
Received 15 July 2023, accepted 3 August 2023, date of publication 7 August 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3302703

Federated Scheduling Optimization Scheme
for Typed Tasks With Power Constraints
in Heterogeneous Multicore
Processor Architectures
XIAOHONG WEN 1, GUOJIN LIU1, DEJIAN LI2, (Member, IEEE),
YANTAO YU 1, (Member, IEEE), HAISEN ZHAO3, AND TIANCONG HUANG 1
1School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
2Beijing Smartchip Microelectronics Technology Company Ltd., Beijing 100192, China
3State Grid Jinzhong Electric Power Supply Company, Jinzhong 030600, China

Corresponding author: Yantao Yu (yantaoyu@cqu.edu.cn)

This work was supported in part by the 2020 State Grid Corporation of China Science and Technology Program under
Grant 5700-202041395A-0-0-00.

ABSTRACT In heterogeneous multicore processor architectures, it is a critical concern to optimize the
performance of typed tasks (real-time and non-real-time tasks) under limited power consumption. In this
paper, we propose a power-constrained federated scheduling optimization scheme for typed tasks based
on both global and local scheduling systems. The global scheduling system adopts a federated scheduling
strategy to split the typed task stream into multiple real-time and non-real-time sub-streams. The local
scheduling systems are constructed as a set of M/M/c/m queueing systems with heterogeneous multicore
processors considering task priority and finite queueing capacity, avoiding task blocking and resource
wastage through finite cache and parallel execution of two types of task sub-flows. To meet the deadline
constraints of real-time tasks, a real-time task queueingmodel with strong preemption priority is constructed,
and a stable and efficient real-time scheduling algorithm based on sequential quadratic programming block
homotopy is proposed, which can ensure the optimal distribution of real-time tasks while maintaining load
balancing and schedulability. For non-real-time tasks, we propose a dichotomous search-based scheduling
algorithm to minimize the average response time of non-real-time tasks under strong preemption constraints
on real-time tasks, providing a theoretical analysis proof of the optimal processor speed configurations for
heterogeneous multiprocessor systems under power constraints. Simulation results demonstrate that factors
such as processor size, system capacity, available power, and task arrival rate have a significant impact on
the system performance, and that the proposed scheme enables optimal load distribution for typed tasks with
power constraints in multiprocessor queueing systems.

INDEX TERMS Federated scheduling, heterogeneous multicore processor architecture, M/M/c/m queueing
system, non-real-time tasks, real-time tasks.

I. INTRODUCTION
A. MOTIVATION
Heterogeneous multicore processors have gained widespread
adoption in recent years for mobile electronics, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

smartphones, automated robots, and wearable devices, owing
to their superior computational performance and parallel task
processing capabilities [1], [2], [3]. However, due to the
sluggish progress in battery technology, mobile devices are
constrained by strict power consumption requirements while
aiming to enhance performance [4], [5], [6]. Conventional
performance enhancement techniques predominantly rely on

85728

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0007-6939-8685
https://orcid.org/0000-0002-9495-1063
https://orcid.org/0000-0001-6031-6507
https://orcid.org/0000-0003-1072-0792

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

raising the core frequency to boost performance, which in
turn results in increased power consumption. Therefore, max-
imizing performance in heterogeneous multicore processors
with limited power consumption is a critical issue.

The performance of heterogeneous multicore systems
can be optimized by load balancing [7]. Various related
approaches have been proposed, such as game theory [8],
[9] and queueing theory [10]. Queueing-based load balanc-
ing methods are commonly employed in scenarios with a
large number of task requests characterized by uncertain
arrival times and task sizes. Several queueing models, such as
M/M/1/∞ [11], [12], M/G/1/∞ [13], M/M/K/∞ [14],
G/G/K/∞ [15], have been used by researchers to depict
the stochastic behavior of tasks. However, most reported
studies ideally assume the processor has an infinite queue-
ing capacity without any limit, it may not be practical in
resource-constrained heterogeneous multiprocessor systems.
Moreover, it may result in congestion, overload and resource
exhaustion as the number of tasks increases, and the system
performance would be degraded in resource-constrained sys-
tems. Hence, it is essential to judiciously control the queueing
system capacity to enhance the system performance and avoid
wasting system resources.

In multicore processor queueing systems, to further
improve system performance, many researchers typically per-
form task scheduling based on task type. Some studies focus
on a single task type [12], [16], while others examinemultiple
types of tasks [11], [17], [18]. Most scheduling systems use a
preloading policy for multiple types of tasks, which considers
a specific task type as preloaded and studies load scheduling
policies for the other types of tasks. Indeed, in resource-
constrained multiprocessor systems, preloading strategies
may lead to problems such as poor resource utilization, and
limited system flexibility. In contrast, federated scheduling
can flexibly allocate processor resources based on the char-
acteristics of each task type and actual system requirements,
effectively avoiding idle or overloaded resources. Therefore,
federated scheduling for typed tasks has become a current
research trend [19], [20].

The widespread adoption of real-time applications in
heterogeneous multiprocessor systems has facilitated the
categorization of typed tasks into two primary types: real-
time and non-real-time tasks. Extensive research has been
devoted to real-time task scheduling, covering areas such
as schedulability analysis [21], reliable scheduling [22], and
energy-efficient scheduling [23], [24]. Unfortunately, most
of the existing literature primarily concentrates on the pres-
ence of real-time tasks, disregarding the resource competition
posed by non-real-time tasks in resource-constrained multi-
processor systems. This oversight could cause real-time tasks
to fail to meet their schedulability requirements when both
task types coexist. Therefore, for both real-time and non-
real-time task sets in resource-constrained multiprocessor
systems, it is expected that efficient federated scheduling
strategies can be introduced to rationally allocate proces-
sor resources and maximize the scheduling performance for

non-real-time tasks while guaranteeing the schedulability for
real-time tasks.

B. OUR CONTRIBUTIONS
In this paper, a federated scheduling optimization scheme for
real-time and non-real-time tasks in heterogeneous multicore
architectures is proposed to optimize the performance under
limited power consumption. For typed tasks, queueing mod-
els that consider task priority and finite queueing capacity are
constructed to avoid system blockage and resource wastage
by effectively controlling the system queueing capacity. Fur-
thermore, for system power constraints and real-time task
deadlines, a federated scheduling strategy is employed to
efficiently allocate tasks and ensure load balancing to achieve
flexible allocation of system resources, and enhance the over-
all scheduling performance of the system.

The main contributions of this paper are summarized as
follows.
• A hybrid task federated scheduling framework, which
consists of a global scheduling system andmultiple local
scheduling systems, is proposed in this paper. Based
on this framework, a real-time task queueing model
with strong preemptive priority and a non-real-time
task queueing model with low priority are constructed
to characterize the stochastic behavior of typed tasks.
Then, a federated scheduling optimization problem is
formulated for both real-time and non-real-time tasks
with consideration of system power and real-time task
deadlines.

• To satisfy the real-time characteristics for real-time
tasks, a Bounded-Constrained Augmented Lagrange
Sequence Quadratic Programming Block Homotopy
(BCAL-SQP-BHom) algorithm is used to iteratively
update the load balancing strategy, and minimizes the
maximum response time of real-time tasks while meet-
ing the schedulability requirements. The algorithm uti-
lizes a blocking technique to partition the scheduling
problem into multiple sub-problems, which reduces the
complexity of the problem-solving and improves the
computational efficiency.

• To enhance the scheduling performance for non-real-
time tasks, a Lagrangian-based mathematical approach
to proposed to simplify the solution of the problem,
and theoretical analysis of optimal speed configurations
of processors in heterogeneous multiprocessor systems
under power constraints is provided, and a dichotomous
search algorithm is introduced to minimize the average
response time of non-real-time tasks under the constraint
of the strong preemption for real-time tasks.

The rest of this paper is organized as follows: The related
work is reviewed in Section II. Section III outlines the system
model and problem formulation. The federated scheduling
optimization scheme for the typed tasks under power con-
straints is described in Section IV, and a detailed analysis of
the simulation results of the proposed scheme is provided in
Section V. Finally, the conclusions are drawn in Section VI.

VOLUME 11, 2023 85729

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

II. RELATED WORK
In this section, the performance optimization or power opti-
mization for heterogeneous multicore processor systems
is reviewed from two perspectives: typed tasks federated
scheduling and queueing system. TABLE 1 summarizes the
related literature.

TABLE 1. Summary of related research.

A. TYPED TASKS FEDERATED SCHEDULING
Recently, there has been an increase in research on federated
scheduling of typed tasks for heterogeneous multicore pro-
cessors [20], [23], [24], [25], [26], [27], [28]. In [20], Han et
al. proposed federated scheduling methods for typed Directed
Acyclic Graph (DAG) tasks, in which tasks were classified
into heavy and light tasks. Each heavy task was executed
exclusively on multiple dedicated processors, and the light
tasks were considered as sequential sporadic tasks and han-
dled by the remaining processors. Moulik et al. suggested a
low-overhead multi-stage heuristic strategy for energy-aware
scheduling based onDynamic Voltage and Frequency Scaling
(DVFS) for a set of real-time periodic tasks on a hetero-
geneous multicore platform [23], which, however, suffers
from high context switching/migration overheads. They fur-
ther designed an improved strategy [24], which employs a
half-partitioning approach to generate fewer inter-core task
migrations. Ramegowda and Lin [25] extended the classi-
cal well-known DVFS technique cycle-conserving algorithm
to handle typed task sets (periodic and nonperiodic tasks)
and implement power-efficient task scheduling on Free
Real-Time Operating Systems (FreeRTOS). In [26], Goubaa
et al. addressed the real-time scheduling for multicore sys-
tems powered by renewable energy, in which periodic and
aperiodic tasks were statically mapped to the kernel and
were not allowed to migrate. Chang et al. investigated the
real-time scheduling of typed DAG tasks on heterogeneous
multicore platforms, a scheduling method that utilizes a crit-
icality assignment policy was presented to assign different
criticalities for each vertex [27], and a satisfiability modulo
theories-based approach was proposed to accurately analyze
the Worst-Case Response Time (WCRT) of the typed task
[28]. It is clear that while there have been numerous excellent
studies on the federated scheduling of typed tasks, most of
them employ DAG to characterize typed tasks with explicit
dependencies and static scheduling properties, while ignoring
the randomness or uncertainty of typed tasks, which is more
common in heterogeneous multiprocessor systems.

B. QUEUEING SYSTEM
A growing number of existing studies had used queueing
systems to model the system performance of heteroge-
neous multicore processors with system power constraints
[11], [16], [17], [29], [30], [31]. Li et al. [16] inves-
tigated power-constrained performance optimization and
performance-constrained power optimization for data cen-
ters with multiple heterogeneous and arbitrary servers with
G/G/1/∞ queueing systems by setting the optimal speed of
servers. He et al. [29] studied the federated optimization prob-
lem of edge server configuration (treating each edge server
as a M/M/c/∞ queueing model) in an edge computing
environment to minimize operational expenses with system
performance at a predetermined level. It was evident that
literature [16] and [29] focused on studying one type of task,
but the diversity of tasks was ignored. Li et al. [30] explored

85730 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

FIGURE 1. The proposed hybrid task federated scheduling framework.

techniques for variable and task-type dependent server speed
management by treating each server as a M/G/1/∞ queue-
ing system with mixed task classes, and the optimal load
distribution and optimal server speed settings were found to
minimize the average task response time. In [31], Huang et
al. minimized the average response time of general tasks on
heterogeneous processors (treated as M/G/1/∞ queueing
systems) through optimal load distribution and optimal speed
settings, where each processor had its own preloaded dedi-
cated tasks and the processors had different queueing rules
for scheduling dedicated and general tasks. Similar work can
be found in [11] and [17]. Previous studies have primarily
concentrated on load distribution for a certain class of tasks
in heterogeneous multiprocessor queueing systems, usually
assuming the ideal scenario of unlimited caching for all tasks.
Unfortunately, this assumption may result in wasted system
resources and performance degradation in resource-limited
heterogeneous multiprocessor systems.

Different from the aforementioned studies, a federated
scheduling scheme for typed tasks (real-time and non-real-
time tasks) is proposed to optimize the system performance
in multiple heterogeneous multiprocessors with power con-
straints and limited queueing capacity by considering various
impact factors such as system capacity, available power, load
balancing, and deadline of real-time tasks. The overall sys-
tem performance is optimized by designing capacity-limited
queueing systems and employing a federated scheduling
strategy for typed tasks to effectively manage the task queue
length and properly allocate processor resources. The pro-
posed strategy can flexibly perform task scheduling based on
queue state, task characteristics, and task priority to accom-
modate changes in the stochastic behavior of typed tasks.

III. SYSTEM MODEL
A hybrid task federated scheduling framework consisting of
a global scheduling system and multiple local scheduling
systems, shown in Figure 1, is constructed to optimize the
performance of typed tasks in multiple heterogeneous mul-
tiprocessors with power constraints. Since the task arrival

times and sizes are stochastic and uncertain, queueing theory
is utilized to model the system. Suppose that the scheduling
objects of the global scheduling system are n heterogeneous
local scheduling systems. Each local scheduling system Si
with ci homogeneous processors and processor speed si
has queueing capacity of mi, where 1 ≤ i ≤ n. Given
the multicore parallelism requirements and system resource
constraints of heterogeneous systems, the local scheduling
system in this paper is modeled as a M/M/c/m queueing
systemwith the number of processor cores as c and the system
queueing capacity as m, which is elaborated as follows.

The global scheduling system accepts a real-time task Pois-
son stream with arrival rate λ ′ (measured by tasks per sec-
ond), i.e., the arrival interval is an independent and identically
distributed exponential random variable with mean 1/λ ′.
The global scheduling system divides it into n sub-streams
λ ′1, λ ′2, . . . , λ ′n, which are assigned to n local scheduling
systems S1, S2, . . . , Sn, where λ ′ = λ ′1+λ ′2+· · ·+λ ′n. Sim-
ilarly, there is a Poisson stream of non-real-time tasks with
arrival rate λ ′′. It is split into n sub-streams λ ′′1 , λ ′′2 , . . . , λ ′′n ,
and the i-th sub-stream is assigned to the local scheduling
system Si, where 1 ≤ i ≤ n, λ ′′ = λ ′′1 + λ ′′2 + · · · + λ ′′n .
Thus, the task flow to the global scheduling system is a
combinatorial Poisson flow with arrival rate λ ′ + λ ′′.

The average task size of r (measured by the number of
instructions executed) is an exponential random variable with
the mean value of r̄ , and the ci processors of the local
scheduling system Si have the same execution speed si (giga
instructions per second). Thus, the task execution time of
each core in the local scheduling system Si is an exponential
random variable and can be depicted as xi = r/si with mean
value of x̄i = r̄/si.
The local system Si, with limited caching capability, can

accommodate up to mi task sub-streams in the queue. Due
to the real-time nature of real-time tasks, real-time tasks
are assigned a higher priority than non-real-time tasks, with
a strong preemption priority. This means that real-time
tasks can interrupt and delay the execution of non-real-time
tasks, while tasks within the same class follow a first-come,

VOLUME 11, 2023 85731

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

first-served rule. For simplicity, the mathematical notations
are summarized in TABLE 2.

A. REAL-TIME TASKS MODEL
The average service rate per core in the local scheduling
system Si can be denoted as ui = 1/x̄i = si/r̄ . If there are k
tasks (executing or waiting to be executed), the total service
rate of the local scheduling system Si is

ui,k =

{
kui, 0 ≤ k < ci
ciui, ui ≤ k ≤ mi.

(1)

As real-time tasks have strong preemption priority, the core
utilization of real-time tasks is only related to the arrival
rate λ ′i , and can be described as

ρ′i =
λ ′i

ciui
=

λ ′i x̄i
ci
=

λ ′i r̄

cisi
, (2)

which is the service intensity or load level of real-time tasks
in the local scheduling system Si.
At this point, the probability that there are k real-time tasks

in the local scheduling system Si is

p′i,k =

(ciρ′i)

k

k!
p′i,0, 0 ≤ k < ci

ccii (ρ
′
i)
k

ci!
p′i,0, ci ≤ k ≤ mi,

(3)

where

p′i,0 = (
ci−1∑
k=0

(ciρ′i)
k

k!
+

(ciρ′i)
ci

ci!
×

1
1− p′i

)−1. (4)

The average number of cores processing real-time tasks in
system Si can be expressed as

Ls′i =
ci−1∑
k=0

kp′i,k+ci

mi∑
k=ci

p′i,k

= ciρ′i (1− p
′
i,mi). (5)

Also, the average queue length for real-time tasks is

Lq′i =
mi∑
k=ci

(k − ci)p′i,k

=
(ciρ′i)

ciρ′ip
′

i,0

ci!
(
1− (ρ′i)

mi−ci+1

1− ρ′i
)′

=
(ciρ′i)

ciρ′ip
′

i,0

ci!(1− ρ′i)
2 (1− (mi − ci + 1)(ρ′i)

mi−ci

+ (mi − ci)(ρ′i)
mi−ci+1). (6)

Then the average number of real-time tasks in system Si
can be written as

L ′i = Ls′i + Lq
′
i. (7)

Applying Little’s result, we get the average response time
of real-time tasks in the system Si as

T ′i =
L ′i
λ ′i
=
Ls′i + Lq

′
i

λ ′i
. (8)

TABLE 2. Mathematical notations.

85732 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

B. NON-REAL-TIME TASKS MODEL
Both real-time and non-real-time tasks in the local schedul-
ing system Si are assumed to follow a negative exponential
distribution. The average response time Ti of each typed task
can be calculated according to the formula of theM/M/c/m
queueing model with arrival rate λ ′i + λ ′′i . According to (5),
(6), and (7), we get

Ti =
Li

λ ′i + λ ′′i

=

ci−1∑
k=0

kp′′i,k+ci
mi∑
k=ci

p′′i,k +
mi∑
k=ci

(k − ci)p′′i,k

λ ′i + λ ′′i
, (9)

where the probability that there are k tasks in system Si is

p′′i,k =

(ciρ′′i)

k

k!
p′′i,0, 0 ≤ k < ci

ccii (ρ
′′
i)
k

ci!
p′′i,0, ci ≤ k ≤ mi,

where

ρ′′i =
λ ′i + λ ′′i

ciui
=
x̄i
ci
(λ ′i + λ

′′
i) =

r̄
cisi

(λ ′i + λ
′′
i),

and

p′′i,0 = (
ci−1∑
k=0

(ciρ′′i)
k

k!
+
(ciρ′′i)

ci

ci!
×

1
1− ρ′′i

)−1.

Let T ′′i denote the average response time of non-real-time
tasks in system Si, according to (λ ′i + λ ′′i)Ti = λ ′i T

′
i + λ ′′i T

′′
i ,

we have

T ′′i = (
λ ′i + λ ′′i

λ ′′i
)Ti −

λ ′i

λ ′′i
T ′i

=
1

λ ′′i
(Li − L ′i). (10)

C. POWER MODEL
The power consumption of the processor can be mainly
divided into dynamic and static power consumption, with the
dynamic power consumption being dominant. It is assumed
that P = κCV 2f denotes the processor dynamic power
consumption, where κ is the activity factor, C is the load
capacitance, V is the supply voltage, and f is the clock
frequency [32]. Since s ∝ f , where s is the processor speed
and f ∝ V ς , where 0 < ς ≤ 1 [33]. From this, we can
obtain the processor power consumption P ∝ sα , where
α = 1+2/ς ≥ 3. For the sake of discussion, the dynamic and
static power consumption of a processor core in system Si, are
denoted as sαii and P∗i , respectively. Thus, the power model of
a processor with speed si can be expressed as s

αi
i +P

∗
i . In this

paper, we design a variable frequency power model in which
the processor only consumes static power P∗i when it is idle.
In system Si, ρ′′i denotes the average percentage of time per
unit time that a processor is executing a task, and then 1−ρ′′i

represents the average percentage of time that a processor is
idle. From this, the average power consumption per unit time
in system Si with ci processor cores can be modeled as

Pi = ci(ρ′′i (s
αi
i + P

∗
i)+ (1− ρ′′i)P

∗
i)

= (λ ′i + λ
′′
i)r̄s

αi−1
i + ciP∗i . (11)

D. PROBLEM FORMULATION
According to (8), we can obtain the average response time of
real-time tasks for n heterogeneous local scheduling systems
in the global scheduling system as

T ′ =
λ ′1

λ ′
T ′1 +

λ ′2

λ ′
T ′2 + · · · +

λ ′n

λ ′
T ′n

=
1
λ ′

n∑
i=1

L ′i . (12)

Given the time limit constraint of real-time tasks and the
parallel processing characteristics of the computing system,
we take the maximum value of the average response time of
real-time tasks in system Si as its maximum response time,
i.e., according to (8) we have

T ′max = max
i∈N

T ′i , (13)

where i ∈ N = {1, 2, . . . , n}.
Assuming that the deadline of the real-time task is Tdead ,

we need to ensure that its maximum response time does not
exceed the deadline to satisfy the schedulability of the real-
time task, namely

T ′max ≤ Tdead . (14)

Moreover, according to (10), the average response time
of non-real-time tasks for n heterogeneous local scheduling
systems S1, S2, . . . , Sn in the global scheduling system is

T ′′ =
λ ′′1

λ ′′
T ′′1 +

λ ′′2

λ ′′
T ′′2 + · · · +

λ ′′n

λ ′′
T ′′n

=
1

λ ′′

n∑
i=1

(Li − L ′i). (15)

Note that the above T ′′ can be viewed as a function
of the real-time task load distribution, the non-real-time
task load distribution, and the processor core speed, that is,
T ′′(λ ′1, λ ′2, . . . , λ ′n, λ ′′1 , λ ′′2 , . . . , λ ′′n , s1, s2, . . . , sn).

Similarly, the average power consumption P(λ ′1, λ ′2, . . . ,

λ ′n, λ ′′1 , λ ′′2 , . . . , λ ′′n , s1, s2, . . . , sn) of n heterogeneous local
scheduling systems is also a function of the real-time task
load distribution, the non-real-time task load distribution, and
the processor core speed. Under the variable frequency power
model, we have

P(λ ′1, λ
′

2, . . . , λ
′
n, λ
′′

1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)

=

n∑
i=1

Pi =
n∑
i=1

((λ ′i + λ
′′
i)r̄s

αi−1
i + ciP∗i)

=

n∑
i=1

(λ ′i + λ
′′
i)r̄s

αi−1
i +

n∑
i=1

ciP∗i . (16)

VOLUME 11, 2023 85733

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

FIGURE 2. Global illustration of a federated scheduling scheme for typed tasks.

Here, we formulate the federated scheduling optimiza-
tion problem for typed tasks. Under the constraints of
multicore processor power consumption and real-time task
deadlines, we analyze the schedulability of real-time tasks
and optimize the average response time of non-real-time
tasks to ensure optimal load distribution and real-time
scheduling of tasks. Therefore, our objective problem
can be formulated as follows: given n multicore local
scheduling systems, the number of system processor cores
c1, c2, . . . , cn, the system capacity m1,m2, . . . ,mn, the static
power consumption P∗1,P

∗

2, . . . ,P
∗
n, the average task size

r̄ , the real-time task arrival rate λ ′, the non-real-time task
arrival rate λ ′′, the real-time task deadline Tdead , and the
available power P̃, find the real-time task load distribu-
tion λ ′1, λ ′2, . . . , λ ′n, the non-real-time task load distribu-
tion λ ′′1 , λ ′′2 , . . . , λ ′′n , and the processor speed s1, s2, . . . , sn
on the local scheduling systems, such that the average
response time of the non-real-time tasks is minimized
under power constraints, while the maximum response
time of the real-time tasks is satisfied without exceeding
the deadline. That is, the mathematical formula is stated
as follows:

P1 : min T ′′(λ ′1, λ
′

2, . . . , λ
′
n, λ
′′

1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)

s.t. C1 : ρ′′i < 1

C2 : λ
′

1 + λ
′

2 + · · · + λ
′
n = λ

′

C3 : λ
′′

1 + λ
′′

2 + · · · + λ
′′
n = λ

′′

C4 : T ′max(λ
′

1, λ
′

2, . . . , λ
′
n, s1, s2, . . . , sn) ≤ Tdead

C5 : P(λ ′1, λ
′

2, . . . , λ
′
n, λ
′′

1 , λ
′′

2 , . . . ,

λ
′′
n , s1, s2, . . . , sn) ≤ P̃, (17)

where the constraint C1 means that the system is in equi-
librium, that is, λ ′′i < cisi/r̄ − λ ′i , where 1 ≤ i ≤ n.
C2 denotes the total arrival rate constraint for real-time tasks.
C3 is the total arrival rate constraint for non-real-time tasks.
C4 indicates that the maximum response time of real-time
tasks does not exceed the deadline, that is, the time limit
constraint for real-time tasks, where T ′max is a function of the
real-time task distribution λ ′1, λ ′2, . . . , λ ′n and the processor
speed s1, s2, . . . , sn. C5 implies that the system’s average
power consumption does not exceed the available power, i.e.,
the system power constraint.

IV. TYPED TASKS FEDERATED SCHEDULING
OPTIMIZATION SCHEME
A federated scheduling optimization scheme for typed tasks
with power constraints is adapted to the global scheduling
system to solve the optimization problem P1 represented
by (17). The scheme comprises two parts: real-time task
scheduling and non-real-time task scheduling, as illustrated
in Figure 2.

In real-time task scheduling, a real-time scheduling
algorithm based on block homotopy of sequential quadratic
programming is utilized to optimize the load distribution
of real-time tasks and minimize the maximum response
time to satisfy their schedulability requirements, consider-
ing the queueing system balance, deadline awareness, and
load balancing constraints. The algorithm consists of two
parts, the outer iterative framework (Algorithm 3) adopts
the Bounded Constrained Augmented Lagrangian method
(BCAL), while the inner iterative framework (Algorithm 4)
employs the Sequence Quadratic Programming Block Homo-

85734 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

topy (SQP-BHom). The inner iterative framework incor-
porates the Stochastic Block Coordinate Descent method
(SBCD) and the Accelerated Proximal Gradient Homotopy
algorithm (APG-Hom) to partition and solve the scheduling
subproblem, respectively. The details of the algorithm are
discussed in Section IV-B.

Non-real-time task scheduling is based on real-time task
scheduling, taking into consideration constraints such as
queueing system balance, finite system power, and real-time
task schedulability. It presents the optimal processor speed
allocation formula (Theorem) based on Lagrange’s math-
ematical approach, which simplifies the original problem
from 2n + 3 variables to n + 1 variables. Furthermore,
we propose a Dichotomy-Based Load Allocation Method,
DBLAM (Algorithm 1, Algorithm 2), that minimizes the
average response time while determining the optimal non-
real-time load distribution. The details of this approach are
elaborated in Section IV-A.

Moreover, in real-time task scheduling, the processor speed
is dynamically adjusted based on the optimal processor speed
configuration, while in non-real-time task scheduling, the
optimal scheduling of non-real-time tasks is implemented
based on the optimal real-time task load distribution. It can
be seen that the two types of scheduling are mutually con-
strained and form a tightly coupled federated scheduling
system.

In Section IV-A, it is assumed that the optimal real-time
task load distribution λ ′1, λ ′2, . . . , λ ′n is known. It then derives
the formulation and proves the theorem for optimal pro-
cessor speed configurations in heterogeneous multiprocessor
systems with power constraints, and presents the algorithm
flow for non-real-time task scheduling. In Section IV-B, the
optimal processor speed from Section IV-A is used to perform
the speed configuration and solve for the optimal real-time
task load distribution under the deadline constraint. The flow
of algorithms for real-time task scheduling is also presented.
Finally, the real-time task load distribution λ ′1, λ ′2, . . . , λ ′n,
obtained from the solution in Section IV-B, is used as the
known input in Section IV-A to perform federated scheduling
optimization for both real-time and non-real-time tasks under
the system power constraint.

A. NON-REAL-TIME TASKS SCHEDULING UNDER POWER
CONSTRAINTS
Since the real-time task arrival rate λ ′1, λ ′2, . . . , λ ′n is assumed
to be a known variable, its associated constraint C2 can be
first disregarded and C4 can be converted to

G(s1, s2, . . . , sn)+ β − Tdead = 0, (18)

where G(s1, s2, . . . , sn) = max
i∈N

T ′i , and 0 ≤ β < Tdead , β

can be solved in Section IV-B, so we can treat it as a known
variable.

It is found that the optimization problem P1 is still a mul-
tivariate, multi-constrained optimization problem, and can be

rewritten as

P2 : min T ′′(λ ′′1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)

s.t. C6 : λ
′′
i < cisi/r̄ − λ

′
i

C7 : F(λ ′′1 , λ
′′

2 , . . . , λ
′′
n)− λ

′′
= 0

C8 : G(s1, s2, . . . , sn)+ β − Tdead = 0

C9 : P(λ ′′1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)− P̃ = 0,

(19)

where the constraints C6,C7,C8,C9 correspond to variants
of C1,C3,C4,C5, respectively, and F(λ ′′1 , λ ′′2 , . . . , λ ′′n) =
λ ′′1 + λ ′′2 + · · · + λ ′′n in C7. Moreover, considering the
limiting case of the problem, it is assumed that the power
consumption in C5 is exactly equal to the available power,
that is P(λ ′′1 , λ ′′2 , . . . , λ ′′n , s1, s2, . . . , sn) − P̃ = 0 in C9.
It is well known that the above optimization problem can
be solved by using the classical Lagrange multiplier method
[35], but it introduces a nonlinear system of equations with
2n + 3 variables, i.e., λ ′′1 , λ ′′2 , . . . , λ ′′n , s1, s2, . . . , sn, and
three Lagrange multipliers, leading to difficulties in obtain-
ing joint closed-form solutions. To this end, this paper
carefully analyzes the structure of the optimizing problem,
delves into the relationship between processor core speed
and task load distribution, and then derives the optimal
processor speed configuration for heterogeneous multipro-
cessor systems under power constraints. The details are
as follows.
Theorem: For the non-real-time tasks scheduling model

under power constraints, the average response time T ′′ for
non-real-time tasks on n multiprocessors is minimized when
all processors have the same speed. That is, s1 = s2 = · · · =
sn = s, where

s = (
1

(λ ′ + λ ′′)r̄
(P̃−

n∑
i=1

ciP∗i))
1/(αi−1)

The proof of the theorem will be shown in Appendix A.
Based on this theorem, we bring (A7) from Appendix A

into (A8) to get:

∂T ′′

∂λ ′′i
=

r̄
λ ′′cisi

·
∂Li
∂ρ′′i
= (1−

1
αi
)φ, (20)

for all 1 ≤ i ≤ n. From the above, we reduce the 2n +
3 variables to n + 1 variables, that is, λ ′′1 , λ ′′2 , . . . , λ ′′n and a
Lagrangemultiplier φ, by mathematical derivation. Next, two
binary-based task allocation algorithms are used to solve the
load distribution λ ′′1 , λ ′′2 , . . . , λ ′′n , the Lagrange multiplier φ,
and the minimum average response time T ′′. The procedure
for Algorithm 1 is shown below.

The initial value of ub in line 2 of Algorithm 1 is set by
the constraint C6. The judgment condition in line 6 depends
on (20). Next, the dichotomy-based load allocation method
is used to solve φ, λ ′′1 , λ ′′2 , . . . , λ ′′n and T ′′. The procedure is
shown in Algorithm 2.

VOLUME 11, 2023 85735

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

Algorithm 1 Find_λ ′′i (ci,mi, λ ′i , λ ′′, r̄, s, φ)

Input: ci, mi, λ ′i , for all 1 ≤ i ≤ n, λ ′′, r̄ , s, φ.
Output: λ ′′i .
1: lb← 0;
2: ub← (cis− λ ′i)/r̄ ;
3: while (ub− lb > ε) do
4: middle← (lb+ ub)/2 ;
5: λ ′′i ← middle;
6: if r̄

λ ′′cisi
·
∂Li
∂ρ′′i

< (1− 1
αi
)φ then

7: lb← middle;
8: else
9: ub← middle;
10: end if
11: end while
12: λ ′′i ← (lb+ ub)/2;
13: return λ ′′i .

B. REAL-TIME TASKS SCHEDULING UNDER TIME
CONSTRAINTS
In this subsection, we address the optimization of real-time
task scheduling in a global scheduling system to ensure the
schedulability of real-time tasks while minimizing their max-
imum response time. To this end, we configure the processor
speed based on the optimal speed from Section IV-A, and
convert the constraintsC1,C2 andC4 in (17) into a nonlinear
minmax optimization problem [36], namely

P3 : min T ′max(λ
′

1, λ
′

2, . . . , λ
′
n)

= max{T ′1(λ
′

1),T
′

2(λ
′

2), . . . ,T
′
n(λ
′
n)}

s.t. C10 : ρ′i < 1

C11 : F ′(λ ′1, λ
′

2, . . . , λ
′
n) = λ

′

C12 : T ′max(λ
′

1, λ
′

2, . . . , λ
′
n) ≤ Tdead , (21)

where the constraint C10 is a variant of C1, which represents
the equilibrium state constraints of real-time tasks in the
system, i.e., λ ′i < cisi/r̄ , where 1 ≤ i ≤ n. C11 is a variant
of C2 with F ′(λ ′1, λ ′2, . . . , λ ′n) = λ ′1 + λ ′2 + · · · + λ ′n. C12 is
a variant of C4 and the processor speed of the system Si has
been calculated by Theorem, so T ′max inC12 is only a function
of the load distribution λ ′1, λ ′2, . . . , λ ′n. The above problem
is a multivariate and multi-constrained nonlinear minmax
problem, and unbalanced load distribution may occur if this
problem is solved directly.

For this reason, we introduce the load balancing effective
degree σ to measure the real-time task processing time dif-
ference among the heterogeneous systems, and it is denoted
as

σ = [
n∑
i=1

(T ′i − T
′)2/n]1/2, (22)

where σ denotes the variance of the processing time of each
heterogeneous system, and a smaller value of σ means that
the processing time of the processors in the system is more
balanced, and the overall performance of the processors is

Algorithm 2 Dichotomy-Based Load Allocation Method
(DBLAM)

Input: n, ci, mi, λ ′i , P
∗
i , for all 1 ≤ i ≤ n, r̄ , P̃, λ ′, λ ′′.

Output: φ, s, λ ′′1 , λ ′′2 , . . . , λ ′′n , T
′′.

1: Initialize core speed s based on Theorem.
2: φ← a small value.
3: do
4: Initialize F to 0, and set φ to grow by a factor of 1.25.
5: for (i← 1; i ≤ n; i++) do
6: Calculating λ ′′i ← Find_λ ′′i (ci,mi, λ ′i , λ ′′, r̄, s, φ),
according to Algorithm 1.
7: Calculating the total task arrival rate F cumulatively.
8: end for
9: while (F < λ ′′);
10: Initialize lower bound lb to 0, upper bound ub to φ.
11: while (ub− lb > ε) do
12: Initialize F to 0, and set middle to the average of
lb and ub.
13: for (i← 1; i ≤ n; i++) do
14: Calculating λ ′′i ← Find_λ ′′i (ci,mi, λ ′i , λ ′′, r̄, s,
middle), according to Algorithm 1.
15: Assigning the cumulative value of λ ′′ to F .
16: end for
17: if F < λ ′′ then
18: lb← middle;
19: else
20: ub← middle;
21: end if
22: end while
23: Set φ to the average of lb and ub.
24: for (i← 1; i ≤ n; i++) do
25: Calculating the optimal load distribution,
λ ′′i ← Find_λ ′′i (ci,mi, λ ′i , λ ′′, r̄, s, φ), according to
Algorithm 1.
26: end for
27: Initialize minimum average response time T ′′ to 0.
28: for (i← 1; i ≤ n; i++) do
29: Calculating T ′′ ← T ′′ + (Li − L ′i)/λ

′′, according to
(15).
30: end for
31: return λ ′′1 , λ ′′2 , . . . , λ ′′n ,T

′′.

better. Thus, we introduce the load balancing constraint based
on the original optimization objective, that is

P4 : min T ′max(λ
′

1, λ
′

2, . . . , λ
′
n)

= max{T ′1(λ
′

1),T
′

2(λ
′

2), . . . ,T
′
n(λ
′
n)}

s.t. C10 : λ
′
i < cisi/r̄

C11 : F ′(λ ′1, λ
′

2, . . . , λ
′
n) = λ

′

C12 : T ′max(λ
′

1, λ
′

2, . . . , λ
′
n) ≤ Tdead

C13 : σ ≤ ε, (23)

where ε is the load balancing factor, which is in the range
of 0 ≤ ε ≤ 10−2. Subsequently, a Bounded-Constrained

85736 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

Augmented Lagrange Sequence Quadratic Programming
Block Homotopy (BCAL-SQP-BHom) algorithm is used to
solve (23), which enables real-time scheduling and load bal-
ancing for real-time tasks.

Nonlinear constrained minmax optimization problems are
typically addressed using the penalty function approach. This
involves adding the degree of constraint violation as a penalty
term to the objective function, thereby converting the orig-
inal problem into an unconstrained optimization problem.
However, to obtain an optimal solution to the original prob-
lem, the penalty factor must converge to ∞. Unfortunately,
this approach can result in the penalty function becoming
pathological and eventually lead to computational challenges.
In this paper, we propose a solution to overcome the patho-
logical issues caused by excessively large penalty factors.
Specifically, we construct an augmented Lagrangian function
for problem P4 as follows:

LA(λ , γ, y;π)
= T ′max(λ)− [γ1(F ′(λ)− λ

′)+ γ2(T ′max(λ)− Tdead + y
2
1)

+ γ3(σ − ε + y22)]+
π

2
[(F ′(λ)− λ

′)2

+ (T ′max(λ)− Tdead + y
2
1)

2
+ (σ − ε + y22)

2]. (24)

The (24) introduces slack variables to convert inequality
constraints into equation constraints, where LA represents
the Lagrange function, λ = [λ ′1 λ ′2 · · · λ ′n]

T denotes the
real-time task load distribution vector, γ = [γ1 γ2 γ3]T

indicates the Lagrange multipliers, y = [y1 y2]T means slack
variables, and π is the penalty factor. According to the litera-
ture [37], it is known that the slack variables can be eliminated
by transformation, i.e.,

y21 =
1
π
max{0, γ2 − π (T ′max(λ)− Tdead)},

and

y22 =
1
π
max{0, γ3 − π (σ (λ)− ε)}.

Thus, the change of the slack variable y will not be
described in detail in the following article. Meanwhile, for
the convenience of analysis and calculation, we record h(λ)
as

[(F ′(λ)− λ
′)(T ′max(λ)− Tdead + y

2
1)(σ − ε + y

2
2)]

T ,

which is the combined vector of constraint conditions C11,
C12 and C13, then (24) is expressed as:

LA(λ , γ ;π) = T ′max(λ)− γ
T h(λ)+

π

2
||h(λ)||2. (25)

Next, we perform an iterative solution using the Aug-
mented Lagrangian Method (ALM), given λ 0, γ 0, π0, and
the iterative form as follows:

λ
k+1
= argmin{LA(λ , γ k ;πk)|0 < λ < I}

γ k+1 = γ k − πkhk+1, (26)

where 0 < λ < I is the bound constraint, which is a
variant of the constraint C10, and I = [c1s1r̄

c2s2
r̄ · · ·

cnsn
r̄]T

denotes the upper bound of the constraint. The Bounded Con-
straint Augmented LagrangianApproach (BCAL) is shown in
Algorithm 3.

Algorithm 3 Bounded Constraint Augmented Lagrangian
Method (BCAL)

Input: ∂ > 0, λ 0
∈ Rn, γ 0

∈ R3, π0 > 0, η0 =
1/(π0)0.1, ∂0 = 1/π0, k = 0.
Output: λ ∗,T ′max(λ

∗).
1: Use the SQP-BHom method to solve the bounded con-
strained minimization problem in (26) to obtain the solution
λ k+1; otherwise, go to step 2.
2: Update Lagrange Multiplier: γ k+1 = γ k − πkhk+1.

3: if ||hk+1|| ≤ ηk then
4: if ||T ′max(λ

k+1)− T ′max(λ
k)|| ≤ ∂ then

5: Terminate the iteration and get λ ∗ = λ k+1.
6. else
7: Let πk+1 = πk , ηk+1 = ηk/(πk)0.9, ∂k+1 = ∂k/πk .
8: else
9: Let πk+1 = 1.5πk , ηk+1 = 1/(πk)0.1, ∂k+1 = 1/πk .
10: end if
11: Let k = k + 1 and return to step 1.

The minimization problem subject to bounded constraints
at step k in (26) is addressed by utilizing the SQP-BHom
method, with an initial solution denoted as x0 = λ k .
By employing a second-order expansion of (25), the afore-
mentioned problem is transformed into a quadratic program-
ming subproblem, taking on the following form:

min q(d) = ∇T ′max(x
j)T d − (γ k)TA(x j)d

+
1
2
dTH (x j)d +

πk

2
||h(x j)+ A(x j)d ||2

s.t. − x j < d < I − x j, (27)

where

A(x j)T = [∇h1(x j),∇h2(x j),∇h3(x j)],

hi(x j) is the i-th component of h(x j) and H (x j) is the approx-
imate Hesse matrix obtained by using the Symmetric Rank-
One (SR1) formula for the Augmented Lagrange function.
We ensure that the matrixH (x j) is positive definite by adding
a sufficiently large multiple of the unit matrix. Moreover,
to ensure the global convergence of the sequential quadratic
programming (SQP) method [38] and overcome the Maratos
effect, we adopt the augmented Lagrange function presented
in (25) as the value function, and utilize theArmijo line search
criterion to determine the search step size l j = ϑ (mj) for
obtaining the next iteration point x j+1 = x j + l jd j, where
ϑ ∈ (0, 1), and mj is the smallest integer satisfying the
following equation:

LA(x j+ϑ (mj)d j, γ k ;πk)−LA(x j, γ k ;πk)<ϖϑ (mj)
∇xLTAd

j,

whereϖ ∈ (0, 0.5).
Multivariate nonlinear optimization problems often require

significant amounts of memory and computing time to

VOLUME 11, 2023 85737

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

form and solve SQP methods, making them unsuitable
for resource-limited heterogeneous multiprocessor systems.
Therefore, in this paper, we employ the following Stochas-
tic Block Coordinate Descent (SBCD) method [39], which
involves splitting the multivariate problem into a series of
small-scale subproblems. In each iteration, the approximate
Karush-Kuhn-Tucker (KKT) condition of the original prob-
lem is used as a criterion for the working set B and the
non-working set N.

|G(x j, γ k)i| ≥ ξ, 0 < x ji < Ii

where 1 ≤ i ≤ n, G(x j, γ k) = ∇T ′max(x
j) − A(x j)T γ k .

In particular, the indicator i that violates the approximate
KKT condition is randomly added to the working set B,
with the constraint |B| ≤ q satisfied. Furthermore, q is
a predetermined upper bound on the dimensionality of the
subproblem, and the subproblem (27) can be decomposed
into the following form:

qk (d) =
1
2
[dTB dTN]

[
H j
BB H j

BN
H j
NB H j

NN

] [
dB
dN

]
− (γ k)T [AjBA

j
N]

[
dB
dN

]
+ [(∇T ′(j)max(B))

T (∇T ′(j)max(N))
T]

[
dB
dN

]
+
πk

2
||(hj + [AjB A

j
N]

[
dB
dN

]
)||2

=
1
2
dTB (H

j
BB + π

k (AjB)
TAjB)dB

+ ((∇T ′(j)max(N))
T
− (γ k)TAjN)dN

+
1
2
dTNH

j
NNdN

+ (dTNH
j
BN + (∇T ′(j)max(B))

T
− (γ k)TAjB

+πk (hj + AjNd
j
N)

TAjB)dB

We set the value of component d jN to a fixed value. Then the
subproblem (27) can be expressed as a QP block subproblem
with the independent variable d jB:

min
1
2
dTB (H

j
BB + π

k (AjB)
TAjB)dB

+ (dTNH
j
BN + (∇T ′(j)max(B))

T
− (γ k)TAjB

+ πk (hj + AjNd
j
N)

TAjB)dB

s.t. − x jB < dB < IB − x
j
B. (28)

The Accelerated Proximal Gradient Homotopy
(APG-Hom) method is employed to solve the subproblem
(28), with the method steps and details described in the
APP-Hom method developed by Wang et al. [34]. The APG
method is used to predict a good initial point, which can
reduce the number of iterations required for the homotopy
tracking process. Meanwhile, the Hom method is utilized to
solve the subproblem (28) efficiently. During the chunked

subproblem-solving process, the non-working set N contains
zero components, i.e., d jN = 0 and d j = (d jB; d

j
N). The next

iteration point of the SQP is x j+1 = x j + l jd j.
The framework of the Sequential Quadratic Program-

ming Block Homotopy (SQP-BHom) method is shown
in Algorithm 4. It is worth noting that P[0,I](x

j
B −

∇LA(x jB, γ k ;πk)) in line 3 of Algorithm 4 denotes the projec-
tion of the variable x jB on the working set B within the bound
constraint [0, I].

Algorithm 4 Sequential Quadratic Programming Block
Homotopy Method (SQP-BHom)

Input: ϖ > 0, ϑ > 0, γ k ∈ R3, πk > 0, ∂k > 0, h0 ∈
R3,∇T ′(0)max ∈ Rn,A0 ∈ Rm×n,H0

∈ Rn×n, x0 ∈ Rn, d0 ∈
Rn, j = 0.
Output: λ k+1.
1: Update the working set Bj.
2: Calculate hj, ∇T ′(j)max(B), A

j
B, H

j
BB.

3: if ||x jB − P[0,I](x
j
B −∇LA(x

j
B, γ

k
;πk))|| ≤ ∂k then

4: Terminate the iteration and return λ k+1
= x j.

5: APG-Hom method for solving subproblem (28), let d jN =
0, d j = (d jB; d

j
N).

6. Armijo line search to determine the search step mj, l j =
ϑ (mj).
7: Let x j+1 = x j + l jd j.
8: The SR1 method to update the Hesse matrix and add a
sufficiently large unit matrix to make it positive definite.
9: Let j = j+ 1 and return to step 1.

In summary, the scheduling optimization algorithm named
BCAL-SQP-BHom is presented to enable the load distribu-
tion λ ′1, λ ′2, . . . , λ ′n for real-time tasks. By incorporating the
distribution result as a known variable into the scheduling
algorithm for non-real-time tasks, we can achieve federated
scheduling for both real-time and non-real-time tasks while
adhering to power constraints, thereby optimizing the overall
system performance.

C. COMPLEXITY ANALYSIS
In this section, the time complexity of the typed task federated
scheduling scheme is analyzed. Since the scheme combines
non-real-time task scheduling (Algorithm 1 and Algorithm 2)
and real-time task scheduling (Algorithm 3 and Algorithm 4),
it is analyzed step-by-step according to these two parts. The
details of the time complexity analysis are given below.

In non-real-time task scheduling, Algorithm 1 contains
a While loop with log2((ub − lb)/ε) iterations, where ub
and lb represent the search upper and lower bounds of λ ′′i ,
respectively, and ε is the accuracy which is the dominant
component. For the sake of uniform analysis, I is used to
denote the maximum length of all initial search intervals in
this paper. Therefore, the time complexity of Algorithm 1 is
less than O(log2(I/ε)). In Algorithm 2, lines 3 to 9 contain a
While loop, a For loop, and a call to Algorithm 1. Assuming
that the maximum number of iterations for the outermost

85738 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

While loop is W , the time cost is bounded by O(W × n ×
log2(I/ε)). Lines 11 to 22 contain a While loop, a For loop,
and a call to Algorithm 1, resulting in a time cost of at most
O(n × (log2(I/ε))

2). Similarly, lines 24 to 26 have a time
cost not exceeding O(n × log2(I/ε)), and the time cost of
lines 28 to 30 is about O(n). Therefore, the time complexity
of Algorithm 2 is less than O((W + log2(I/ε) + 1) × n ×
log2(I/ε)+ n).
In real-time task scheduling, Algorithm 4 serves as the

inner iterative framework, where line 3 represents the ter-
mination condition, with a maximum number of iterations
denoted as J . The APG-Hom method is employed for
Algorithm 4 to solve subproblem (28), with the search step
determined using the Armijo line search. Let A and S rep-
resent the maximum number of iterations that satisfy the
termination conditions of the APG-Hom method and Armijo
line search, respectively, ensuring that the time complexity
of Algorithm 4 remains within O(J × (A + S)). Algorithm
3, on the other hand, is an outer iterative framework, where
line 4 denotes the termination condition for finding the opti-
mal real-time task distribution, and the maximum iteration
count is denoted as K . Therefore, the time complexity of
Algorithm 3 is less thanO(K×J×(A+S)). It should be noted
that to validate the real-time performance of the proposed
BCAL-SQP-BHom algorithm, its algorithmic time overhead
is compared with other real-time scheduling algorithms in the
DEADLINE section of Section V-C.
In real-world applications, the whole scheduling also

encompasses additional factors including latency, communi-
cation, and context switching times. These factors depend on
the particular environment and platform and are not discussed
in this paper.

V. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS
In this section, we simulate and analyze the proposed
federated scheduling optimization scheme for typed tasks
with power constraints to demonstrate specific numerical
scheduling results. We analyze the impact of system capac-
ity, available power, and real-time task deadlines on system
performance, using the maximum response time for real-time
tasks, the average response time for non-real-time tasks, and
load balancing as evaluation metrics. Meanwhile, we com-
pare the proposed federated scheduling optimization scheme
with other scheduling schemes. All numerical experiments
are implemented using the MATLAB (R2019b) platform on
a machine with Windows 11 operating system, Intel(R) Core
(TM) i5-11320H @ 3.20 GHz processor, and 16 GB RAM.

A. SYSTEM PARAMETERS
In this subsection, we consider a set of n = 7 heterogeneous
multiprocessor systems S1, S2, . . . , Sn, each with ci = 2i
processors and the system capacity mi = 4i, where 1 ≤
i ≤ n. The static power consumption of each local scheduling
system is set to P∗i = 0.2Watts, where 1 ≤ i ≤ n. We assume
that the total task arrival rate in the global scheduling system

is λ = 60 and divide real-time and non-real-time tasks in a
ratio of 1:3. The specific simulation parameters are detailed
in TABLE 3.

TABLE 3. System simulation parameters.

B. NUMERICAL ANALYSIS
In TABLE 4, we illustrate the results of federated scheduling
for real-time and non-real-time tasks. As the number of pro-
cessors c1, c2, . . . , c7 in the heterogeneous local scheduling
systems S1, S2, . . . , S7 increases linearly, we observe that
the load allocation λ ′1, λ ′2, . . . , λ ′7 for real-time tasks, the
load allocation λ ′′1 , λ ′′2 , . . . , λ ′′7 for non-real-time tasks, and
the power consumption P1,P2, . . . ,P7 of each system all
increase. This is due to the fact that the ability to perform tasks
is increased as the number of processors becomes larger, and
more tasks are assigned to the corresponding core processors.
Moreover, the utilization of processor cores ρ′′1 , ρ

′′

2 , . . . , ρ
′′

7
remains relatively consistent, which indicates that a bal-
anced load distribution is achieved. The average response
times T ′1,T

′

2, . . . ,T
′

7 of real-time tasks in each system remain
approximately consistent and meet the deadline constraints
due to their strong preemption property. The non-real-time
tasks with lower priority are affected by the preemption of
real-time tasks, and the effect is more pronounced when
the number of processor cores is smaller, leading to longer
average response times. Consequently, the average response
times T ′′1 ,T

′′

2 , . . . ,T
′′

7 of non-real-time tasks in the system
S1, S2, . . . , S7 exhibit a downward trend, and the total average
response time of T ′′ = 0.692079 seconds is obtained.

C. PERFORMANCE ANALYSIS
1) SYSTEM CAPACITY
Figure 3 presents the effects of the system queueing capac-
ity, denoted as m, on the maximum response time T ′max for

VOLUME 11, 2023 85739

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

TABLE 4. Load distribution under power constraints.

real-time tasks and the average response time T ′′ for non-real-
time tasks, for varying numbers of processors c, respectively.
It is worth noting that this paper is dedicated to the over-
all performance of the global system, so m =

∑
mi and

c =
∑
ci, where 1 ≤ i ≤ n. It can be observed that

with increasing system capacity, the maximum response time
T ′max initially decreases sharply and then stabilizes, while the
average response time T ′′ exhibits a trend of rapid decrease
followed by gradual increase. This means that if the system
capacity is insufficient, all arriving tasks cannot be processed
in time, which leads to an oversupply of queue capacity and
eventually seriously affects the system’s performance. There-
fore, both T ′max and T

′′ exhibit a significant decrease during
the initial phase of queueing capacity increase as queueing
pressure eases.

As can be seen in Figure 3, when the queueing capacity
m increases to some extent, the maximum response time
T ′max tends to stabilize. This is because real-time tasks have
preemption priority and can deprive non-real-time tasks of
their execution rights or delay their queue waiting time to
meet their own real-time execution requirements. Therefore,
the maximum response time T ′max almost keep constant if
the system queueing capacity m is further increased. More-
over, T ′max keeps increasing as the number of processors
increases. The reason is that the available power allocated
to each processor decreases as the number of processors c
increases if the same system power constraint is maintained,
which results in a decrease in the task execution rate and an
increase in T ′max. Thus, a reasonable allocation of the number
of processors, considering the system power constraint, can
effectively fulfill the scheduling requirements of real-time
tasks.

From Figure 3, it can also be observed that the average
response time T ′′ maintains an increasing trend as the queue-
ing capacity m increases in the later stages. The increase
in capacity m will result in longer task queues and waiting
times, leading to an increase in task response time. Moreover,
if m increases indefinitely, the system will waste more space
and time resources, which is undesirable in heterogeneous
multiprocessor systems with limited hardware resources.
Thus, an appropriate arrangement on the system capacity can
effectively avoid additional delays and resource wastage

FIGURE 3. System capacity versus maximum response time for real-time
tasks and average response time for non-real-time tasks.

resulting from queueing, thereby enhancing system perfor-
mance. Furthermore, if the number of processors c is smaller,
the available power and task execution rate per processor are
higher, and the response time required for tasks should be
shorter. However, due to the lower priority of non-real-time
tasks, they may be preempted by real-time tasks and lead to
re-queueing for execution, particularly when the number of
processors is small (c = 56), the form of preemption is more
intense, which leads to a sudden increase in T ′′. Therefore,
it is crucial for performance improvement to reasonably con-
trol the number of processors and system queueing capacity
within the fixed system power constraints.

2) AVAILABLE POWER
Figure 4 illustrates the impact of system available power P
on the maximum response time T ′max and processor rate s for
real-time tasks, respectively. It can be seen that the maximum
response time T ′max for various arrival rates decreases as
the available power keeps increasing. The processor speed s
increases with the available power, indicating that less time
would be taken to execute the real-time tasks at the same
arrival rate, and the waiting time is correspondingly reduced.
Meanwhile, if the arrival rate of tasks increases, the task

85740 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

FIGURE 4. Available power versus maximum response time for real-time
tasks and processor speed curve.

load assigned to each processor also increases, demonstrating
that more time is consumed to respond to tasks within the
same available power constraints. Similarly, with increasing
arrival rates, more system power needs to be consumed to
meet the task’s real-time requirements while maintaining the
same maximum task response time. As depicted in Figure 4,
the maximum response times of the real-time tasks with
varying arrival rates do not exceed their deadlines, ensuring
the schedulability of the real-time tasks.

Figure 5 presents the relationship between the available
power P and the average response time T ′′ of the non-real-
time tasks as well as the processor rate s, for varying arrival
rates, respectively. Similar to real-time tasks, the average
response time of non-real-time tasks decreases with increas-
ing available power and increases with higher task arrival
rates. Moreover, the processor speed s increases as the avail-
able power keeps getting larger. Comparing Figure 4 and
Figure 5, it can be revealed that the average response time T ′′

of non-real-time tasks exceeds the maximum response time

FIGURE 5. Available power versus average response time for
non-real-time tasks and processor rate curves.

T ′max of real-time tasks with the same available power. The
difference between T ′′ and T ′max will become larger as the
arrival rate increases. This is due to the fact that with higher
task arrival rates, the preemption probability of real-time
tasks will increase, which may lead to a more pronounced
trend of preemption and a wider response time gap between
the two task types.

3) DEADLINE
In this subsection, we compare our proposed BCAL-SQP-
BHom real-time scheduling algorithm with three established
solvers for nonlinear minmax optimization problems, namely
fmincon, OPTI (version 2.29), and KNITRO (version 13.02)
to analyze the time overhead of these four algorithms at
varying task arrival rates. Furthermore, we utilize the BCAL-
SQP-BHom algorithm to determine the maximum response
time of real-time tasks under various power constraints and
analyze the schedulability of these tasks with different arrival
rates. It is worth noting that the time overhead of the algorithm
is not considered in the determination of the maximum
response time for real-time tasks in this paper, as it is sig-
nificantly affected by the hardware environment.

In Figure 6, the time overhead and the optimal maxi-
mum response time T ′max for real-time tasks are displayed
for four real-time scheduling algorithms (fmincon, OPTI,
KNITRO and BCAL-SQP-BHom), for different arrival rates
of real-time tasks. The four scheduling algorithms exhibit an
overall increasing trend in time overhead as the arrival rate
of real-time tasks increases. This trend occurs because the
complexity of achieving optimal real-time scheduling of task
loads increases with higher real-time task arrival rates under
the same power constraint, resulting in a larger time overhead.

FIGURE 6. Comparison of the time overhead of different real-time
scheduling algorithms.

It can also be observed from Figure 6 that as the arrival rate
of real-time tasks increases, the time overhead of the OPTI
algorithm consistently remains the highest among the four
algorithms in the process of solving the optimal maximum
response time T ′max. On the other hand, the fmincon algorithm

VOLUME 11, 2023 85741

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

exhibits the most variability in time overhead, whereas the
KNITRO and BCAL-SQP-BHom algorithms demonstrate
relatively stable changes in time overhead. Specifically, the
time overhead of theKNITRO algorithm is around 0.3s, while
that of the BCAL-SQP-BHom algorithm is around 0.18s,
which indicates that the BCAL-SQP-BHom algorithm is
more efficient in real-time scheduling. This can be attributed
to the utilization of the SBCD method, which transforms
the multivariate problem into a smaller-scale subproblem,
thereby reducing the computational dimension and enhancing
the overall efficiency of the scheduling algorithm.

Figure 7 illustrates the relationship between the real-time
task arrival rate λ ′ and the maximum response time T ′max
obtained from the BCAL-SQP-BHom algorithmwith varying
power constraints. It is evident that the maximum response
time exhibits an increasing trend as the task arrival rate
increases for specific available power. The reason is that the
limited number of processors and available power make it
challenging to process all tasks in parallel as the number
of tasks increases. The coming real-time tasks are queued
and additional waiting times are added, which leads to an
increase in the maximum response time of real-time tasks.
Furthermore, under the deadline constraint Tdead = 1 second,
it can be seen that the schedulable demand for the arrival
rate λ ′ within the range of [15, 30] can be fully satisfied
only when the system power P is set to [35, 40]. This can
be attributed to the fact that higher system power results in
faster task execution rates for individual processors, enabling
the system to meet the response requirements of real-time
tasks with shorter execution times, thus ensuring their real-
time characteristics.

FIGURE 7. Real-time task arrival rate versus maximum response time for
real-time tasks.

4) LOAD BALANCE
Figure 8 presents a comparison of the load balancing effec-
tiveness σ of the BCAL-SQP-BHom algorithm proposed
in this study with three other algorithms (fmincon, OPTI,

FIGURE 8. Comparison of load balancing effectiveness of different
real-time scheduling algorithms.

and KNITRO). The comparison is conducted under vary-
ing real-time task arrival rates to validate the balancing
performance of the proposed algorithms in real-time task
scheduling scenarios. It can be seen that the load balancing
effectiveness σ of all four scheduling algorithms demon-
strates an increasing trend with an increase in the real-time
task arrival rate. When the arrival rate is small, the load
balancing effectiveness σ of the four algorithms remains rela-
tively stable, with changes within the order of 10−4. However,
when the arrival rate increases to 25, the load balancing effec-
tiveness σ of all four algorithms exhibits a noticeable upward
trend. As the arrival rate increases, the number of tasks to be
processed becomes larger, most of them require queuing and
the additional waiting delay becomes larger, which results in
an increase in the variance of the load metrics. Therefore,
a decrease in the load balancing performance occurs as the
arrival rate increases to some extent.

Among the four classes of algorithms, the fmincon
algorithm exhibits poor load balancing performance and the
KNITRO algorithm lacks load balancing stability, whereas
the OPTI algorithm and the BCAL-SQP-BHom algorithm
demonstrate comparatively higher load balancing stability.
Moreover, the BCAL-SQP-BHom algorithm outperforms the
OPTI in terms of load balancing effectiveness. This is because
the BCAL-SQP-BHom algorithm utilizes the Hom algorithm
as a higher-order method to solve the blocking subproblem,
resulting in a faster andmore optimal load balancing solution.
Therefore, the proposed BCAL-SQP-BHom algorithm can
effectively ensure the balanced load distribution of real-time
tasks in multiprocessor systems.

The load profiles of real-time and non-real-time tasks in the
local systems for varying total task arrival rates are shown in
Figure 9. Where the X -axis represents the total arrival rate
of real-time and non-real-time tasks, the Y -axis denotes the
local systems, and the Z -axis indicates the load distribution

85742 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

FIGURE 9. Load distribution of real-time and non-real-time tasks with
different total task arrival rates.

of real-time (red part) and non-real-time tasks (blue part).
It can be seen that both real-time and non-real-time task loads
distributed in local systems S1 ∼ S7 maintain an increasing
trend as the total arrival rate increases. Additionally, for the
same arrival rate, both real-time and non-real-time loads in
local systems S1 ∼ S7 demonstrate an increasing trend, with
non-real-time task loads being larger than real-time task loads
in the same local system. This corresponds to the settings in
TABLE 3 of this paper, where the number of local system pro-
cessors c = [2, 4, 6, 8, 10, 12, 14], and the ratio of real-time
task arrival rate to non-real-time task arrival rate is 1:3. As the
total task arrival rate increases, the task load assigned to
each processor core also increases. Similarly, processors with
higher number of cores will be allocated larger task loads,
which helps to obtain a well-balanced load distribution in
multiprocessor systems.

5) SCHEME COMPARISON
In this subsection, a comparison is made between the pro-
posed federated scheduling optimization scheme for typed
tasks under power constraints and several scheduling opti-
mization schemes:

(i) Optimal Load Balancing algorithm (OLB) [11], the
system queueing model is M/M/1 with infinite queueing
capacity, the typed tasks are divided into dedicated and
generic tasks, and the dedicated tasks are preloaded without
considering the time-bound characteristics, and the load dis-
tribution of the generic tasks is achieved using an optimal load
balancing policy.

(ii) Bi-Directional Timing-Power Optimization algorithm
(BDTPO) [17], the system queueing model is M/M/1 with
infinite queueing capacity, the typed tasks are divided into
dedicated and generic tasks, and the dedicated tasks are
preloaded with deadlines, without considering the load dis-
tribution of dedicated tasks, followed by achieving the load
distribution of the generic tasks using a bidirectional timing
power optimization strategy.

(iii) The proposed federated scheduling scheme
(Proposed), the system queueing model is M/M/c/m with

queueing capacity m, and the typed tasks are divided into
real-time and non-real-time tasks, where real-time tasks
have strong preemption priority and deadlines. The feder-
ated scheduling and load balancing for both real-time and
non-real-time tasks are achieved by exploiting a federated
scheduling strategy for typed tasks.

We set the static power consumption of each local schedul-
ing system to be P∗i = 0.2 Watts, where 1 ≤ i ≤ n. The
average task execution size is set to r̄ = 0.25 (giga instruc-
tions), the power available to the system is P̃ = 30 Watts,
the deadline for real-time tasks is Tdead = 1 second, and
the total task arrival rate in the system is λ = 25 ∼ 50.
We divide real-time tasks and non-real-time tasks in a ratio
of 2:3, i.e., the real-time task arrival rate is λ ′ = 10 ∼ 20,
and the arrival rate of non-real-time tasks is λ ′′ = 15 ∼ 30.
Furthermore, to ensure fairness in comparison, we model the
system in this paper as aM/M/1/m queueing system, as both
OLB and BDTPOmodel heterogeneous multicore systems as
M/M/1 queueing systems. Moreover, to ensure the general-
izability of the experimental results, random distributions are
used to preload dedicated tasks.

Figure 10 compares the impact of the arrival rate of
real-time tasks on the maximum response time of real-time
tasks under power constraints using different scheduling
schemes. The results indicate that the maximum response
time increases with the increase of the arrival rate for all
three schemes. The maximum response time is the largest
when the OLB scheme is selected, and when the arrival
rate exceeds 20, the maximum response time exceeds the
real-time task deadline Tdead = 1 second set by the sys-
tem. This is because the OLB scheme does not take into
account the time-limited constraints of real-time tasks. Fur-
thermore, a comparison between the BDTPO scheme and
the proposed scheme reveals that the introduction of lim-
ited queueing capacity and efficient allocation of real-time

FIGURE 10. The relationship between real-time task arrival rate and
maximum response time of real-time tasks with different scheduling
schemes.

VOLUME 11, 2023 85743

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

tasks improves the system performance. Therefore, the pro-
posed scheme outperforms in real-time task scheduling
and provides an efficient optimization method for system
scheduling.

In Figure 11, the impact of the arrival rate of non-real-
time tasks on the average response time of non-real-time tasks
under power constraints is compared for different scheduling
schemes. The average task response time shows an increasing
trend for all schemes as the task arrival rate increases. It is
evident that when the arrival rate exceeds 21, the average
response time of the proposed scheme is significantly smaller
than that of OLB and BDTPO. Due to the preload operations
for real-time tasks in the OLB and BDTPO, processors are
unable to perform effective load distribution based on the
system power state, resulting in some processors becoming
overloaded and eventually causing low-priority non-real-time
tasks to be blocked in the waiting queue. This additional
waiting latency leads to an increase in their average response
time. It can also be observed that the system performance of
the OLB scheme is slightly superior to that of the BDTPO
scheme, and this performance gap becomes more pronounced
with increasing arrival rate, confirming a trend reported in
the literature [17]. Moreover, the limited system capacity
design of the proposed scheme effectively mitigates addi-
tional delays caused by queueing and waiting. Thus, the
proposed scheme has a superior performance compared to
other schemes.

FIGURE 11. The relationship between the arrival rate of non-real-time
tasks and the average response time of non-real-time tasks with different
scheduling schemes.

In addition, it is worth noting that the multiprocessor paral-
lelism feature of local systems is ignored in the literature [11],
[17], and each local system is considered as a single processor
core only. Nevertheless, the scalability and parallelism of
multicore processors make them more desirable in practi-
cal application environments. Thus, taking a comprehensive
view and comparing with the literature [11], [17], this paper

possesses advantages in terms of model rationality, system
scalability, and performance efficiency.

VI. CONCLUSION
This paper investigates the typed task federated schedul-
ing problem for multiple heterogeneous multiprocessors
with power constraints. A federated scheduling optimization
scheme for real-time and non-real-time tasks is proposed
under the given system power and real-time task deadlines,
which can satisfy the schedulability requirements of real-time
tasks and minimize the average response time of non-real-
time tasks. In the simulation experiments, the results of
federated scheduling are analyzed numerically in a concrete
way, the performance of the system is evaluated with respect
to the real-time characteristics of real-time tasks and the
preempted characteristics of non-real-time tasks, and the
proposed federated scheduling optimization scheme is com-
pared with different scheduling schemes. Simulation results
demonstrate that factors such as processor size, system capac-
ity, available power, and task arrival rate have significant
effects on system performance. Furthermore, the proposed
federated scheduling optimization scheme and algorithms
have high effectiveness and superior scheduling perfor-
mance in power-limited systems. The models, algorithms,
and results presented in this paper are also applicable to other
multiprocessor systems and computing environments.

APPENDIX
PROOF OF THEOREM
First, we can minimize T ′′ by using the method of Lagrange
multiplier, namely,

∇T ′′(λ ′′1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)

= φ∇F(λ ′′1 , λ
′′

2 , . . . , λ
′′
n)+ ψ∇G(s1, s2, . . . , sn)

+ τ∇P(λ ′′1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn), (A1)

where φ,ψ, τ are the three Lagrange multipliers. Next, the
partial derivative of the variable λ ′′i according to (A1) is
obtained,

∂T ′′

∂λ ′′i
= φ

∂F
∂λ ′′i
+ τ

∂P
∂λ ′′i
= φ + τ r̄sαi−1i , (A2)

for all 1 ≤ i ≤ n.
The partial derivative of the variable si is obtained as

follows:

∂T ′′

∂si
= ψ

∂G
∂si
+ τ

∂P
∂si

= ψ
∂G
∂si
+ τ r̄(λ ′i + λ

′′
i)(αi − 1)sαi−2i , (A3)

where

∂G
∂si
=
∂T ′i
∂si
=
∂T ′i
∂ρ′i
·
∂ρ′i

∂si

= −
r̄

cis2i
·
∂L ′i
∂ρ′i

85744 VOLUME 11, 2023

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

for all 1 ≤ i ≤ n. Next, we find the partial derivative of the
variable λ ′′i in T ′′,

∂T ′′

∂λ ′′i
=

1
λ ′′
·
∂Li
∂λ ′′i
=

1
λ ′′
·
∂Li
∂ρ′′i
·
∂ρ′′i

∂λ ′′i

=
r̄

λ ′′cisi
·
∂Li
∂ρ′′i

, (A4)

for all 1 ≤ i ≤ n.
Also, find the partial derivative of the variable si in T ′′,

∂T ′′

∂si
=

1
λ ′′

(
∂Li
∂si
−
∂L ′i
∂si

)

=
1

λ ′′
(
∂Li
∂ρ′′i
·
∂ρ′′i

∂si
−
∂L ′i
∂ρ′i
·
∂ρ′i

∂si
)

= −
r̄(λ ′i + λ ′′i)

λ ′′cis2i
·
∂Li
∂ρ′′i
+

r̄λ ′i

λ ′′cis2i
·
∂L ′i
∂ρ′i

, (A5)

for all 1 ≤ i ≤ n.
According to (A2) and (A4), we have

∂Li
∂ρ′′i
=

λ ′′cisi
r̄
· (φ + τ r̄sαi−1i). (A6)

Then, according to (A3), (A5), and (A6), it can be
concluded that ψ = −λ ′i /λ

′′, and τ r̄αi(λ ′i + λ ′′i)s
αi−2
i =

−φ(λ ′i + λ ′′i)/si, so we can get

si = (−
φ

τ
·

1
αir̄

)1/(αi−1), (A7)

for all 1 ≤ i ≤ n. The above result shows that n systems
S1, S2, . . . , Sn have the same speed s, i.e., s1 = s2 = · · · = sn.
Thus, the constraint C9 can be converted to

P(λ ′′1 , λ
′′

2 , . . . , λ
′′
n , s1, s2, . . . , sn)

=

n∑
i=1

(λ ′i + λ
′′
i)r̄s

αi−1
i +

n∑
i=1

ciP∗i

= (λ ′ + λ
′′)r̄sαi−1 +

n∑
i=1

ciP∗i = P̃. (A8)

Finally, according to (A8), we can obtain the processor
speed of the system as

s = (
1

(λ ′ + λ ′′)r̄
(P̃−

n∑
i=1

ciP∗i))
1/(αi−1). (A9)

REFERENCES
[1] Y.-W. Zhang and R.-K. Chen, ‘‘A survey of energy-aware schedul-

ing in mixed-criticality systems,’’ J. Syst. Archit., vol. 127, Jun. 2022,
Art. no. 102524.

[2] A. A. Khan and M. Zakarya, ‘‘Energy, performance and cost efficient
cloud datacentres: A survey,’’ Comput. Sci. Rev., vol. 40, May 2021,
Art. no. 100390.

[3] L.-C. Canon, L. Marchal, B. Simon, and F. Vivien, ‘‘Online scheduling
of task graphs on heterogeneous platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 3, pp. 721–732, Mar. 2020.

[4] R. Pathan, P. Voudouris, and P. Stenström, ‘‘Scheduling parallel real-time
recurrent tasks on multicore platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 915–928, Apr. 2018.

[5] K. M. Attia, M. A. El-Hosseini, and H. A. Ali, ‘‘Dynamic power manage-
ment techniques in multi-core architectures: A survey study,’’ Ain Shams
Eng. J., vol. 8, no. 3, pp. 445–456, Sep. 2017.

[6] J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, ‘‘Energy-aware scheduling for
dependent tasks in heterogeneous multiprocessor systems,’’ J. Syst. Archit.,
vol. 129, Aug. 2022, Art. no. 102598.

[7] B. Pérez, E. Stafford, J. L. Bosque, and R. Beivide, ‘‘Sigmoid: An auto-
tuned load balancing algorithm for heterogeneous systems,’’ J. Parallel
Distrib. Comput., vol. 157, pp. 30–42, Nov. 2021.

[8] S. Liu, L. Zhang, W. Zhang, and W. Shen, ‘‘Game theory based multi-task
scheduling of decentralized 3D printing services in cloud manufacturing,’’
Neurocomputing, vol. 446, pp. 74–85, Jul. 2021.

[9] J. Yang, B. Jiang, Z. Lv, and K.-K.-R. Choo, ‘‘A task scheduling algorithm
considering game theory designed for energy management in cloud com-
puting,’’ Future Gener. Comput. Syst., vol. 105, pp. 985–992, Apr. 2020.

[10] Z. Ma, S. Guo, and R. Wang, ‘‘The virtual machines scheduling strategy
based on M/M/c queueing model with vacation,’’ Future Gener. Comput.
Syst., vol. 138, pp. 43–51, Jan. 2023.

[11] J. Huang, Y. Liu, R. Li, K. Li, J. An, Y. Bai, F. Yang, and G. Xie, ‘‘Optimal
power allocation and load balancing for non-dedicated heterogeneous
distributed embedded computing systems,’’ J. Parallel Distrib. Comput.,
vol. 130, pp. 24–36, Aug. 2019.

[12] W. Bai, J. Zhu, S. Huang, and H. Zhang, ‘‘A queue waiting cost-aware con-
trol model for large scale heterogeneous cloud datacenter,’’ IEEE Trans.
Cloud Comput., vol. 10, no. 2, pp. 849–862, Apr. 2022.

[13] K. Li, ‘‘Optimal speed setting for cloud servers with mixed applications,’’
IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 1947–1955, Apr. 2019.

[14] K. Li, ‘‘Improving multicore server performance and reducing energy
consumption by workload dependent dynamic power management,’’ IEEE
Trans. Cloud Comput., vol. 4, no. 2, pp. 122–137, Apr. 2016.

[15] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, ‘‘Performance
evaluation of cloud computing centers with general arrivals and ser-
vice,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2341–2348,
Aug. 2016.

[16] K. Li, ‘‘Optimal power and performance management for heterogeneous
and arbitrary cloud servers,’’ IEEE Access, vol. 7, pp. 5071–5084, 2019.

[17] J. Huang, R. Li, Y.Wei, J. An, andW. Chang, ‘‘Bi-directional timing-power
optimisation on heterogeneousmulti-core architectures,’’ IEEE Trans. Sus-
tain. Comput., vol. 6, no. 4, pp. 572–585, Oct. 2021.

[18] K. Li, ‘‘Computation offloading strategy optimization with multiple het-
erogeneous servers in mobile edge computing,’’ IEEE Trans. Sustain.
Comput., Mar. 12, 2019, doi: 10.1109/TSUSC.2019.2904680.

[19] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, ‘‘Analysis of
federated and global scheduling for parallel real-time tasks,’’ in Proc. 26th
Euromicro Conf. Real-Time Syst., Jul. 2014, pp. 85–96.

[20] M. Han, T. Zhang, Y. Lin, and Q. Deng, ‘‘Federated scheduling for typed
DAG tasks scheduling analysis on heterogeneous multi-cores,’’ J. Syst.
Archit., vol. 112, Jan. 2021, Art. no. 101870.

[21] Z. Dong and C. Liu, ‘‘Schedulability analysis for coscheduling real-time
tasks on multiprocessors,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 11, pp. 4721–4732, Nov. 2022.

[22] J. Zhou, M. Zhang, J. Sun, T. Wang, X. Zhou, and S. Hu, ‘‘DRHEFT:
Deadline-constrained reliability-aware HEFT algorithm for real-time
heterogeneous MPSoC systems,’’ IEEE Trans. Rel., vol. 71, no. 1,
pp. 178–189, Mar. 2022.

[23] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘HEALERS: A heterogeneous
energy-aware low-overhead real-time scheduler,’’ J. Netw. Comput. Appl.,
vol. 208, Oct. 2022, Art. no. 103519.

[24] S. Moulik, Z. Das, R. Devaraj, and S. Chakraborty, ‘‘SEAMERS: A semi-
partitioned energy-aware scheduler for heterogeneous MulticorE real-time
systems,’’ J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101953.

[25] D. Ramegowda and M. Lin, ‘‘Energy efficient mixed task handling on
real-time embedded systems using FreeRTOS,’’ J. Syst. Archit., vol. 131,
Oct. 2022, Art. no. 102708.

[26] A. Goubaa, M. Khalgui, Z. Li, G. Frey, andM. Zhou, ‘‘Scheduling periodic
and aperiodic tasks with time, energy harvesting and precedence con-
straints on multi-core systems,’’ Inf. Sci., vol. 520, pp. 86–104, May 2020.

[27] S. Chang, X. Zhao, Z. Liu, and Q. Deng, ‘‘Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,’’ J. Syst. Archit.,
vol. 105, May 2020, Art. no. 101704.

[28] S. Chang, J. Sun, Z. Hao, Q. Deng, and N. Guan, ‘‘Computing exactWCRT
for typed DAG tasks on heterogeneous multi-core processors,’’ J. Syst.
Archit., vol. 124, Mar. 2022, Art. no. 102385.

VOLUME 11, 2023 85745

http://dx.doi.org/10.1109/TSUSC.2019.2904680

X. Wen et al.: Federated Scheduling Optimization Scheme for Typed Tasks

[29] Z. He, K. Li, and K. Li, ‘‘Cost-efficient server configuration and placement
for mobile edge computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 9, pp. 2198–2212, Sep. 2022.

[30] K. Li, ‘‘Optimal load distribution for multiple classes of applications on
heterogeneous servers with variable speeds,’’ Softw., Pract. Exper., vol. 48,
no. 10, pp. 1805–1819, Oct. 2018.

[31] J. Huang, R. Li, J. An, D. Ntalasha, F. Yang, and K. Li, ‘‘Energy-efficient
resource utilization for heterogeneous embedded computing systems,’’
IEEE Trans. Comput., vol. 66, no. 9, pp. 1518–1531, Sep. 2017.

[32] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, ‘‘Low-power CMOS
digital design,’’ IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[33] J. Cao, K. Li, and I. Stojmenovic, ‘‘Optimal power allocation and load
distribution for multiple heterogeneous multicore server processors across
clouds and data centers,’’ IEEE Trans. Comput., vol. 63, no. 1, pp. 45–58,
Jan. 2014.

[34] G. Wang, B. Yu, and Z. Chen, ‘‘APP-Hom method for box constrained
quadratic programming,’’ 2020, arXiv:1703.05001.

[35] D. Pu and P. Yang, ‘‘A class of new Lagrangian multiplier methods,’’ in
Proc. 6th Int. Conf. Bus. Intell. Financial Eng., Nov. 2013, pp. 647–651.

[36] I. Notarnicola, M. Franceschelli, and G. Notarstefano, ‘‘A duality-based
approach for distributed min-max optimization,’’ IEEE Trans. Autom.
Control, vol. 64, no. 6, pp. 2559–2566, Jun. 2019.

[37] M. Kotti and K. I. Diamantaras, ‘‘Efficient binary classification through
energy minimisation of slack variables,’’ Neurocomputing, vol. 148,
pp. 498–511, Jan. 2015.

[38] L. Fang, S. Vandewalle, and J. Meyers, ‘‘An SQP-based multiple shooting
algorithm for large-scale PDE-constrained optimal control problems,’’
J. Comput. Phys., vol. 477, Mar. 2023, Art. no. 111927.

[39] K. Nakamura, S. Soatto, and B.-W. Hong, ‘‘Block-cyclic stochastic
coordinate descent for deep neural networks,’’ Neural Netw., vol. 139,
pp. 348–357, Jul. 2021.

XIAOHONG WEN received the B.S. degree in
communication engineering from South-Central
University for Nationalities, Wuhan, China,
in 2021. She is currently pursuing the master’s
degree with the School of Microelectronics and
Communication Engineering, Chongqing Univer-
sity, Chongqing, China. Her research interests
include heterogeneous computing systems, dis-
tributed computing, parallel computing, and high-
performance computing.

GUOJIN LIU received the Ph.D. degree in commu-
nication and information systems from Chongqing
University, in 2009. He is currently an Asso-
ciate Professor with the School of Microelectron-
ics and Communication Engineering, Chongqing
University. Until now, he has submitted more than
30 technical papers on the relevant fields. His
research interests include digital image processing
and communication signal processing.

DEJIAN LI (Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1999 and
2002, respectively, where he is currently pursuing
the D.Eng. degree in electronic information.

He is currently the General Manager of the Dig-
ital IC Design Center, Beijing Smartchip Micro-
electronics Technology Company Ltd., China. His
research interests include reliable architectures for
industrial control chips, energy harvesting tech-

nologies for industrial sensor chips, and software-defined radios for indus-
trial field communications.

YANTAO YU (Member, IEEE) received the B.S.
(Hons.) and Ph.D. degrees in electrical engineer-
ing from the National University of Singapore,
Singapore, in 2004 and 2009, respectively.

From 2008 to 2009, he was with Motorola Elec-
tronics Pte. Ltd., Singapore, as an RF Engineer.
From 2009 to 2010, he was a Research Fellowwith
the National University of Singapore. He is cur-
rently an Associate Professor with the School of
Microelectronics and Communication Engineer-

ing, Chongqing University, China. His research interests include microwave
and RF communications and wireless communications.

HAISEN ZHAO received the B.S. degree in com-
puter application engineering from the Taiyuan
University of Technology, in 1992. He is currently
a Senior Engineer and the Manager of Infor-
mation Communication Company of Jinzhong
Power Supply Company of State Grid Shanxi
Province Electric Power Company. His research
interests include power information and commu-
nication technology, and power security control
technology.

TIANCONG HUANG received the B.S. and
M.S. degrees in welding technology and automa-
tion and the Ph.D. degree in circuits and sys-
tems from Chongqing University, Chongqing,
China, in 1993, 1996, and 2010, respectively.
His research interests include new generation
broadband mobile communication, power system
communication and informatization, special com-
munication, and emergency communication.

85746 VOLUME 11, 2023

