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ABSTRACT Visible and infrared image fusion (VIF) aims at remodeling an informative and panoramic
image for subsequent image processing or human vision. Due to the widespread application in military
and civil fields, the VIF technology has achieved considerable development in recent decades. However,
the assignment of weights and the selection of fusion rules seriously restrict the performance improvement
of most existing fusion algorithms. In response to this issue, an innovative and efficient VIF model based
on convolutional neural network (CNN) is proposed in this paper. Firstly, multi-layer convolution kernel
is performed on two source images with a multi-scale manner for extracting the salient image features.
Secondly, the extracted feature maps are concatenated along the number of channels. Finally, the fusion
feature maps are reconstructed to achieve the fusion images. The main innovation of this paper is to
adequately preserve meaningful details and adaptively integrate features information driven by source
image information in CNN learning model. In addition, in order to adequately train the network model,
we generate a large-scale and high-resolution image training dataset based on COCO dataset. Compared
with the existing fusion methods, experiment results indicate that the proposed method not only achieves
universally outstanding visual quality and objective metrics but also has some advantages in terms of runtime
efficiency compared to other neural network algorithms.

INDEX TERMS Convolutional neural network, multi-feature extraction, optimized network, visible and
infrared image fusion.

I. INTRODUCTION
For the past few decades, image fusion technology for medi-
cal image, multi-focus image, remote sensing image, infrared
and visible image [1], [2], [3], [4], etc. has received great
attention, because a compositive image can provide more
abundant scene information, which is very propitious to
special comprehensive analysis and application [5], [6], [7].
Especially, attributing to the wide and important appli-
cation of infrared systems in military or civil surveil-
lance, the fusion methods for visible and infrared image
spring up like bamboo shoots after rain, and evidently
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improved people’s ability to observe or monitor special
scenarios [8], [9], [10], [11], [12].

Taking the action domain as the benchmark, the image
fusion algorithms can be roughly classified as transform-
based and spatial-based methods [13]. In the transform
domain, the resource images are decomposed into a certain
number of layers with proprietary multi-scale filters. After-
ward, the coefficients from different images in the same
layer are merged according to some manual fusion rule.
Finally, the fusion image is obtained by the inverse transfor-
mation. There are two key operations in the transform-based
fusion methods: filter setting for reasonably capturing salient
feature information and fusion rule selection for reason-
able weight coefficient distribution. In order to heighten
the performance of fusion algorithm, researchers design
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or upgrade mass filters to improve information extraction
ability, such as the Laplacian pyramid [14], discrete wavelet
transform (DWT) [15], curvelet transform [16], dual-
tree complex wavelet transform (DTCWT) [17] and non-
subsampled contourlet transform(NSCT) [18], etc. Although
the fusion performance of these algorithms is observ-
ably improved with optimized filter banks, the fixed
manual filter, be appropriate to specific structural fea-
ture information, still missing some available character-
istic information from resource image. In addition, the
fusion rule selection is indispensable for assigning appro-
priate weight to transform coefficients, which can eas-
ily lead to feature information loss or distortion, and
make the fusion image suffer from low-contrast or blur-
ring [19]. In contrast, the spatial-based algorithms directly
integrate the gray information from resource images under
a certain standard. These kinds of methods can easily
cause image distortion and make the fusion image quality
reduced.

In recent years, deep learning has achieved rapid devel-
opment in the field of image processing, such as image
classification, image super-resolution, object identification,
and so on [20], [21], [22], [23]. Attributing to its advancement
and handleability, deep learning with convolutional neural
network (CNN) also yields brilliant results in the image
fusion task [24]. Li et al. [25] firstly introduced CNN into
image fusion task, and took the lead in applying deep learning
for combining visible images with infrared images [26]. They
firstly decomposed the source image into basic parts and
content of details. Then the basic part was fused by weighted
average, and the details is merged by feat of deep neural net-
work. Finally, the two components are accumulated directly
to obtain a comprehensive fusion image. Subsequently, mul-
tifarious CNN-based fusion models are proposed for special
purpose. Li et al. [27] extracted the deep features by ResNet,
and used the normalizing deep features with Zero-phase
component analysis (ZCA) to acquire the initial weight coef-
ficient. Then, the weight map for integrating image feature
information is refined by SoftMax operation. And then they
put it separately nest connection and spatial/channel attention
models and an end-to-end residual fusion network for infrared
and visible images [28], [29], which boost immensely fusion
performance of algorithms by improving network structure.
Zhang et al. [30] proposed a general image fusion framework
based on the convolutional neural network. Inspired by the
transform-domain image fusion algorithms, they introduced
the concept of multi-scale to convolution kernel and achieved
comparable or even better image fusion results. However, the
elementwise fusion rules have been utilized to fuse the convo-
lutional features of multiple inputs, which will undoubtedly
lead to the loss of some feature information. Tang et al. [31]
designed a pixel convolutional neural network for multi-focus
image fusion, but the decision map for information integra-
tion was obtained by comparing the values of the two score
matrixes. This kind of method is effective for multi-focus

image fusion seemingly. Ren et al. [32] proposes a novel
infrared and visible images fusion method based on improved
DenseNet, Max-Relevance and Min-Redundancy and zero
phase component analysis. The fusion strategy is be opti-
mized by elaborating activity level maps based related feature
processing. Si et al. [33] proposed a dual fusion path genera-
tive adversarial network for infrared and visible image fusion,
and implemented dual self-attention feature refine module
(DSAM) on two fusion paths to refine feature maps in two
fusion paths. This kind of targeted design improved distinctly
fusion image contrast. Although they can obtain good fusion
effects to a certain extent, the complexity of pre-processing
and the instability of fusion rules and limited their practi-
calapplication. Based on the above several fusion cases, most
of the current CCN based fusion algorithms is mainly based
on the idea of image classification or segmentation to achieve
information fusion. However, the characteristic of VI image
and multi-focus image have obvious differences, VIF cannot
simply be regarded as an image classification task. Besides,
with the lack of ground truth for visible and infrared images,
the trained network model is limited to retain the enough use-
ful information of source images. In addition, it’s pretty obvi-
ous that a multitude of of the existing CNN basedmethods are
universally need to design a special feature weight allocation
method and fusion rule similar to the transform-based meth-
ods. Which is clearly not an easy task for sufficient features
fusion, because single manual weight coefficient and feature
map integration method is not always effective for com-
plex infrared and visible feature information and inevitably
overshadows their image fusion performance. Furthermore,
a mass of details may be lost randomly and be difficult to
be preserved in the final fusion image due to the pooling
process.

Responding to the above problem, an efficient visible and
infrared image fusion network model is proposed with inge-
nious network structure design in this paper. The proposed
network structure is shown generally in Figure 1, and the
main contributions and innovations of the paper can be sum-
marized as follows:

1) A multi-scale convolutional fusion model with an
improved residual block is proposed, which can explicitly
integrate deep features without manual weight selection and
fusion rule design and have remarkable adaptivity.

2) Compared with the popular training dataset derived
from low-resolution images or unrealistic ground truth fusion
images, this paper utilizes high-resolutionmulti-focus images
with ground truth images as the training dataset for infrared
and visible image fusion, which optimizes the upper bound
of the network performance, and conduce to the loss function
constrain the network focus on the informative regions of
source images effectively to facilitate the retention of the
useful information.

3) An effective image reconstruction structure combining
affluent skip connections with multi-scale convolutional lay-
ers is designed to supplement the lost image details in the
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FIGURE 1. The architecture of the proposed network.

pooling process and improve the utilization rate of the image
convolution features.

Therefore, the proposedmodel is a fully convolutional neu-
ral network, which is trained in an end-to-endmanner without
preprocessing, and the complete trained deep CNN properly
integrated learn feature extraction, fusion and reconstruction
components together to produce reasonable fusion result for
visible and infrared images.

The rest of this paper is as follows. In Section II, the
related work about deep learning including the image training
dataset and the loss function is described. In Section III,
according to the experiment results with the reference algo-
rithms, right-minded analysis is presented from both sides of
subjective and objective evaluations. Section IV draws the
conclusions.

II. RELATED WORK
As we all know that training datasets and loss function
selection are directly related to the accuracy of the neural
network model. The impact and selection mode of train-
ing datasets and loss function will be introduced in this
subsection.

A. TRAINING DATASET
On account of that the quality of the training dataset
often directly determines the upper bound of the model
performance [30], the more training samples and types
subsequently the higher the image quality of the training
results. For this reason, Tang et al. [31] chose Cifar-10 as
the training dataset, which contains 60,000 image blocks of

size 32 × 32. Lai selected about 45,000 detail-rich images
from ILSVRC 2015 as the original dataset, and these images
were then uniformly divided into image blocks of size
128 × 128 for training. In fact, most of the datasets com-
monly used for neural network training nowadays are com-
posed of small image blocks (32 × 32, 64 × 64) currently.
Although small image blocks are beneficial to improving
model training time, the model performance also is greatly
restricted for the reason that their resolution is low. There-
fore, For the sake of promoting the performance of neural
model, the image block size is dataset to 256 × 256 in
this paper.

Furthermore, because of lacking ground-truth fusion
images, searching for appropriate training dataset for VIF is
challenging. In order to supervise the image fusion models
preferably, Zhang et al. [30] used multi-focused images as
the training dataset and obtained desirable fusion images.
Homoplastically, Fang et al. [34] selected multiple modal
images as training datasets and also achieved satisfac-
tory results in the field of VIF. The different out-of-focus
ways and sample richness of multi-focused images can
improve the stability of network structure [30]. There-
fore, the training dataset for multi-mode image fusion can
be confirmed by handling felicitously natural images with
ground-truth fusion images, such as multi-focused images.
As described above, reasonably segmented multi-focus
image, which is more easily generated and has ground-truth
fusion images, is chosen as the training dataset in this
paper. The multi-focused images are produced by employ-
ing 18,800 images deriving from the COCO dataset [35].
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FIGURE 2. Several image training datasets. The source image is on the left. The right side is the homologous binary image. I1 and
I2 are multi-focused images, and Is is the ground truth fusion image.

The specific steps generating multi-focus images are shown
as follows:
Step 1: The complete blurred image Ig is generated by

randomly blurring source image Is with a gaussian filter,
which can be expressed as:

Ig = G ∗ Is (1)

here ‘∗’ denotes convolution operation, G denotes Gaussian
kernel, and the random kernel radius is from 0 to 30 pixels
according to (2).

G(x, y) =
1

√
2πσ

e
x2+y2

2σ2 (2)

here σ can express the standard deviation of gaussian filter.
Step 2: The edge information of source image Is are

acquired by Otsu algorithm [36]. The algorithm acquires
the best threshold of the image by the inter-class variance
method, and distinguishes the background of the image from
the target edge information. Then the edge information is
expanded into region blocks by morphological expansion,
and the focus map If is gained. The equation of Otsu
algorithm to get the optimal threshold value is denoted as
follows.

T = w0w1(u0 − u1)2 (3)

T is the optimal image threshold, w0 represents the pro-
portion of target points to the image, and u0 represents
the average gray value of the target points. w1 represents

the proportion of background points to the image, and
u1 represents the average gray value of the background
points.
Step 3: A pair of multi-focused images are generated based

on source image Is, blurred image Ig and focus map If . The
focus maps I1 and I2 can be fixed according to (4).{

I1 = Is • If + Ig • (1 − If )
I2 = Is • (1 − If ) + Ig • If

(4)

where 1 represents a matrix, whose size is consistent with
source image and all values are 1. ‘•’ denotes dot product
operation between matrices.

Because the focus area is more random in this paper, these
generated focused images are more natural compared to those
that are synthesized by partial data as a whole. Figure 2 shows
several datasets of multi-focus images and their ground-truth
fusion images, the training dataset acquired by the above
method possesses two advantages over other manners:
(1) higher image resolution; (2) more diverse blurring
styles.

B. LOSS FUNCTION
The aim of image fusion is to reasonably combine salient
feature information from source images into an informative
and comprehensive image. However, frequent difference pre-
diction between output data and real data is executed by using
loss function in the network training process, more likely
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to lead to unexpected information loss in regression when
employing illogical loss function for a certain type of image.
Therefore, before implementing deep learning on visible and
infrared images, it is necessary to ascertain appropriate loss
functions to optimize the parameters of the neural network
model for grabbing more abundant textural features from
source images.

Mean squared error (MSE) is universally used as loss func-
tion to adjust the model predictions close to the truth output
in various natural network algorithms. However, it causes
a common problem that fusion results in fewer details or
is too smooth for visible and infrared images [25]. In view
of that infrared image and visible image acquired from the
same scenario containing lots of similar structural infor-
mation, we choose structural similarity loss (SSIM) [37]
as loss function to optimize the parameters of the natural
network.

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(5)

where x is the real image, y is the predicted image, µx ,
µy is mean, σx , σy is variance, and σxy is covariance.
C1=(Lk1)2, C2=(Lk2)2 are stable constants. L is the dynamic
range of pixel values, k1 = 0.01, k2 = 0.03.
when the two images are converged, SSIM gets close to 1.

conversely, SSIM is near to 0. Thus, the loss function is
defined as follow.

ISSIM = 1 − SSIM (x, y) (6)

C. CNN FOR IMAGE FUSION
Through literature review, it is found that the existing CNN
image fusion technology has many applications in infrared
and visible image [27], [28], [29], but it is more aimed at
multi-focus image fusion [20], [21], [24], [25], [31], [35].
The main reason for this phenomenon is CNN is easily
applied to image classification or segmentation task in image
analysis based on its special convolutional characteristic.
It’s well known that the key point in multi-focus image
fusion methods is seeking the optimized focus measure (FM,)
which can be regarded as a classification problem that dis-
criminates focused and defocused maps. Enlightened on this
ideal, some researchers used the convolution property of
CNN to learn the effective FM for elaborate focus map,
and greatly improved multi-focus image fusion performance.
For example, Liu et al. [25] introduced CNN as a sorting
task to fuse multi-focus images at the first time. Tang et al.
subsequently learned a CNNmodel joined activity level mea-
surement and fusion rule to combinemulti-focus images [31].
In order to refining the focus map without post-processing,
Zhang et al. designed an end-to-end fully convolutional neu-
ral network and achieved state-of-the-art results [30]. Amin
et al. integrate three CNNs models to construct the optimized
segmented decision map for multi-focus image fusion [35].
Du and Gao [20] introduced segmentation ideal to construct

multi-focus image fusion model. Due to the multi-focus
image has obvious blurred and clear areas, the above con-
volutional neural networks based various methods have get
astounding achievements in multi-focus image fusion. How-
ever, there are obvious differences between infrared and visi-
ble images deriving from their imaging modes. For instance,
visible images mainly exhibit the rich details and high spa-
tial resolution but weaken momentous target even silently.
Whereas infrared images highlight salient target from back-
ground but lack texture details. In addition, these features
usually overlap in different areas between infrared and visible
images. Therefore, the fusion task for infrared and visible
image can’t just be seen as a simple image classification or
segmentation.

According to the above reasons, some deep learning meth-
ods suitable for infrared and visible image fusion are studied
on account of network structure design and image features
analysis. For example, Li et al. [27] extracted more deep fea-
tures by residual network, and used the normalizing deep fea-
tures with Zero-phase component analysis (ZCA) to acquire
the initial weight coefficient. Then, the weight map for inte-
grating image feature information is refined by SoftMax
operation. And then they put it separately nest connection and
spatial/channel attention models and an end-to-end residual
fusion network for infrared and visible images [28], [29],
which boost immensely fusion performance of algorithms
by improving network structure. Jian et al. [38] overcome
the information redundancy by a symmetric encoder-decoder
block network but the middle layer information is ignored.
In order to retain significant infrared targets, Ma et al. [39]
proposed an image fusion network based on the salient target
detection, and the target regions could be marked by the
salient target mask similar to a classifier. Inspired by the
transform-domain image fusion algorithms, Zhang et al. [30]
introduced the concept of multi-scale to convolutional neural
network and achieved comparable or even better image fusion
results. However, the elementwise fusion rules have been
utilized to fuse the convolutional features of multiple inputs,
which will undoubtedly lead to the loss of some feature
information. Ren et al. [32] proposes a novel infrared and
visible images fusion method based on improved DenseNet,
Max-Relevance and Min-Redundancy and zero phase com-
ponent analysis. The fusion strategy is be optimized by
elaborating activity level maps based related feature pro-
cessing. Si et al. [33] proposed a dual fusion path generative
adversarial network for infrared and visible image fusion,
and implemented dual self-attention feature refine module
(DSAM) on two fusion paths to refine feature maps in two
fusion paths. This kind of the instability of fusion rules and
limited their practicalapplication.

Based on the above-mentioned representation, the current
CCN-based fusion model for infrared and visible image is
universally needs to design a special feature weight alloca-
tion method and fusion rule similar to the transform-based
methods. Which is clearly not an easy task for sufficient
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FIGURE 3. General convolutional layer structure. Fi is the input image, Fi+1 is the output image.
Wi is the convolutional kernel size, and Di is the number of channels.

features fusion, because single manual weight and fusion
rule is not always effective for complex infrared and visible
feature information and inevitably overshadows their image
fusion performance. Meanwhile, some feature information
is easily lost because these network models lack sufficient
feature extraction and retention ability. Therefore, we pro-
pose a new CNN-based fusion method (MLCNN), which
introduce improved residual block to multi-scale convolu-
tional fusion model for confirming the weight map and
fusion mode adaptivity, and combine skip connection with
multi-scale convolutional layer adequately to supplement the
lost image details in the pooling process and improve the
utilization rate of the image convolution feature information.
Based on this, The proposed model can fully demonstrate
the data mining capabilities of convolutional neural net-
works to extract enough deep features and preserve more
meaningful details in model training, simultaneously realize
the integration of depth features without manual fusion rule
adaptively.

III. PROPOSED FUSION METHOD
As reported in previous literatures, multi-layers convolutional
filters own superior ability to traditional multi-scale filters
in feature information extraction [40]. Exhilarating, weight
coefficients for integrating source images can be acquired
and optimized adaptively by convolutional filters. Oppo-
sitely, weigh coefficients only be fixed stiffly through pre-set
fusion rule in transformation domain. Therefore, inspired by
the idea of multi-scales decomposition and the resounding
success of IFCNN, an efficient visible and infrared image
fusion model based on multi-layers convolutional neural net-
work (abbreviated as MLCNN) is proposed, which is end-to-
end fully convolutional structures without preprocessing and
has great adaptability for determining weight coefficients.
Similar to the image fusion process based on multi-scales
decomposition, MLCNN can be divided into three compo-
nents roughly according to the role of each part: multi-scales
feature extraction strategy, feature fusion strategy and image

reconstruction strategy, as shown in Figure 1. The specific
details of each strategy in MLCNN are explained in subse-
quent subsections.

A. MULTI-SCALES FEATURE EXTRACTION STRATEGY
As shown in Figure 3, The convolutional layer, which is the
core of CNN, can pick out the feature information of image
with the help of training dataset. Therefore, reasonable and
appropriate convolution kernel (CK) is critical for feature
extraction. It is interesting to note that CK with small size is
sensitive to low-frequency and small detail information, and
CK with large size is favorable for capturing high frequency
and large detail information [41]. According to the above
facts, a multi-features extraction block (MFE), multiple sizes
CK are inserted in one convolutional layer, is introduced in
this paper. The specific structure of CK is shown simplisti-
cally in Figure 4.

In order to extract the low and high features dividually
and specifically, the sizes of CK are set as 3 × 3, 5 × 5 and
7×7 in our network model, respectively. The feature maps of
individual input source images are subsequently concatenated
along the number of channels. Longitudinal well-known, the
CKwith large size need the network to train more parameters,
which means more time and slowdown algorithm speed. For
the sake of improving execution efficiency, the convolutions
with sizes 7× 7 and 5× 5 are converted into three connected
3 × 3 convolutions and two connected 3 × 3 convolutions
severally, which can greatly reduce the number of parameters
and speed up the network training efficiency [42]. For more
refined extraction of image features, four MFEs are incor-
porated, and one bias-corrected linear unit (ReLU) layer is
added after each convolution, which increases the nonlinear
relationship between the layers and reduces the dependence
between parameters in this paper. In consideration of the fact
that the input training images are large, a max-pooling layer
of size 2×2 is carried out after eachMFE to decrease training
parameters by simplifying image size to optimize the model
performance.
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FIGURE 4. Multi-features extraction structure. Fi is the input image, Fi+1 is the output image. W1, W2, W3 are different
size convolution kernels, and Di is the number of channels.

FIGURE 5. Structure of the residual block.

B. MULTI-SCALES FEATURE FUSION STRATEGY
After the features exaction operation is complete, two
columns of multi-dimensional and multi-scale features from
infrared and visible images are identified, respectively.
Although the two sub-networks own similar architecture,
their corresponded feature maps are different. Therefore,
it requires a reasonable method to integrate the sub-networks
with convolutional features of two images. In the field of
CNN based information fusion, researchers usually adopt
the below two tactics to integrate these convolutional fea-
tures: (1) the same layer convolutional features from dif-
ferent images are firstly concatenated along the channel
dimension, and then the convolutional features after stack-
ing of dimensions are consolidated by a proper convolution,
(2) the same layer convolutional features from different
images are straightway confirmed by the elementwise fusion
rules (such as elementwise-maximum, elementwise-sum and
elementwise-mean) [30]. Although the elementwise fusion
rules are used widely in CNN based information fusion,

they may lead inevitably to submerge or smooth some use-
ful important features from source image, which makes the
fusion image appear halo or jitter [26]. In view of the diversity
of image backgrounds and details, the adaptivity of this tactic
is not ensured. Hence, to prevent the artificially selected
fusion strategy from degrading the performance and adaptive-
ness of the proposedmodel potentially, concatenationmethod
is utilized to integrate the extractive convolutional features in
this paper.

When reducing the dimension of the feature map after
series connection, it will cause partial feature information
being lost or overwhelmed. In order to refrain from the
above problems in the training process, ResNet network [27],
as shown in Figure 5, is employed in this paper. The intro-
duction of residual blocks can achieve stable cross-channel
information fusion to a certain extent, which is in favor of
reducing information loss. Furthermore, with the help of
ResNet network, the input information can be directly flowed
from any low layer to high layer in forwarding propagation,
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FIGURE 6. Feature fusion structure. M is the image size, W1, W2 are different size convolution kernels, D1 and D2 are
the number of image channels, respectively.

which can be beneficial to avert network degradation. Mean-
while, the error information can be directly transferred to the
lower layer without any intermediate weight matrix trans-
formation in backpropagation, which can avail against the
gradient disappearance problem heavily. To sum up, it can
be concluded that ResNet network makes the forward and
backward propagationmore unhindered andmakes the ability
to capture deep feature information stronger.

The specific feature fusion structure with ResNet network
is shown in Figure 6. a module similar to the residual block
structure is added to the multi-feature fusion strategy, which
not only can be well to avoid the problem of feature detail
loss, but also can deal with the problem of network gra-
dient disappearance. The structure of the residual block is
expressed as:

8i+1 = g((Wi + 1) ∗ 8i + bi) (7)

where Wi and bi denote convolution kernel and weight of
the i-layer, respectively. 8i is the output feature map of the
i-convolution-layer, and g(·) represents the activation func-
tion. ‘∗’ denotes the convolution operation.

C. IMAGE RECONSTRUCTION STRATEGY
The image reconstruction strategy as shown in Figure 7 con-
sists of four trainable convolutional layers. In consideration
of the fact that the max-pooling layer can reduce the size of
the image during the training process of multi-scales feature
extraction, an up-sampling operation, gradually restore the
pooling layer to the source image size, is performed on
the fusion layers by means of the transposed convolution
layer. Transposed convolution layer equations are derived as
(8)–(10), shown at the bottom of the next page.
X , Y represent the input and output image matrices (square

matrix), m and n represent the matrix scales, and m=n/2.
K represents the convolution kernel parameters of the trans-
posed convolution layer. C represents the sparse matrix of K
and CT represents the matrix transpose.

The transposed convolutional layer can only restore the
source size of the output image, but cannot recover the image
pixel values. To solve such problems, the network structure
is optimized by skipping connection linking the multi-scales
feature extraction layer with the reconstruction layer, which
is conducive to supplementing missing details in the pooling
process and reserves the edge information from the source
image, as well as avoiding gradient disappearance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENT PREPARATION
In order to validate adequately the effectiveness of the pro-
posed convolutional neural network model, twelve groups
of infrared and visible images as shown in Figure 8
are used to test the proposed algorithm. These tested
images are acquired in different experimental environments,
which can be sufficiently used to demonstrate the sta-
bility and adaptability of the proposed algorithm. Mean-
while, substantial subjective and objective analyses are given
with eight state-of-art referenced image fusion algorithms.
These comparison algorithms respectively are deep learn-
ing (DLF) [26], residual neural networks (ResNet) [27],
RfnNet [28], NestNet [29], convolutional neural networks
(CNN) [41], guided filtering (GFF) [43], gradient transfor-
mation and variance minimization (GTF) [44], anisotropic
diffusion (ADF) [45], multi-resolution singular value decom-
position (MSVD) [46], salience-based method (TIF) [47],
and hybrid model (VSMWL) [48]. The parameter setting
of all reference algorithms is strictly consistent with the
original literature. All algorithms used in this paper are
executed on the same computer with Intel i5-1035G1 CPU
(1 GHz) and 2 GB GPU. The proposed fusion model for
short MLCNN is achieved by Pytorch 1.8.1 based on Python
3.9.4. 18800 pairs of multi-focused images are trainedwith an
image size of 256 × 256 and a batch size of 32 in the training
process, and the learning rate was set to 0.001 using the Adam
optimizer [39].
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FIGURE 7. Image reconstruction strategy. D is the number of image channels.
Wi is the convolution kernel size.

B. OBJECTIVE EVALUATION METRICS
Objective evaluation is important measure to evaluate image
fusion quality besides subjective visual analysis, it can
effectively make quantitative comparisons based on the char-
acteristics of fusion images. At present, plentiful objective
evaluation criteria have been proposed in allusion to dif-
ferent types of image quality analysis. In consideration of
the fact that ground-truth fusion image for the visible and
infrared image fusion task does not exist, in order to reveal
details and other characteristic information of the fusion
images and verify the performance of the proposed fusion
model, five objective image metrics, such as average gradi-
ent (AG), information entropy (IE), space infrequency (SF),
edge information retention (QAB/F) and Piella [44], [49] are

adopted to reveal the quality of various fusion results. The
larger evaluated values of the above five metrics illustrate
that the corresponding fusion results contain more valuable
information.

C. RESULTS AND DISCUSSION
Limited to the paper length, the fusion results of four
groups of images with obvious feature differences as shown
in Figure 9, ‘‘Car’’ (a1 and a2), ‘‘Human’’ (b1 and b2),
‘‘Wilderness’’ (c1 and c2), and ‘‘Factory’’ (d1 and d2) under
the algorithm mentioned above will be discussed in detail
in this section. According to the fusion results acquired
from various algorithms, this paper presents a comparative
analysis from the perspective of visual effects and objective

X =

 x11 . . . x1n
...

. . .
...

xn1 · · · xnn


n×n

K =

w11 w12 w13
w21 w22 w23
w31 w32 w33

 (8)

C =


w11 w12 w13 0 w21 w22 w23 0 w31 w32 w33 0 0 0 0 0
0 w11 w12 w13 0 w21 w22 w23 0 w31 w32 w33 0 0 0 0
0 0 0 0 w11 w12 w13 0 w21 w22 w23 0 w31 w32 w33 0
0 0 0 0 0 w11 w12 w13 0 w21 w22 w23 0 w31 w32 w33

 (9)

Y =

 y11 . . . y1m
...

. . .
...

ym1 · · · ymm


m×m

CT
×


y11
...
...

ymm

 =


x11
...
...

xnn

 (10)
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FIGURE 8. Test images. IR indicates infrared images and IV indicates visible images.

FIGURE 9. Visible and infrared original image. a1 is the infrared image ‘‘Car’’; a2 is the visible image ‘‘Car’’; b1 is the
infrared image ‘‘Human’’; b2 is the visible image ‘‘ Human ’’; c1 is the infrared image ‘‘ Wilderness ’’; c2 is the visible
image ‘‘ Wilderness ’’; d1 is the infrared image ‘‘Factory’’; d2 is the visible image ‘‘Factory.’’

evaluation. The best values, the second-best values and the
third-best values are indicated in bold, red and italic and blue
and italic in Table 1- Table 5, respectively.

The fusion results of twelve algorithms are shown respec-
tively in Figure10-13 to validate the effectiveness of the
proposed CNN-based method. Firstly, we compare the
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TABLE 1. Comparison for ‘‘Car’’ images fusion.

TABLE 2. Comparison for ‘‘Human’’ images fusion.

TABLE 3. Comparison for ‘‘Wilderness’’ images fusion.

TABLE 4. Comparison for ‘‘Factory’’ images fusion.

fusion performance of different algorithms from the perspec-
tive of visual effects and objective evaluation in Figure10.

Figure10 exhibits the difference between the proposed
algorithm and the reference algorithms. It is intuitive that
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TABLE 5. Comparison for images fusion.

FIGURE 10. Visible and infrared fusion results of the ‘‘Car.’’

the proposed method owns the best visual effect with har-
monized visible details and infrared features. Conversely,
there are some visible details lost or infrared target anni-
hilation in Figure10 (a)-(e) and (g)-(k). Taking the car
in the red box, for example, the car’s infrared signa-
ture is preserved reasonably in the visible bright light
Figure10 (f) and (j). However, the auto-target has almost
disappeared in Figure10 (a), (b), (c), (e), (g), (i), (j) and (k),

and Figure10 (d), (h), and (i) lost lots of visible details and
have obvious halo phenomena in some areas which severely
affects human vision.

The values in Table 1 corresponding to various fusion
results in Figure 10 can fairly reveal the fusion performance
of various algorithms from objective perspective cooperated
with subjective visuals. It can be observed that the proposed
method is significantly better than the reference algorithms
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FIGURE 11. Visible and infrared fusion results of ‘‘Human.’’

in terms of AG, and SF values, which indicates that the
fusion result of the proposed method possesses rich texture
details compared to other algorithms. Although the model
has fewer IE, Piella and QAB/F values than CNN, GFF and
TIF, the values that the proposed method achieves are accept-
able, which denotes that appropriate information fidelity and
evident edge information. By reason of the foregoing, the pro-
posed algorithm acquires better fusion performance for visi-
ble and infrared image fusion of ‘‘Car’’ in a comprehensive
perspective.

The fusion results of various algorithms with ‘‘Human’’
as resource images are displayed in Figure11. The per-
fect fusion results should include distinctive human features
from the infrared images and clear background details from
the visible images. Figure11 (a) (c), (f) and (i) show that
ADF, DLF, TIF and ResNet can integrate effectively the
available information from resource images to a reasonable
extent, but there is a distinct halo around the edge of the
person, and the infrared signature tends to dim compared
to the source image. Figure11(b), (e) and (j) make clear
that is invalid when processing background information,

which causes some visible details to be obscured. Although
GFF and VSMWL can merge the mutual information among
the original images in Figure11(d) and (g), it is visually unnat-
ural due to information distortion in some areas. Obviously,
the fusion results presented in Figure11(h) tend to be rayless
on account that lots of visible details and infrared futures
are equalization. The fusion result based on RfnNet shows
dim visible background and also arise distinct halo around
the edge of the person, so the visual effects were severely
affected. On thewhole, the proposedmethod provide themost
observable fusion result, with abundant visible details and
infrared features as shown in Figure11(l).

As can be noticed from the objective metrics in Table 2, the
proposed method achieved excellent values although some
values are lower than others ostensibly. For example, TIF
gain greater evaluation value than the proposed method in
AG and IE, and CNN get the best SF value, which is mainly
caused by the inconsistent fluctuation of image gray level as
shown in Figure11. Although the homogeneous values of the
proposed method are not optimal, they are obviously higher
than those of other reference methods including five kinds of
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FIGURE 12. Visible and infrared fusion results of ‘‘ Wilderness. ’’

classical neural network algorithms. It exhibits that the fusion
result of the proposed method is equipped with rich detailed
information from resource images. In addition, the proposed
method dedicates the best values of QAB/F compared with
all of the reference algorithms, which illustrates that the pro-
posed method can preserve the edge information of the target
from source images well. Meanwhile, the Piella value in
Table 2 reflects that the fusion result of the proposed method
is highly correlated with original images and gets minimal
brightness distortion and contrast distortion. In summary, it is
evident that the proposed model has clear advantage over the
reference algorithm in terms of ‘‘Human’’ VIF.

Figure12 shows the fusion results with various methods
on ‘‘ Wilderness ’’. The source visible image has abun-
dant texture information such as grass piles, trees and
houses, and the matched infrared image reveals prominent
target. As shown in the red box of various fusion results,
infrared targets are almost lost and visible details are weak-
ened badly in Figure12(e). Although the visible details are
reserved to a certain extent in Figure12(a), (c), (i) and (k),
the infrared target tends to be dim. In general, the pro-
posed method properly integrates the information from the

source images, whose visual effect is as good as the results
in Figure12(b), (d), (f), (g) and (j).

Similar to the objective values in Table 1 and Table 2,
the proposed method in Table 3 achieved accredited evalu-
ation with subjective vision although some values seem to be
lower than other reference methods. The proposed algorithm
seizes the best Piella value and SF value, which indicates
that the fusion image has the highest correlation with the
source images and the optimal brightness and contrast. TIF
and CNN obtains the maximum value in AG and IE, which
is basically consistent with visual detail perception as shown
in Figure12(b) and (f). Although the values of AG, IE and
QAB/F in NestNet are better than that in the proposed method,
the image fusion performance of the proposed method is
perfectly acceptable. Therefore, it is shown that the proposed
model has excellent information integration performance in
terms of ‘‘ Wilderness’’ VIF in general.

The final specified comparison experiment, as shown
in Figure13, takes the visible and infrared images of the
‘‘Factory’’ as the object. It is obvious in terms of visual
perception that the proposed method acquires the splendid
fusion effect. Figure13(a), (c), (h) and (i) miss some details
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FIGURE 13. Visible and infrared fusion image of the ‘‘Factory’’. Red boxes indicate highlighted areas of detail.

and suppress the infrared signature. The original infrared
information is well preserved in Figure13(b), (g) and (j), but
their visible detail background information is tendency to
dimwhich results in inharmonious visual effects. Apparently,
serious fusion failure occurs in Figure13(d), (e) and (k), these
fusion images result in the loss of important information and
severe unnatural distortions. As for Figure 13 (f), the infrared
information of the person in the red box appears to display a
non-uniform distribution. In conclusion, the proposedmethod
gains the optimal visual perception, which supplies abundant
visible details and remarkable infrared features unaffectedly
as shown in Figure13(l).

As shown in Table 4, The proposed algorithm still seizes
the best Piella value and SF value, which indicates that the
fusion image is highly correlated with the source images and
its edge information is more abundant. Although NestNet
and VSMWL acquire better value in QAB/F and AG than the
proposed method, it is mainly caused by unreasonable visible
information loss as shown in Figure12(j) and (g). A similar
situation exists in DLF, GFF and GTF. As a whole, the
proposed algorithm has better capabilities and more obvious
advantages in the VIF of ‘‘Factory’’.

To more sufficiently analyze the performance of various
algorithms, Figure14 represents the fusion results of eight
groups of tested images for further comparison. It is fully
illustrative that the proposed method displays excellent and
acceptable fusion results compared to other reference meth-
ods, which reflects the proposed algorithm has excellent
fusion performance and substantial stability. Meanwhile, the
average objective metrics for the twelve groups of fusion
results using different fusion strategies are listed in Table 5
and Figure15. The values marked in bold are the best val-
ues in all evaluation criteria. Similar to the objective val-
ues from Table 1 to Table 4, the proposed algorithm gains
the best Piella value, secondary SF value and AG value,
which declares that the proposed method can hold the cor-
relation between fusion result and source images, and can
maintain the brightness and contrast of the corresponding
fusion result. Although the partial reference algorithms obtain
better objective values, this phenomenon is mainly caused
by the incongruity and irrationality in their fusion images,
such as the visual perception of the fusion images in CNN,
GFF, and RfnNet, etc. Therefore, it can be summarized that
the proposed model has excellent fusion performance and
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FIGURE 14. Fusion results of all tested images.

TABLE 6. Total running time (RT) based on testing images (unit: seconds).

comprehensive strong ability of information integration for
the fusion problem of infrared and visible images on the
whole.

D. ANALYSES OF COMPUTATIONAL COMPLEXITY
In addition to the visual analysis and objective evaluation
metrics discussion, the running time (RT) is an important
indicator for evaluating algorithm performance. the average
running time of each algorithm is given in Table 6, the shorter
the time the better the algorithm. Obviously, GFF, ADF,
TIF, and MSVD obtain better running efficiency, which is

TABLE 7. Number of network model parameters (NP) (unit: MB).

mainly due to their multi-scale structures. However, they do
not guarantee high-quality visual effects and fusion metrics.
In another aspect, the proposed method acquires significantly
shorter running times than other reference algorithms, espe-
cially algorithms based on neural networks like CNN and
ResNet, etc. To sum up, the running time of the proposed
method is acceptable and progressive.

To further explore the performance of the fusion algorithm,
this paper compares the model parameters of the neural
network based fusion algorithms with the values shown
in Table 7. Clearly, it can observe that the proposed algorithm
requires more parameters to be trained compared to reference
algorithms. However, the complexity of the model param-
eters does not affect the efficiency of the algorithm when
combined with RT, indicating that the proposed algorithm is
efficient.
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FIGURE 15. Quantitative comparison using mean value of each metric (a) IE, (b) IE, (c) SF, (d) QAB/F, and (e) Piella.

V. CONCLUSION
In this paper, a novel and efficient visible and infrared image
fusion network model based on CNN is proposed. The model
has three main advantages compared with current CNN
based VIF methods: (1) A multi-scale convolutional fusion
model with an improved residual block is proposed, which
can explicitly integrate deep features without manual weight
selection and fusion rule design. (2) In order to better train the
proposed model, this paper uses the COCO dataset to reason-
ably generate a training dataset by means of high-resolution
large-scale multi-focus images with ground-truth fusion
images. It is significant to optimize the image fusion model
in regression, and conduce to the loss function constrain the
network focus on the informative regions of source images
effectively to facilitate the retention of the useful information.
(3) An effective image reconstruction structure combining
affluent skip connections with multi-scale convolutional lay-
ers is designed to supplement the lost image details in the
pooling process. The model is fully convolutional, so it can
be trained in an end-to-end manner without a pre-processing
process. It has been verified by numerous experiments that
the proposed model owns progressive execution performance
for infrared and visible image fusion problems comparedwith
the current neural networks-based and popular multi-scale
transformation-based methods.
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