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ABSTRACT The current advancements in image super-resolution have explored different attention
mechanisms to achieve better quantitative and perceptual results. The critical challenge recently is to
utilize the potential of attention mechanisms to reconstruct high-resolution images from their low-resolution
counterparts. This research proposes a novel method that combines inception blocks, non-local sparse
attention, and a U-Net network architecture. The network incorporates the non-local sparse attention on the
backbone of symmetric encoder-decoder U-Net structure, which helps to identify long-range dependencies
and exploits contextual information while preserving global context. By incorporating skip connections,
the network can leverage features at different scales, enhancing the reconstruction of high-frequency
information. Additionally, we introduce inception blocks allowing the model to capture information at
various levels of abstraction to enhance multi-scale representation learning further. Experimental findings
show that our suggested approach produces superior quantitative measurements, such as peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), visual information fidelity (VIF), and visually appealing
high-resolution image reconstructions.

INDEX TERMS Image super-resolution, inception blocks, non-local sparse attention, U-Net.

I. INTRODUCTION
In convolutional neural network-based image processing,
single image super-resolution (SISR) is one of the most
important research fields. Super-Resolution (SR) is a clas-
sified modern-day problem needing immediate solutions.
All the vision task-based devices require embedding fast
and less complex Super-Resolution (SR) algorithms for
faster and high-quality processing of visuals, i.e., images,
videos, or live streaming. Focusing on images, the SR
appertains to recuperating high-quality images from given
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low-quality images, and this process is termed Image Super-
Resolution (ISR). SISR is an ill-posed problem because of
the generation of multiple High-Resolution (HR) images
corresponding to a single Low-Resolution (LR) image.
Due to this reason, detailed constraints of images such
as high-frequency, low-frequency, spatial characteristics,
or a variety of image priors and domains are used as
features of an image. These insightful and hierarchical
features recover the finer detail of any image, which
further helps in security and surveillance and many other
vision-based applications such as image segmentation [1],
[4], reconstruction [2], estimation [3], object and anomaly
detection [5], etc. having varied applicability in security,
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surveillance [6], medical [7], face [8], [9], satellite imag-
ing [10], remote sensing [11]. Learning-based algorithms
have recently shown remarkable performance compared to
conventional super-resolution methods. Convolutional neural
networks (CNN) dominate the culture for modeling the
algorithms in Deep Learning (DL) [12], [13], [14], [15],
[16]. The introduction of neural networks (NN) in Super-
Resolution Convolution Neural Networks (SRCNN) [17]
proposed by Dong et al. has led to many advancements in
the field of SISR. After the SRCNN approach, the research
community explored ISR regarding model frameworks, up-
sampling methods, network design, learning strategies, etc.
Introducing CNNs [17], Generative Adversarial networks
(GANs) [18], attentionmechanisms [19], [20], transformative
discriminative networks [21], and residual networks [22] has
significantly improved the quality of LR images. To reduce
the computational cost and training complexity, Wavelet-
SRNet [23] and Deep wavelet super-resolution (DWSR) [24]
were the first to super-resolve images in the wavelet domain,
which uses the contextual information of an image by
using low and high-frequency sub-bands having topological
information. Fan et al. [25] concluded the favorability of
sparsity [26], [27] constraints by imposing sparsity [28] and
proved the increase in efficiency of neural networks [29].
Meanwhile, with network architecture, development turned
towards exploring the sparsity constraints using attention
mechanisms in sequential models. It emerged as a top-tier
standard for Peak Signal-to-Noise ratio (PSNR) or Struc-
tural Similarity Index Measure (SSIM). Non-Local Sparse
attention (NLSN) [30] is one of the most efficient current
examples of a non-local channel attention-based sequential
model for getting structural information in dominant or
more focused regions. However, there is room for improving
computational efficiency and reconstruction of finer details
while preserving the natural textures of this sequential
model.

Considering the current scenario of fast processing smart
edge devices or embedded systems on chip (SoC), the model
size must be considered for achieving faster and state-of-the-
art (SOTA) comparable outcomes for higher and arbitrary
enlargement factors. Several enhancements in ISR are based
on sequential model designs. In this experiment, research
work showed higher performance gains with reduced model
size. Even though the sequential model helps to improve the
network performance, they still face some limitations.

(1) Above mentioned methods are computationally expen-
sive and require substantial processing power and time.
They also require storing and accessing large affinity
matrices demanding significant memory resources. (2) These
methods can sometimes introduce unwanted artifacts or
distortions into super-resolved images. The artifacts can
include checkboard patterns, jagged edges, or blurring in
certain regions. (3) When the input image is extremely low-
resolution and contains noise or compression artifacts, earlier
methods can struggle to recover fine details or remove noise
patterns effectively.

An efficient way to overcome all those problems is to
combine the sequential models [30] with non-sequential
models [4]. The non-sequential methods have been proven to
achieve meaningful features and effectively capture regional
and global image subjects. Furthermore, this approach [30]
helps to address the information loss encountered in
deep neural networks. Isola et al. [31] first considered
sequential models as encoder-decoder networks [32] and
linked them with non-sequential architectures to separate
high and low-frequency components of an image. Working
with the same approach, we propose a novel approach
for image super-resolution that combines non-local sparse
attention with a U-Net network architecture and integrates
inception blocks. The U-Net architecture serves as the
backbone of our proposed network architecture. The skip
connections [33] and encoder-decoder [32] structure enable
efficient feature learning at various scales. The non-local
sparse attention module enables the network to capture long-
range dependencies by modeling the correlations between
image patches and enhancing information exchange across
the image, leading to improved utilization of contextual
information for SR reconstruction. The integration of skip
connections [34] ensures that the network can leverage
features from different layers, enabling the efficient recov-
ery of high-frequency information. To further enhance
multi-scale representation learning, we introduce inception
blocks into our network architecture, enabling the model
to capture information at various levels of abstraction.
This enriches the network’s capability to capture local and
global structures, enhancing super-resolution performance.
In summary, the main contributions of our proposed model
are listed below: (i) Propose a non-sequential backbone
with skip connection to enable efficient feature learning
at different scales and reconstruction of fine image details
while maintaining global context. (ii) Integrate the non-local
sparse attention module to capture long-range dependen-
cies, enhance information exchange across image patches
and improve utilization of contextual information for SR
reconstruction. (iii) Employ inception block and benefit from
parameterized and efficient feature extraction to enhance
the network capability to capture local and global structures
at different levels of abstraction. The remaining article
comprises Section II, which briefly reviews the relevant
work of the proposed method, and Section III describes the
methodology of the network. Section IV presents the experi-
mental results and comparative analysis with state-of-the-art
methods. Discussion and Conclusion with future work are
in sections V and VI.

II. RELATED WORK
Image super-resolution (ISR) is a well-studied problem
in computer vision, and numerous techniques have been
proposed to tackle the challenge of reconstructing high-
resolution images from low-resolution inputs. This section
provides an extensive overview of the related work in
image super-resolution, focusing on deep learning-based

84380 VOLUME 11, 2023



J. Talreja et al.: DANS: Deep Attention Network for Single Image Super-Resolution

methods, attention mechanisms, and network architectures.
Deep learning-based approaches have revolutionized the field
of image super-resolution by harnessing the representation
power of convolutional neural networks (CNNs). Dong et al.
introduced the pioneering work of Super-Resolution Con-
volutional Neural Network (SRCNN) [17], which directly
utilized a shallow network to learn the mapping from
low-resolution to high-resolution images. SRCNN achieved
impressive results and laid the foundation for subsequent
research in deep learning-based SR techniques. Deeper and
more complex network architectures have been proposed
to improve SR performance. For instance, Very Deep
Super-Resolution (VDSR) [35] introduced a deeper network
using a 20-layer residual network. The residual learning
framework allowed VDSR [35] to efficiently capture residual
information and achieve state-of-the-art results at that time.
After this, many methods were employed, such as Deeply
Recursive Network (DRCN) [36], but it shows slow training
convergence. To extend this Residual Encoder-Decoder Net-
work (REDNet) [37] was used to enhancemodel performance
and fasten the convergence. To further speed up the training
convergence of these models, Denoising Convolutional
Neural Network (DnCNN) [38] was introduced by Chen
et al. Since these deeper networks could not perform on
small edge devices, the concept of introducing lightweight
models was introduced [39], [40], [41]. Deep Recursive
Residual Network (DRRN) [42] by Tai et al. and Information
Multi-Distillation Network (IMDN) [39] by Hui et al. are
two examples of lightweight models. Enhanced Deep Super-
Resolution (EDSR) [22] enhanced the network architecture
by increasing the network depth, utilizing residual blocks,
and adopting an improved optimization strategy. EDSR [22]
won the New Trends in Image Restoration and Enhancement
(NTIRE) 2017 challenge on single image Super-Resolution:
Dataset and Study and became a benchmark for subse-
quent SR models. After this, researchers shifted to making
shallower networks and focusing on designing models with
less memory consumption and computation time. For this,
a Persistent Memory Network for image restoration (Mem-
Net) [43] was introduced, which combined skip connections
with CNN layers. This model was shallower compared to
EDSR [22] and VDSR [35]. Multi-Scale Residual Network
(MSRN) [44] by Li et al. employed adaptive feature
extraction and used hierarchical information for image SR.
Some methods also improve noise in an image, such as
Learning a Single Convolutional Super-Resolution Network
for Multiple degradations (SRMDNF) [45]. Furthermore,
Deep Recurrent Fusion Network (DRFN) [46] proposed a
transposed layer method for scale computation. To reduce the
computational cost, Hung et al. suggested the concept of a
Super Sampling network (SSNet) [47]. A multiple-cascaded
information distillation block was introduced in Fast and
Accurate Single Image Super-Resolution via Information
Distillation Network (IDN) [48] to construct high-quality
residuals in SR. While deep learning-based methods have
pulled off remarkable results in ISR, there are still several

challenges that researchers are actively addressing. One chal-
lenge is the trade-off between computational efficiency and
reconstruction quality. Deep network architectures withmany
parameters are computationally expensive, making them less
practical for real-time applications. Addressing this challenge
requires exploring network compression techniques, model
quantization, and efficient network architectures. Squeeze-
and-Excitation Next for Single Image Super-Resolution
(SENext) [14] helps address these challenges, balance
performance and computational cost, and avoid the risk
of overfitting. However, these challenges still need to be
explored and addressed carefully. Attentionmechanisms have
gained significant attention to address these issues in various
computer vision tasks, including image super-resolution.
These mechanisms aim to capture long-range dependencies
and exploit contextual information within images. Figures 1a,
1b and 1c show the different attention mechanisms used
in state-of-the-art methods. Channel attention was first
introduced in Deep Residual Channel Attention Networks
(RCAN) [19]. After this, channel attention has been used
in many networks for improving performance, e.g., Cross-
Scale Non-Local (CS-NL) [49], Holistic Attention Networks
(HAN) [50], and Multi-FusNet of Cross Channel Networks
(MFCC) [16]. Further, improvements were made by using
the second-order feature statistics of global average pooling
(GAP) and introducing the second-order channel attention
(SOCA) [51] module for more variational features. The
exemplar model using channel attention mechanisms is
Image Super-Resolution using RCAN [19], Second Order
Attention Network (SAN) [51], and Densely Residual
Laplacian Network (DRLN) [52]. After this, many other
attention mechanisms, such as the self-attention mechanism
introduced by Zhang et al. [53], allow the network to attend to
the different spatial locations and capture global correlations.
The self-attention module employs learned attention maps
to reweight feature responses, enhancing the network’s
ability to focus on informative image regions. This attention
mechanism has been successfully applied in SR models,
improving reconstruction quality. Spatial attention creates a
spatial map and utilizes the interdependencies of channels
and features. It focuses on the informative part by applying
average and max-pooling along the axis of the channels
and then integrating them to produce efficient feature maps.
Spatial attention has been introduced in models such as
Image super-resolution via channel attention and spatial
attention [54] and Residual Feature Aggregation Networks
(RFANet) [55]. Another example of an attention mechanism
is non-local attention [56] which has also been explored in
the context of ISR. Non-local Neural Networks (NLNN) [29]
introduced non-local operations and sparse coding [57]
that capture relationships between all possible pairs of
positions in an image. These operations allow the network
to model the interactions between distant image regions,
facilitating the exploitation of long-range dependencies.
NLSN [30] extended the non-localmechanism by introducing
sparsity [58], [59] to reduce computational complexity while
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FIGURE 1. Different Attention mechanisms in image super-resolution
(a) Channel Attention [19], (b) Spatial Attention [54], and (c) Non-Local
Attention [49].

preserving the non-local modeling capability. The sparse
attention attends to a subset of non-local positions, effectively
capturing relevant contextual information.

The U-Net architecture, proposed by Ronneberger
et al. [4], was widely adopted in various image restoration
tasks, including image super-resolution. In [4], an encoder-
decoder architecture with skip connections facilitates low-
level and high-level feature learning. The skip connections
enable the network to combine low-level details with high-
level semantic information, enhancing the reconstruction of
fine image structures. U-Net [4] has been further improved
by incorporating dilated convolutions, residual blocks, and
other modifications to enhance its performance in SR tasks.
Inception blocks, introduced in GoogLeNet [60], have been
widely utilized for multi-scale feature extraction in deep
networks. Inception blocks consist of parallel convolutional
layers with different receptive fields [61], allowing the model
to capture information at multiple scales. This multi-scale
representation learning enhances the network’s ability to
capture local and global structures, facilitating improved
reconstruction quality. Inception blocks have been incorpo-
rated into SR models to capture diverse image features and
enable more effective feature extraction. While substantial
progress has beenmade in the field of image super-resolution,
there is still a need for techniques that can effectively capture
long-range dependencies, exploit contextual information,
and enhance the reconstruction of fine details. This work
proposes a novel approach that combines non-local sparse
attention with a U-Net network architecture augmented
with inception blocks. Integrating these components aims to
leverage the strengths of attention mechanisms, multi-scale
feature extraction, and deep network architectures to enhance
image super-resolution performance further. In summary,

deep learning-based approaches, attention mechanisms, and
network architectures have significantly advanced in image
super-resolution. Combining these techniques has led to
significant improvements in reconstruction quality, enabling
the generation of high-resolution images with enhanced
details. Ongoing research addresses challenges such as
computational efficiency, generalization across domains, and
adapting SR techniques to video super-resolution [5]. These
advancements are crucial for realizing the full potential of
image super-resolution in various applications, including
face image super-resolution [3], medical imaging [7],
surveillance [6], remote sensing [11], and digital content
creation [8], [62].

III. PROPOSED METHOD
This section presents our proposed novel approach in single
image super-resolution by fusion of Non-Local Sparse
attentionmechanism [30] intoU-Net [4] frameworkNetwork.
Furthermore, we employed the inception block [60] in the
network architecture to extract various contextual features at
distinct levels of abstraction. Additionally, skip connections
are introduced to transmit low-frequency information at
each network stage to reduce the required parameters for
the computation. The up-sampling and down-sampling are
presented in the network to localize the high-resolution
features to generate more precise results for the contextual
regions in an image.

As shown in Figure 2, our proposed Deep Atten-
tion Network for Single Image Super-Resolution (DANS)
comprises three staged encoder-decoder frameworks. Each
stage consists of Inception Block and NLSA block. The
architecture of DANS uses 5 NLSA [30] Blocks with up-
sampling and down-sampling. It also contains six inception
blocks to better understand fine-grained details and broader
contextual details at different levels of abstraction. The image
is enlarged by a factor of two at the encoder side and
reduced by two at the decoder. The contextual details of an
image are stored in high-frequency signals and are refined
by propagating it through the encoder-decoder framework.
In contrast, the low-frequency information is passed through
the skip connections. This symmetric encoder-decoder design
produces more precise SR results than a sequential model.
Since hierarchical features [63] help to understand global
and fine-grained details better, adopting an encoder-decoder
framework by introducing up-sampling and down-sampling
instead of adopting a sequential framework helps to learn
hierarchical features in an image. It is to be noted that
the encoder-decoder network is more flexible with variable
input and output data [4]. The encoder can accommodate
input of varying sizes, and the decoder can generate output
with variable sizes. Also, encoder-decoder frameworks are
well suited for structured outputs, i.e., processing images
containing text. Therefore, each modality of images with text
is processed independently by the encoder and integrated to
generate joint representations of the output by the decoder.
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FIGURE 2. The proposed network architecture of Deep Attention Network for Single Image Super-Resolution (DANS).

Instead of residual blocks, we have used inception blocks
to extract features at various abstraction levels to capture
global and local contextual details better. This is much more
useful for object detection or scene understanding. Inception
Block helps to achieve diverse and complementary sets of
feature maps because of parallel pathways and different
receptive fields [61]. The parameter sharing makes the
inception block more compact than the residual block. The
diversity of features captured benefits tasks requiring a wide
range of visual patterns.

The Deep Feature Extraction Block indicated by Body_U
and Body_D in Figure 2 consists of two 3 × 3 convolutions,
one Non-Local Sparse Attention Block and an up-sample
module in Body_U at the encoder side and down-sampler in
Body_D at the decoder side at each stage of the framework.
Non-local sparse attention has shown brilliant performance
in NLSN [30] for extracting contextual details in SISR,
but it increases the computational cost when used in a
sequential model. Our proposed approach uses NLSA block
in an encoder-decoder framework to reduce the number of
parameters and ultimately help reduce the computational cost
compared to a sequential model framework. Since sparsity
constraints in the NLSA block help focus on contextual
details, the encoder-decoder framework preserves the spatial
information in the model architecture. Therefore, using the
NLSA block in this framework allows the decoder to easily
access the preserved low-level features from the encoder
through skip connections.

A. DEEP FEATURE EXTRACTION (DFE)
Deep feature extraction is used to capture an image’s textural
and contextual features, also known as deep features. This

technique mainly processes and refines the high-frequency
information in the image patches. Deep Feature Extraction
(DFE) is classified into two categories 1.) Deep Feature
Extraction Up-Sampler Block, and 2.) Deep Feature Extrac-
tionDown-Sampler Block. As seen in Figure 2, at every stage,
for the encoder side, we have used Deep Feature Extraction
Up-Sampler Block termed Body_U, and for the decoder,
we have used Deep Feature Extraction Down-Sampler Block
termed Body_D.

1) DEEP FEATURE EXTRACTION UP-SAMPLER
As seen in Figure 3, the Deep Feature extraction Up-Sampler
(DFE_U) block consists of two 3 × 3 convolutional layers,
one NLSA Block, and an up-sampling or down-sampling
module stacked together. The 3× 3 convolutional layers help
to extract the local features to learn spatial and discriminative
features [64] from the input data. The NLSA [30] blocks help
to analyze the relationship between different spatial positions
of the extracted features, and finally, the up-sampling
module enlarges the derived characteristics. The output of
the Deep Feature Extraction Up-Sampler Block is shown
in Equation 1.

H0 = HDFE_U (HIB), (1)

where HDFE_U (.) represents deep feature extraction up-
sampler operation, and (HIB) is the output of the inception
block where the original input LR image is fed after passing
through the depthwise separable convolution. After obtaining
the up-sampled deep features, H0 is used as the input of the
next stage Inception block and the Deep Feature Extraction
Down-Sampler Block DFE_D.
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FIGURE 3. The structure of Deep Feature Extraction Up-Sampler Block.

FIGURE 4. The structure of Deep Feature Extraction Down-Sampler Block.

2) DEEP FEATURE EXTRACTION DOWN-SAMPLER
This block is described in Figure 4. It uses a down-sampling
module to shrink the spatial resolution of the characteristic
maps and aggregate details at a coarse scale. Like DFE_U,
in Deep Feature extraction Down-Sampler (DFE_D) also
stack two 3 × 3 convolutions with NLSA [30] block to
capture deep contextual feature effectively. Still, instead of
an up-sampler, we use a down-sampler to help downscale the
extracted features to process through the NLSA [30] Block.
The output of the Deep Feature Extraction Down-Sampler
Block is shown in Equation 2. It is to be noted that the DFE_D
excepts two inputs, i.e., one from the DFE_U Block and the
other from the inception block.

HI = HDFE_D(HIB + HDFE_U ), (2)

where HDFE_D(.) represents deep feature extraction down-
sampling operation, and (HIB) is the output of the incep-
tion block. After obtaining the up-sampled deep features,
HI is used as the input of the next stage Inception
block and the Deep Feature Extraction Down-Sampler
Block.

This process is repeated at each network stage, and the
HR image is obtained after passing through the depth-wise
separable convolution operation.

FIGURE 5. Inception Block.

B. INCEPTION BLOCK
The Inception block, as seen in Figure 5, also known as the
Inception module, is a building block of deep neural network
architectures, originally introduced in the GoogLeNet [60]
model for image classification. It is designed to capture
information at multiple scales and learn diverse and rich
feature representations.

The key idea behind the Inception block is to parallelize
and concatenate multiple convolutional operations of differ-
ent filter sizes, allowing the network to capture local and
global information. This enables the model to learn a wide
range of features at various levels of abstraction within the
same layer.

The Inception block typically combines 1 × 1, 3 × 3,
and 5 × 5 convolutional filters, and max-pooling operations.
It includes multiple parallel branches, each performing
a different convolution operation. The final outputs of
the Inception block are generated by concatenating these
branches along the channel dimension. The 1×1 convolutions
are used to make the input less dimensional and control the
computational complexity of the block.

One of the major advantages of the Inception block is its
ability to efficiently capture regional and global details within
a layer and maintain a minimum number of parameters while
keeping a large receptive field [61]. This makes the Inception
block effective for jobs such as image classification [65],
object detection [1], and semantic segmentation [4].
In our proposed model, we used 1 × 1 and 3 × 3

convolutional layers inside the inception block followed
by Rectified Linear Unit (ReLU) activation. We further
controlled experiments by changing the activations to PReLU
and CReLU to check their effect on the model’s performance.

The potential applications of our proposed framework in
image and computer vision tasks such as image segmentation,
classification, and object detection. The main versatile appli-
cation of our proposed approach is in medical imaging [7],
image restoration [32], and video super-resolution [5], where
efficient models are highly desirable.

IV. EXPERIMENTAL RESULTS
To show the quantitative and qualitative visual results
of our proposed DANS model, several experiments were
conducted on benchmark test datasets to verify its perfor-
mance. Furthermore, the computational cost in terms of
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TABLE 1. The total number of images available in the Training and
Testing Dataset.

network parameters and execution time are discussed in this
section. Our model training performance is evaluated with
average PSNR (dB) and loss versus epoch convergence.
Additionally, an ablation study has been shown for different
rounds of NLSA [30] with the baseline during the testing
process. Structural ablation study has been demonstrated by
using different activation functions in the inception block
and showing performance convergence per epoch. Finally,
noise degradation analysis compared with different selective
models has been presented to verify that our model also has
better quantitative performance on noisy and blurry images.

A. EXPERIMENTAL SETTINGS
This section demonstrates the training details, evaluation
metrics, and the datasets used in training and testing the
effectiveness of our proposed model on public datasets. It is
to be noted that the training and the testing sets are different.

1) DATASETS
We used the DIV2K [66] dataset to train our SR model.
It contains 800 high-quality training images. This dataset
contains diversified variations in its images. For testing,
we used five benchmark datasets for comparison, which are
Set5 [67], Set14 [68], BSD100 [69], Manga109 [71], and
Urban100 [70]. Table 1 shows the training and testing datasets
with the number of images.

2) TRAINING DETAILS
We cropped random low-resolution patches with sizes
48 × 48 to train our model. The low-resolution images for
×2,×3,×4, and×8 were obtained using MATLAB R2022b.
The proposed network is trained on NVIDIA GeForce GTX
2080ti GPU with 24GB memory. Python 3.6 programming
language with PyTorch 1.1.0 platform has been used for
coding the algorithm of the proposed model. Eight hundred
samples from DIV2K [66] datasets are obtained for training
the model. We select an Adam optimizer with β1 = 0.90 and
β2 = 0.99 for optimization purposes. The learning rate of the
proposed model is kept being 10−4 and reduced to half every
200 epochs.

3) TESTING DETAILS
Our proposed model has been tested on five standard
benchmark datasets, i.e., Set5 [67], Set14 [68], BSD100 [69],
Urban100 [70], and Manga109 [71] datasets. The LR
image is obtained by downsampling the HR images using

bicubic kernels. 48 × 48 patches are randomly cropped
from the training samples and divided into mini-batches of
8 images. Data augmentation also creates more samples for
the algorithm by flipping and randomly rotating for 90, 180,
and 270 degrees. Input is expected to be 100 × 100 spatial
with 64 input and output channels. The range of scaled images
for LR is set in the range [- 1, 1]. The Mean Squared Error
(MSE) has been computed on the image intensity range
[-1, 1]. PSNR and SSIM are standard evaluation metrics
for quantitatively comparing our model with state-of-the-art
methods.

B. QUANTITATIVE COMPARISONS WITH
STATE-OF-THE-ART MODELS
Table 2 presents the tabular standard metric comparison of
five benchmark test datasets. Quantitative analysis of our
proposed DANS shows a comparison with seventeen SOTA
methods, such as Bicubic, SRCNN [17], FSRCNN [72],
VDSR [35], RDN [73], LapSRN [74], SENext [14],
RCAN [19], MemNet [43], RNAN [75], MFCC [16],
SRFBN [76], SAN [51], EDSR [22], HAN [50], SwinIR [77],
and NLSN [30]. As shown in Table 2, our proposed DANS
quantitative results have significantly outperformed the state-
of-the-art methods in terms of PSNR and SSIM. Our
proposed DANS model is better in performance on all test
datasets for scale factors ×2, ×3, ×4, and ×8. Furthermore,
our proposed method obtained a higher value of PSNR/SSIM
on all averages compared to other SOTA models.

C. COMPARISON ANALYSIS BASED ON THE NUMBER OF
MODEL PARAMETERS
In Figure 6, the comparison in parameters versus PSNR has
been shown for our proposed DANSmodel. The performance
is evaluated on the Set5 [67] test dataset for our proposed
model DANS with an enlargement factor of ×2. A reduction
in the number of parameters demonstrates a reduction in
computational cost. Compared to other deep learning models,
the DANS model helps reduce the model’s size better. DANS
has parameters about 94% less than EDSR [22], 84% less
than RCAN [19], 88% less than RDN [73], 45% less than
NLSN [30], 23% less than HAN [50], and 29% less than
SRFBN [76]. Figure 6 shows that our proposed method has
lesser parameters than six other state-of-the-art methods.

D. COMPARISON ANALYSIS OF PSNR AND SSIM ON THE
IMAGE SR DATASETS FOR ENLARGEMENT FACTORS
OF ×4 AND ×8
Figure 7, Figure 8, Figure 9, and Figure 10 shows the perfor-
mance comparison of different existing image SR methods
using standard objective measures, i.e., PSNR and SSIM on
benchmark datasets (Set5 [67], Set14 [68], BSD100 [69],
Urban100 [70], Manga109 [71]) for enlargement factor of
×4 and ×8. The quantitative results reveal that our proposed
DANS attains the most effective results as compared to
NLSN [30], HAN [50], SwinIR [77], EDSR [22], and
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TABLE 2. Quantitative evaluation of our proposed DANS with SR models. Average values of PSNR/SSIM have also been reported on enlargement factors
×2, ×3 ×4, and ×8. The best quantitative value has been recorded as bold with Red color. The second-best quantitative value is shown in blue color with
an underline.
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FIGURE 6. Comparison of model parameters versus PSNR on the image
dataset of Set5 [67] with enlargement factor ×2.

FIGURE 7. Comparative analysis of PSNR versus Image SR Test Data Sets
on enlargement factor ×4.

FIGURE 8. Comparative analysis of SSIM versus Image SR Test Data Sets
on enlargement factor ×4.

MemNet [43] on enlargement factor of ×4 and RCAN [19],
HAN [50], RDN [73], DBPN [2] and AWSRN [78] on
enlargement factor of ×8. The best improvement of our
model for PSNR is shown in Set5 [67] and Manga109 [71]
datasets at scale factor ×4, and for SSIM is shown in
Manga109 [71] datasets at scale factor ×8.

E. QUANTITATIVE ANALYSIS OF PSNR VERSUS
EXECUTION TIME
This section shows the performance of DANS regarding
PSNR versus execution time, as shown in Figure 11. We used

FIGURE 9. Comparative analysis of PSNR versus Image SR Test Data Sets
on enlargement factor ×8.

FIGURE 10. Comparative analysis of SSIM versus Image SR Test Data Sets
on enlargement factor ×8.

NVIDIA GeForce GTX 2080ti GPU with 24GB memory
to evaluate the state-of-the-art methods. For evaluation,
GitHub codes provided by the research community have
been used. Figure 11 shows the trade-off between PSNR
versus execution time on Set5 [67] scale factor ×4. Our
proposed method gains the highest PSNR of 32.78 and
is faster than five state-of-the-art methods (RCAN [19],
EDSR [22], NLSN [30], MemNet [43], and VDSR [35])
except the SRCNN [17], FSRCNN [72] and LapSRN [74].
Furthermore, as seen in Figure 12, our proposed DANS has
lesser computation costs regarding floating point operations
(FLOPs).

F. PERFORMANCE ANALYSIS OF OUR MODEL DURING
TRAINING FROM THE EXISTING SR METHOD
In this subsection, we discuss performance evaluation during
the training of our model. The average PSNR (dB) per
epoch is shown in Figure 13, demonstrating that our model
shows better training convergence than an existing SR
model. The training hyperparameters are kept the same for
a fair comparison. This evaluation is calculated for the
training of enlargement factor of ×4 on the DIV2K [66]
Dataset.
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FIGURE 11. Quantitative assessment of running time versus PSNR on
Set5 [67] with scale factor ×4.

FIGURE 12. Quantitative assessment of GFLOPs versus PSNR on Set5 [67]
scale factor ×4.

FIGURE 13. Quantitative consideration of PSNR for an existing SR method
on a scale factor ×4 on DIV2K [66] Dataset.

G. LOSS ANALYSIS OF OUR MODEL DURING TRAINING
FROM THE EXISTING SR METHOD
This section describes the graph of the average training loss
of our model. Figure 14 shows that our model shows better
loss convergence than an existing SR model NLSN [30].
Our proposed DANS shows better and smoother convergence
in an average loss in Figure 14 and average PSNR (dB) in
Figure 13 during training. It is noted that average PSNR
and loss are calculated for the training of scale ×4 on the
DIV2K [66] dataset.

H. SPACE COMPLEXITY ANALYSIS
An amount of memory space is required for an algorithm
to operate on a computer. The space complexity of a deep
CNN model represents how much memory it requires to

FIGURE 14. Loss versus epoch curve enlargement factor ×4 on DIV2K [66]
dataset.

FIGURE 15. Space complexity analysis for Set5 [67] Dataset images on
scale factor ×2.

run. The performance of a proposed algorithm establishes a
balance between space and time (the complexity of space and
time). In this section, we evaluate the space complexity on
the publicly available Set5 test dataset with an enlargement
factor of ×2. The space complexity of Set5 images such as
baby, bird, butterfly, head, and woman are calculated with
five state-of-the-art methods, including HR and LR images.
Figure 15 shows that our proposed method has less space
complexity (storage memory) than existing state-of-the-art
methods.

I. TIME COMPLEXITY ANALYSIS
The time required for completing each epoch during the
training of a deep learningmodel demonstrates its complexity
in terms of time. This is known as the time complexity of the
DL model. In Figure 16, we show the time each epoch takes
for 100 training epochs for an existing state-of-the-art method
NLSN [30], and our proposed DANS. The curve shows a
significant gap, indicating that our proposed DANS takes less
training time for each epoch. Hence DANS show lesser time
complexity than the baseline model.
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FIGURE 16. Time complexity (Training time per epoch) for 100 epochs on
DIV2K [66] Dataset images on scale factor ×4.

FIGURE 17. Convergence rate analysis of proposed DANS for activactions
on Set5 [67] for scale factor ×4.

J. CONVERGENCE RATE ANALYSIS
In deep learning, a model’s convergence rate refers to how
rapidly it can arrive at the best solution during training.
It focuses on comprehending the learning algorithm’s speed,
time, and effectiveness for minimizing the loss during
training. Figure 17 shows the convergence analysis for loss
during training of the proposed DANS model for Set5 [67]
scale ×4. Loss convergence of the model is calculated with
different activations ReLU, PReLU and CReLU. As seen in
Figure 17, ReLU shows a lesser loss convergence rate than
CReLU and PreLU for our proposed DANS model.

Time complexity, space complexity, and convergence rate
analyses are crucial to fully grasp the practical viabil-
ity of an image super-resolution deep learning approach.
These include the trade-off between computational demands,
achievable performance, hardware accelerators (such as
GPUs) for effective training, inference, and the available
computing resources. When evaluating the practicality of an
image super-resolution deep learning approach, examining
the time complexity, space complexity, and convergence rate
is helpful.

K. PERCEPTUAL QUALITY COMPARISON
Figure 18, Figure 19, Figure 20, Figure 21, Figure 22,
Figure 23, and Figure 24 presents the visual quality
of up-sampling factors ×4 and ×8 for image SR test
datasets, including Set5 [67], Set14 [68], BSD100 [69],
Urban100 [70] and Manga109 [71]. Blurry results are
observed on up-sampling factor ×8 for Bicubic, Lap-
SRN [74], and MSRN [44]. Even though improving an

image for an enlargement factor of ×8 is difficult, our
proposed DANS favorably reconstructs the fine contextual
detail and constructively subdues the artifacts because of
our encoder-decoder approach combined with Non-local
sparse attention (NLSN) [30]. Non-local sparse attention
(NLSN) [30] excels at capturing long-range dependencies
and modeling global contextual details. Combining it with
the encoder-decoder structure of U-Net [4] leads to increased
discriminative [66] and informative feature representation
both locally and globally.

For enlargement factor ×4, we used the barbara image
from Set14 [68] dataset, Img_148026 from BSD100 [69],
Img_092 from Urban100 [70], and TaiyouNiSmash image
from Manga109 [71] dataset. For enlargement factor ×8,
we used Img_253027 from BSD100 [69], Img_060 from
Urban100 [70], and Hamlet image from Manga109 [71]
dataset. Our proposed DANS shows visually pleasing patches
and better quantitative metrics (PSNR/SSIM) as compared to
other state-of-the-art methods such as Bicubic, MSRN [44],
EDSR [22], AWSRN [78], RCAN [19], and NLSN [30] for
×4 and Bicubic, LapSRN [74], MSRN [44], DBPN [2],
AWSRN [78], and RCAN [19] for enlargement factor
of ×8.

L. ABLATION STUDY
In this section, we conduct controlled experiments to analyze
our proposed model. The proposed model has six inception
and 5 Non-local Sparse Attention (NLSA) blocks. We insert
up-sampling and down-sampling with NLSA [30] block to
give it an encoder-decoder [4] structure. Finally, we introduce
a skip connection to the model to make it lightweight. The
ablation study on the proposed model has been done in
the following ways: (1) By changing activation functions to
ReLU, PReLU, and CReLU in the inception block of the
network design, (2) by changing the number of attention
rounds on the Local Sensitivity Hashing technique inside
the NLSA [30] block, (3) by noise degradation analysis of
our proposed model using different activation at noise level
15 and degradation kernel is set to be 0.5, (4) by comparison
analysis with traditional denoising techniques, and (5) by
calculating Visual Information Fidelity (VIF). We conduct
these experiments to check their effect on the performance
of the proposed model.

1) ABLATION STUDY WITH DIFFERENT
ACTIVATION FUNCTIONS
He et al. [65] first introduced Parametric Rectified Linear
Unit (PReLU) and Concatenated Rectified Linear Unit
(CReLU). PReLU and CReLU have been introduced as
extensions of ReLU to address its limitations. PReLU allows
for more flexibility in the network by introducing a learnable
parameter to provide a small negative slope for negative
inputs. On the other hand, CReLU concatenates ReLU
with ReLU-like functions with negative slopes, providing a
more complex activation function. Henceforth, we attempt
to change the activation function inside the inception block
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FIGURE 18. Qualitative improvement of Barbara image from Set14 [68] dataset on a scale factor of ×4.

FIGURE 19. Qualitative improvement of image Img_148026 from BSD100 [69] dataset on a scale factor ×4.

FIGURE 20. Qualitative improvement of image Img_092 from Urban100 [70] dataset on a scale factor ×4.
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FIGURE 21. Qualitative improvement of TaiyouNiSmash image from Manga109 [71] image dataset on a scale factor ×4.

FIGURE 22. Qualitative improvement of Img_253027 image from BSD100 [69] image dataset on scale factor of ×8.

FIGURE 23. Qualitative improvement of Img_060 image from Urban100 [70] image dataset on scale factor of ×8.
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FIGURE 24. Qualitative improvement of Hamlet image from Manga109 [71] image dataset on the scale factor ×8.

TABLE 3. Ablation study of different activations in inception blocks,
including ReLU, CReLU, and PReLU. The quantitative value of average
PSNR calculated on Set5 [67] enlargement factor ×4 on 50 epochs. The
best quantitative value has been recorded as bold with Red color. The
second-best quantitative value is shown in blue color with an underline.

in the proposed model to check its effect on performance.
Figure 25 shows the activation function has been changed
inside the inception block of the model to see the impact on
performance.

The ReLU activation function is known for its simplicity,
computational efficiency, and better sparsity. Even though
PReLU and CReLU are advancements over ReLU, they
cannot provide better sparsity than ReLU. This has been
demonstrated by evaluating PSNR for different designs of
models having inception blocks with ReLU, PReLU, and
CReLU in Table 3. The red color demonstrates the best value,
and the blue underlined demonstrates the second-best value.
It can be observed in Figure 26 that ReLU shows better
convergence as compared to PReLU and CReLU when it
comes to dealing with sparsity.

Table 3 shows that ReLU gives better PSNR on an average
calculated on Set5 [67] for enlargement factor ×4 compared
to PReLU and CReLU. Since ReLU is computationally
efficient, as shown in Figure 26, the network with ReLU
activation converges better. It helps the network train faster
than those with PReLU and CReLU.

2) ABLATION STUDY WITH DIFFERENT ROUNDS OF
ATTENTION IN NON-LOCAL SPARSE ATTENTION BLOCKS
Since the Local Sensitivity Hashing (LSH) [80] technique
used in NLSA [30] works on improving the robustness of
the model, its computational cost is furthermore reduced by
adjusting the attention rounds r. Table 4 shows the result
of the model trained and evaluated for different attention
rounds. This result indicates that increasing the number of
hashing rounds either at training or evaluation improves the

FIGURE 25. Inception Block with different activations.

FIGURE 26. Performance assessment of PSNR (dB) versus training epoch
for different activations on enlargement factor ×4 on Set5 [67].

accuracy of the super-resolution model. As a result, the best
performance in terms of PSNR is achieved at the highest
value, i.e., 8 for hashing rounds. Figure 27 shows the effect of
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TABLE 4. Effect of different attention rounds on performance for enlargement factor of ×2. The best quantitative value has been recorded as bold with
Red color. The second best quantitative value is shown in blue color with an underline.

FIGURE 27. Performance assessment of PSNR (dB) versus image dataset
for different rounds of activations on enlargement factor ×2.

attention rounds for r= 4 and r = 8 on the benchmark dataset
for an enlargement factor of × 2.

3) NOISE DEGRADATION ANALYSIS OF THE
PROPOSED MODEL
Performance evaluation using different activations, i.e.,
ReLU, PReLU, and CReLU, has been demonstrated in
Table 5 on Set5 [67] for enlargement factors ×2 and ×4,
respectively. Gaussian noise has been added to the image
keeping the noise level at 15, and the degradation kernel is
set to 0.5. Table 5 shows that our proposed model performs
better for noise-degraded images and can be used as a
denoiser [79].

Table 5 shows that ReLU performs better in terms of
PSNR and SSIM for noise-degraded images than PReLU
and CReLU activation. Since ReLU promotes sparsity in
activations, it shows the best performance. The red color
indicates the best performance, and blue with an underline
indicates the second-best. The high PSNR and SSIM show the

TABLE 5. Quantitative evaluation of different activations on noise
degradation of images on Set5 [67] for enlargement factors of ×2 and ×4.
The best quantitative value has been recorded as bold with Red color. The
second best quantitative value is shown in blue color with an underline.

robustness of ReLU against noise degradation in the proposed
model.

4) COMPARISON ANALYSIS WITH TRADITIONAL
DENOISING TECHNIQUES
In this section, we show the comparison of our proposed
DANS model on Set14 [68] Dataset on scale ×4 with
classical denoising methods such as Block Matching and 3D
Filtering (BM3D) [81], Weighted Nuclear Norm Minimiza-
tion with Application to Image Denoising (WNNM) [82],
Denoising Convolutional Neural Network (DnCNN) [38],
Fast and Flexible Solution for CNN-Based Image Denoising
(FFDNet) [83] and Nonlocally centralized sparse repre-
sentation for image restoration (NCSR) [84]. Performance
comparison in terms of PSNR is shown using Gaussian noise
keeping noise level (σ ), i.e., σ = 5, σ = 10 and σ = 15
in Table 6. It can be observed from Table 6 that our
proposed DANS model shows better performance at noise
level σ = 5.

5) VISUAL INFORMATION FIDELITY (VIF)
Visual Information Fidelity (VIF) is a statistic used to eval-
uate how well a processed or compressed image maintains
the integrity of the original image. It measures the degree
of visual perception and visual information preservation
similarity. Luminance, contrast, structure, and texture are just
a few variables that VIF considers when assessing the fidelity
of the processed image. It provides a thorough evaluation by
considering both local and global visual data.

Table 7 shows the VIF calculation for our proposed
method. The Visual Information Fidelity is calculated in
Luma (Y) Chroma Blue (Cb) Chroma Red (Cr) (YCbCr)
color space since the Human Visual System (HVS) is very
sensitive to high-frequency details in the Luma component.
Hence, the luma component in YCbCr color space shows
better detection of textual information. The VIF values are
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TABLE 6. Performance evaluation for noise degradation of images on Set14 [68] for scale factor ×4. The best quantitative value has been recorded as
bold with Red color. The second best quantitative value is shown in blue color with an underline.

FIGURE 28. PSNR (dB), SSIM and VIF assessment on Set5 [67] image test
dataset for enlargement factor ×4.

TABLE 7. Quantitative evaluation of our proposed DANS model in terms
of VIFon Set5 [67] test dataset with enlargement factor ×4. The best
quantitative value has been recorded as bold with Red color.

calculated for Set5 [67] on scale factor ×4. Figure 28
compares of PSNR, SSIM, and VIF on Set5 [67] image test
dataset for scale factor ×4.

V. DISCUSSION
In the article being discussed, non-local sparse attention
(NLSN) and the U-Net framework are combined to propose
a novel method for SISR. The model’s effectiveness, com-
putational cost, and perceptual quality of the reconstructed
high-resolution images are all improved by the adding the
inception block, skip connections, and Depth-wise Separable
Convolution. Results from comparative evaluations and
carefully monitored trials show that the suggested DANS
model efficiently enhances the quantitative and percep-
tual quality of the reconstructed images. The model can
effectively capture both local and global information. It is
because of the inclusion of non-local sparse attention, which
improves reconstruction results when dealing with different
up-sampling factors.

The five benchmark test datasets analysis further demon-
strates the DANS model’s success in terms of quantitative
and qualitative performancemeasures. The suggestedmethod
performs better than current approaches, demonstrating its
capacity to produce high-quality reconstructed images under
various up-sampling factors. These findings indicate the

DANS model’s potential as a useful tool for various image
improvement applications. One noteworthy feature is the
proposed method’s reduced computational expense, attained
using skip connections and parameter-effective Depth-wise
Separable Convolution. The model becomes more com-
putationally efficient without compromising performance
by lowering the number of parameters to mitigate the
vanishing gradient problem during the training. This is
very useful in actual situations with constrained processing
resources.

Even though the results presented are encouraging, it is
vital to recognize some of the study’s limitations. The
performance of the DANS model was evaluated using
benchmark datasets; however, how well it performs in tough
or real-world circumstances is still unknown. Testing the
model on a wider variety of photos, especially those with
complicated properties or diverse visual content, should be
a part of future studies. The authors also provide an overview
of their future research goals, which include improving the
model for real-time and video super-resolution applications.
Using the DANS model in such situations is anticipated to
offer insightful information and significantly advance image
super-resolution.

Deep Attention Network for SISR (DANS) is a variant of
an encoder-decoder network and attention mechanism used
in Deep Learning models. This model introduces the concept
of the encoder-decoder framework with skip connections
and sparsity to reduce computational requirements while
improving its performance and encouraging parallelism
and scalability in deep learning models. As computational
complexity reduces, parallelizing computations over many
processors or devices becomes easier. The training and
inference procedures may be accelerated, making it easier to
deal with larger models or process data in real-time.

DANS can give deep learning models interpretability
and explainability, which help to understand the areas that
contribute the most to the model’s predictions by seeing
the attention maps the model produces. These features can
help with model debugging, highlighting key components,
or understanding how the model makes decisions. It can
be applied to various domains and tasks within deep
learning, such as natural language processing, computer
vision, machine translation, image recognition, and video
understanding.

VI. CONCLUSION AND FUTURE WORK
This paper presents a novel fusion of non-local sparse
attention NLSN and U-Net framework for single image
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super-resolution to improve the efficiency and reduce the
computational cost of the model. Furthermore, integration of
the inception block in the network makes it flexible for the
computation of diversified data of the image, which in turn
improves the perceptual quality of the image. Additionally,
skip connections introduced into the network reduce the
parameters used in the network model and ultimately help
reduce the model’s computational cost. It further helps
to reduce the vanishing gradient problem during training.
The generalization and convergence of our model are
enhanced using Depth-wise Separable Convolution. Depth-
wise separable convolution also helps to enhance parameter,
computation efficiency and encourages channel-wise fea-
ture reuse. Using non-local sparse attention NLSN in the
encoder-decoder framework results in efficient local and
global modeling. Furthermore, the relative assessment and
controlled experiment show the DANS model’s effectiveness
in improving the reconstructed HR image’s quantitative and
perceptual quality. A thorough analysis of five benchmark
datasets revealed that the proposed DANS model also
enhances reconstruction outcomes in terms of quantitative
and qualitative norms for up-sampling factors of ×2, ×3,
×4, and ×8. In the future, we will advance our model to
introduce real-time and video super-resolution applications
under complex scenarios.
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