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ABSTRACT The importance of object detection in intelligent logistics applications is increasingly rec-
ognized. However, current detector models suffer from challenges such as high computational cost and
low detection accuracy, which limit their deployment on edge devices with limited computational power
in logistics scenarios. To address these issues, this paper proposes a novel lightweight detector model
(GBForkDet) based on YOLOv8 for forklift safety driving. Firstly, the Ghost module is integrated into
YOLOv8 to optimize the Backbone feature extraction process, reducing the computational cost of the
model. Then, a Bi-directional Omni-Dimensional Dynamic Neck (BiODNeck) is designed to fuse feature
information in complex logistics scenarios. GBForkDet significantly improves the capture of contextual
logistics background information by reconstructing the Neck of YOLOv8 with BiODNeck. This is attributed
to cross-layer weighted feature fusion and a complementary focus on learning convolutional kernels in
any convolutional layer along all four dimensions of the kernel space. Furthermore, the introduction of
the Normalized Wasserstein distance (NWD) as an enhanced loss function improves the detection of small
distant objects in logistics scenarios. Experimental results show that GBForkDet achieves a mAP of 92.7%
and 95.3% on the established Forklift-3k and KITTI datasets while reducing the model parameters by 17.9%
and the computational cost by 22.5% compared to the baseline YOLOv8smodel. Under the JetsonNano edge
platform and 640×640 input size, the GBForkDet model achieves a remarkable inference time of 108.2 ms
using TensorRT acceleration.

INDEX TERMS Object detection, intelligent logistics, YOLOv8, feature fusion.

I. INTRODUCTION
With the rapid development and increasing complexity of
the logistics field, forklifts play a vital role in warehousing
and logistics scenarios. However, forklifts are exposed to
numerous safety hazards that risk personal safety during oper-
ations. The leading causes of these hazards include limited
visibility of drivers due to excessive stacking of goods, rear
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blind spots caused by the height of the forklift body, and
potential dangers and violations due to driver fatigue, lack of
concentration, and unsafe operations. Given these safety con-
cerns, there is an urgent need for safety warnings in forklift
operations. Traditional safety warning methods are based on
laser sensors and ultrasonic sensors. Laser sensors offer the
advantages of high accuracy and a longer range for distance
measurement, enabling accurate detection and measurement
of obstacle positions. Laser sensors are typically installed at
the front or sides of the forklift and provide critical inputs
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for warning decisions. However, laser sensors have limited
adaptability in complex environments, such as encountering
transparent or highly reflective objects, which can interfere
with or diminish their detection capabilities. Additionally,
laser sensors have narrow horizontal and vertical fields of
view, resulting in the omission or misjudgment of certain
obstacles. Particularly, blind spots exist at the rear and sides
of the forklift, which can increase safety risks. Ultrasonic
sensors represent another commonly used traditional safety
warning method. They utilize the echo of sound waves to
measure the distance to objects, allowing real-time detection
of obstacles in front of the forklift. Ultrasonic sensors are
suitable for scenarios involving low-speed movement and
close-range obstacle avoidance. However, they have rela-
tively limited accuracy and range for distance measurement.
Ultrasonic sensors fail to meet the requirements for scenarios
requiring higher precision and long-distance measurement.

As deep learning has rapidly developed, machine
vision-based safety alerts have emerged as an essential
application of object detection models in complex logistics
scenarios. Adequate safety warnings can be achieved by
equipping forklifts with low-cost depth cameras and utilizing
RGB-D images to predict target positions and distances.
Machine vision-based safetywarningmethods can effectively
overcome the limitations of traditional approaches and pro-
vide assistance for forklift operations. Object detection is a
critical task in the field of deep learning and is primarily
categorized into two methods: the one-stage approach and
the two-stage approach. The two-stage approach divides the
target detection task into two stages: proposal generation
and target classification. Firstly, a series of candidate boxes
containing potential target objects is generated using the
region proposal method. Subsequently, these candidate boxes
are classified and accurately localized using a classifier.
Classical two-stage methods include R-CNN (Region-based
Convolutional Neural Networks) [1], Fast R-CNN [2], and
Faster R-CNN [3]. Although these methods achieve high
detection accuracy, their computational speed is relatively
slow, requiring multiple computations. On the other hand,
the one-stage approach directly performs object classifica-
tion and bounding box regression without utilizing region
proposal methods. Representative one-stage methods include
the YOLO series [4], [5], [6], [7], SSD (Single ShotMultiBox
Detector) [8], and RetinaNet [9]. These methods can directly
generate target category scores and bounding box coordi-
nates, thus exhibiting better real-time performance. However,
detectors based on the one-stage approach generally exhibit
inferior detection accuracy compared to those based on the
two-stage approach.

Despite the excellent performance of one-stage object
detection methods on devices with ample computing
resources, they face high computational costs and low
detection accuracy on the resource-constrained edge and
mobile devices. Particularly, real-time capability is crucial in
safety driving scenarios within complex logistics. Therefore,
achieving a balance between detection accuracy and speed

has become a significant challenge in intelligent logistics.
Another challenge is the lack of suitable logistics scene
datasets, which presents difficulties in research work. And
this is due to the complexity and variability of logistics
environments, involving different types of goods, stacking
methods, lighting conditions, and other factors, making data
collection challenging. Furthermore, introducing a Feature
Pyramid Network (FPN) [10] has been widely applied in
computer vision tasks, effectively addressing the challenge
of multi-scale feature fusion. However, the FPN structure
fails to extract semantic information from targets in complex
logistics backgrounds effectively. To address this issue, Bi-
Directional Feature Pyramid Network (BiFPN) [11] proposes
a simple and efficient weighted bidirectional feature pyra-
mid network. This network incorporates learnable weights
to determine the importance of different input feature layers,
enabling better adaptation to various complexities of logistics
scenarios.

This paper proposes GBForkDet to address the challenges
of high computational costs and low detection accuracy in
machine vision-based safety prewarning on the edge and
mobile devices. The main contributions of this paper are as
follows:

• Introducing the Ghost module to optimize the calcula-
tion process in Backbone, replacing the C2fmodule with
the C3Ghost module.

• Designing BiODNeck to enhance the model’s ability
to capture feature information from complex logistics
backgrounds by reconstructing the Neck of YOLOv8.

• Optimizing the loss function using the normal-
ized Gaussian Wasserstein distance and mitigat-
ing GBForkDet’s sensitivity to small targets during
detection.

• A series of experiments are conducted on the established
Forklift-3k dataset to validate the effectiveness of the
GBForkDet model. Furthermore, an inference speed of
108.2 ms is achieved using TensorRT acceleration on the
Jetson Nano platform.

II. RELATED WORKS
A. CHALLENGES IN OBJECT DETECTION
Over the past few years, deep learning has been widely
applied in various fields, including autonomous driving [12],
[13], [14], [15]. Deep learning-based object detection meth-
ods have outperformed traditional approaches [16], [17],
[18]. Deformable convolution [19] has been introduced in
autonomous driving to address real-time requirements. Addi-
tionally, a fog driving detection network has been designed to
tackle the issue of foggy weather conditions in autonomous
driving scenarios [20]. While machine vision-based object
detection has found extensive application in autonomous
driving, there are notable differences and challenges com-
pared to forklift driving in logistics scenarios. Forklift driv-
ing in logistics settings involves challenges such as narrow
roads, cluttered goods, and relatively low speeds, which pose
specific challenges to researchers in this domain.
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FIGURE 1. Overall architecture of the GBForkDet model. a) The Ghost module optimizes the Backbone. b) Each head uses a decoupled
head. c) The number of each layer of the module is marked with a number on the left side.

B. YOLOv8
The YOLO series has consistently been the most popular
detection framework in industrial applications, as it strikes a
good balance between speed and accuracy. YOLOv8 [21] is
one of the most advanced one-stage object detection models
currently available. It inherits numerous advantages from
YOLOv5 and consists of four components: Input, Back-
bone, Neck, and Head. YOLOv8 encompasses five models,
namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x. The YOLOv8s model offers the best trade-off
between detection performance andmodel size. The proposed
GBForkDet model in this study is based on YOLOv8s. The
Backbone network extracts features from the input images,
while the neck component fuses feature information from the
Backbone. The prediction head uses the feature information
from the Neck to make predictions. The YOLO series models
combine classification and regression tasks for joint opti-
mization. However, this approach leads to mutual influence

between classification and regression errors, making it chal-
lenging to obtain optimal detection results. To address this
issue, YOLOv8 adopts a new decoupled head structure,
optimizing the losses of different tasks separately. Further-
more, YOLOv8 introduces an Anchor-Free method to replace
the traditional Anchor-Based approach. Anchor-Based object
detection models require predefined anchor boxes to model
objects of different scales and aspect ratios. In contrast, the
Anchor-Free method employed by YOLOv8 is better suited
to handle objects of varying scales and aspect ratios while
reducing computational costs.

C. ADVANCES IN LIGHTWEIGHT MODELS
With the popularity of edge devices and mobile devices,
lightweight models have become increasingly important in
the field of machine vision. The current major challenge is
to design a lightweight neural architecture that can achieve
both fast inference and high performance [22], [23], [24] to
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meet the requirements of detection tasks on these devices.
SqueezeNet [25] is an early lightweight model that reduces
the number of parameters by using 1 × 1 convolutional
kernels and channel compression techniques. It provides
comparable accuracy with fewer parameters, making it suit-
able for environments with limited computational resources.
MobileNetV1 [26] is a classic lightweight model that uses
depthwise separable convolutions and other operations to
reduce the number of parameters and computational com-
plexity. MobileNetV1 significantly reduces the model’s size
while maintaining relatively high accuracy by introduc-
ing techniques such as depthwise separable and point-
wise convolutions. MobileNetV2 [27] is an improvement
over MobileNetV1, further introducing an inverted resid-
ual structure and linear bottlenecks to enhance the model’s
accuracy and computational efficiency. The inverted resid-
ual structure effectively increases the model’s non-linearity,
while the linear bottlenecks help reduce the computational
cost. ShuffleNetV1 [28] is another lightweight model that
reduces the number of parameters and computational com-
plexity by introducing channel shuffling operations. Channel
shuffling effectively reduces the inter-channel correlation
in the model, resulting in lower computational complex-
ity and improved efficiency. Building upon ShuffleNetV1,
ShuffleNetV2 [29] introduces pointwise group convolutions
and channel shuffling operations, further improving the
model’s accuracy and computational efficiency. Pointwise
group convolutions and channel shuffling operations enhance
the model’s non-linearity and reduce computational com-
plexity. To further enhance the performance of lightweight
models, researchers have proposed GhostNet [30]. GhostNet
achieves lightweight model representation with lower com-
putational costs and higher accuracy by introducing Ghost
modules and optimizing network structures. The Ghost mod-
ule reduces the number of parameters and computational
complexity by adding ghost channels before convolutional
layers, providing efficient feature representation through fea-
ture reuse and information communication. The work on
these lightweight models provides inspiration for designing
an efficient detection model for logistics scenarios in this
paper.

III. PROPOSED METHODS
A. OVERALL ARCHITECTURE
Fig. 1 illustrates the overall architecture of the GBForkDet
model. The architecture comprises four main modules: Input
Module, Backbone, BiODNeck, and Head. In the Input
Module, the image size is set to 640×640, and sequential
online data augmentation operations are performed, includ-
ing HSV colour space enhancement, Mosaic, and geometric
flipping. The Backbone module replaces the C2f module
with the C3Ghost module, composed of Ghost Bottlenecks.
The Neck module is restructured with BiODNeck to improve
feature fusion in the model. The black dotted lines repre-
sent the original cross-layer connection in baseline YOLOv8,

FIGURE 2. Ghost Bottleneck.

while the red dotted line illustrates the newly introduced
cross-layer connection in GBForkDet. During the prediction
stage, the decoupling heads separate the feature informa-
tion from the Neck module into classification and regression
tasks, allowing different predictions for each. The training
loss of GBForkDet is based on YOLOv8 and optimized using
the Normalized Gaussian Wasserstein distance (NWD). The
loss function of GBForkDet consists of three components:
classification loss, box regression loss, and distribution focal
loss. The classification loss is utilized to evaluate the model’s
ability to accurately recognize objects in the image. The box
regression loss measures the discrepancy between the pre-
dicted bounding box coordinates and the ground truth bound-
ing box annotations. The distribution focal loss employs
cross-entropy to expedite the network’s attention on the dis-
tribution of neighbouring regions around the target location.

B. GHOST MODULE
In the Backbone network, efficient network structures such as
VGG [31], DenseNet [32], and CSPDarknet53 [33] have been
widely used. However, these networks incur significant com-
putational costs. In contrast, GhostNet effectively reduces
redundancy in feature information by adopting economically
efficient operations. Fig. 2 illustrates the Ghost Bottleneck
structure, which consists of two sets of Ghost modules with
multiple Conv layers and shortcut connections. The Back-
bone network of the GBForkDet model replaces the C2fmod-
ule in YOLOv8with the C3Ghost module composed of Ghost
Bottlenecks. The Ghost Module divides the input feature
maps into main and auxiliary paths, significantly reducing the
parameter count. The Ghost Bottleneck combines the Ghost
Module with traditional residual connections, further reduc-
ing the number of parameters and computational complex-
ity. Additionally, GhostNet employs lightweight bottleneck
structures, including reducing the number of convolutional
layers and channels, and using smaller kernel sizes. These
strategies allow GhostNet to significantly reduce the parame-
ters while maintaining model performance, making it highly
suitable for resource-constrained devices and scenarios.
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FIGURE 3. The computation process of ODConv.

C. FEATURE FUSION
1) OMNI-DIMENSIONAL DYNAMIC CONVOLUTION
The limitations of traditional static convolution in terms
of receptive field size, multi-scale adaptability, parameter
redundancy, adaptability, and local perception capability
have constrained models’ expressive power and adaptabil-
ity. Therefore, researchers have proposed methods such as
dynamic convolution [34], [35] to overcome the limitations of
static convolution and enhance model performance. Dynamic
convolution determines each convolutional kernel’s weight
based on the convolutional layer’s input and combines it with
an attentionmodule to obtain adaptive dynamic convolutional
kernels. The output y of dynamic convolution is as follows:

y = x ∗ (α1 W1 + α2 W2 + · · · · · · + αn Wn ) (1)

where x and y denote the input features and output features
respectively. αi (i = 1,2,. . . ,n) is the attention vector, and N
is the number of convolutional kernels. Each convolutional
kernel Wi (i = 1,2,. . . ,n) has the same size as the standard
convolutional kernel.

Omni-Dimensional Dynamic Convolution (ODConv) [36]
is a more elegant dynamic convolutional structure. It uti-
lizes a multi-dimensional attention mechanism and parallel
strategies to learn complementary attention for convolutional
kernels across all four dimensions in the kernel space. These
four different attention focuses are the input channel number
of the convolutional kernel’s receptive field, the kernel’s out-
put channel number, and the number of kernels. These four
attention focuses are mutually complementary and are multi-
plied with the convolutional kernels in the order of position,
channel, filter, and kernel, enabling convolutional operations
to capture context information different from all spatial posi-
tions, input channels, filters, and kernels of the input x,
significantly enhancing contextual information capture. The
output of ODConv is represented as follows:

y = x ∗
(
αw1 ⊙ αf 1 ⊙ αc1 ⊙ αs1 ⊙W1 + · · · · · ·

+ αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙Wn
)

(2)

FIGURE 4. (a) is the structure of PANet; (b) is the structure of BiFPN.

where y and x denote output features and input features
respectively. αwi, αfi, αci, αsi (i = 1,2,. . . ,n) represent four
different attention mechanisms: the scalar, spatial dimension,
input channel dimension, and output channel dimension of
the convolutional kernel Wi (i = 1,2,. . . ,n). The symbol
⊙ denotes multiplication along different dimensions in the
kernel space. Fig. 3 illustrates the computation process of
ODConv.

2) BI-DIRECTIONAL FEATURE PYRAMID NETWORK
YOLOv8 incorporates the Path Aggregation Network
(PANet) [11] to efficiently integrate features of different
scales, as shown in Fig. 4 (a). While PANet proves effective
in fusing different feature layers, its underlying mecha-
nism relies on simply adding these features. However, the
training process produces features of different scales due to
the different sizes of detected objects in different images.
The simple summation of these feature maps within PANet
leads to an unequal contribution of features of different
scales to the fused representation. To address this chal-
lenge, the Bi-directional Feature Pyramid Network (BiFPN)
extends PANet by introducing a bidirectional flow of infor-
mation from higher-level to lower-level features, as shown
in Fig. 4 (b).

BiFPN introduces a more sophisticated bi-directional fea-
ture fusion approach, along with cross-scale connections and
weighted information fusion, to achieve comprehensive fea-
ture integration with relatively fewer additional parameters.
In addition to the bottom-up feature propagation path, BiFPN
incorporates an additional edge connecting the output and
input, facilitating the flow and fusion of feature informa-
tion across scales. BiFPN achieves cross-scale feature fusion
through the following fusion formula:

O =

∑
i

wi
ϵ +

∑
j wj

∗ Ii (3)

3) BI-DIRECTIONAL OMNI-DIMENSIONAL DYNAMIC NECK
Fig. 5 illustrates the structures of the Neck of YOLOv8 and
the proposed BiODNeck in this paper. Inspired by BiFPN,
we have restructured the Neck of YOLOv8 to maintain
efficient feature extraction capabilities in lightweight mod-
els. In this study, ODConv is integrated into the proposed
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FIGURE 5. The structure of the proposed BiODNeck.

BiODNeck in a plug-and-playmanner, allowing adaptive tun-
ing of convolutional kernels to extract complex background
features from logistics images selectively. Specifically, the
design of BiODNeck includes the following aspects: Firstly,
the concatenation operation is replaced with element-wise
addition to fuse feature information using a weighted fusion
method. Secondly, cross-layer connections are introduced to
enhance shallow semantic information at the Head. In addi-
tion, ODConv restructures key convolutional modules in the
original Neck and significantly improves the model’s feature
extraction and learning capabilities, substantially improving
logistics target recognition accuracy.

D. NORMALIZED WASSERSTEIN DISTANCE
Due to the low contrast and blurry characteristics of distant
small objects, combined with their limited pixel coverage in
images, they are often overlooked, posing a challenging prob-
lem in logistics scenarios. Traditional methods such as CIoU,
DIoU [37], and EIoU [38], which are based on Intersection
overUnion (IoU) [39], are sensitive to positional deviations of
tiny objects. This paper optimizes the GBForkDet model by
introducing Wasserstein distance loss to improve sensitivity
to small targets. Specifically, we incorporate the Normalized
Wasserstein distance (NWD) [40] into the existing IoU loss
function. This loss function measures the distance between
the distributions of real and generated samples, resulting in
a novel loss formulation. By incorporating the NWD, the
training process considers both the coordinate offsets and the
target size information of the bounding boxes, thus placing
more emphasis on the detection of tiny objects. The NWD
has the advantage of being insensitive to objects of differ-
ent scales, making it suitable for measuring the similarity
between tiny objects. Its integration enables the GBForkDet

FIGURE 6. Visualization of the information in the Forklift-3k dataset.

model to address better the detection challenges posed by
distant small targets in logistics scenarios. By optimizing the
loss function, we effectively enhance the model’s sensitivity
to small objects, effectively addressing the challenges present
in logistics scenarios.

For two two-dimensional Gaussian distributions µ1 =

N (m1, 61) and µ2 = N (m2, 62), their second-order
Wasserstein distances can be defined as follows:

W 2
2 (µ1, µ2) = ∥m1 − m2∥

2
2

+ Tr

∑
1

+

∑
2

−2

 1/2∑
2

∑
1

1/2∑
2

1/2

(4)

where
∑

1 and
∑

2 denote the covariance matrices of Gaus-
sian distributions µ1 and µ2, respectively. Simplifying the
expression leads to:

W 2
2 (µ1, µ2) = ∥m1 − m2∥

2
2 +

∥∥∥∥∥∥
1/2∑
1

−

1/2∑
2

∥∥∥∥∥∥
2

F

(5)

For the Gaussian distributions Na and Nb which are
obtained from the bounding boxes A = (cxa, cya,wa, ha) and
A = (cxb, cyb,wb, hb), the equation mentioned above can be
further simplified as follows:

W 2
2 (Na,Nb)=

∥∥∥∥∥
([
cxa, cya,

wa
2

,
ha
2

]T
,

[
cxa, cya,

wb
2

,
hb
2

]T)∥∥∥∥∥
2

2

(6)

whereW 2
2 (Na,Nb) serves as a distance measure, it cannot be

used directly as a similarity measure due to the requirement
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FIGURE 7. The logistics image samples in the Forklift-3k dataset.

FIGURE 8. The image samples in the KITTI dataset.

of IoU to yield values between 0 and 1. To overcome this lim-
itation, we apply exponential normalization to W 2

2 (Na,Nb),
resulting in the derivation of a novel metric termed the nor-
malizedWasserstein distance. The computation is outlined as
follows:

NWD (Na,Nb) = exp

(
−
W 2

2 (Na,Nb)

C

)
(7)

where C is a dataset-dependent constant that ensures sta-
bility within a certain range. In our experiments, we set C
to the average absolute size of the targets in the dataset to
optimize performance. The NWD metric is designed as loss
function by:

LNWD = 1 − NWD (Na,Nb) (8)

IV. EXPERIMENTS
A. DATASETS
1) FORKLIFT-3k DATASET
In the field of logistics object detection, there is a relative
scarcity of publicly available dataset. Therefore, we con-
ducted data collection and construction to create a logis-
tics object detection dataset named Forklift-3k, aimed at
supporting research on safe driving for forklifts. This

dataset primarily consists of two target categories: forklifts
(4,572 samples) and persons (4,190 samples), totalling 3,342
images. Fig. 6 shows a detailed visualization of the infor-
mation in the Forklift-3k dataset, including the distribution
of target classes, annotation sizes, centre point coordinates
and aspect ratios of the bounding boxes. The images were
captured using an Intel RealSense D435i depth camera and
various mobile devices, with a uniform size of 1920×1080
pixels. Fig. 7 showcases several common types of forklifts in
logistics scenarios.

2) KITTI DATASET
The KITTI [41] dataset is currently one of the largest inter-
nationally recognized benchmark datasets in the field of
autonomous driving. It comprises various challenging sce-
narios, including small distant targets and uneven lighting,
which are similar to the complexities encountered in complex
logistics environments. Fig. 8 shows some sample images
from the KITTI dataset. This paper uses the KITTI dataset
to evaluate the robustness of the GBForkDet model. To better
match real-world engineering scenarios, the original classes
of Car, Van, Truck, and Tram are merged into Car, while
Pedestrian and Person sitting are merged into Person. In addi-
tion, the classes Misc and DontCare are removed from the
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dataset. As a result, the dataset consists of a total of 7,481
images, each annotated with one of three different categories:
Car (33,261 samples), Person (4,709 samples), and Cyclist
(1,627 samples).

B. EVALUATION INDICATORS
This paper employs mean Average Precision (mAP@0.5) as
the primary evaluation metric to assess the model’s detection
performance. A higher mAP value indicates better detection
performance. mAP@0.5 represents each category’s average
precision (AP) when the Intersection over Union (IOU)
between the predicted bounding boxes and ground truth
bounding boxes exceeds 0.5. For detection tasks, it is cus-
tomary to calculate True Positive (TP), False Positive (FP),
and False Negative (FN) for each category. TP represents cor-
rectly classified positive samples, while FP (FN) represents
misclassified positive (negative) samples. Precision refers to
the ratio of correctly identified images, and its formula is as
follows:

P =
TP

TP+ FP
(9)

Recall represents the ratio of correctly identified positive
samples and is calculated as follows:

R =
TP

TP+ FN
(10)

Average Precision (AP) signifies the area under the
Precision-Recall curve. mAP represents the average AP for
each category in a multi-class detector, and its formula is
given by:

mAP =
1
n

n∑
i=1

∫ 1

0
P (R) dx (11)

C. EXPERIMENTAL RESULTS AND ANALYSIS
The experiments in this study are conducted on a Windows
11 operating system, utilizing an i9-12900k CPU and a
NVIDIA GEFORCE RTX 4090 (24GB VRAM) processor
with 64GB of RAM. Several experimental hyperparame-
ters were set as follows: the number of training epochs is
set to 200, and the Mosaic data augmentation operation is
closed in the last 10 epochs. The batch size was set to 80,
and the optimizer used was SGD with a learning rate of
0.0005, momentum of 0.937, and weight decay of 0.0005.
The training of the dataset is performed in a programming
environment based on PyTorch 2.0, Python 3.9, and CUDA
11.8. To ensure consistency, all models are trained and tested
using the NVIDIA GEFORCE RTX 4090 GPU. To make a
fair comparison of the model’s performance, all models are
trained from scratch under the same experimental conditions.

Fig. 9 illustrates the training process of the baseline
YOLOv8s and GBForkDet models on the Forklift-3k dataset.
It can be observed that the loss curve on the training set
exhibits abnormal fluctuations in the last ten epochs, which
is due to the disabling of online data augmentation in the

final ten training rounds. From the training process, it is evi-
dent that GBForkDet achieves faster convergence compared
to YOLOv8s. Furthermore, the training results reveal that
GBForkDet exhibits lower box loss, indicating its greater
focus on object localization and surrounding contextual
features.

To provide a visual representation of the roles of C3Ghost
and ODConv in the GBForkDet model, this paper selects
representative samples from the Forklift-3k dataset and
visualizes the feature maps during the detection process.
Fig. 10 and Fig. 11 showcase the visualizations obtained.
C3Ghost is responsible for extracting low-level feature
semantic information, while ODConv focuses on extracting
high-level feature semantic information. These visualiza-
tions effectively demonstrate the complementary nature of
C3Ghost and ODConv in capturing different levels of seman-
tic information, which contributes to the improved detection
performance of the GBForkDet model. The visualizations not
only provide insights into the inner workings of the model
but also validate the effectiveness of the proposed feature
extractionmodules in enhancing object detection capabilities.

Fig. 12 shows the response of features to different classes
of targets in the same input image in YOLOv8s and
GBForkDet. GBForkDet has a more accurate scope of atten-
tion, enabling it to detect targets better. This result clearly
shows that GBForkDet effectively captures key feature
information of targets in complex logistics scenarios.

D. EXPERIMENTAL RESULTS AND ANALYSIS
Table 1 and Table 2 present detailed performance results
of different models on the Forklift-3k and KITTI datasets.
The evaluated models include well-known detection mod-
els such as YOLOv4, YOLOv5-Lite, and YOLOv7-tiny.
GBForkDet achieves higher detection accuracy in the per-
son category while performing on par with the baseline
model YOLOv8s in the Forklift category. As a lightweight
model, GBForkDet exhibits significant advantages. Com-
pared to YOLOv8s, GBForkDet reduces model parameters
and FLOPs by approximately 17.9% and 22.5%, respec-
tively. In addition, GBForkDet achieves a remarkable detec-
tion speed, with an inference time of just 7.4ms on the
RTX4090 GPU.

This paper presents a comparative analysis of the visual
results among the classical models YOLOv5-Lite, YOLOv8s,
and the proposed GBForkDet. Fig. 13 showcases the visu-
alization of the detection results of these models in logis-
tics scenes, shedding light on the challenging detection
issues encountered in such scenarios, including complex
backgrounds, uneven lighting, extensive occlusions, and dis-
tant small objects. The labelled results are shown in the
original images in the figure. YOLOv5-Lite exhibited sub-
par performance with missed detection issues, particularly
for small objects. YOLOv8s showed lower detection accu-
racy for distant small objects due to a lack of robust fea-
ture extraction capabilities in complex logistic backgrounds.
In contrast, the GBForkDet model leveraged the introduction
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FIGURE 9. Training process diagram for YOLOv8s and GBForkDet (our).

FIGURE 10. Visualization of the feature map of C3Ghost module.

FIGURE 11. Visualization of the feature map of ODConv module.

of the BiODNeck module to enhance its detection perfor-
mance. This enhancement can be attributed to BiODNeck’s
increased focus on semantic information in the model’s

context, enabling effective detection of occluded objects
in complex logistics scenes. Consequently, the GBForkDet
model achieved more accurate detection of targets in logistics
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FIGURE 12. The Grad-CAM graph of the proposed GBForkDet model.

TABLE 1. Performance results of different lightweight models on the Forklift-3k dataset.

TABLE 2. Performance results of different lightweight models on the KITTI dataset.

scenes, surpassing the original model’s performance under
challenging conditions such as long distances, occlusions,
or uneven lighting. The proposed GBForkDet method effec-
tively determines the position of the targets, providing
visual evidence of its significant impact on logistics object
detection.

E. ABLATION EXPERIMENT
To demonstrate the effectiveness of the proposed improve-
ment strategies, this study conducted ablation studies on

the Forklift-3k dataset and designed six sets of comparative
experiments in the same environment. The experimental
results are shown in Table 3, indicating that the improvement
strategies significantly enhance the detection performance
of logistics objects in complex logistics backgrounds. The
Ghost module can reduce parameters and computational
costs in convolutional neural networks. It achieves this by
employing two key strategies: feature channel grouping and
reconstruction, and the application of depth-wise separable
convolutions. In this study, the Ghost module is applied to
the Backbone network, replacing the C2fmodule. This results
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FIGURE 13. Comparison of detection results on the Forklift-3k dataset.

TABLE 3. Ablation experiments for each module based on the Forklift-3k dataset.

TABLE 4. Performance results for each layer of modules in the GBForkDet model.

in a reduction of 2.11M parameters and a 20.5% decrease in
GFLOPs. By introducing BiODNeck, themAPwas improved
by 0.9% with almost no increase in model parameters and
computational complexity. Lastly, by optimizing the loss
function of GBForkDet using NWD to enhance the detection

of small objects, a 0.6% increase in mAP was achieved.
Compared to the baseline model, the final GBForkDet
model achieved a 1.4% improvement in mAP and reduced
FLOPs from 28.4 to 22.0, validating the effectiveness of
GBForkDet.
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FIGURE 14. Comparison of inference speed of YOLOv8s and GBForkDet
before and after TensorRT acceleration at different input sizes.

F. EMBEDDED PLATFORM DEPLOYMENTS
This paper uses the YOLOv8s and GBForkDet models and
conducts inference acceleration experiments using TensorRT
on the Jetson Nano platform. The inference speed is eval-
uated for 300 images with different input sizes, and the
experimental results are shown in Fig. 14. GBForkDet has
a significant detection speed advantage over YOLOv8s on
the Jetson Nano platform, which has limited computational
resources. The application of TensorRT acceleration yields a
significant improvement in the detection speed of the models.
When the image size is set to 640×640, the GBForkDet
model with FP16 precision achieves a remarkable detection
time of only 108.2 ms per image.

Table 4 presents the performance results of the GBForkDet
model on the Jetson Nano platform for each layer of mod-
ules. This paper provides a detailed analysis of the model
parameters, FLOPs, and inference time for each module,
visually demonstrating the performance of each module in
edge devices.

V. CONCLUSION
This paper proposes a novel detection model, GBForkDet,
developed explicitly for ensuring forklift safety driving in
complex logistics environments. The model incorporates a
lightweight GhostNet to optimize the Backbone network.
A novel BiODNeck is also designed to reconstruct the
Neck component in YOLOv8. Furthermore, the loss function
is enhanced through the NWD, effectively mitigating the
model’s sensitivity toward detecting small targets.

Utilizing TensorRT on the jetson nano edge platform,
GBForkDet achieves substantial improvements in infer-
ence speed. The proposed model demonstrates an excellent
trade-off between inference speed and detection accu-
racy, meeting the specific industrial demands of logis-
tics scenarios. Future research efforts will be dedicated to
exploring advanced model compression techniques. In this
study, we obtained ethical and informed consent from the
participating companies for the use of their data. To ensure

the privacy of the participants, this paper did not display their
full faces.
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