase data after MCA processing is presented in Fig.4(b),
whereas the heartbeat signal extracted through a high-pass
filter is depicted in Fig.4(c). However, as shown in Fig.4(c),
despite the MCA processing, the extracted heartbeat signals
still present singular values around 14 s, 25 s, 34 s, and 45 s,
which are caused by human motion. It can be demonstrated
that the MCA processing can’t eliminate singular values in
the signal, which are caused by human motion. This suggests
that additional steps should be taken to either compensate for
or suppress the interference caused by human motion. This
highlights the limitations of MCA in these situations and the
need for MA removal techniques.
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C. ADAPTIVE PARAMETER SELECTION FOR
EXPECTATION-MAXIMIZATION METHOD
In this paper, the APSEM method is proposed to further
eliminate singular values of the heartbeat signals. Themethod
is inspired by previous works in this field [27], [28]. In con-
trast to the approach taken in [27] and [28], the APSEM
method provides the stopping criteria for the EM algorithm
which is applied to the model established in this paper. Addi-
tionally, the APSEM method incorporates an adaptive initial
parameters selection method, which is a novel enhancement
to the traditional EM algorithm and serves to improve the EM
algorithm’s robustness.

The APSEM method considers all data samples of the
heartbeat signal as observations and employs the EM
algorithm to iteratively assign weights to the variance of these
observations. The APSEM method utilizes iterative updates
to mitigate the impact of singular values present in the heart-
beat signal. Specifically, the weight assigned to the singular
value component decreases with each iteration, leading to a
more robust suppression of these values. This method can
be applied to non-Gaussian distributed noise and suppress
singular values so that a more accurate estimation of the
heartbeat rate can be achieved [27]. The processing flow of
the APSEM method is shown below.

First, the L data samples of the extracted heartbeat signal
are modeled as a sequence of observations [Gk ]Lk=1, and the
corresponding hidden state is denoted as [Uk ]Lk=1. Assuming
that the system is time-invariant, the Kalman filter system
equations are expressed as

Gk = CUk + vk (8)

Uk = AUk−1 + sk (9)

C is the observation matrix, A is the state transfer matrix, vk
is the observation noise, and sk is the state noise [27].

vk ∼ N (0,R), sk ∼ N (0,Q) (10)

In this paper, vk and sk are assumed to be uncorrelated addi-
tive Gaussian noise with zero mean. R and Q are covariance
matrices for the observation and state noise, respectively [27].
Second, a scalar weight ωk is introduced for each observed

data sample Gk such that the variance of Gk is weighted
with ωk , as done in [29]. This paper establishes the prior
distribution of ωk as a Gamma distribution to ensure that the
weights remain positive [27]. Therefore, the prior relation-
ships between the observations, state variables, and weights
can be succinctly expressed as follows:

ωk ∼ Gamma(a0, b0) (11)

Uk |Uk−1 ∼ N (AUk−1,Q) (12)

Gk |Uk , ωk ∼ N (CUk ,R/ωk ) (13)

In the model developed in this paper, only the observations
are known, and the state variables and weights are hidden
states, so the model becomes a process of solving for the
hidden states. For the observations [Gk ]Lk=1, the posterior
distribution of state variables and weights can be estimated

FIGURE 5. The EM algorithm flow chart.

by maximizing the log-likelihood log(U1:L ,G1:L , ω1:L), and
the model can be solved by the EM algorithm [28].

The EM algorithm is a widely-utilized method for esti-
mating hidden variables in probabilistic models. The funda-
mental flow of this algorithm is depicted in Fig.5 and can be
outlined as follows:

1) Initialization: The hidden variables to be estimated are
initialized, and their initial distribution is utilized.

2) E-Step: The initial distribution of the hidden variables
is used to calculate theMaximumLikelihood Estimates
(MLEs) of these variables, yielding the posterior esti-
mates of the hidden variables.

3) M-Step: The MLEs obtained in the E-Step are then
maximized to update the parameters of the hidden vari-
able distribution.

4) Iteration: This process of E-Step and M-Step is
repeated until the parameters of the model no longer
change. The stopping condition is usually determined
by monitoring the convergence of the model’s parame-
ters.

The hidden variables in the model developed in this paper
are [Uk ]Lk=1 and [ωk ]Lk=1, and their true posterior distribu-
tions should be used to calculate the maximum likelihood
estimation in the sequence. The expectation of the complete
data likelihood should be taken concerning the true posterior
distribution of all hidden variables [27]. However, since this
is an analytically intractable expression [23], we make a
factorial approximation of the true posterior as follows:

p([Uk ]Lk=1 , [ωk ]
L
k=1) =

L∏
k=1

p(ωk )p(Uk+1|Uk )p(U1) (14)

The EM algorithm, based on Gaussian and gamma distri-
butions, proceeds with the following steps once the model
parameters have been initialized:
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E-step: Calculating the maximum likelihood value and
solving the posterior estimates of the hidden variables. When
k = 2, the E-step solution starts and iterates until k = L.

Ek = (ωkCTR−1C + Q−1)−1 (15)

Uk = Ek (Q−1AUk−1 + ωkCTR−1Gk ) (16)

ωk =
aωk ,0 + 0.5

bωk ,0 +
(
(Gk − CUk )TR−1(Gk − CUk )

) (17)

In the E-step, (15) denotes the posterior variance of the
state variables, (16) denotes the posterior mean of the state
variables, and (17) represents the update expression for the
weights.

M-step: Update model parameters.

C = (
∑L

k=2
ωkGkUT

k )(
∑L

k=1
Uk−1UT

k−1)
−1 (18)

A = (
∑L

k=1
UkUT

k−1)(
∑L

k=1
Uk=1UT

k=1)
−1 (19)

R =
1
L

∑L

k=1
ωk (Gk − CUk )2 (20)

Q =
1
L

∑L

k=1
(Uk − AUk−1)2 (21)

In the EM algorithm, the updated parameters obtained in
the M-step are utilized in the computation of the E-step in
the subsequent iteration. The updated expression for weight
ωk incorporates the deviation between the predicted and
observed values, represented asGk−CUk in the denominator.
If this deviation is substantial, the weight ωk will decrease in
magnitude. In the case where the deviation becomes infinite,
ωk approaches zero, implying that the observations at this
point have no effect on the optimal estimation of the model
parameters. Hence, the EM algorithm employed in this paper
can effectively suppress the interference of singular values
that arise from human motion.

Unlike the literature [27], [28], the stopping criteria for the
EM algorithm, applied to the established model in this study,
are presented to guarantee convergence. The stopping criteria
are expressed as follows:∣∣Rcur − Rpre∣∣ < λRpre&

∣∣Qcur − Qpre∣∣ < λQpre (22)

where Rcur ,Qcur denote the observation noise and state noise
of the current M-step update, respectively, and λ is the
threshold value of the stop condition. Additionally, Rpre,Qpre
denote the observation noise and state noise of the last M-
step update, respectively. In this paper, we set the maximum
number of iterations for the EM algorithm to 1000 and the
stopping criteria threshold value λ for the iterations to 0.01.
When the stopping criteria are satisfied, the EM algorithm
iteration stops, and the heartbeat signal sequence [Zk ]Lk=1
can be obtained after removing the singular values. The
above-described method for filtering motion artifacts can be
referred to as the EM method.

[Zk ]Lk=1 = C [Uk ]Lk=1 (23)

Fig.6 presents the comparison of heartbeat signals before
and after motion artifact filtering, along with their respective

FIGURE 6. The heartbeat signal and its spectrum. (a) The heartbeat signal
before and after filtering out MA. (b) The spectrum of the heartbeat signal
before and after filtering out MA.

spectral analysis. As depicted in Fig.6(a), the gray dashed line
represents the raw heartbeat signal, which contains a signifi-
cant number of singular values due to human motion. These
singular values are marked with red circles in the figure. The
solid orange line shows the heartbeat signal filtered by the EM
method, which indicates the absence of singular values after
processing and the effective suppression of human motion
artifacts in the heartbeat signal.

The blue curve in Fig.6(b) represents the spectrum of the
heartbeat signal without motion artifacts filtering, while the
red curve represents the spectrum of the heartbeat signal pro-
cessed by the EM method. The average heart rate of the sub-
ject, as measured by the Polar H10 chest heart rate sensor, was
found to be 78.4 beats per minute (bpm), or approximately
1.31 Hz. The actual heartbeat spectrum peak, indicated in
the figure by a green circle, corresponds to a frequency of
1.32 Hz in the spectrum. The blue curve reveals that the real
heartbeat spectrum peak is obscured by the peak correspond-
ing to 1.22 Hz, leading to an error of 5.2 bpm in heart rate
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FIGURE 7. Comparison of the effectiveness of EM methods for filtering
MA with different initial parameters. (a) The initial parameters are〈
a0 = 0.5, b0 = 0.5

〉
. (b) The initial parameters are

〈
a0 = 0.25, b0 = 0.5

〉
.

measurement using the spectral analysis method. However,
as can be seen from the red curve, motion artifacts filtering
effectively suppresses the peak associated with 1.22 Hz, thus
allowing the real heartbeat spectrum peak to take center stage.
The heart rate result obtained through spectral analysis after
motion artifacts filtering is only 0.8 bpm error compared to
the typical heart rate measurement provided by the heart rate
sensor.

The EM method for filtering out motion artifacts has been
shown to be effective through experimentation and analy-
sis. Before performing the EM method, we need to select
appropriate initial Gamma distribution parameters. In the fol-
lowing, we discuss the impact of initial Gamma distribution
parameters for MA suppression.

The effect of the motion artifacts suppression for a set of
heartbeat signals with human motion is presented in Fig.7
for two different initial Gamma distribution parameters sets.
The initial parameters are ⟨a0 = 0.5, b0 = 0.5⟩ in Fig.7(a)
and ⟨a0 = 0.25, b0 = 0.5⟩ in Fig.7(b). A comparison of these
two figures reveals that, when the initial Gamma distribution
parameters are set to a0 = 0.5, b0 = 0.5, many singular val-
ues remain after motion artifact filtering and the interference
generated by human motion is not effectively suppressed.
However, when the initial Gamma distribution parameters
are set as a0 = 0.25, b0 = 0.5, there is a significant
reduction in the singular values caused by human motion in
the heartbeat signal, resulting in a notable improvement in the
motion artifact filtering effect. These experimental results and
analysis demonstrate that the selection of the initial Gamma
distribution parameter significantly affects the EM method’s
ability to suppress MA.

This is because the effect of humanmotion and electromag-
netic environments are very sophisticated, so it is unlikely
that a single set of initial parameters will be suitable for
processing all signals. In caseswhere a set of heartbeat signals
are significantly disturbed by human motion and contain
multiple singular values, it is possible that the EM method
can’t delete any effect of human motion by setting the wrong
initial prior distribution parameters (aωk ,0 and bωk ,0).
Consequently, this paper proposes a novel method for

adaptive selection of the initial Gamma distribution param-
eter for the EM method. The proposed method adopts a

FIGURE 8. Two energy threshold methods to judge human motion.

double energy threshold detector to determine the strength of
the human motion, which can indirectly provide information
about the strength of the singular values in the heartbeat
signal. Subsequently, adaptively adjust the initial parameters
of theGamma distribution based on the a priori information of
the strength of these singular values. According to (17), when
the degree of human motion is strong, the ratio of the initial
parameters a0 and b0 in the Gamma distribution should be
reduced appropriately to suppress the stronger singular values
better. Conversely, when human motion is weak, the opposite
is true.

The double energy threshold detection method is based on
traditional energy detection with only one threshold, which
can further increase the detection performance [30]. The
difference between the double energy threshold detection
method and the traditional single energy threshold detection
method is shown in Fig.8.

The procedure for detecting human motion with double
energy thresholds is as follows. Assuming that x(i) denotes
the magnitude of the ith sampling point of the heartbeat
signal, the energy statistic detected at this point is obtained
by calculating the energy sum of the M sample points in the
vicinity of this sample point as

Ei =
M∑
i=1

|x(i)|2 (24)

The obtained energy statistics are compared with the two
energy thresholds Eth1,Eth2, and a decision is made on
whether a body movement has occurred. During the actual
signal acquisition, if the calculated energy value is larger than
Eth1 and less than Eth2, this signal segment will not be judged
as occurring human motion. The judgment result Di can be
expressed as follows

Di =


−1,Ei < Eth1
0,Eth1 < Ei < Eth2
1,Ei > Eth2

(25)

where Di equals 1, it signifies that no human motion occurs,
whereas if Di equals 0, no judgment is made, and a value of
-1 indicates the presence of human motion [30].

The threshold values Eth1 and Eth2 of the double threshold
energy detection are determined by the statistical mean and
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FIGURE 9. Short-time energy change of the heartbeat signal.

standard deviation of the signal energy in the absence of
human motion in the previous period.{

Eth1(k) = Emean(k − 1)+ β1Estd (k − 1)
Eth2(k) = Emean(k − 1)+ β2Estd (k − 1)

(26)

where Eth1(k) and Eth2(k) denote the two threshold values at
the kth sampling point of the heartbeat signal, Emean(k − 1)
denotes the mean value for the previous k − 1 energy values,
andEstd (k−1) denotes the standard deviation for the previous
k−1 energy values. Additionally,β1 and β2 are twoweighting
factors, which empirically take the values of 1.1 and 2.6,
respectively.

Experiments were performed to evaluate the efficacy of
the double energy threshold method for detecting human
motion during heart rate monitoring. Some 60-second moni-
toring experiments were conducted on volunteers, who were
instructed to perform four distinct movements (forward,
backward, shoulder shaking, and arm swinging) at 15 s,
25 s, 35 s, and 45 s, respectively, and each movement lasted
approximately 2 s, after which the volunteers returned to
a static reference position. Fig.9 demonstrates the accuracy
and effectiveness of the double energy threshold method in
detecting these body movements during noncontact heart rate
monitoring. As illustrated in the figure, it is noticeable that
some energy values exceed the first threshold even when the
human is in a static state, as indicated by the red circles. This
highlights the potential for erroneous decisions when relying
on a single threshold. In contrast, the results shown in Fig.9
demonstrate that the double energy threshold method accu-
rately detects body movements with moments and durations
consistent with the experimental setting. Extensive exper-
iments reveal that the double energy threshold detection
method is accurate and effective for detecting human motion
during noncontact heart rate monitoring.

After double threshold energy detection, the percentage of
body motion duration to the total duration of the heartbeat
signal tout is calculated; subsequently, the ratio Er of the

TABLE 1. Human motion models discrimination.

FIGURE 10. Comparison of the effectiveness of the EM method with
default initial parameters and the APSEM method for filtering MA. (a) The
EM method with default initial parameters for filtering MA. (b) the APSEM
method for filtering MA.

maximum energy at the heartbeat signal to its corresponding
energy thresholdEth2 is found. Themotionmodel is classified
into five modes considering the above two indicators of tout
and Er in this paper. The motion model and the related
evaluation criteria are shown in Table 1.
After determining themotionmode of the current heartbeat

signal, it is necessary to identify the corresponding initial
Gamma distribution parameters of the EMmethod. Extensive
experiments have been done to investigate the appropriate
value of initial Gamma distribution parameters corresponding
to the different motion modes, the typical value can be given
as

Gamma =



⟨a0 = 0.15, b0 = 0.5⟩ ,Model1
⟨a0 = 0.2, b0 = 0.5⟩ ,Model2
⟨a0 = 0.25, b0 = 0.5⟩ ,Model3
⟨a0 = 0.3, b0 = 0.5⟩ ,Model4
⟨a0 = 0.5, b0 = 0.5⟩ ,Model5

(27)

After double threshold energy detection, tout ,Er can be cal-
culated, and the human motion model can be identified based
on Table 1. Consequently, the initial Gamma distribution
parameters can be selected adaptively based on the human
motion model.

Fig.10 illustrates a comparison between the motion arti-
facts removal effects achieved using the EM method with
default initial distribution parameter of ⟨a0 = 0.3, b0 = 0.5⟩
and the APSEMmethod for the same set of heartbeat signals.

The solid orange line represents the signal with motion
artifacts filtered out, while the dashed grey line represents
the signal without filtered motion artifacts. Fig.10(a) illus-
trates that when the default initial distribution parameter is
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employed, the signal processed by the EM method is nearly
identical to the original signal, with a significant number of
singular values still present. On the other hand, Fig.10(b)
shows that when the adaptive parameter selection method
is employed to select the initial distribution parameter, the
EM method is more effective in removing motion arti-
facts, suppressing most of the singular values due to human
motion. The specific processing is that the heartbeat signal
depicted in Fig.10 was classified asModel 1 (High-level body
motion) by the motion model classification method based on
the double energy threshold. Subsequently, the correspond-
ing initial Gamma distribution parameter was selected as
⟨a0 = 0.15, b0 = 0.5⟩.
The motion artifacts filtering method, which combines

adaptive parameter selection with the EMmethod, is referred
to as the APSEMmethod in this paper. In the context of heart
rate monitoring with human motion, the APSEM method
offers improvements over the EM method, as it eliminates
the requirement for adjusting parameters and enhances the
robustness of the traditional EM method.

D. VARIATIONAL MODE EXTRACTION ALGORITHM
In 2014, Dragomiretskiy and Zosso presented a novel VMD
algorithm for signal processing [19]. The VMD algorithm
enables the specification of the number of modes required for
signal decomposition and facilitates the separation of signal
components with well-defined characteristics. Additionally,
the VMD algorithm addresses the issue of modal mixing
and provides modal components with independent center fre-
quencies and sparse representations in the frequency domain.
TheVMDalgorithm has gainedwidespread usage for extract-
ing vital sign signals and has been shown to significantly
improve the SNR of these signals.

However, the VMD algorithm has some limitations,
including computational intensity, making real-time analy-
sis of signals challenging, and the difficulty in selecting an
appropriate number of modes. If the number of modes in
the data is unknown, it can be challenging to select the
right number of modes, which can result in either modal
confusion or the appearance of invalid and false components
in the decomposition results. These limitations hinder the
application of the VMD algorithm for the analysis of vital
signs signals.

The VME algorithm, proposed by Nazari and Sakhaei in
2018, is an improved approach for extracting specific mode
signals from ECG signals [31]. The algorithm is designed to
overcome the limitations of the traditional VMD algorithm,
with advantages such as low time complexity and the absence
of a requirement to determine the number of modes before-
hand. Due to the priori frequency distribution range of heart-
beat signals and the VME algorithm’s capacity for extracting
the specific mode, the VME algorithm enables accurate
extraction of the heartbeat signal with a very low computa-
tional burden. Consequently, we adopt the VME algorithm to
extract the accurate heartbeat signal after removing motion

FIGURE 11. The heartbeat signal is extracted by the VME algorithm and
its spectrum.

artifacts. The theoretical derivation of the VME algorithm is
described in [31], and the specific implementation process of
the algorithm is summarized as follows.

Algorithm 1 VME

Input: Initialize u1d , λ
1, ωd , n← 0, ωd represents the center

frequency of the desired mode.
Repeat:n← n+ 1

1) Update ud for all ω ≥ 0:

un+1d (ω) =
f (ω)+α2(ω−ωn+1d )4und (ω)+λ(ω)/2[
1+α2(ω−ωn+1d )4

]
[1+2α(ω−ωdn )2]

2) Update ωd :

ωn+1d =

∫
∞

0 ω

∣∣∣un+1d (ω)
∣∣∣2dω∫

∞

0

∣∣∣un+1d (ω)
∣∣∣2dω

3) Dual Ascent for all ω ≥ 0:

λn+1 = λn + τ

[
f (ω)−un+1d (ω)

1+α2(ω−ωn+1d )4

]
Until:

∥∥∥un+1d −u
n
d

∥∥∥2
2

∥und∥
2
2

< ε

Output: un+1d

The output heartbeat signal of the VME algorithm and its
spectrum are presented in Fig.11.

E. HEART RATE ESTIMATION METHOD
For the heartbeat signal obtained by the VME algorithm,
a spectrum estimation method is necessary for estimating
the frequency of the heartbeat signal. The FFT algorithm is
widely used for heart rate estimation, but its estimation accu-
racy is limited. The Rife algorithm is a classical frequency
measurement method widely used for the accurate estimation
of instantaneous frequency in electromagnetic countermea-
sure (ECM). Reference [32], the Rife algorithm employs
the maximum and the sub-maximum values in the whole
amplitude spectrum of a signal to interpolate the accurate
frequency. In this paper, we first exploit the Rife algorithm to
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attain a more accurate estimation of heartbeat rate, and Rife is
performed after FFT processing. In addition, after the FFT of
the heartbeat signal, only the maximum spectral line value is
found within the corresponding frequency range [0.8, 2.5] Hz
of a normal human heartbeat for interpolation.

Heart rate is varying from 48 to 150 bpm, so the frequency
of the heartbeat signal is in the range of [0.8, 2.5] Hz. After
FFT processing of the heartbeat signal, only the maximum
peak of its amplitude spectrum spectral line value within
the range of [0.8, 2.5] Hz is selected to perform the Rife
algorithm for calculating heart rate. Assuming that the sam-
pling frequency of the heartbeat signal is fs, the N-point FFT
is performed for heartbeat signals, and the corresponding
frequency range of the heartbeat signal is [f1, f2], where
f1 = 0.8 Hz, f2 = 2.5 Hz. The maximum peak of the
amplitude spectrum spectral line value |X (k0)| lies in the
range

[
Nf1
fs
,
Nf2
fs

]
is selected to perform the Rife algorithm, and

the sub-maximum spectrum line value |X (k0 + r)| around the
maximum spectrum line value |X (k0)| is used for interpola-
tion. The estimated heartbeat signal frequency fh is expressed
as

fh =
fs
N

[
k0 + r ·

|X (k0 + r)|
|X (k0)| + |X (k0 + r)|

]
(28)

when |X (k0 + 1) ≷| |X (k0 − 1)| , r = ±1.
The APSEM method proposed in the previous section

enables the removal of the interference caused by human
motion, the primary challenge now becomes achieving accu-
rate heart rate estimation in the presence of the human body
in a static state. In heart rate measurement and tracking,
relying solely on the Rife spectral analysis method does
not eliminate the influence of random disturbances such as
impulse noise and RBM. To enhance the accuracy and sta-
bility of heart rate detection, this paper proposes a novel
sub-framework combining the Kalman filter with the Rife
spectral analysis method and the VME algorithm which is
called the KFRV method. This sub-framework is supported
by existing literature [33], [34]. The use of the Kalman filter
is expected to effectively mitigate the impact of unknown
disturbances, leading to improved performance in heart rate
tracking. In conclusion, the KFRV method aims to address
inaccuracies in heart rate detection caused by random inter-
ference in the presence of the human body in a static state.
Furthermore, we have combined the APSEMmethod and the
KFRV method to establish a novel scheme for non-contact
heart rate detection.

The KFRV involves several signal processing steps. First,
the extracted heartbeat signal by the VME algorithm is pro-
cessed by sliding window, and the Rife algorithm is applied to
determine the heart rate in this time window as the observed
value. Subsequently, Kalman filtering is performed on the
observed value within the current sliding window and the
predicted value obtained from the previous window to arrive
at an accurate heart rate estimate. This methodology assumes
that both the observed noise and the system noise follow
Gaussian distributions, as is assumed inKalman filtering. The

concrete functions of these signal processing steps for the
KFRV are explained in the following paragraph.

The state vector in KFRV is expressed as

O =
[
h h′ h′′

]T (29)

where variables h, h′, h′′ correspond to the heart rate in Hertz,
its first-order derivative, and second-order derivative, respec-
tively [34]. The state vector in a Kalman filter, represents at a
sliding window k, is characterized by a Gaussian process with
a mean, denoted byOk|k , and a covariance matrix, denoted by
Pk|k .

In the KFRV, we have designed a Kalman filtering process
using a constant acceleration model, with the corresponding
state transition matrix denoted as S. Using this state transition
matrix S, we can predict the state vector for the k+1th sliding
window based on the state vector of the kth sliding window
as follows:

Ok+1|k = SOk|k =

 1 1T 1T 2

0 1 1T
0 0 1

Ok|k (30)

where1T represents the time interval between two consecu-
tive sliding windows. The observation model is provided as

Yk+1 = IOk+1|k =
[
1 0 0

]
Ok+1|k (31)

in which I denotes the observation matrix.
The measured heart rate estimation value obtained from

the Rife algorithm is represented as zk+1. Specifically, zk+1
represents the frequency of the heartbeat signal measured by
the Rife algorithm within the k+1th sliding window, which
is utilized as an observation in the Kalman filtering process.
In the Kalman filtering procedure, theQ and R noise matrices
are specified in [34]. In this paper, the two-point differencing
method is employed to select the initial values for the Kalman
filtering process [35]. Upon the initial recording of vital data,
a tracking process is initiated using default Q and R noise
matrices, as well as the initial state O0|0 and covariance P0|0.
The KFRV then operates at each successive sliding window
k as described below.
1) Heartbeat signal extraction: The accurate heartbeat sig-

nal is extracted by the VME algorithm from the signal
after removing motion artifacts.

2) Rife frequency measurement: The heart rate estimation
zk+1 is obtained in the frequency domain through the
Rife spectral analysis method.

3) State prediction:

Ok+1|k = SOk|k (32)

Pk+1|k = SPk|kST + Q (33)

4) Ellipsoidal gating:

Yk+1 = IOk+1|k (34)

(zk+1 − Yk+1)TP
−1
k+1|k (zk+1 − Yk+1) ≷ γ (35)
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TABLE 2. Radar parameters.

where γ is the ellipsoidal gate constant. The ellipsoidal gating
function assesses whether the heart rate estimate zk+1 falls
within the established gating window. If the estimate falls
outside of this ellipsoidal window, the Kalman filter is not
updated as the estimate is considered an outlier. Conversely,
if the estimate falls within the gating window, the Kalman
filter is updated [34].

5) Kalman filter state update:

Kk+1 = Pk+1|k IT (IPk+1|k IT + R)−1 (36)

Ok+1|k+1 = Ok+1|k + Kk+1(zk+1 − Yk+1) (37)

Pk+1|k+1 = Pk+1|k − Kk+1IPk+1|k (38)

The Kalman gain K is utilized in the estimation of heart rate
values for the current sliding window. Ok+1|k+1 represents
the optimal heart rate value estimate of the current sliding
window, while Pk+1|k+1 stands for the covariance matrix
corresponding to Ok+1|k+1. If N (N > 3) consecutive slid-
ing windows exhibit the outlier heart rate observation, the
Kalman filtering process will be temporarily halted. Subse-
quently, the process will resume by re-selecting an initial
value based on the heartbeat signal within the current sliding
window. The performance evaluation of the KFRV will be
presented in the next section.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In this study, a Texas Instruments (TI) mm-wave AWR1642
FMCW radar was utilized in all experiments. The radar
system was equipped with two transmit antennas and four
receive antennas, and the data collected were transmitted to a
personal computer via a USB interface for signal processing
usingMATLAB. The configuration parameters of the FMCW
radar during the experiment are outlined in Table 2.
The experiments were conducted in a laboratory environ-

ment with twenty-five healthy volunteers (thirteen males and
twelve females). During experiments, volunteers were posi-
tioned directly in front of the radar while undergoing body
movements during monitoring. The Polar H10 chest heart
rate sensor was utilized as a reference in the experiments,
as illustrated in Fig.12. The data of each volunteer were
collected in groups of 1200 frames, with a duration of 60 s
per group, based on a frame frequency of 20 Hz. For heart
rate detection, the parameters of the sliding window were set

FIGURE 12. Heart rate monitoring experiments. (a) FMCW radar. (b) Polar
H10 chest heart rate sensor (c) Experimental scenarios.

to a window size of 25.6 s and a step size of 1 s. To ensure
simultaneous data collection from the radar and heart rate
sensor, the reference heart rate data were obtained through the
initiation of the Polar H10 chest heart rate sensor acquisition
process at the start of vital sign data collection. The Polar
H10 chest heart rate sensor provided updated heart rate values
every second throughout the data collection process.

The Mean Absolute Error (MAE) is adopted for evaluating
the heart rate estimation accuracy of different schemes, and
MAE can be written as

MAE =

∑N
i=1 |BPMtrue(i)− BPMest (i)|

N
(39)

where MAE is the summation of the absolute differences
between the reference heart rate measurement BPMtrue
obtained by a Polar H10 chest heart rate sensor and the
estimated heart rateBPMest obtained by a scheme inN sliding
windows, where N represents the total number of sliding
windows in each data group.

B. MEASUREMENT RESULTS
1) VALIDATION OF THE EFFECTIVENESS OF THE APSEM
METHOD
In this section, we experimentally validated the effectiveness
of the APSEM method. In these experiments, we compared
the performance of the EM method with the default initial
distribution parameter (referred to as the EM method [26]
in the table) and the APSEM method. The default initial
distribution parameter was set to be ⟨a0 = 0.3, b0 = 0.5⟩.
Both methods were employed to the same set of heartbeat
signals to remove motion artifacts, the heart rate was then
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TABLE 3. Mae of heartbeat rate estimation.

estimated using the scheme that combines the Rife spectral
analysis method with the VME algorithm. Table 3 displays
theMAE of heartbeat rate estimation for the EMmethod with
default initial distribution parameter and the APSEMmethod
under five human motion modes.

Results in Table 3 reveal that, when the model of human
motion is Model 1 (High-level body motion), the interfer-
ence of human motion on the heartbeat signal is significant.
Without performing motion artifacts removal processing, the
scheme which combines the Rife spectral analysis method
with the VME algorithm for heart rate detection results in an
error of about 26 bpm. Even for the scheme with motion arti-
facts removal processing using the EM method with default
initial distribution parameter, the MAE of heart rate estima-
tion for this group of signals is still very high, only improving
by 1.26 bpm compared with the scheme without performing
motion artifacts removal processing. However, when using
the APSEM method for motion artifacts removal processing
(i.e., adopting the Adaptive Parameter Selection for the EM
method), the heart rate estimation accuracy for this group of
signals is improved by about 22.6 bpm.

When the human motion model is Model 2 (Medium-
level body motion) or Model 3 (Low-level body motion),
it becomes evident that both the EM method with default ini-
tial distribution parameter and the proposed APSEM method
can improve the accuracy of heart rate estimation. From the
perspective of MAE, the estimation accuracy of the APSEM
method can achieve 1.5 bpm improvement compared with
the EM method with the default initial distribution param-
eter. Furthermore, in Model 5 (Almost no body motion),
it becomes apparent that the EM method with default initial
distribution parameter encountered a loss of approximately
1 bpm. On the other hand, the APSEM method did not result
in any degradation in performance.

In summary, the EM method with default initial dis-
tribution parameter demonstrates its suitability in dealing
with heartbeat signals influenced by low to medium levels
of human motion. However, it cannot effectively eliminate
interference caused by high-level human motion and experi-
ences performance deterioration under stationary conditions.
In contrast, the proposed APSEM method achieves better
motion artifacts removal performance under all the human
motion models processed in this paper and is particularly

FIGURE 13. Heart rate comparison curve.

effective in dealing with interference caused by high-level
human motion. It shows excellent performance in effectively
eliminating interference resulting from high-level human
motion. These experimental results fully demonstrate that
the APSEM method outperforms the EM method in motion
artifacts removal.

Fig.13 displays the comparison of the heart rate curve
obtained by employing different schemes in the presence of
human motion. The reference heart rate curve of a subject
was recorded using a Polar H10 chest heart rate sensor and
is depicted by the red curve. The heart rate curve adopting
the VME algorithm and the Rife spectral analysis method
without removing motion artifacts is plotted by the pur-
ple curve. The heart rate curve, obtained by applying the
VME algorithm and Rife spectral analysis method to the
signal filtered for MA using the EM method with default
initial distribution parameter, is depicted in the blue curve.
The green curve shows the performance of heart rate detec-
tion by exploiting the scheme which combines the APSEM
method with the Rife spectral analysis method and the VME
algorithm.

Upon analyzing the trend of heart rate changes, it is evident
that the green heart rate curve closely resembles the red refer-
ence heart rate curve. Conversely, the purple heart rate curve
exhibits considerable deviations from the reference heart rate
curve. Further comparison of the purple and blue curves
reveals that the EM method with default initial distribution
parameters can suppress MA, but the effect is not signifi-
cant. The MAE of the purple curve is 12.34 bpm (without
performing MA filtering out processing), while the MAE
of the blue curve is 10.57 bpm (employing the EM method
with default initial distribution parameter), compared to the
reference heart rate. The improvement in heart rate detection
(MAE) achieved by the EM method with default initial dis-
tribution parameter is only about 1.8 bpm as compared to the
case without performing MA filtering out processing.

However, the green curve obtained by employing the
scheme which combines the APSEM method with the Rife
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FIGURE 14. Heart rate comparison curve.

spectral analysis method and VME algorithm is noticeably
closer to the reference heart rate curve, with an MAE of
1.49 bpm. This represents an improvement of 9.08 bpm
over the blue curve and underscores the effectiveness of the
APSEM method in heart rate detection in the presence of
human motion as compared to the EM method with default
initial parameters. These experimental results further demon-
strate the superiority of the proposed APSEM method in
suppressing interference caused by human motion.

2) VALIDATION OF THE EFFECTIVENESS OF THE KFRV
METHOD
In this section, we experimentally validated the effectiveness
of the KFRV method. To ensure the fairness of the perfor-
mance comparison, the APSEM method was employed to
filter out motion artifacts from the heartbeat signals before
using different methods to estimate heart rate.

Fig.14 illustrates the comparison of heart rate estimation
results obtained from different schemes. The black curve rep-
resents the heart rate estimated by the FFT spectral analysis
method. The purple curve represents the heart rate esti-
mated by the scheme that combines the FFT spectral analysis
method with the VMD algorithm. The blue curve represents
the heart rate estimated by the scheme that combines the Rife
spectral analysis method with the VME algorithm, while the
green curve represents the heart rate estimated by the KFRV
method.

As observed from the figure, the black, purple, and blue
curves exhibit some degree of heart rate deviation, with the
MAE of 4.69 bpm, 3.43 bpm, and 2.83 bpm, respectively.
This deviation is attributed to the effect of random distur-
bances that cannot be eliminated by the spectral analysis
method. In contrast, the green curve shows that the heart rate
change tendency conforms to the reference heart rate curve,
with an MAE of only 0.57 bpm. This represents a significant
improvement of 4.12 bpmover the black curve, 2.86 bpmover
the purple curve, and 2.26 bpm over the blue curve, indicat-
ing that the KFRV method can effectively suppress random

FIGURE 15. Heart rate comparison curve.

disturbances, and enhance the accuracy and stability of heart
rate detection. In addition, by further comparing the black
curve and the green curve, it can be concluded that even after
employing the APSEM method to filter out motion artifacts,
utilizing only the FFT spectral analysis method for heart rate
estimation still results in significant errors. However, when
the KFRV method is employed after the APSEM method,
it effectively reduces the errors in heart rate estimation. This
further demonstrates the effectiveness of the KFRV method
in improving the accuracy of heart rate detection.

3) VALIDATION OF THE EFFECTIVENESS OF MCA
To evaluate the benefits of theMCA scheme utilizingmultiple
receiver antennas, experiments were conducted to compare
the performance of the proposed scheme that combines the
APSEM method with the KFRV method applied to both
single-channel data and multi-channel data. Fig.15 displays
the heart rate change curves obtained from exploiting the
proposed scheme to single-channel data, as well as to four
channels of data processed by MCA and then exploiting the
proposed scheme.

The blue and green curves respectively represent the
heart rate change curves obtained from the proposed scheme
applied to single-channel data and four-channel data. As evi-
denced by Fig.15, the green curve closely approximates the
reference heart rate curve compared to the blue curve. The
MAE of the blue curve is 3.83 bpm, whereas the MAE of the
green curve is 1.57 bpm, indicating that using multi-channel
data for MCA processing improves the heart rate detection
performance by 2.3 bpm. This experimental result confirms
the superiority of theMCA scheme utilizingmultiple receiver
antennas.

4) COMPARISON OF PERFORMANCE BETWEEN DIFFERENT
SCHEMES OF HEART RATE DETECTION IN THE PRESENCE OF
HUMAN MOTION
In this section, we provide a comparative analysis of various
heart rate detection schemes. Fig.16 and Table 4 present
the results of the comparison, which includes the proposed
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FIGURE 16. Heart rate comparison curve.

scheme that utilizes MCA, APSEM, and KFRV methods,
as well as the time-window-variation (T-W-V) scheme pre-
sented in [11], theMF scheme presented in [22], the B- Spline
Fit scheme presented in [24], and the Kalman filter scheme
presented in [34]. The experiments for heart rate detection
were conducted with 25 volunteers in the presence of human
motion, who was seated and facing toward a radar.

Fig.16 illustrates the heart rate curves for one of the
25 groups for heart rate detection results. The red curve
represents the reference heart rate measured by the Polar H10
chest heart rate sensor. The green curve represents the heart
rate curve obtained by employing the proposed scheme, while
the purple curve corresponds to the heart rate curve obtained
by employing the T-W-V scheme. The blue curve represents
the heart rate curve obtained by employing the MF scheme,
and the orange curve represents the heart rate curve obtained
by employing the B-Spline Fit scheme. Finally, the black
curve represents the heart rate curve obtained by employing
the Kalman filter scheme.

The analysis of Fig.16 reveals that the heart rate curve
obtained by the proposed scheme closely resembles the ref-
erence heart rate curve and exhibits a similar trend in heart
rate variations. Conversely, the heart rate curves obtained
by employing the other schemes show remarkable deviation
from the reference heart rate curve. Additionally, the MAE
of the proposed scheme for this group of data is 1.26 bpm,
whereas the T-W-V scheme has anMAE of 13.2 bpm, theMF
scheme has an MAE of 7.43 bpm, the B-Spline Fit scheme
has an MAE of 3.71 bpm, and the Kalman filter scheme has
an MAE of 5.4 bpm. These results further emphasize the
superior accuracy of the proposed scheme compared to the
other four traditional heart rate detection schemes.

The complete representation of the MAE for the 25 groups
of heart rate results obtained by the five previously men-
tioned heart rate detection schemes is presented in Table 4.
As indicated in Table 4, the proposed scheme achieved an
average MAE of 1.56 bpm for the 25 obtained heart rate
results, outperforming the T-W-V scheme, the MF scheme,

the B-spline scheme, and the Kalman filter scheme, which
exhibited average MAEs of 10.43 bpm, 4.15 bpm, 4.68 bpm,
and 5.70 bpm, respectively. Notably, the proposed scheme
demonstrated significant improvements over the T-W-V, MF,
B-Spline Fit, and Kalman filter schemes, reducing the MAE
by approximately 8.9 bpm, 2.6 bpm, 3.1 bpm, and 4.1 bpm,
respectively.

The T-W-V scheme performs poorly in heart rate detection
under human motion, with a maximum MAE of 26.66 bpm
and a minimum of 1.49 bpm. Furthermore, the MAEs of
the T-W-V scheme are generally higher than other schemes
in the comparative experiments. Although the MF scheme
shows relatively good performance in some sets of data, its
performance for heart rate detection in the presence of human
motion is not stable, as indicated by the maximum MAE
of 20.06 bpm and the minimum MAE of 1.26 bpm in the
table. Similarly, the performance of the B-Spline Fit scheme
and the Kalman filter scheme in heart rate detection under
human motion is also unstable. The maximum MAE of the
B-Spline Fit scheme is 17.94 bpm, and the minimumMAE is
1.49 bpm. The maximum MAE of the Kalman filter scheme
is 24.63 bpm, and the minimum MAE is 0.49 bpm.

In contrast, the proposed scheme delivered a stable MAE
of approximately 1.4 bpm, with a maximum of no more than
2.5 bpm and a minimum of 0.57 bpm. The standard deviation
of the MAE for the 25 obtained heart rate results was 0.56 for
the proposed scheme, 6.66 for the T-W-V scheme, 4.74 for the
MF scheme, 4.05 for the B-Spline Fit scheme, and 5.89 for
the Kalman filter scheme, which indicates that the proposed
scheme exhibits higher heart rate detection stability compared
to the other four traditional schemes.

Based on the above analysis of extensive experimen-
tal results, it can be concluded that the proposed scheme
offers higher accuracy and stability for heart rate detection
in the presence of human motion compared to the tradi-
tional schemes. Furthermore, the results of the experiments,
as depicted in Table 4, demonstrate the high accuracy and
reliability of the proposed scheme for non-contact heart rate
detection in the presence of human motion.

5) COMPARISON OF PERFORMANCE BETWEEN DIFFERENT
SCHEMES OF HEART RATE DETECTION IN A STATIC STATE
The experimental results above demonstrate the excellent
performance of the proposed scheme for heart rate detection
in the presence of humanmotion. To validate the applicability
of the proposed scheme for heart rate detection in a static
state, we compared the heart rate detection performance of
the proposed scheme with the latest VMD-based heart rate
detection scheme.

Table 5 shows the comparison results of the proposed
scheme and the latest VMD-based scheme for heart rate
detection in a static state. As demonstrated by Table 5, the
proposed scheme resulted in an average MAE of 0.99 bpm in
detecting heart rate, while the utilization of the VMD-based
scheme resulted in an average MAE of 0.74 bpm. It is worth
noting that there is only a difference of about 0.25 bpm in
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TABLE 4. Estimation results adopting different schemes in the presence of human motion.

TABLE 5. Estimation results adopting two different schemes in a static
state.

the MAE between the two schemes for heart rate detection in
a static state. Although the heart rate estimation accuracy of
the proposed scheme is a little bit worse than the VMD-based
scheme under a static state, it still achieves high detection
accuracy overall. These experimental results indicate that the
proposed scheme is also applicable for heart rate detection in
a static state.

6) VALIDATION OF THE EFFECTIVENESS OF THE PROPOSED
SCHEME IN DETECTING RAPID HEART RATE VARIATIONS
After validating the superior detection performance of the
proposed scheme in both human motion and static states,
we conducted a validation study using data that involved rapid
variations in the subject’s heart rates. Fig.17 illustrates the
heart curve obtained employing the proposed scheme when
the subject experienced rapid changes in heart rate. The red

FIGURE 17. Heart rate curve.

curve represents the reference heart rate curve, while the
green curve represents the heart rate curve obtained employ-
ing the proposed scheme. From the figure, it is evident that
the green curve does not accurately track the true trend of
the subject’s heart rate changes compared to the reference
curve when rapid heart rate variations occur. This suggests
that the proposed scheme does not achieve optimal tracking
of rapidly changing heart rates. However, when considering
the measurement error of heart rate detection, MAE for the
heart rate results obtained employing the proposed scheme
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for this dataset is 2.17 bpm. This experimental result demon-
strates that the proposed scheme still maintains a high level
of accuracy in heart rate detection.

V. DISCUSSION
This paper presents a non-contact heart rate detection scheme
based on millimeter-wave radar. Experimental results have
demonstrated that the proposed scheme can provide highly
accurate heart rate estimation in scenarios where the human
subject is either stationary or in the presence of body move-
ments. However, there are certain limitations to the proposed
scheme that need to be discussed in this section.

Firstly, the body movements considered in this study are
limited to upper body swings, head shakes, and hand raises
when the human subject maintains an upright position facing
the radar. In practical applications, the detection scenarios for
vital signs can be more complex, such as when the human
body is in a lying, side, or back position. Therefore, further
consideration is required to determine whether the proposed
scheme applies to more complex environments and potential
challenges. Secondly, in practical vital sign monitoring, the
heart rate of the subject may experience drastic changes
within a short time due to certain emergencies. However, the
heart rate tracking method employed in the proposed scheme,
which relies on Kalman filtering, may not accurately track
the true trend of the subject’s heart rate during rapid changes.
Hence, future research should focus on how to detect rapidly
changing heart rates.

Considering the above limitations of the proposed scheme,
the suggested application scenario is a relatively stable envi-
ronment where the subject faces the radar while being sta-
tionary or in the presence of body movements.

VI. CONCLUSION
In this paper, a new scheme for heart rate detection is pro-
posed, which is based on 77 GHz FMCW radar. In order
to cope with human motion artifacts, we propose the
Adaptive Parameter Selection for Expectation-Maximization
(APSEM) method. This method improves the accuracy and
robustness of motion artifacts filtering by adding an adap-
tive initial distribution parameter selection to the traditional
EM method. Additionally, we propose a novel heart rate
detection sub-framework after the APSEM method for fur-
ther dealing with interference which is called the KFRV
method. This sub-framework combines Kalman filtering with
the Rife spectral analysis method and the VME algorithm
to effectively suppress random disturbances such as impulse
noise and random body movements. As a result, heart rate
estimation accuracy can be further improved.

Based on these above methods, we propose a novel heart
rate detection scheme by adopting MCA, APSEM, and
KFRVmethods.We validate the effectiveness of the proposed
scheme through extensive experiments. The proposed scheme
is evaluated by using heartbeat signals obtained from 25 vol-
unteers in the presence of humanmotion, and the results show
that the MAE of heart rate detection is less than 2.5 bpm.

Compared to traditional schemes, the proposed scheme offers
higher accuracy and stability for heart rate detection in the
presence of human motion. The proposed scheme is further
tested on multiple volunteers in a static state, demonstrat-
ing an average MAE of 0.99 bpm in detecting heart rate.
In conclusion, the proposed MCA-APSEM-KFRV scheme
enhances the accuracy and robustness of heart rate detection
by effectively filtering out motion artifacts and suppressing
random disturbances. And the extensive experimental results
demonstrate the applicability of the proposed scheme for
accurate heart rate detection in both human motion and static
states.
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