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ABSTRACT Image captions are abstract expressions of content representations using text sentences,
helping readers to better understand and analyse information between different media. With the advantage
of encoder-decoder neural networks, captions can provide a rational structure for tasks such as image
coding and caption prediction. This work introduces a Convolutional Neural Network (CNN) to Bidirec-
tional Content-Adaptive Recurrent Unit (Bi-CARU) (CNN-to-Bi-CARU) model that performs bidirectional
structure to consider contextual features and captures major feature from image. The encoded feature
coded form image is respectively passed into the forward and backward layer of CARU to refine the
word prediction, providing contextual text output for captioning. An attention layer is also introduced
to collect the feature produced by the context-adaptive gate in CARU, aiming to compute the weighting
information for relationship extraction and determination. In experiments, the proposed CNN-to-Bi-CARU
model outperforms other advanced models in the field, achieving better extraction of contextual information
and detailed representation of image captions. The model obtains a score of 41.28 on BLEU@4, 31.23 on
METEOR, 61.07 on ROUGE-L, and 133.20 on CIDEr-D, making it competitive in the image captioning of
MSCOCO dataset.

INDEX TERMS CNN, RNN, NLP, image captioning, Bi-CARU, context-adaptive, attention mechanism.

I. INTRODUCTION
Image captioning is an assistive process that helps people
understand media information and highlights the most impor-
tant features that the sender wants to present in an image [1].
Generally, a complete image captioning task consists of two
parts: computer vision and Natural Language Processing
(NLP) [2]. The computer vision performs image encoding,
which investigates the information within an image to deter-
mine the objects in a frame and their mutual correspondence
and relationship [3]. The encoded feature is then passed to
an NLP model to decode the information into a text-based
sentence [4]. The purpose of image captioning conducts to
generate natural language captions for input images that
accurately describe these elements [5]. The model performs
dynamic multimodal analysis and inference on the visual

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

content and generated words during the caption word gen-
eration process [6]. A major challenge is handling the two
different media on the encode and decode side. This challenge
is addressed by the encoder-decoder approach, which primar-
ily examines the image’s global region while generating the
image captioning [7]. Additionally, the attention mechanism
refines the determination of interested objects by normalising
the extracted visual features into a set of attention weight or
trainable parameters for neural training [8]. In recent years,
visual content and semantic attention have been shown to be
superior in such domain, improving the model’s interpretabil-
ity [9]. Table 1 illustrated that these images may contain
multiple objects depending on the captioning task. In order
to connect their relationship, this work proposes a method
to generate captions according to the attention mechanism,
aiming to produce a refined caption from a single image.

In current years, deep learning first made major break-
throughs in image captioning. Researchers quickly applied

84934
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5599-4300
https://orcid.org/0000-0002-0183-0685


S.-K. Im, K.-H. Chan: Context-Adaptive-Based Image Captioning by Bi-CARU

TABLE 1. Image captioning under different targets.

the encoder-decoder framework to the video captioning
domain, with various results [10]. Image captioning tasks aim
to generate a sentence that summarises the main content of an
image in a natural way. Since most images contain multiple
objects with related background information or overlapping
action-oriented activities, expressing all the complex content
of an image in a sentence is challenge. To address this, image
captioning tasks have used neural network technology that
integrates Natural Language Processing (NLP) to describe
all the important events and details, resulting in more natu-
ral and accurate descriptions for Artificial Intelligence (AI).
However, using a linear Recurrent Neural Network (RNN)
that only performs feedforward data representation at the
decoding side leads to a limited understanding of the impact
of sequence orientation on prediction [11]. This is espe-
cially true when dealing with different relationships between
multiple objects in a scene, which can lead to contextual
inadequacies in sentence prediction and potential misinter-
pretation of contextual information [12], [13], [14]. In this
work, an advanced RNN layer-based Bidirectional Content-
Adaptive Recurrent Unit (Bi-CARU) structure is introduced
to alleviate this problem [15], [16]. It consists of two CARU
neural layers that perform forward and backward coding
together to achieve a context-adaptive approach and more
accurate predictions, as well as a deeper understanding of
sequence orientation. By incorporating contextual informa-
tion, this structure provides a more suitable understanding
of the context for sentence prediction. The forward network
processes data in a traditional and unidirectional pattern,
while the backward network processes data in a reverse
manner, taking into account the natural language forms of
reading comprehension simultaneously [17]. In addition, the
proposed Bi-CARU structure also employs an adaptive layer
to collect the RNN features, which are then combined by sum-
ming the forward and backward outputs. This allows a more
comprehensive content extraction from both the forward and
backward CARU networks.

Furthermore, CARU can outperform other RNN units
in NLP tasks due to the context-adaptive gate used as a
decoder [18], [19]. By applying forward and backward RNN
approaches to a sentence, the captions generated by CARU
can achieve a complete representation. In practice, visual
content and semantic attention should coincide at the cur-
rently encoded feature(s) [20], [21]. In fact, it is found that
the current feature in the backward CARU layer does not
provide effective context information, while the same feature
can be produced in the forward order at the same time [22],
[23]. In turn, the forward method cannot provide adequate
context information if the same features are simultaneously
generated in the backward order. To address the problem of
asynchrony between forward and backward directions while
making the most of contextual information, this work pro-
posed an attention mechanism that aims to collect the hidden
feature produced by the context-adaptive gate in the middle
of the CARU layer, and also connects to the forward and
backward CARU layers to refine the prediction of semantic
information [24]. This approach unifies semantic information
to produce complementary outputs. It overcomes the lim-
itation that forward and backward simultaneous semantics
cannot be generated due to incompatibility, resulting in more
accurate sentence prediction [25], [26].

Inspired by the above studies, we introduce a CNN-to-Bi-
CARU model to achieve the encoder-decoder approach, and
our main contributions can be summarised as follows:
• The Convolutional Neural Network (CNN) first extracts
the main regions and determines the objects of interest
according to the attention mechanism. We propose a
weighting processing to collect these hidden features
generated by each CNN layer, with the aim of refining
the detection results and discarding noise and uninter-
esting objects.

• We employ Bi-CARU as a decoder for feature extrac-
tion in both directions. With the advantage of CARU,
its context-adaptive gate is able to produce the
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context information, which can be further applied to the
attention approach to discover the relation between the
current state and the entire sequence.

• To refine the accuracy of the similarity module in
the output, it is important to ensure that the forward
and backward hidden states can be adjusted/tuned.
We achieve this by combining the features extracted
from forward and backward attention, and introduce an
additional procedure to refine the prediction by con-
sidering the hidden states and attention. This results in
complementary and fine-grained sentences.

The organisation of this article is briefly described below:
Section II provides an overview of related work on image
annotation approaches and their integration with neural net-
work technology. Section III describes the architecture of the
proposed CNN-to-Bi-CARU model, including its core tech-
nical work in detail. Section IV presents an introduction to
the dataset used, the implementation and configuration of the
experiment, and comparisons with other methods. Finally, the
article is concluded and future work is discussed in Section V.

II. RELATED WORK
Image captioning produces simple text sentences that
describe the behaviour of the interested objects in a captured
shot. A typical image is usually formed by combining various
elements (including objects, events, backgrounds, and other
noise) within a scene. As a result, early approaches to image
captioning were more or less prompted by pre-processing
tasks and had to provide rough input before deciding on
the generated caption [27], [28]. Thanks to powerful neural
network technology, especially the encoder-decoder model
structure based on deep learning [7], [29], [30] has been
introduced. The encoding side uses the Very Deep Convo-
lutional Networks (VGG) network to process the features
and discover the characteristics of the media data [31], and
also uses the optical flow layer as a filter to produce hidden
states [32]. The filtered states are then passed to the decoding
side, and a textual description is generated by aRNNnetwork,
such as Long Short-TermMemory (LSTM) [33], Gated recur-
rent unit (GRU) [34], and CARU [35]. However, due to the
context of behaviour and relationship in one shot image, these
methods do not perform well in reflecting multiple object
information in the image, and the produced text caption is not
detailed enough for description. Therefore, many works use
advanced CNN module as an encoder for the feature extrac-
tion of image, which employ the ConvNet adds optical flow
features on the basis of multi-label and multi-attribute, and
then coded from the ConvNet into the LSTM and represent
the sequence of words [36], [37]. Moreover, dense relational
image captioning has provided a new perspective of the image
captioning task [38]. Based on the image-to-text approach,
the original descriptive text is encoded and extended as one
of the input features based on the regions of the object of
interest for text caption prediction, which refines the compre-
hensiveness and diversity of the descriptions and improves
the accuracy. In addition, the well-trained CNN parameters

are further applied to COCO caption dataset is used as initial
to the ConvNet used, which further improves the convergence
and performance of image feature extraction [39]. For such
tasks, a caption dataset of ImageNet-Captions is also pro-
posed, which provides a high-level view of the field of image
captions [40]. Next, [41] proposed the concept ofmultilingual
captioning according to various target, combining multiple
description test into one sentence to achieve a competitive text
caption, and its decoding part is divided into two modules:
sentence collection and caption composition. In these studies,
the description texts can be considered as references in the
dataset and further used as inputs for training the neural
network, which contributed and inspired the study of image
captioning tasks to learn the association information between
sentences [42].
In NLP tasks, RNNs outperform general image captioning,

and most models use the ability of LSTMs to remember
long sequences as decoders to produce reasonably descrip-
tive text. In [43], an extension of the LSTM approach was
proposed, where the cross-entropy loss during the recurrent
step was investigated, and a correlation loss was introduced
to allow the model to learn both semantic relationships and
visual content, providing fully associated sentences used
as references with visual features [44], [45], [46]. In turn,
an advanced boundary-aware encoding model also uses the
RNN as the encoding part and proposes recurrent image
schemes [47], which provide a new way to explore and
investigate the hierarchical structure in the media data and
improve the relationship matching between multiple objects
in a scene. Recently, many researchers tend to apply the
attention mechanism to the field of image captioning and
achieve good performance in NLP. In [48], an attention-
oriented transformer was introduced for image captioning,
which aims to give more attention weight to refine the
attention weight distribution. Also, [49] makes use of an
attention weight α to calculate the major features, obtaining
high attention to important information in the image. These
attention approaches are able to discard most noise of unim-
portant information [50]. In practice, since RNN structures
are challenging to train in parallel, the transformer frame-
work introduces a global connection based on an attention
mechanism [51] and discovers such relationships based on
the semantic information of the reference samples describing
the sentences in the dataset [52]. Also, [29] extended the
transformer model with one encoder corresponding to two
decoders, allowing the image to be encoded according to
different tasks that can be decoded into multiple descrip-
tions separately. Similarly, [8] and [53] proposed the multiple
decoding method to enhance the convergence and speed up
the training process in parallel, thus the semantic relationship
in reference sentences through multiple transformer ways in
parallel [54]. These works reflect that the transformer frame-
work provides potential performance and supports a dynamic
relationship module to interpret the global features of the
image, taking into account the accuracy and diversity of text
descriptions.
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According to the above-mentioned study, the use of the
transformer framework is suitable for feature extraction of
region relations. It is also effective in discovering connec-
tions with implicitly related semantics. This method pro-
duces more accurate descriptions, and the dynamic search of
related visuals between multiple regions also performs well.
Although experts have made improvements and extensions
to address the problems of insufficient use of image features
and insufficient correlation between media and text rela-
tionship, the complexity of bidirectional structure makes it
more comprehensive and accurate text expressions for image
abstraction. In this work, we use the transformer idea to refine
the proposed Bi-CARU by using an attention mechanism
to collect the hidden state produced by the context-adaptive
gate. This design can effectively extract context information
from decoding and provide more accurate prediction results.
Therefore, making better use of BI-CARU features in the
image remains a research challenge in the field of image
captioning.

III. PROPOSED METHODOLOGY
This work introduces a Bidirectional CARU (Bi-CARU) as a
decoder in image captioning tasks. Considering the connec-
tions between interesting objects in an image, this model also
applies the attention mechanism to determine their relation-
ship and features for output encoding. This efficiently extracts
contextual informationwhile aligning

−→
ht with

←−
ht via context-

adaptive attention. Such two CARU layers can produce the
feature of semantics and thus the complementary output more
accurately. Fig. 1 illustrates the proposed model in detail. The
context-adaptive is able to discover the part-of-speech that
helps to align the hidden state extracted by the forward and
backward CARU layers, respectively.

A. CNN ENCODER
For the encoding side, we recommend to use the CNN
encoder attention approach for image encoding. This tech-
nique is popular because it is able to capture the most
important local features of the input image and encode the
media data into a fixed size vector. With respect to Fig. 1,
the input image is first convolved into extracted features vt ),
each of which represents the local pattern in an object. These
features are then passed through an attention layer to deter-
mine the weighted features weight t of interest and discover
the most important ones that represent the local features rt for
interested objects. The attention mechanism is then applied to
these features to produce a fixed size vector containing the
most important local features. This helps in the prediction
work by assigning a weight to each feature map, with the
training parameters weighting themore important features for
the relationship connection. Similar to the attention mecha-
nism, the weighted feature maps are also summed to produce
the fixed-size vector for producing the hidden state.

To encode an image, its visual information must be
enhanced and noise must be discarded. In our proposed
model, we incorporate a soft attention layer to achieve this

task. The convolved image features vt extracted from each
CNN layer can be expressed as follows:

weighty =Wt tanh

(
N∑
i

Wivi

)
(1)

Here, the first Wt denotes the training parameter aimed at
enhancing the weight t for attention. The Wi=1,2,··· ,N repre-
sents the CNN internal training parameter, where N is the
number of convolutional layers used to implement the CNN
framework. In fact, we collect all the features produced by
each convolutional layer, because the early layer may contain
many global shapes features but poor for local information.
In turn, the later layer can represent the local pattern with
global features. Besides, the features produced by different
layers can be used for various tasks. For instance, the global
feature is suitable for weather detection or scenes address-
ing, while the local feature is good for object detection and
pattern recognition, etc. Therefore, this weight t in (1) needs
to dynamically account for attention by applying these con-
volved features vi from images in response to changes in the
visual context like:

at = Softmax
(
weight1,weight2, · · · ,weight t

)
This Softmax is used to project these weight t into a proba-
bility domain. The visual output rt is thus connected from the
same global image features to changing local features of the
image, and the vt can be directly obtained from the results
of the t-th CNN layer. As a result, the weight distribution
between image and attentional features can be obtained by
follows:

rt = atvt

B. BI-CARU DECODER
The linear RNN is known to be effective for NLP decoding
tasks, but it is also associated with the long-term depen-
dency problem and poor convergence, often due to gradient
vanishing. Many studies have proposed various architectures
of RNN units, such as LSTM and GRU, to address these
issues. In this work, an advanced RNN unit called CARU
is employed to alleviate such problems. Compared to GRU,
CARU introduces two gates, the context-adaptive gate and
the update gate, which contain fewer parameters to handle the
data flow than other well-known RNN units. The advantage
of CARU is that the context-adaptive gate is able to produce
the weight of the current input xt similar to the reset gate in
GRU, but is based only on the current feature instead of the
entire sequence. The product of such a gate and the memory
information of the previous hidden state ht−1 achieves the
purpose of weight combination. In practice, it can be consid-
ered as a tagging task that connects the relationship between
the weight and the parts-of-speech, which allows filtering the
noise and enhancing the major feature in the current input
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FIGURE 1. The proposed image captioning network model employs CNN as an encoder to extract object features from
images, and considers weighted attention to refine the selection of object features. Besides, we make use of an advanced
Bi-CARU as a decoder to produce captions. This decoder utilises the forward and backward features

−→
ht and

←−
ht , as well as an

additional attention layer that collects hidden states from context-adapted gates to determine more accurate predictions.

feature. The complete procedure is as follows:

xt =Wvnvt + Bvn (2a)

nt = tanh (Whnht−1 + Bhn + xt) (2b)

zt = σ (Whzht−1 + Bhz +Wvzvt + Bvz) (2c)

lt = σ (xt)⊙ zt (2d)

ht = (1− lt)⊙ ht−1 + lt ⊙ nt (2e)

It can be found that CARU processes the data flow in a similar
way to GRU, but dispatches word weights to the proposed
gates and multiplies them by the content weights. In such
procedure, it enables the content-adaptive gates to consider
both words and content, with each step briefly as follows:

(2a) A linear layer is first used to apply the current input.
This result is used for the next hidden state and is
passed to the content adaptive gate. Noted that this
result will be assigned to ht directly if ht−1 is not
received in the current step.

(2b) The previous hidden state ht−1 is also applied to
another linear layer, which is then summed with
the result of (2a) and then passed through the tanh
activation function in order to extract the integrated
information.

(2c) It performs hidden state transitions like the update
gate in GRU, taking into account the current input
and combining it with the previous hidden state.
This part allows to discover relationships over

content information, but has a long-term depen-
dency problem.

(2d) To alleviate the long-term dependence problem, this
step investigates the features of the current input,
which can be considered as a tapping process. It is
then multiplied by the zt conduction to dynami-
cally enhance or dilute the long-term dependence to
obtain accurate predictions during the RNN decod-
ing process.

(2e) The new hidden state output generated by using
linear interpolation.

Compared with traditional RNN structures that predict the
output of the next state based only on the current information
with historical sequences, using a bidirectional structure can
improve context awareness by considering the previous and
next hidden states. In addition, with the benefit of CARU,
it can effectively predict individual words in a sentence while
accurately analysing its content based on the current part-
of-speech, resulting in more accurate contextual sentence
prediction.

C. CONTEXT-ADAPTIVE FOR ATTENTION MECHANISM
Taking advantage of the attention mechanism, it has the abil-
ity to discover the (weighted) connection between each state
and the entire sequence. This capability can also be applied
to the context-adaptive part of CARU. As mentioned in
Section III-B, lt can be seen as a tapping process that is
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potentially used in the input of the attention mechanism.
Therefore, let

−→
lt and

←−
lt denote the state produced by forward

CARU and backward CARU, respectively, and the final states
passed to the attention mechanism can be obtained by:

lt =
−→
lt ⊕
←−
lt

Moreover, an attention processing is presented to discover the
relationships between the decoded information. We modified
the attention structure in the decoder side to model this lt and
calculate its weight of current sequence I ∈ {l1, l2, · · · , lt }.
The proposed attention formula is expressed as:

att t = L2


√√√√exp

((
WQI

)
(WK I )T
√
d

) (WV I ) (3)

HereWQ,WK andWV are training parameters similar to the
attention approach [55], and d denotes the variance of I . It is
obvious that we make use of a novel normalisation function
L2
(√

exp (∗)
)
[56], [57], which can enhance convergence

during the training process and also maintain the same perfor-
mance as the Softmax function. Besides, we also design a
trainable procedure for adaptively adjust caption information
to predict the upcoming decoded states ht =

−→
ht ⊕

←−
ht ,

as follows:

H = att t × Softplus (σ (Wht)⊙ tanh (Wht)) (4)

Because the hidden state ht contains contextual information,
this formula indicates the trend of the current feature before
entering the decoding RNN. In our design, the tanh function
determines how the relation to the previous or next state
should be considered, and the σ function weights the cur-
rent state against the entire sequence. The att t contains both
attention weights, allowing the hidden state to be adjusted for
accurate word prediction. To the end, we obtain the probabil-
ity output as follows:

Prob (word t) = FFN (H)

here we use FFN as a feed-forward network to update the
vocabulary area and see that each update can be broken down
into sub-updates corresponding to individual FFN parameter
vectors. Each of these vectors promotes concepts that are
often easy for humans to understand. Note that the model is
trained with word-level cross-entropy loss, and thanks to the
optimiser of Adam [58].

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
This section describes the dataset we used and presents the
configuration and environment we applied for our develop-
ment work. It also discusses the experimental results and
compares them to previous methods in the field.

A. BENCHMARK DATASETS
To validate our work in the area of image captioning,
we used the MSCOCO [59] benchmark dataset,1 which con-
tains images from websites covering a variety of topics such

1https://cocodataset.org/#download

as people, animals, vehicles, and focal objects in captured
images. Its captions were written by human annotators as a
ground truth reference, providing a detailed description of the
content of each image: the MSCOCO dataset provides over
330k images for the study of image captions, each with five
different captions. This dataset provides researchers with rich
descriptions to develop and study their own methods. This
dataset has been widely used for the study of image captions
with the goal of automatically generating natural language
descriptions of media data. Researchers have used this dataset
to train and evaluate machine learning models and to develop
new algorithms and techniques for image captioning.

For pre-processing, the ‘‘Karpathy’’ segmentation set-
ting is recommended for the MSCOCO datasets to obtain
fair comparison results [60]. It selected about 113k train-
ing images, 5k validation images, and 5k test images for
the MSCOCO. Moreover, we adopt the text pre-processing
in [61], the truecase, tokenisation, and cleaning symbols
must be completed, and the start mark <BOS> and end
mark <EOS> must be inserted at the beginning and end of
a sentence, respectively. Since the vocabulary is limited and
some word pairs are low frequency or inaccurately described,
we discard words with a frequency of less than five and
replace them uniformly with a token <UNK>, which can be
ignored and is not considered part of the vocabulary. In prac-
tice, the vocabulary size can be reduced to about 10k words.
To ensure that the decoder receives input from the beginning,
the new token <BOS> must be inserted as the first token in
a sentence. The sentence is generated exactly as written until
the unique end token <EOS> is encountered.

B. TRAINING STRATEGY AND IMPLEMENTATION
In terms of hardware conditions, there is a deep learning
workstation that provides four NVIDIA Quadro RTX A4000
with 16.0 GB of memory per GPU, for a total of 64.0 GB
of device memory. For the training environment, these exper-
iments were set up on the Ubuntu 22.04 operating system,
and the proposed model is developed on the neural network
engine of PyTorch [62]. More specifically, we apply the
advanced training strategy where a scheduler is used to adjust
the learning rate during the training process, aiming to reduce
the learning rate adaptively. Besides, the learning rate is ini-
tially set to 1e−3, and a warm-up update function is required
to alleviate divergence issue in the early stages of training.
Moreover, half-precision floating-point and Distributed Data
Parallel (DDP) are enabled to reduce memory consumption
and accelerate computation, respectively.

For pre-processing, we only applied data enhancement to
improve performance by randomly cropping 90.0% of the
original images and erasing 50.0% of the original images
during online test server submission. For training coding,
we used Faster R-CNN [69] with VGGreNet [31] on the
ImageNet dataset to pre-train image classification, and fur-
ther refined it on the selected dataset used in this work. The
VGGreNet arranges the 4,096 feature sizes fully associated
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TABLE 2. The performance of our model and other advance methods for various metrics of MSCOCO. All values and their error ranges are also reported.

with the image features vt in Fig. 1, while Faster R- CNN
implements the extraction of local features, such as face
detection. For the remaining image regions, we ranked them
by their confidence scores from high to low and applied
a threshold of 0.3 to discard the low regions. Each region
has a feature size of 2,048, which is the global average
pooling result of the encoding side. The results produced by
the encoder are processed by Dropout before passing to the
decoder. To cover the vocabulary size (about 10k words),
we set the word embedding vector and the hidden size in each
CARU layer to 1k, and the size of the weighted layer weight t
and the attention layer att t are configured to 512, respec-
tively. In practice, we tuned the trade-off parameter λ on the
‘‘Karpathy’’ validation split to obtain the best performance by
setting it to 0.02. Note that the gradient is mainly contributed
by the cross-entropy loss, and the Adam optimiser was used
to train up to 100 epochs until there was no improvement for
20 consecutive times.

C. EXPERIMENTAL RESULTS AND DISCUSSION
Compare our CNN-to-Bi-CARU with other state-of-the-
art works, two baseline methods RDN [63], Show-Attend-
Tell [64] and four advanced methods pLSTM [65], CNN-
BiLSTM-s [66], M2 [67], GRIT [68] are compared in our
experiment. We also used evaluation metrics commonly used
in image captioning to evaluate and investigate the quality
of predicted word sequences from automatic machine pro-
duction. BLEU@4 and ROUGE-L were originally designed
to evaluate machine translation, while CIDEr-D was specif-
ically designed to evaluate the accuracy of image descrip-
tions against reference sentences. METEOR is particularly
effective in capturing the semantic aspect of captions, as it
identifies all possible matches by extracting precise and syn-
onymousmatches using theWordNet database, and computes
sentence-level similarity scores for matching loads. To quan-
titatively evaluate the performance of our approach, Table 2
indicates all the metrics of each selected method and our
proposed method.

According to the data presented in Table 2, the proposed
method has achieved competitive performance compared to
others in terms of BLEU@4, METEOR, ROUGE-L, and
CIDEr-D scores, with percentages of 41.28, 31.23, 61.07,
and 134.20, respectively. In practice, the METEOR and

FIGURE 2. BLEU@4 scores obtained by applying the baseline and
proposed models on the MSCOCO dataset.

ROUGE-L metrics focus on the assessment of appropriate-
ness and contextual relevance, while the CIDEr-D focuses
on the grammar and fluency of the captions produced. These
results demonstrate the benefits of the context-adaptive gate
in Bi-CARU, which can obtain the best scores for the
METEOR and ROUGE-L metrics, but poor fluency and rel-
evance. It can also be found that we had given the three
cases of with and without (3) and (4) approaches in the
proposed CNN-to-Bi-CARU. This additional work provides
a complete view of each procedure we propose in a variety of
scenarios. We found that these results trained using the att t
layer outperformed all baseline and some advanced models.
Fig. 2 also illustrates the training process of BLEU@4 over
the validation set. It can reach the best score faster when
(3) is activated. Therefore, the combination of (3) and (4) in
this work can further outperform the most advanced model
in terms of METEOR and ROUGE-L scores. With more
technology used in the last three rows of Table 2, it can be seen
that the improvement is not significant, but its error range is
smaller than the others. This is as expected in Section III-C.
The purpose of (4) is to design a trainable procedure to
predict image captions by adaptively considering caption
information, aiming to refine the content adaptation of word
prediction in decoding, and (3) performs to enhance their
convergence and make hidden states more discriminative.
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TABLE 3. Images of the MSCOCO dataset, and the corresponding captions predicted by various selected models.

Table 3 demonstrates the images from the MSCOCO
dataset and their captions as predicted by the various selected
models. It clearly shows that the captions describe the content
of the images well, but still differ in details. In our practice,
the advantage of the proposed model is that it is better able
to discover interesting objects and their relationships. Our
results are able to represent and enhance the details between
objects through contextual descriptions, while refining the
weak dependence on visual features. For instance, the pro-
posed model decodes the interested object as a ‘‘performer’’
rather than a ‘‘man’’, which is better understood in the first
image. Next, our method can identify relationships in the
second image even when the interesting objects are not clear.
It can further describe the ‘‘team’’ relationship of these chil-
dren and soccer in the predicted text ‘‘a team of children
playing a game of soccer’’. It extracts the main objects in the
image better than the baseline model thanks to CARU, which
provides contextual adaptation to determine the relationships
between image objects. Similarly, the third image presents
a ‘‘train’’ in the station, but it may not accurately describe
the image content if its behaviour (stopped or be pulling
into) is ambiguous and independent, resulting in the caption
produced by the proposed model being logically correct but
not accurately describing the reference of the image content.
Moreover, our method first adaptively models the context
to refine the representation in captions that contain seman-
tic relationships between decoded words. We then proceed
to measure the importance of appearance features in the
detected object. With a weak dependence on appearance,
it can be found that our method is able to decode some
background information such as the ‘‘evening’’ in the third
image. In summary, our approach has demonstrated its ability
to comprehend image content by exploiting enhanced image
comprehension capabilities.

However, the performance of the proposed model is
slightly lower when evaluated using the BLEU@4 and
CIDEr-D metrics compared to the advanced model of GRIT.
The GRIT has an advantage because it employs dual visual
features to train captioners and achieves a superior trans-
former design in terms of BLEU@4 and CIDEr-D due to the
superiority of its decoding model over the attention mecha-
nism in the encoder transformer results. In contrast, this work
focuses on improving the decoding side, which may result
in slightly lower performance in encoding, but reduces the
complexity of the model and yields a competitive lightweight
model. As a result, our model has a clear advantage in
understanding the correlation between objects of interest. It is
reasonable to expect that incorporating additional informa-
tion, such as appearance, motion, and attribute features, can
further improve the performance of our proposed approach.

V. CONCLUSION
This work presents the CNN-to-Bi-CARU model, which
uses a bidirectional structure based on the attention mech-
anism to better extract contextual information from the
context-adaptive feature provided by the context-adaptive
gate in CARU, aiming to promote comprehensive under-
standing and guidance of image features and apply it to
tasks such as image captioning. The proposed CNN-to-Bi-
CARU encodes data from media information by using a
forward and backward layer of CARU to encode sentence
context. The CNN extracts regions and identifies objects
using an attention mechanism. A weighting process is used
to refine the detection results and remove noise and uninter-
esting objects by collecting hidden features from each CNN
layer. The produced hidden states are then passed to the pro-
posed layer, which adopts the attention mechanism to obtain
a weighted feature to compute the similarity between the
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hidden states. In addition, a novel normalisation is employed
to further enhance the convergence and make the hidden
states more discriminative. The Bi-CARU is employed as a
feature extractor in both directions. CARU’s context-adaptive
gate produces context information, which is then used in the
attention approach to understand the relationship between the
current state and the entire sequence. Experimental results
on MSCOCO demonstrate that our proposed method can
achieve more accurate extraction of contextual and relational
information, outperforming the baseline and being competi-
tive with advanced models on various metrics. Future work
will investigate the feasibility of applying this approach to
video, with a focus on improving the encoding side to produce
fine-grained features from a global sequence perspective.

In future work, we have the potential to extend the pro-
posed model to video captioning tasks. Video captioning
involves identifying and describing the visual and auditory
content of a video, which can be achieved by combining
audio and image recognition technologies. However, video
captioning is generally more complex than image captioning
due to the time dimension, which requires more advanced
algorithms to handle the behaviour of objects in a scene.
Therefore, further investigation is required to overcome the
sequence of frames/images for input in our proposed work.
This will aim to improve the understanding and representa-
tion of video content, thus achieving a native sentence for
video captioning.
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