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ABSTRACT The number of ambient air quality monitoring stations is growing globally, driven by the
need to quantify potential health risks posed by air pollution on urban populations. Reliable, robust and
interoperable air quality monitoring requires observations with consistent accuracy and low amounts of
missing data. In practice, this is challenging to achieve due to the measurement limitations and complexity
of the physical phenomena. Data assimilation methods are widely used to fill missing or faulty observations
and improve data quality by combining observations from fixed air quality monitoring ground stations
with large-scale numerical models. A further advantage of data assimilation is that it can decrease costs by
reusing existing open government data. A key requirement for assimilation is that uncertainty estimates are
available for both measurements and model data. However, this poses a major bottleneck for widespread data
assimilation with open data because uncertainty estimates are frequently unavailable. Additional challenges
addressed in this work include the needs to impute missing data and process observations and model
simulation results at different temporal and spatial scales. To address these challenges, we have developed
novel, lightweight data assimilation algorithms based on recursive least-squares. The algorithms provide a
fully data-driven way to estimate unknown uncertainties by defining the weights of the input data sources
using least-squares data assimilation. The lightweight data assimilation algorithms can be executed to update
the current state estimate in near real-time scenarios to improve the accuracy, completeness, and precision
of the analysis estimate. A sensitivity analysis is conducted using synthetic data based on logistic maps with
increasing noise levels. In addition, the proposed assimilation algorithms are applied to large-scale open pan-
European air quality monitoring station data. The data were obtained from 86 stations for CO, 593 stations
for NO2, 462 stations for O3, 137 stations for SO2, 254 stations for PM2.5, and 445 stations for PM10 in
the period from 2022-01-27 01:00:00 to 2022-02-25 15:00:00 from the European Environmental Agency
(EEA) and corresponding simulation results from the System for Integrated modeLling of Atmospheric
composition (SILAM, global, version 5.7, FRC forecasts at the surface). The proposed lightweight data
assimilation methods were found suitable to improve the completeness (filling in all missing data), accuracy
(taken as the RMSE between the assimilation results and ground station observations) and precision for all of
the open air quality parameters evaluated in this work. Furthermore, the proposed lightweight assimilation
algorithms may also provide new and cost-effective methods to improve the data quality of the growing
number of Internet of Things (IoT) urban air quality sensors.

INDEX TERMS Ambient air quality, data assimilation, environmental monitoring, open data, uncertainty
quantification.
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approving it for publication was Geng-Ming Jiang .

I. INTRODUCTION
Cities across the globe rely on urban air quality (AQ) data to
develop strategies to reduce emissions, lower the population’s
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FIGURE 1. Map showing the ground station locations of the open access
air quality monitoring network of the European Environment Agency
(EEA) [11] used in this work for testing and validation. The map is
generated using [12], [13] and [14].

exposure to air pollution and assist in emergency response [1],
[2], [3], [4]. Urban ambient AQ monitoring can be performed
using ground station observations and numerical simulations.
Data assimilation (DA) algorithms combine both sources
and can substantially improve the accuracy and spatial cov-
erage of urban AQ monitoring. However, in practice, the
widespread use of DA remains highly challenging due to the
non-linear dynamics and spatio-temporal complexity of the
underlying physical phenomena [5].

The European Environment Agency (EEA) provides an
open access, pan-European database of urban AQmonitoring
station data (see Fig 1). These data can be combined with
numerical models of large-scale systems, including atmo-
spheric, oceanic, and land surface interactions using DA
methods [6], [7], [8], [9]. The choice of a particular DA
method depends largely on the case-specific observations and
models available. Considering AQ data, 3- and 4-dimensional
variational assimilation, Kalman and particle filters are the
most common. These DA methods solve inverse problems
and are thus mathematically similar to machine learning
(ML) optimization problems. The main difference between
the DA andMLmethods is that DA considers observation and
model uncertainties [10].When uncertainties are well charac-
terized, they can be used to reduce the overall uncertainty of
the system’s state when compared with only observation or
model data on their own [5].
DA methods also improve the quality of single-source

estimates by imputing the missing values and can increase
the accuracy and precision of predictions [5], [9], [10]. High-
density AQ monitoring networks are costly to purchase,
install and maintain, and therefore they remain scarce [15].
Recent advances in low-cost sensing now allow for the pos-
sibility of creating high-density AQ monitoring networks

based on the Internet of fixed and mobile Things (IoT) [15].
Currently, a variety of authors have proposed, developed and
tested low-cost AQ sensors [16], [17], [18].

In contrast to previous works focusing on the development
and implementation of new IoT-based sensor networks [4],
[15], we propose to reuse open government AQ data sources
for DA. Our concept has several benefits: it decreases the
costs of providing AQ monitoring by applying DA to openly
available large-scale numerical models of air pollution trans-
port and dispersion. Moreover, we demonstrate that large-
scale numerical model data from open numerical models such
as SILAM can be reused without explicit knowledge about
the model. In contrast to research performed in [19] and [20],
our work takes SILAM numerical model results as a source
of continuous spatial and temporal data, which can be used to
address a large amount of missing data without uncertainty
estimates from the EEA ground station observations. Since
numerical models provide globally complete spatial and tem-
poral coverage, they can provide estimates at locations where
observations from fixed or mobile AQmonitoring stations are
sparse or completely absent. Our proposed lightweight DA
methods are tested and validated on a pan-European scale,
making them suitable for large-scale mapping and decision-
making [1], [21].
The reuse of open data sources for DA is significantly

complicated by the missing uncertainty estimates, which are
required parameters for all the DA algorithms. In work [22],
we elaborate on why it is hardly possible to fully estimate
the uncertainty parameters and suggest a workaround by esti-
mating the uncertainty parameters recursively over time from
the input data values as regression errors (‘‘regression-based
uncertainties’’) and develop methods for their estimation.
The uncertainties are estimated using chained 1-order recur-
sive least squares (RLS) filters representing a 1-order linear
regression model the parameters of which are estimated by
the RLS algorithm from the observed data. The filters are
chained using the rules of error (uncertainty) propagation (as
described in [22]).
The reasoning behind this type of uncertainty estimation

is as follows: if the behaviour of the system changed at the
moment when a prediction should be made, then the model
fitted with the RLS algorithmmay not give an accurate result.
Rather, it would give a result that would be accurate for the
system that didn’t change. Therefore, for single sources, the
RLS filter is not used to predict the current value if it is
provided. Instead, the predictions under the assumption of
a steady state are used only if the current value is missing.
In other words, the imputed values are predicted for a system
the behaviour of which didn’t change since the last RLS
filter update. Instead, we use the errors from the steady-state
prediction as an uncertainty estimate. The more a system
changed at a certainmoment of time, the higher the error from
its steady state prediction is. And we claim that this property -
the error from the steady state prediction - can be used as a
data-driven uncertainty estimate for DA algorithms that use
uncertainties to determine the weights of input data sources.
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For the fair estimation of weights, the steady state modelling,
relative to which the errors are calculated, is suggested to be
executed uniformly for all the data sources. This means that
the parameters of the RLS filters are suggested to be the same,
which would standardize the procedure on a large scale.

We acknowledge that ‘‘uncertainty’’ and ‘‘error’’ are two
distinct concepts, and this work does not intend to conflate
them but rather demonstrate how the suggested regression-
based uncertainties could be used for the assimilation pro-
cedures to improve the data quality (accuracy, completeness,
precision) of single data sources. We intend to perform DA
for univariate streams of air pollution data by applying DA to
the most recent (current) value. We do not take into account
any other data or information such as information about
the SILAM model, distribution patterns of air pollutants,
or weather data assuming that it is unknown or unavailable.
In this study, we demonstrate that with our algorithms and
reuse of open data, it is still possible to improve the data qual-
ity of single open data sources only from the timestamped air
pollutant data values with their location coordinates, without
uncertainty estimates or additional information provided.

In this work, we do not intend to analyze the state of AQ
in Europe or validate the reported data. Instead, we provide
a method which reuses existing AQ monitoring station data
and numerical model data of Europe. As much of the exist-
ing ground station data has large amounts of missing data
and is without uncertainty estimates, our proposed methods
improve the quality of existing European AQ ground station
monitoring data by using DA with open numerical simu-
lations. In addition, our proposed methods can be applied
on a large number of low-power low-quality IoT-based AQ
monitoring stations. This allows for the reuse of open data
and may provide higher quality data to local and regional
decision-makers to improve the enforcement of European
environmental policy objectives.

This work is an extension of our previous work [22], com-
pared to which we add new algorithms demonstrating how
DAwithout known uncertainty estimates can be appliedwhen
not only the spatial resolution is different (DA3), but also the
temporal resolution of assimilated data sources is different
(on the example of hourly and daily values, DA4). We also
demonstrate the effect of reusing the previous analysis values
on the suggested DA (S-DA and S-DA4), perform sensitivity
analysis for a logistic map in different modes and different
noise (uncertainty) levels for all the algorithms and validate
all the algorithms using the data from urban background
stations throughout Europe.

The paper is structured as follows: Chapter II provides
an overview of previous works on urban AQ DA. Chap-
ter III describes the methods, the sources of observations
and numerical simulation data, the performance evaluation
criteria and sensitivity analysis using synthetic logistic map
data. Chapter IV presents the results and compares the per-
formance of the DA algorithms, and Chapter V discusses
the obtained results with a focus on the effects of spatial
and temporal scaling. Finally, Chapter VI provides concrete

suggestions for further applications, improvements, limita-
tions and a future outlook of the proposed lightweight DA
methods for open urban AQ monitoring systems.

II. RELATED WORK
Monitoring urban air quality (AQ) commonly involves
regression, interpolation and when numerical models are
available, data assimilation (DA) of the available data [23].
Within the European Union (EU), AQ time series and maps
are frequently generated by assimilation of observation and
model data using linear regression models followed by resid-
ual kriging [2]. However, the real-time estimation of urban
AQ data has substantial computational constraints. Due to
these constraints, conceptually and computationally simple,
or ‘‘lightweight’’ methods suitable for large spatially dis-
tributed data sets as well as for IoT sensors in smart cities
have become a focus of AQ assimilation research [23], [24].
Open AQ data often do not include uncertainty esti-

mates which are required inputs in most DA methods [5].
Neglecting uncertainty has led to fallacious risk assessments
and incorrect environmental policy decisions [1], [25], [26].
To address the lack of uncertainty data, we set out to create
a way to estimate the uncertainty. This poses a substan-
tial challenge, as AQ parameters vary widely over space
and time, and the mathematical methods used to quantify
uncertainty typically rely on long-term observations from
calibrated fixed-station observations [1], [3], [10], [22], [25].
In addition, the classical formulation of the propagation of
uncertainty requires sub-models for each system component
for bias correction and to account for the underlying variabil-
ity of the physical measurement processes themselves [27].
To obtain uncertainty estimates, previous works have

applied computationally-expensive ensemble methods which
perturb model parameters and input data within their uncer-
tainty ranges [1], [3]. Amajor drawback of ensemblemethods
is that due to their high computational costs, they remain
unsuitable for the generation of real-time air pollution fore-
casts for large open data sets of varying data quality as
well as for low-power IoT devices with limited communi-
cation bandwidth and computational power. In general, most
DAmethods require comprehensive uncertainty models [25],
which remain largely unsuitable for computationally con-
strained IoT devices. To address this, lightweight uncertainty
estimation methods using sequential inverse modelling have
been proposed to obtain the simple difference between the
regressed estimates and the actual values of the ground station
observations or numerical models [3], [16], [22].

In our previous work [22], the authors have pro-
posed lightweight least-squares DA (LSDA) regression-
based methods to assimilate open observation and numerical
model data for a single ground observation station in the
Tallinn metropolitan region. The methods impute missing
values, estimate uncertainties and provide a linear obser-
vation operator to calibrate observation and model data to
the same spatial scale. Our previous methods also provide
a standardized uncertainty estimate for open ground station
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observations and numerical model results which do not
include uncertainty data. The current work presents a major
advancement in the use of DA for open large-scale AQ moni-
toring data and includes new algorithms which can cope with
multiple temporal and spatial scales [26].

In contrast to our previous work, which made use of a
single observation station, we have substantially expanded
and improved our previous methods by including hourly pan-
European openly available urban background observations
obtained from the European Environment Agency (EEA).
In addition to increasing the background data to the pan-
European scale, we test and validate three new lightweight
DA algorithms; sequential single-source DA with unknown
uncertainty (S-DA), non-sequential and sequential DA for
two data sources of different spatial and temporal scales
(DA4 and S-DA4). The AQ monitoring stations used for
testing and validation in this work include 86 stations for
CO, 593 stations for NO2, 462 stations for O3, 137 stations
for SO2, 254 stations for PM2.5, and 445 stations for PM10.
The locations are shown in Fig 1), and the observations from
the location were assimilated with hourly and daily 0.2Â◦

numerical model simulation results obtained from the openly
available System for Integrated modeLling of Atmospheric
composition (SILAM, global, version 5.7, FRC forecasts at
the surface).
Contributions: The major contributions of this work are as

follows:

• We provide three new algorithms S-DA, DA4 and
S-DA4 for the lightweight assimilation of urban AQ data
with unknown uncertainty.

• We investigate how sequential estimation affects DA
performance at the pan-European scale using openly
available EEA and SILAM AQ data.

• We demonstrate how the proposed lightweight algo-
rithms can utilize data sources of higher temporal resolu-
tion, using hourly observations, to improve the estimates
from lower-resolution data sources based on daily model
simulations.

• We validate and illustrate the scalability of the three
proposedmethods using several hundred AQmonitoring
stations of open government observations provided by
the EEA and the numerical model, SILAM.

III. METHODS
A. OVERVIEW AND ABBREVIATIONS OF DATA
ASSIMILATION METHODS
The algorithms proposed in this work are based on the
least-squares data assimilation (LSDA) algorithm. Our pri-
mary contributions are to automatically impute missing
data, to calibrate the analysis between observations and
numerical models with different temporal and spatial scales
and to provide uncertainty estimates for datasets with
unknown uncertainties. In our previous work [22], the authors
have proposed the following algorithms for lightweight
DA:

• DA1: LSDA of 2 sources with known uncertainties. This
method corresponds to the classic LSDA approach and
serves as the basis for the proposed algorithms presented
in these works.

• DA2: LSDA with unknown uncertainties using data
from two sources. This algorithm requires that both data
sources have the same temporal and spatial scales.

• DA3: LSDA with unknown uncertainties using data
from two sources. Here, the requirement is that the same
temporal scales are used for the two sources, and spatial
calibration is applied using an observation operator to
assimilate the two sources at different spatial scales.

In the current work, we present three new LSDA-based
methods providing substantial improvements over our previ-
ous DA2 and DA3 methods:

• S-DA: Sequential LSDA of a single source and its pre-
dictions with unknown uncertainty. Compared to DA2
and DA3, S-DA does not require another data source.

• DA4: LSDA with unknown uncertainties using data
from two sources of different temporal and spatial
scales. Compared to DA2, which requires data of the
same temporal and spatial scales and compared to DA3,
which requires data of the same temporal and different
spatial scales, DA4 allows for the use of data sources
with both different temporal and spatial scales.

• S-DA4: Sequential LSDA with unknown uncertainties
using data from two sources of different temporal and
spatial scales. Compared to S-DA using the source data,
S-DA4 uses the assimilation results of DA4 and their
predictions.

B. DATA ASSIMILATION WITH UNKNOWN UNCERTAINTY
AND DIFFERENT SPATIAL SCALES
The methods developed in work [22] are designed to pre-
process data before applying the LSDA algorithm. All the
developed preprocessing methods are based on the first-order
recursive least squares (RLS) algorithm shown in Fig. 2 (a).
For each new data point, RLS sequentially fits the coefficients
of a first-order linear regression model w using inputs xin and
outputs xout by correcting an initial prediction xpred based on
the error ϵ from the actual value xout . The RLS outputs x ′

out
and ϵ′ depend on the regression model it was used for.

We suggest applying two RLS-based first-order regression
models, as each model is well-suited for different purposes.
The first model is an RLS-based first-order autoregression
AR(1) model (see Fig. 2 (b)) to estimate initial uncertainties
at the given temporal and spatial scales. At time step t , the
AR(1) model fits a past value x[t − 1] to a current value
x[t]. If x[t] is missing, the RLS prediction xpred is used to
impute the missing value, otherwise x[t] is used as-is, and the
error ϵ from the prediction is taken as the regression-based
uncertainty estimate. AR(1) models are applied to each data
source.

The second model is an RLS-based first-order regression
R(1) model for spatial calibration (see Fig. 2 (c)) of two data
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sources that takes the outputs of AR(1) models as inputs and
calibrates one data source x1 to the other data source with
different spatial scale, x2 by RLS-based fitting. The calibrated
input value, xpred is used instead of x1 LSDA, and the AR(1)
error ϵ1 is scaled by the rules of uncertainty propagation and
augmented with the R(1) error ϵ.
The DA2 algorithm was based solely on AR(1) models,

whereas the DA3 algorithm uses both AR(1) and R(1) mod-
els. We found that both models are required when implement-
ingDA3 in order to provide one data sourcewith an additional
spatial calibration step. Detailed explanations of the DA1,
DA2 and DA3 algorithms including their pseudocode can be
found in [22].

C. SEQUENTIAL DATA ASSIMILATION WITH MISSING
UNCERTAINTY, DIFFERENT SPATIAL AND TEMPORAL
SCALES
In this work, we extend the previously developed methods
with temporal calibration and reuse of the previously esti-
mated (at time step t− 1) analysis values for DA (see Fig. 3).

Here, we restrict the temporal calibration to hourly and
daily values. However, the same approach can be applied
to other temporal scales without a loss of generality. As an
example, when hourly outputs are desired, at least one of the
data sources must be hourly. We also wish to point out that
similar procedures can be applied to other temporal scales.
If the input temporal scales are hourly and monthly, then
the number of hours in a month should be used instead
of 24 hours in the recursive average estimator. If the input
temporal scales are monthly and daily, then the number of
days in a month should be used instead, or both should be
transformed into hourly supplied data. In Fig. 3 (a, left),
the hourly data are transformed to daily data by recursively
obtaining a full-day (24-hour) daily average of values and
errors, which is reset every 24 hours. The algorithm for
recursive daily averages is further outlined in Algorithm 1.
To transform daily data xd1 into hourly data xh1 (see Fig. 3

(a, right)), we suggest fitting an RLS-based first-order model
for the hourly data source xh2 . The input of the model is
daily values xd2 obtained with the recursive daily average esti-
mator RD(), and the output is hourly valuesxh2 . Afterwards,
the coefficients of the model for x2 are used to predict xh1
from xd1 . Similarly to the spatial alignment model, the output
uncertainty ϵh1 is taken as the simple sum of the scaled input
uncertainty ϵd1 and the model prediction error ϵ.
The DA outputs (also commonly referred to as analy-

sis values) can be fitted autoregressively to assimilate the
analysis predictions with the obtained data. In Fig. 3 (b),
we demonstrate the use of an RLS-based AR(1) model for
sequential estimation using the outputs of LSDA xa[t − 1]
at the previous time step, t − 1 as the input and the analysis
value, xa[t] as the output to predict the next analysis value.
The RLS-based AR(1) model for sequential estimation

enables a sequential single-source LSDA as shown in
Fig. 4 (a) S-DA algorithm. Furthermore, in this work the

Algorithm 1 Recursive Daily Average Estimator

xh - current average data value, ϵh - current average error
(uncertainty), xd - last full-day daily average data value, ϵd

- last full-day daily average error (uncertainty),N - counter
of previous hours (reset after each 24 hour interval).
procedure INIT( )

xh, ϵh, xd , ϵd = 0, 0, 0, 0
N = 0

end procedure
procedure RESET( )

xh, ϵh = 0, 0
N = 0

end procedure
procedure UPDATE(xhnew, ϵ

h
new)

if N == 24 then
xd = xh

ϵd = ϵh

RESET ()
end if
N = N + 1
xh =

1
N · (xh · (N − 1) + xhnew)

ϵh =
1
N · (ϵh · (N − 1) + ϵhnew)

end procedure
procedure RD( )

INIT()
end procedure

S-DA algorithm is compared with the previously suggested
DA3 algorithm that uses 2 data sources (see Fig. 4 (b)) for
LSDA with respect to the reference data source (data source
of spatial scale S).

Models for temporal alignment are integrated into the
DA4 algorithm, enabling LSDA with unknown uncertainties
including both temporal and spatial calibration. Overall, DA4
is similar to DA3 but adds the temporal calibration (align-
ment) step after the spatial calibration, as shown in Fig. 5 (a).
When used the output of DA4 instead of AR(1)-preprocessed
data taken directly from a source, S-DA shown in Fig. 4 (a)
is transformed into S-DA4, as shown in Fig. 5 (b).
The performance of DA4 and S-DA4 algorithms is com-

pared by transforming one of the hourly data sources to daily
intervals by averaging over a 24-hour period. Afterwards, the
original hourly values are assimilated and used as a reference.
The daily data are assimilated with the hourly data from the
other data source and compared to the hourly assimilation
results.

D. PARAMETERS AND SENSITIVITY ANALYSIS
DA algorithms often require continuous data without miss-
ing values, uncertainties (error and noise covariance matri-
ces), state transition and observations operators, as well as
additional algorithm-specific parameters (e.g. the number of
particles for particle filters, number of ensemble members
for ensemble filters, among others) [28], [29]. Unfortunately,
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FIGURE 2. Recursive algorithms for least-squares data assimilation (LSDA) from [22]. (a) recursive least squares (RLS)-based first-order model used as a
core for data-driven uncertainty estimation and spatio-temporal alignment (calibration). (b) RLS-based first-order autoregression AR(1) model for
sequential imputation and uncertainty estimation using the AR(1) model. (c) RLS-based first-order regression R(1) model for spatial alignment
(calibration) of xin with the scales of xout , considering the errors xin and ϵ from the AR(1) and R(1) models.

open AQ datasets and IoT sensors provide only the physical
parameter values without sufficient information to quickly
and efficiently determine the necessary additional parameters
to carry out DA [17], [21].

With the goal to enable the use of DA to improve the
accuracy, completeness and precision of the single input data
sources, we propose methods estimating the uncertainties
recursively over time from the input data values as regression
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FIGURE 3. The recursive data-driven preprocessing algorithms for least-squares data assimilation (LSDA) proposed in this work. (a) models of temporal
alignment (calibration) of hourly xh and daily xd data. (b) RLS-based first-order regression model for sequential estimation using the previously
estimated analysis values, xa[t − 1] as input and the newly obtained data, xt as output.

errors (‘‘regression-based uncertainties’’). We do not intend
to conflate the two distinct concepts of ‘‘uncertainty’’ and
‘‘error’’. Instead, we suggest an alternative to theoretical
uncertainty estimates specifically for the cases of DA and
demonstrate that the suggested parameters in conjunction
with DA algorithms are capable of improving the data quality
(accuracy, completeness, precision) of single data sources.

The uncertainties are estimated using chained 1-order RLS
filters, creating a 1-order linear regression model whose
parameters are estimated by the RLS algorithm using ground
station observations. The filters are chained using the rules of
the propagation of uncertainty as described in [22]. To min-
imize the number of parameters, we use a classical RLS
algorithm for univariate data sources. The parameters are
filter coefficients, w which consist of a 2 × 1 vector of the
linear model coefficients estimated by the algorithm as well

as an inverse covariance matrix, P (2× 2) which weights the
previous contributions. Since there is no prior information
available, the classical implementation of RLS initializes the
weights to zero to avoid any bias in the estimate of the filter
coefficients and the matrix P to the identity matrix that per-
forms a linear transformation and makes all past observations
weighted equally regardless of their time index. We wish to
point out that this common practice may result in a slower
convergence compared to the initialization with other param-
eters based on the prior knowledge or sensitivity analysis of
each particular input signal. However, their identification and
optimization are not the objective of the current work. Our
approach is in line with the classical RLS algorithm without
a forgetting factor, meaning that all the past observations are
weighted equally in the estimate of the filter coefficients and
that the regularization parameter is set to zero.
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FIGURE 4. Validated data assimilation (DA) algorithms: (a) 1-source sequential least-squares DA (S-DA) using AR(1) model from Fig. 3 (b) and (b) 2-source
least-squares DA with unknown uncertainties and different spatial scales (DA3, previously suggested in work [22]).

The application of the algorithms varies depending on
the spatial and/or temporal scales (need to calibrate the
data in space and/or time). Thus, each of the developed
algorithms corresponds to a scenario of matching or non-
matching scales, as described in Chapter IIIA. Each of
the scenarios varies in the estimation of uncertainty, and
after the uncertainties are estimated, the best-performing
DA algorithm should be applied. We have chosen LSDA
since it requires only the uncertainties as parameters and it
is lightweight enough to perform DA in real-time and on
low-powered IoT devices in the future. Nevertheless, if the
parameters for other algorithms are known, the estimated
uncertainties can be used as input for the other DA algorithms

such as Kalman or particle filters with low numbers of
particles (e.g. 100).

The performance of DA algorithms (accuracy of the
analysis results) largely depends on the optimality of pro-
vided parameters, but as mentioned above, the parameters
are not always known in advance for real-world real-time
implementation.

Nevertheless, the tests can also be carried out using syn-
thetically generated datasets. For this, we perform a sensi-
tivity analysis using one-dimensional datasets of a logistic
map [30] xn+1 = r · xn · (1 − xn) in 3 modes: periodic
(r = 3.5, x0 = 0.5), transient (r = 3, x0 = 0.75) and
chaotic (r = 4, x0 = 0.1). Since the proposed algorithms
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FIGURE 5. Validated data assimilation (DA) algorithms: (a) 2-source least-squares DA with unknown uncertainties, different temporal and spatial scales
(DA4) and (b) 2-source sequential DA4 (S-DA4).

do not require the provision of any parameters (except the
data values), we examine the performance using the data
of different uncertainty (noise) levels. To generate the data
sources for the DA algorithms, we apply Gaussian noise
of zero mean and standard deviation σ to a clean signal
of 100 iterations. The first data source is generated with
a fixed amount of noise σ = 0.1 and the second data
source with an increasing amount of noise from σ = 0.1
to σ = 1.

The plots for all the scenarios (DA2, DA3, S-DA, DA4 and
S-DA4) are presented in Supplementary material (see Fig. 10
for DA2, DA3 and S-DA, Fig. 11 for DA4 and Fig. 12 for
S-DA4). The results include the plots of increases in accuracy
with respect to the amount of noise (uncertainty) in the second
data source. The results in the plots are arranged in columns,
each column corresponds to the same mode of a logistic map,
and each row to the same scenario (DA2, DA3, S-DA, DA4,
and S-DA4 of different window sizes (M=2, M=5, M=10).
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The window size corresponds to the temporal resolution:
when assimilating daily and hourly data, the window size is
M=24 (the number of hours). Fig. 6 demonstrates an example
for DA3.

The scenarios vary in purpose: S-DA is suitable when the
second data source is not provided, DA2: when both data
sources match in scales, represent the same variables and do
not require calibration, DA3: when any of the data sources
requires calibration (e.g. spatial calibration) to match the
second data source, DA4 or S-DA4: when the data sources
have a different temporal resolution (e.g. hourly and daily)
and need alignment to produce the analysis result. No matter
what the input uncertainties are, if any calibration or mapping
procedure is performed, the rules of uncertainty propagation
should be applied to update the final uncertainty estimate
correspondingly, which creates the technical differences in
the procedures of any DA algorithms (LSDA or any other DA
algorithm) performed in DA2, DA3, S-DA, DA4 or S-DA4
scenarios.

The proposed by the authors algorithms use the LSDA
procedure for DA and are named after the name of a sce-
nario: DA2, DA3, S-DA, DA4 or S-DA4. For the logistic
map test cases, the applied noise levels (standard deviations
σ of Gaussian distributions) are known and can serve as
uncertainty parameters. Therefore, we can perform LSDA
with known uncertainties (in our notation in Supplementary
material, LSDA for DA2 (also DA1), LSDA for DA3, LSDA
for S-DA, LSDA for DA4, and LSDA for S-DA4). The
difference between ‘‘LSDA for DA3’’ (LSDA with known
uncertainties, the second data source is calibrated to the first)
and ‘‘DA3’’ (LSDA with unknown uncertainties, the second
data source is calibrated to the first) is in the provision of
input uncertainties: we use standard deviations σ of Gaussian
distributions of the applied noise as known uncertainties,
whereas our algorithms estimate uncertainties not knowing
about the σ uncertainties using the regression procedures
described above.

At the same time, instead of LSDA, other lightweight
methods can be used, e.g. ensemble Kalman filter
(EnKF) [28] or particle filter (PF) [29]. EnKF updates the
state estimate by propagating a set of model state vectors
(ensemble members) through time and using the observations
to correct the ensemble’s mean and covariance. PF uses a set
of weighted particles to represent the probability distribution
of the state variables. The particles are sampled from the
prior distribution and are propagated through the transition
function to obtain a posterior distribution. The particles are
then resampled based on their weights, which are computed
using the likelihood function to account for the observation
uncertainty. Both filters provide a flexible DA framework,
but the quality of the estimates depends on the number of
ensemble members or particles used and the choice of the
weighting scheme. In general, larger numbers of ensemble
members and particles increase the accuracy at the cost of
more calculations, limiting the use of these methods for
computationally limited applications such as IoT sensors.

To demonstrate the performance of lightweight versions of
EnKF and PF assimilations, we use an EnKF with 10 ensem-
ble members and a PF with 100 particles. Models of this size
are feasible to run on IoT devices and thus these models
provide a realistic comparison of the two established DA
methods (EnKF, PF) against those proposed in this work (S-
DA, DA4 and S-DA4).

For each of the DA cases, the source is corrupted with noise
of increasing amounts to generate progressively less accurate
sources. The performance is assessed using the root mean
squared error (RMSE) in relation to the ideal, zero-noise
signal. The change in accuracy after assimilation is estimated

as a percentage: (1 −
RMSE(true, assimilated)

RMSE(true, less accurate source) ) · 100%.
For each of the logistic map test cases, we assimilate with a

data source of the fixed lowest amount of noise, we expect the
sources of the lowest uncertainty to result in lower increases
in accuracy and the sources of the highest uncertainty to have
the largest increases in accuracy after assimilation. The goal
of the analysis is to compare LSDA with known uncertain-
ties to the author’s proposed LSDA methods with unknown
uncertainties. For each of the test cases, 4 algorithms were
compared against each other: LSDA for one of the scenarios
(DA2, DA3, S-DA, DA4, or S-DA4) with known uncertain-
ties σ , LSDA with unknown uncertainties. The scenarios
are named based on the classical filter type (EnKF or PF),
both of which are run using unknown uncertainties. For each
noise level, the test is repeated 100 times, and the mean
increase in accuracy is plotted as the ensemble average of
these 100 repetitions.

The results show that for all the modes of the logistic
map, the algorithms using a single source (S-DA) scenario
perform worse than in scenarios with 2 data sources. For
periodic and chaotic modes of the logistic map test cases,
LSDA with known uncertainties outperforms the suggested
LSDA with unknown uncertainties by around 20%, EnKF:
25%, and PF: 40% of increase in accuracy. For the tran-
sient mode, the results of LSDA with known uncertainties,
LSDAwith unknown uncertainties and EnKF provide similar
results, varying within 5-8% with LSDA using unknown
uncertainties. Without calibration (scenario DA2), PF perfor-
mance decreases by nearly a factor of two when compared to
the LSDA and EnKF algorithms. With calibration (scenario
DA3), the performance of PF becomes closer to the other
3 algorithms, and consistently under-performs with a margin
of around 5%. Considering the S-DA scenario, PF and LSDA
with unknown uncertainties were found to be the two best
performing algorithms.

Since DA4 and S-DA4 are designed to handle data of
different temporal scales, their performance is tested for
different data resolutions, defined by the window size M:
the lower the window size, the higher the resolution of the
data. The averaging mechanism is used only to generate the
data and does not affect the execution of algorithms. For
all the algorithms, the lowering of the resolution of data
slightly drops the increase in accuracy within 15% fromM=2
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FIGURE 6. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labeled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of ensemble
members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenario DA3 (with calibration).
Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ . For the assimilation of 2 data
sources, the first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1.
Each experiment is performed 100 times, and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

to M=10. Nevertheless, the ranking of the algorithms per
mode in DA4 is as follows: in the periodic mode, LSDA
with known uncertainties outperformed LSDAwith unknown
uncertainties by around 10%, EnKF by 20%, and PF by 30%;
in the chaotic mode, LSDA with known uncertainties also
outperforms the rest by 20%, 30%, 40% correspondingly in
the same order, but in the transient mode, LSDA with known
uncertainties demonstrated theworst performancewhen com-
pared to the other three algorithms.

Compared to the DA4 scenario, S-DA4 does not introduce
a significant increase in accuracy for LSDA with unknown
uncertainties. The observed reduction in accuracy increases
by around 10% in the periodic mode and by around 20% in
the chaotic mode compared to DA4. In the transient mode, all
the other algorithms demonstrate a similar performance for
both DA4 and S-DA4 with LSDA with known uncertainties
being closer to the rest of the algorithms in performance. It is
worth noting that the implementation of both the EnKF and
PF methods require knowledge of optimal parameters and
therefore themost accurate results using ensemble algorithms
(EnKF or PF) may not be achievable when they are applied
as lightweight DA algorithms.

Overall, the results show that the introduction of the
sequential loop for S-DA4 did not provide a substantial gain
in performance when compared to the DA4 algorithm for the
logistic map test cases. Since DA4 has a lower computational
complexity, it should therefore be chosen over S-DA4 in
this example. The comparison of algorithms’ performance in
DA4 or S-DA4 scenarios to DA2, DA3, or S-DA scenarios
was not conducted because each algorithm is designed to
handle different types of data sources. Thus, there is no need
to apply DA4 to the data of the same temporal resolution,
as the mapping between data sources is already handled by
the calibration operator in DA3. When both data sources

measure or model the state in the same manner (e.g. 2 sensors
measuring the concentration of an air pollutant, 2 accurate
logistic map signals corrupted by the noise resulting in differ-
ent precision), DA3 is not expected to provide a significant
boost in accuracy compared to DA2, as is illustrated when
comparing the DA2 and DA3 logistic map test cases.

The sensitivity analysis based on the logistic map scenarios
shows that LSDA, EnKF and PF are suitable for lightweight
assimilation. In general, the methods were able to cope with
increasing level of random noise. We wish to point out that,
in general, the results obtained by assimilating two data
sources of σ1 = 0.1 and σ2 = 0.1 are less accurate than those
obtained by assimilating two data sources of σ1 = 0.1 and
σ2 = 1. The assimilation of 2 data sources with overall lower
uncertainty would typically result in a more accurate estimate
than the assimilation of data sources of higher uncertainty.
This point is crucial when applying lightweight DA to cases
where the data source quality is mixed: for example, one
of the sources provides more accurate data, but the second
source has less missing data, or when the quality of any of the
data sources changes over time. In order to further investigate
the performance of the proposed lightweight DA methods
for sources with unknown uncertainty, open air quality data
are taken from pan-European sources and assimilated with a
global numerical model at a large scale.

E. DATA SOURCES
In this work, we have assimilated AQ data from the following
open data sources: System for IntegratedmodeLling ofAtmo-
spheric coMposition (SILAM, global, version 5.7, FRC fore-
casts at the surface, hourly 0.2Â◦ model grid) and European
Environment Agency (EEA) Air Quality data (European AQ
data, hourly fixed point surface observations) in the period
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from 2022-01-27 01:00:00 to 2022-02-25 15:00:00. When
generating the daily values from the hourly data, we retrieve
the arithmetic averages of hourly values within the same day.
The AQ data include the concentrations of the following air
pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), car-
bon monoxide (CO) and ozone (O3), and particulate matter
(PM2.5 and PM10).

SILAM generates global 4-day forecasts of AQ data
including SO2, NO, NO2, O3, PM2.5, and PM10. The results
are updated daily and stored in a 30-day publicly available
archive [31]. The samemodel was used for our previouswork,
albeit for a single ground observation station [22].

The European AQ dataset used in this work includes AQ
data reported by the European Union (EU) member states,
meta-information on the monitoring networks, stations and
measurements, and assessment settings [11]. Stations were
filtered by the AQ station type (‘‘background’’) and station
area (‘‘urban’’). For validation purposes, we have also chosen
stations that have less than 20% of missing data. The filter
criteria resulted in 86 stations for CO, 593 stations for NO2,
462 stations for O3, 137 stations for SO2, 254 stations for
PM2.5, and 445 stations for PM10. The individual station
locations and correspondingAQvariables are shown in Fig. 1.
The data from each of the stations are assimilated with
simulation results obtained from the corresponding SILAM
numerical model grid cell.

The data used for the experiments as well as the
source code of the algorithms are available via GitHub by
https://github.com/effie-ms/rls-assimilation and distributed
under the MIT license.

IV. RESULTS
A. COMPUTATIONAL COMPLEXITY AND PERFORMANCE
The proposed algorithms are based on a conventional first-
order RLS filter with O(L2) computational complexity per
iteration, where L is the filter length (L = 2). The com-
plexity can be further reduced using other versions of RLS
filters, see [32] for a more detailed overview. DA2 and S-DA
use 2 RLS filters, DA3: 3, DA4: 4, S-DA4: 5.

The computational performance on a standard desktop PC
was assessed using an Intel(R) Core(TM) i7-8565U CPU @
1.80GHz x 8with 16GbRAM. The execution times per single
iteration of the algorithm are provided in Table 1. Note that
this baseline is only used to provide a rough estimate of the
computational performance of the lightweight assimilation
methods.

B. VALIDATION
To compare the developed algorithms, the results obtained
at each of the individual European AQ monitoring stations
were pooled and averaged across all sites. Two different sce-
narios were compared: S-DA and DA3 and DA4 and S-DA4.
Examples of results for selected EEAAQmonitoring stations
are presented in Fig. 7 (DA3 and S-DA, calibration to station

TABLE 1. Execution time of 1 iteration of algorithms. The tests were
performed on a computer with Intel(R) Core(TM) i7-8565U CPU @
1.80GHz × 8 and 16Gb RAM.

observations) and Fig. 8 (DA4 and S-DA4, calibration to
model simulations).

First, we compare the performance of algorithms S-DA
(sequential 1-source LSDA) and DA3 (non-sequential
2-source LSDA) as illustrated in Fig. 4. Hourly observations
were taken from the EEA AQ dataset and assimilated with
hourly SILAM simulation data. To compare performance, the
root mean squared error (RMSE, see Equation (1)) and mean
absolute uncertainty (MAU, see Equation (2)) were used.

RMSE(x1; x2) =

√√√√1
n

n∑
i=1

(x1[i] − x2[i])2, (1)

where x1, x2 are vectors of data values of length n from 2 data
sources.

MAU (ϵ) =
1
n

n∑
i=1

|ϵ[i]|, (2)

where ϵ is a vector of regression-based uncertainties of
length n.

As a reference data source for S-DA and DA3, we chose
station observations (xobs). Here, the S-DA assimilated station
observations and analysis predictions of station observations
and RMSE were calculated between the analysis values
xa(S−DA) and input station observations xobs. For DA3, the
spatial scale of interest S is the scale of station observations,
meaning that model estimates are calibrated to the scale of
station observations and RMSE is also calculated between
the analysis values xa(DA3) and input station observations xobs.
After calculating RMSE and MAU for each station using the
S-DA and DA3 algorithm, we obtained ratios for RMSE (see
(3)) and MAU (see (4)) for each station.

rRMSE =
RMSE(xa(S−DA); xobs)

RMSE(xa(DA3); xobs)
, (3)

rMAU =
MAU (ϵa(S−DA))

MAU (ϵa(DA3))
, (4)

where ϵ is a vector of uncertainties of length n.
When dividing the calculated RMSE and MAU metrics of

S-DA by the metrics of DA3, if rRMSE is 1 or larger, then the
performance is the same, or S − DA results in a higher error
as compared to DA3. Otherwise, DA3 had the larger error.
If rMAU is 1 or larger, then the uncertainties are the same for
both algorithms or S−DA has a higher uncertainty thanDA3,
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FIGURE 7. Time series plots of input data sources and assimilated values for CO, SO2, PM2.5, NO2, O3, PM10 AQ variables. ‘‘Station’’ corresponds to
observations made by the AQ monitoring stations in Madrid (Spain, CO, SO2), Peristeri (Athens, Greece, O3, NO2), Paris (France, PM2.5, PM10).
‘‘Model’’ refers to the SILAM simulations, ‘‘DA3 (Model → Station)’’, applied DA3 using a calibration of hourly model simulations to hourly station
observations. ‘‘Sequential DA’’, used algorithm S-DA for hourly station observations. The shown time interval is the first week of the interval used for
experiments: from 2022-01-27 01:00:00 to 2022-02-03 00:00:00.

otherwise DA3 results in a higher uncertainty. The results of
the comparison of S-DA and DA3 are presented in Table 2.

Overall, the RMSE ratios show that S-DA results in a
slightly higher error from the reference compared to DA3.
However, the MAU ratios demonstrate that S-DA can pro-
vide a lower uncertainty than DA3. Thus, the use of two
sources results in a slightly lower error from the reference,
whereas sequential estimation resulted in an overall lower
uncertainty.

Secondly, we compared the DA4 and S-DA4 algorithms as
illustrated in Fig. 5. Here, two data sources (station obser-
vations and SILAM model estimations) were used to see
whether sequential estimation for 2 data sources can improve
the results of DA4. The DA4 algorithm assimilates data
of both different temporal and spatial scales. For this test,
we replaced hourly SILAM estimations, xhm with the last
available daily averages from the previous day, xdm. We define
hourly as the temporal scale of interest, T and the spatial
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FIGURE 8. Time series plots of the input data and assimilated values for CO, SO2, PM2.5, NO2, O3, PM10 AQ variables. ‘‘Station’’ corresponds to
observations made by the AQ monitoring stations in Madrid (Spain, CO, SO2), Peristeri (Athens, Greece, O3, NO2), Paris (France, PM2.5, PM10).
‘‘Model’’ - SILAM simulations, ‘‘DA4 (Station → Model)’’ refers to the DA4 algorithm with calibration of hourly station observations to daily model
simulations, ‘‘Sequential DA4 (Station → Model)’’ shows results from S-DA4 based on the calibration of hourly station observations to daily model
simulations. The time interval is the first week of the interval used for experiments: from 2022-01-27 01:00:00 to 2022-02-03 00:00:00.

scale of SILAM as the spatial scale of interest, S. In this
case, using DA4, station observations were spatially cali-
brated to the scale of SILAM (as in DA3) and included
the temporal alignment of daily SILAM to hourly station
observations to obtain hourly SILAM values. The recursive
daily average estimator based on RLS are shown in Fig. 3 (a).
The motivation of this experiment was to test the suggested
DA algorithms to improve the accuracy of hourly SILAM

results given daily SILAM values and hourly ground station
observations.

The tests were performed for each of the European AQ
stations, and the RMSE was calculated with respect to the
reference hourly model values following Equation (5). In this
case, when the ratios are higher than 1, the errors between the
hourly assimilated and hourly reference values are larger than
the errors obtained between the daily averages and hourly

VOLUME 11, 2023 84683



L. Miasayedava et al.: Lightweight Open Data Assimilation of Pan-European Urban Air Quality

TABLE 2. Comparison of RMSE and MAU for S-DA and DA3 algorithms by
S-DA/DA3 ratios for hourly station observations as reference. The mean
ratio value (mean), standard deviation (sd), minimum and maximum
values of ratios (min and max ) and the number of stations (N).

TABLE 3. Comparison of RMSE and MAU for the S-DA4 and DA4
algorithms using ratios based on the hourly SILAM simulations as
reference. The mean ratio value (mean), standard deviation (sd),
minimum and maximum values of ratios (min and max and the number
of stations (N).

reference values. This indicates that the calibration did not
substantially improve the assimilation results.

rd→h
RMSE =

RMSE(xa; xhm)

RMSE(xdm; xhm)
, (5)

where xa are analysis values for the DA4 and S-DA4 algo-
rithms.

The MAU ratios rd→h
MAU are calculated similarly to

Equation (4), but by dividing MAU (ϵa(S−DA4)) by
MAU (ϵa(DA4)).

The results of the comparison of S-DA4 and DA4 are
presented in Table 3.

Table 3 indicates that both DA4 and S-DA4 can result in
higher accuracy (lower overall error) than the daily refer-
ence when compared to the hourly reference. However, the
algorithms with the lowest RMSE ratio vary depending on
the AQ variable. In particular, DA4 was found most suitable

FIGURE 9. Demonstration of situations when S-DA4 can outperform DA4.
‘‘Station’’ corresponds to observations made by the Nisko AQ monitoring
station (Nisko, Poland), ‘‘Model (hourly)’’, hourly SILAM simulations, ‘‘DA4
(Station → Model)’’, algorithm DA4 with calibration of hourly station
observations to daily model simulations, ‘‘Sequential DA4 (Station →

Model)’’, algorithm S-DA4 with calibration of hourly station observations
to daily model simulations. ‘‘Model (hourly)’’ are target values used for
validation when performing DA with calibration of hourly station
observations to daily model simulations. When spikes occur in ‘‘Station’’,
but not in ‘‘Model’’ data, S-DA4 smooths the analysis value more than
DA4 resulting in a lower error from the target value (‘‘Model (hourly)’’)
and consequently higher accuracy.

for PM2.5, NO2, O3 and PM10 and S-DA4 for CO and SO2.
It should also be noted that the uncertainties of S-DA4 were
found to be significantly lower than the uncertainties of
DA4. Similar tests with additional observations and numer-
ical models can be obtained using the open code repository
provided in this work.

V. DISCUSSION
Algorithm performance was found to correspond to the spe-
cific temporal and spatial scales of the assimilation output.
In particular, if only one data source is available, S-DA is
recommended for use. In cases where the temporal and spatial
scales of the data sources are the same, DA2 can be applied.
If the spatial scales are different, DA3 was applied for data
of the same temporal scales and DA4 (or S-DA) for data of
different temporal scales. The current implementation of the
algorithms serves as a demonstration of how to assimilate
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FIGURE 10. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios DA2
(without calibration), DA3 (with calibration) and S-DA (sequential assimilation for a single data source) for the logistic map in 3 different modes.
Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ . For the assimilation of 2 data
sources, the first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1.
S-DA performs assimilation for a single data source of an increasing amount of noise. Each experiment is performed 100 times, and the mean value of
the increase in accuracy compared to the accuracy of the second data source is plotted.

data of two data sources, leaving the extension of more than
two sources for future research. The current code implemen-
tation of the algorithms covers only hourly and daily temporal
scales, however, additional scales could be implemented and
tested as needed by users after modification of the provided
open source code.

When assimilating data from 2 data sources, the required
temporal and spatial scales (resolution) must be represented
by one of the data sources, especially when obtaining anal-
yses of a higher resolution. For example, when assimilating
grids of 0.2Â◦ and 0.4Â◦ spatial resolution, the algorithms
allow only for retrieving analyses of 0.2Â◦ or 0.4Â◦ spatial
resolution, unless explicitly coding a translation operator to
other resolutions. The same applies to both temporal and
spatial scales.

When choosing between algorithms DA4 and S-DA4,
both demonstrated similar overall performance, but DA4 is
computationally more lightweight compared to S-DA4. Nev-
ertheless, S-DA4 can provide a higher accuracy compared to

DA4 when a calibrated data source has rapid changes with
high magnitudes which are not captured by the reference
data source. In this case, when assimilating with a previous
analysis value after applying DA4 (S-DA4) the analysis was
found to frequently generate short-duration peaks of at lower
amplitudes. As an example, in Fig. 9, the station observations
are found to produce rapid changes of a high magnitude, but
these events are not well-resolved by the numerical model
simulations. Since model simulations serve as a reference
data source for these analyses and station observations are
calibrated to model simulations, the analysis peaks from both
DA4 and S-DA4 exhibit a lowermagnitude. Themagnitude of
S-DA4 was lower than that of DA4, making the result closer
to the reference source and consequently of higher accuracy.

VI. CONCLUSION
The growing number of openly available AQ data
require improved and standardized methods for uncer-
tainty estimation as well as spatio-temporal calibration to
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FIGURE 11. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios DA4 for the
logistic map in 3 different modes. Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ .
The first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1. The
temporal resolution of the second data source is also decreased within windows of size M=2, M=5 and M=10. Each experiment is performed 100 times,
and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

enable data assimilation. In our work, we have developed
a lightweight method to pre-process data for least-squares
data assimilation in a fully data-driven way. Compared to our
previous work on a single station [22], we extend lightweight
assimilation methods to include temporal calibration and
sequential estimation and validate the proposed methods
using the data from urban AQmonitoring stations throughout
Europe.

To evaluate algorithmic performance, we assessed the
errors of the assimilated values from the ground station
reference sources as well as their corresponding uncertain-
ties. First, we compared a single-source sequential (S-DA)
algorithm against a two-source non-sequential with differ-
ent spatial scales (DA3) algorithm. This error comparison
indicated that DA3 can reduce the error from the ground
station reference value, but exhibited higher uncertainties
when compared with the canonical S-DA algorithm. Sec-
ondly, we compared two-source non-sequential (DA4) and
sequential (S-DA4) algorithms with different temporal and
spatial scales. The comparison showed that both DA4 and

S-DA4 results were more accurate with respect to the hourly
reference as compared to daily reference values.

Using the openly available EEA AQ ground station
observations and SILAM numerical simulation results, the
proposed lightweight assimilation methods were shown to
improve the overall quality of single-source estimates. In par-
ticular, the proposed methods were found to improve the
completeness, accuracy and precision of theAQobservations.
This study also demonstrates that the reuse of open data with-
out uncertainty could become a cost-efficient alternative to
the deployment of additional urban AQ monitoring stations.

In Fig. 7, the differences between the model and obser-
vations are expected due to the significant scale differences
between the values from the SILAM grid forecasts and fixed-
point observations. As a result, local sources of pollution such
as traffic congestion or industrial emissions observed locally
might not be included in the model forecasts. Additionally,
the observations themselves may not be perfectly accurate
due to instrument errors or meteorological conditions. We do
not intend to draw definitive conclusions about the validity
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FIGURE 12. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios S-DA4 for
the logistic map in 3 different modes. Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation
σ . The first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1. The
temporal resolution of the second data source is also decreased within windows of size M=2, M=5 and M=10. Each experiment is performed 100 times,
and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

of the data from any of the data sources where there are
significant differences, as we are reusing open data collected
or generated by external sources. Moreover, we do not have
detailed information on the true reasons for the drastic differ-
ences observed.

A univariate state-space model was applied to create a
dynamic linear model of a system or process in which a
single variable (e.g. air pollutants) is observed over time.
The observation function specifies the relationship between
the observed variable and the state variable, and the state
transition function specifies how the state variable evolves
over time. The LSDAmethods applied in this work implicitly
assume that the state transitions are time-invariant. Thus, the
observed variables are used ‘‘as-is’’ for the state estimation
and provide a weighted average. Additional variables can also
be included to account for weather-related parameters and
nonlinear transition operators could be applied to improve the
final accuracy. However, multivariate cases are beyond the
scope of the paper.

Future research will focus on creating time-varying maps
based on the interpolation of the data assimilation outputs
to at hourly and daily temporal resolutions. In addition,
we intend on exploring the use of the proposed lightweight
data assimilation methods to develop algorithms for the
optimal placement of urban air quality monitoring stations
to reduce AQ forecast uncertainty. We hope that other
researchers make use of the open repository provided in this
work, as the lightweight algorithms provided can be tested,
calibrated and validated on monitoring data of various types
and can be feasibly extended to assimilate additional data
sources such as satellite observations or mobile sensors.

SUPPLEMENTARY MATERIAL
See Figures 10–12.
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