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ABSTRACT In this study, a Fractional-Order Sliding Mode Control scheme is proposed for trajectory
tracking control of Delta parallel robot. The proposed controller is compared with both integer-order
Proportional-Derivative controller and integer-order SlidingModeController with Computed TorqueControl
method. The forward kinematics, inverse kinematics and dynamic of Delta parallel robot are described.
A Solidworks/Matlab/SimScape/Multibody model of Delta parallel robot is generated and used for dynamic
parameter estimation and validation of the proposed method. Particle Swarm Optimization algorithm is
utilized for dynamic parameter estimation of Delta parallel robot. The validation of the proposed method
is evaluated for three different trajectories. External disturbances, noise and also various payloads are
considered in testing robustness of control techniques. The results of the robustness tests confirm higher
performance of FOSMC than two other control schemes.

INDEX TERMS Delta parallel robot, fractional-order sliding mode control, trajectory tracking, parameter
estimation.

I. INTRODUCTION
In modern industry, mass production requires high speed and
high precision robots. For this reason, robotics and its relevant
topics have gained significant attention among researchers.
Due to their relatively lower speed and higher error, serial
robots are being replaced with parallel robots.

Delta parallel robots with three or four Degrees of Freedom
(DOF) are of the most important parallel robots which
are being used widely in food industry, haptic devices,
pharmaceutical, cosmetics and etc. Over the past two
decades, a lot of research have been conducted on Delta
parallel robot such as dynamic model, workspace, trajectory
tracking control and etc. [1], [2], [3], [4], [5], [6], [7], [8].

One of the important issues for parallel robot is to keep
it on its path, preventing collision with obstacles, while
moving it along shortest path from its starting point to
its target. In most applications, the robot should quickly
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move from one position to another or track repeatedly a
desired trajectory in 3D space with high accuracy. Due to
model uncertainties, time-varying nonlinear dynamic effects,
noise, external disturbances and payload variations, achieving
high performance in trajectory tracking is difficult. In order
to achieve good tracking and high precision in position
control, it is necessary to use nonlinear controllers to cope
with mentioned problems. Recently, various control methods
such as computed torque via Proportional-Integral-Derivative
(PID) controller [9], Sliding Mode Controller (SMC), H∞ or
Quantitative Feedback Theory (QFT) [10], [11], [12] have
been applied to Delta parallel robot.

In [13], H∞ has been used for external disturbances
and uncertainties in a system. The performance of H∞ has
been compared with PID controller in [10]. For designing
PID controllers, dynamic model of Delta robot should be
linearized at an operational point. Since the system has
several operating points, the controller may not perform well
for other points. The design and implementation of H∞

strategy is too complicated. The computed torque technique
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via PID controller is low cost and simple to implement,
but it cannot achieve a good performance in presence of
uncertainties and disturbances.

Sliding Mode Control (SMC) is a strong robust control
scheme for nonlinear systems with uncertainties, unmodeled
dynamics and disturbances which has been widely used
in literature [14], [15], [16], [17]. In order to improve
the dynamic performance of the system, it is necessary to
choose a special type of SMC technique while its parameters
should also be precisely determined. Recently, a number
of SMC techniques for reducing the effect of chattering
phenomenon during control process have been proposed in
the literature [16], [18], [19], [20], [21], [22].
Fractional-Order Sliding Mode Control (FOSMC) is a

robust control technique that is based on fractional com-
putations, providing more flexibility compared to tradi-
tional integer-order control methods. FOSMC is particularly
effective for achieving high-precision control of nonlinear
systems, with its robustness, small chattering, fast reaching
ability, and high steady-state accuracy. [23], [24], [25], [26],
[27], [28], [29], [30], [31].

On the other hand, accurate determination of dynamic
parameters of a robot plays important role in design-
ing model-based controllers. Nonlinear load besides their
complex structure make it difficult to determine precisely
dynamic parameters of parallel robots. Estimation from
measured experimental values is the only effective method
to determine accurate parameters of a dynamic model.
A number of theoretical and experimental studies on param-
eter estimation have been introduced in the literature [32].
Recently, many evolutionary algorithms such as genetic
algorithm [33], Particle Swarm Optimization (PSO) [34],
[35], [36], [37], cuckoo search [38] and etc. have been
reported for modeling, parameter estimation and tuning of
controller parameters in the literature.

According to the abovementions, contribution of this paper
can be summarized in the following points:

• A methodology for parametric identification of the
dynamic model of a Delta parallel robot is presented.
The dynamic behavior of Delta robot is simulated
by Solidwork - Matlab co-simulation model. The
parameters of the robot dynamic model are estimated by
PSO algorithm.

• Using advantages of fractional calculations and sliding
mode control, FOSMC is proposed and implemented
for trajectory tracking in 3-DOF Delta parallel robot.
FOSMC is used to improve precision, robustness, fast
finite-time convergence and to reduce chattering during
desired motion.

• To illustrate performance of the proposed controller, the
results of its implementation are compared with PD and
SMC controllers using robustness analysis i.e. evalua-
tion with applying external disturbance, evaluation with
applying critical payload and evaluation in presence of
noise.

FIGURE 1. Schematic of delta parallel robot.

This paper is organized as follows: In section II, forward
and inverse kinematics and dynamic model of Delta robot
are presented. Estimation methodology of dynamic model
parameters with PSO algorithm is described in section III.
Tracking control strategies and comparing their performances
are presented in sections IV andV, respectively. In sectionVI,
results of the robustness test of proposed controllers are
presented. Conclusions are given in section VII.

II. MECHANIC OF DELTA PARALLEL ROBOT
In this section, forward and inverse kinematics, dynamical
and SimScape multibody models are described for Delta
parallel robot.

Delta robot, invented by Reymond Clavel [39], has
three revolute actuators providing 3 degrees of freedom of
displacement in x, y and z coordinates. This is the most
successful commercial parallel robot and it is commonly used
for high speed and high precision tasks. The original design
from Clavel U.S. patent [40] is shown in Fig. 1.

A prototype of Delta parallel robot which has been
fabricated inmechatronics lab of Hakim Sabzevari University
is shown in Fig. 2. This robotic system will be used to
implement and validate advanced control algorithms.

Kinematics describes motion of systems without consider-
ing forces that cause them to move. Geometric structure of
Delta parallel robot is shown in Fig. 3. As can be seen in the
figure, origin of global coordinate system {X , Y , Z } of Delta
robot is located at the center of the fixed plate. Coordinate
system {Xn, Yn, Zn} for end effector is located at point n. The
end effector is connected to fixed plate via three kinematic
chains.

From Fig. 4, a and b are the upper and the lower arm
lengths, respectively. The upper arms are mounted on three
actuators that are located in the fixed plate with radius ra
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FIGURE 2. Delta parallel robot prototype fabricated in Hakim Sabzevari University.

FIGURE 3. Geometric structure of delta parallel robot.

and angle φi = (0◦, 120◦, 240◦). rb denotes the radius of end
effector.

A. INVERSE KINEMATICS OF DELTA ROBOT
The inverse kinematics determines joints position θi of Delta
parallel robot with respect to spatial position of end effector
in the global coordinate system {X , Y , Z }. The connection
points of links a and b create restrictions. These restrictions
are the shape of spheres with centers at points ti and radius
b in which i = 1, 2, 3. Mentioned spheres are described as
follows:

(x − xi)2 + (y− yi)2 + (z− zi)2 = b2 (1)

The intersection of mentioned spheres and x−z plane creates
circles with centers at point ui and radius a. The circles

FIGURE 4. Arm of delta parallel robot.

equations are as follows:

(x − ra)2 + z2 = a2 (2)

By combining and simplifying Eq. (1) and Eq. (2), joint space
variables can be obtained as follows:

θi = sin−1
( z
a

)
(3)

In Eq. (3), two solutions are obtained that only one of
them could be accepted. To prevent singularity, following
restriction is defined for all joint variables.{

θi = sin−1
( z
a

)
; x − ra ≥ 0,

θi = π − θi; x − ra < 0.
(4)

B. FORWARD KINEMATIC OF DELTA ROBOT
Forward kinematics determines position of end effector
{Xn,Yn,Zn} based on joint variables. Three spheres men-
tioned in Eq. (1) and three circles at the center point si with
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FIGURE 5. Delta robot simmechanic model created in
Solidworks/Matlab/SimScape/Multibody model.

radius b have an intersection that describes position of end
effector. Two solutions will be obtained but according to [41],
only one of them could be acceptable.

C. DYNAMIC OF DELTA ROBOT
In this part, using Euler-Lagrange method, dynamic model of
Delta parallel robot is determined. Euler-Lagrange differen-
tial equation is as follows:

d
dt
(
∂L
∂ q̇i

) −
∂L
∂qi

= Qi +
nr∑
j=1

λj
dfj
∂qi

for i = 1, 2, . . . , n, (5)

where j, qi, i, nr and n are restriction index, generalized coor-
dinate i, generalized coordinate index, restrictions number
and generalized coordinate number, respectively. In the above
equation, L denotes Lagrangian and λj denotes Lagrange
coefficients. The kinematic restriction formulas are defined
as fi and the generalized external force is Qi = Q̂i + τi;
in which Q̂i and τi are generalized external forces at end
effector and applied torque in joint i, respectively. For the
given trajectory 1, estimated values ofX using PSO algorithm
are shown in Table 1. To achieve equations of motion, Eq. (5)
is rewritten in two separate parts. The first part includes
uncertain Lagrange coefficients as follows:

nr∑
j=1

λj
dfj
dqi

=
d
dt

(
dL
dqi

)
−

dL
dqi

Q̂i (6)

By obtaining Lagrange coefficients λj from Eq. (6), the
second part can be calculated as follows:

Qi =
d
dt

(
dL
dqi

)
−

dL
dqi

=

nr∑
j=1

λj
dfj
dqi

for i = nr + 1, nr + 2, . . . , n. (7)

qi consists of six variables that the first three variables are
related to spatial position and the second three variables are
related to joint space θi. qi is defined as follows:

qi = [x, y, z, θ1, θ2 , θ3] with i = 1, 2, . . . , 6. (8)

As mentioned in the previous sections, the kinematics of
Delta parallel robot has created some restrictions. From
Eq. (1), the kinematic restrictions for the Lagrange equation
is defined as:

xi = cos (φi) (rc + a cos (θi)) ,

yi = sin (φi) (rc + a cos (θi)) , for i = 1, 2, 3,
zi = a sin (θi) ,

(9)

where rc = ra − rb.
The difference between potential energy V and kinetic

energy T is called Lagrange function L, which is defined as
follows:

L = T − V . (10)

Kinetic energy T for Delta parallel robot is defined as sum of
a number of kinetic energies as follows:

T = Tc +

3∑
i=1

Tai + Tbi, (11)

where Tc, Tai and Tbi with i = 1, 2, 3, denote kinetic energy
of end effector, upper and lower arms, respectively. The
potential energy V is defined as sum of several potential
energies as follows:

V = Vc +

3∑
i=1

Vai + Vbi. (12)

Similarly, Vc, Vai and Vbi denote the potential energy of end
effector, upper and lower arms, respectively. In Eq. (6), the
Lagrange coefficients that are unknown can be determined
using following equation:

2
3∑
i=1

λi cos (φi) (x + ra − rb−a cos (θi))

= (mn + 3 mb) ẍ − fpx

× 2
3∑
i=1

λi sin (φi) (x + ra − rb−a cos (θi))

= (mn + 3 mb) ÿ− fpy

× 2
3∑
i=1

λi (z−a cos (ai))

= (mn + 3mb) z̈+ (mn + 3mb) g− fpz, (13)

where mn, ma and mb are mass of end effector, upper and
lower arms, respectively. g and [ẍ, ÿ, z̈] are acceleration
of gravitational and end effector, respectively. [fpx , fpy, fpz]
denotes external forces applied to end effector.
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FIGURE 6. Trajectories for delta parallel robot. (a) : trajectory 1, (b): trajectory 2, (c): trajectory 3.

If Lagrange coefficients and motor inertia are obtained, the
torque τi applying to joints are calculable from Eq. (6) as
follows:

τ1 = ä1

(
Im +

1
3
maa2

)
+ ag cos (θ1)

×

(
1
2
ma + mb

)
− 2λ1[sin (θ1) (x cos (φ1)

+ y cos (φ1) + ra − rb)−z cos (θ1)]

τ2 = ä2

(
Im +

1
3
maa2 + mba2

)
+ ag cos (θ2)

×

(
1
2
ma + mb

)
− 2λ2[sin (θ2) (x cos (φ2)

+ y cos (φ2) + ra − rb)−z cos (θ2)]

τ3 = ä3

(
Im +

1
3
maa2

)
+ ag cos (θ3)

×

(
1
3
ma + mb

)
− 2λ3[sin (θ3) (x cos (φ3)

+ y cos (φ3) + ra − rb)−z cos (θ3)] (14)

A Solidworks/Matlab/SimScape/Multibody model is created
for analyzing dynamic behavior and recognizing friction
and inertia effects of mechanical model. To create Delta
robot in Solidworks, all parts of it are designed and then
these components are combined in assembly Solidworks and
finally, the model is exported to Simulink in Matlab. Fig. 5
shows Delta robot model in mechanic explorer of Matlab.
As can be seen in the figure, the gravitational acceleration
is aligned with z-axis.

III. ESTIMATION OF DYNAMIC MODEL PARAMETERS OF
DELTA ROBOT
In this section, trajectory generation for tracking and
parameter estimation for dynamic model are described.

A. TRAJECTORY GENERATION
The Cartesian trajectory is generated with path planning for
actual joints to the end effector which is tracked with constant
velocity and acceleration. After generating, the proposed
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Cartesian trajectories are given to the inverse kinematic
(Eq. (3)).

The reference trajectories of the delta robot are spirals
using the following equations:

trajectory 1:


x = −70 + 70cos(t)
y = 75sin(t)
z = −285

trajectory 2:


x = −50 + 50cos(t)
y = 50sin(t)
z = −290 + 2.5t

trajectory3 :


x = −27 + 30cos(3t)
y = 30sin(2t)
z = −280

Fig. 6 offers the trajectory 1, trajectory 2 and trajectory
3 in Cartesian coordinates. trajectory 1 is used in estimation
of dynamic parameters. trajectory 2 and trajectory 3 are
employed to validate proposed controller.

B. PSO ALGORITHM FOR PARAMETER ESTIMATION
Here, at first, dynamic parameterization of Delta robot is
performed, and then the parameters of dynamic model are
estimated with PSO algorithm.

For estimation of dynamic parameters, Eq. (14) is simpli-
fied as follows:

τ1 = X1θ̈1 − sin(θ1)(X2x + X3y− X6)+
cos(θ1)(X4z+ X5)
τ2 = X1θ̈2 − sin(θ2)(X7x + X8y− X10)+
cos(θ2)(X9z+ X5)
τ3 = X1θ̈3 − sin(θ3)(X11x + X12y− X14)+
cos(θ3)(X13z+ X5)

(15)

where:

X1 = Im +
1
3
maa2 + mba2 X8 = 2λ2 sin(φ2)

X2 = 2λ1 cos(φ1) X9 = 2λ2

X3 = 2λ1 sin(φ1) X10 = 2λ2(rb − ra)

X4 = 2λ1 X11 = 2λ3 cos(φ3)

X5 = (
1
2
ma + mb)ag X12 = 2λ3 sin(φ3)

X6 = 2λ1(rb − ra) X13 = 2λ3

X7 = 2λ2 cos(φ2) X14 = 2λ3(rb − ra)

To reduce complexity, Eq. (15) is rewritten in matrix form as
follows:

Y(θ , θ̇ , θ̈ )X = τ , (16)

where τ = [τ1, τ2, τ3]T . Y(θ , θ̇ , θ̈ ) is an nx × r regression
matrix of position, velocity, joint and space acceleration along
with torque measured from the SimScape multibody model
which is as follows:

TABLE 1. Estimated constant parameters of dynamic model.

y11 y12 . . . y114
y21 y22 . . . y214
y31 y32 . . . y314

,

where:

y11 = θ̈1 y21 = θ̈2 y31 = θ̈3

y12 = −x sin(θ1) y25 = cos(θ2) y35 = cos(θ3)

y13 = −y sin(θ1) y27 = −x sin(θ2) y311 = −x sin(θ3)

y14 = z cos(θ1) y28 = −y cos(θ2) y312 = −y cos(θ3)

y15 = cos(θ1) y29 = z cos(θ2) y313 = z cos(θ3)

y16 = sin(θ1) y210 = sin(θ2) y314 = sin(θ3)

y17 = y18 = 0 y22 = y23 = 0 y32 = y33 = 0

y19 = y110 = 0 y24 = y26 = 0 y34 = y36 = 0

y111 = y112 = 0 y211 = y212 = 0 y37 = y38 = 0

y113 = y114 = 0 y213 = y214 = 0 y39 = y310 = 0.

X = [X1, X2, . . . , X14]T is a vector that includes unknown
parameters of Delta robot.

In PSO algorithm, parameter estimation is performed by
searching suitable values in parameter space. The method-
ology for Delta robot identification has been depicted in
Fig. 9. As can be seen in the figure, for parameter estimation,
it is necessary to minimize error between the measurement
and computed torque related to a given trajectory. At each
final time (tf ), all elements of X are updated. By minimizing
following error cost function, optimal value of X is obtained.

E(k) =
1
N

N∑
i=1

√
e1(i)2 + e2(i)2 + e3(i)2, (17)

where e1(i), e2(i) and e3(i) are errors between the measure-
ment and computed torques of i-th sample for the first, second
and third joints, respectively. N and k are number of samples
and iteration number, respectively. For the given trajectory 1,
estimated values of X using PSO algorithm are shown in
Table 1.

IV. FRACTIONAL-ORDER SLIDING MODE CONTROL
SCHEME
Delta robot is a nonlinear system whose parameters are
affected by a number of factors. In order to achieve good
performance in presence of uncertainties and disturbances,
a robust controller is required. Many integer-order sliding
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FIGURE 7. Trajectory tracking response for (a) : path1, (b): path2 and (c): path3.

mode controllers have been proposed in the literature.
Fractional-order differential equations which are an expan-
sion of integer-order differential equations can explain more
accurately the dynamics of the system. In this regard,
a Fractional-Order Sliding Mode Controller is proposed for
Delta robot. Eq. (15) can be written as:

M(θ )θ̈ + C(θ , θ̇ )θ̇ + G(θ ) = τ , (18)

where θ , θ̇ , θ̈ are the angles, velocities and accelerations of
actual joints, respectively. τ is the applied torque,M(θ ) is the
matrix of inertia, C(θ , θ̇ ) is the coriolis matrix and G(θ ) is
gravity matrix.

The actual and nominal models are not the same in
most cases; Therefore, due to outside interference, dynamics
parameter uncertainty, and other system uncertainty factors,
Eq. (18) will be updated by adding the model perturbation

terms as follows:

M̂(θ )θ̈ + Ĉ(θ , θ̇ )θ̇ + Ĝ(θ ) + τd = τ , (19)

where M̂(θ ) = M(θ ) − Me(θ ), Ĉ(θ , θ̇ )θ̇ = C(θ , θ̇ )θ̇ −

Ce(θ , θ̇ )θ̇ , and Ĝ(θ ) = G(θ ) − Ge(θ ),
Me(θ ),Ce(θ , θ̇ ) andGe(θ ) represent the errors between the

actual model and the nominal model caused by uncertainty
of model parameters, while τd represents the external
disturbance term.

By applying fractional sliding mode control, the response
is separated into two parts: first; signals can reach the
sliding surface and second; they can slide and remain on the
sliding surface. Prior to reach the sliding surface, the system
gets affected by disturbances, noise and uncertainties in its
parameters. Here, the fractional order sliding surfaces are
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FIGURE 8. Position error (x-axis component) for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

FIGURE 9. The methodology for parameter estimation of delta robot.

chosen as follows:

s(t) =

s1s2
s3

 = ˙e(t) + Dαe(t) + Kpe(t) =

θ̇ − θ̇d + Dαe(t) + Kpe(t)

(20)

where θd denotes the reference joint trajectory,
e = θ − θd denotes the tracking joint position error,

Kp = diag[kp1, kp2, kp3] is a diagonal matrix and kp1, kp2
and kp3 are constants greater than zero. The Caputo fractional
derivative of order 0 < α < 1 [42], is defined as follows:

Dα e(t) =
1

0 (1 − α)

∫ t

0
(t − s)−α e′(s)ds (21)

So:

ṡ = θ̈d − θ̈ + Kpė + Dα+1e

= θ̈d − M̂−1
[
−τ − Ĉθ̇ − Ĝ − τ d

]
+ Kpė + Dα+1e (22)

For purpose of stabilizing the parallel robot system, the
controller for Delta robot system can be defined as:

τ = Mθ̈d + Cθ̇d + G

+ M
(
Dα+1e + Kpė

)
+ C

(
Dαe + Kpe

)
+ Ksls +

n1sign(s1)n2sign(s2)
n3sign(s3)

 (23)

where Ksl is a positive-definite matrix, and n1, n2 and n3 are
constant values.

86404 VOLUME 11, 2023
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FIGURE 10. Error in joint 1 for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

In order to ensure the convergence of the robot system,
candidate Lyapunov function is defined as follows:

V =
1
2
sT M̂(θ )s, (24)

By deriving the Lyapunov function, following relation can be
obtained:

V̇ = sT M̂(θ )ṡ +
1
2
sT ˙̂M(θ )s

= sT M̂(θ )ṡ +
1
2
sT

(
˙̂M(θ )s − 2Ĉ(θ , θ̇ )

)
s

+ sT Ĉ(θ , θ̇ )s (25)

By using the skew-symmetric property of ˙̂M(θ )s− 2Ĉ(θ , θ̇ ),
the following equation can be obtained:

V̇ = sT
(
M̂(θ )ṡ + Ĉ(θ , θ̇ )s

)
(26)

Substituting Eq. (22) in the above equation results in:

V̇ = sT
[
M̂

[
−M−1(τ − Ĉθ̇ − Ĝ − τ d

)
+ θ̈d

+ Dα+1e + Kpė
]

+ Ĉs
]

= sT
[
−τ + Ĉθ̇ + Ĝ

+ τ d + (M − Me)
(
θ̈d + Dα+1e + Kpė

)
+ (C − Ce)

[
θ̇d − θ̇ + Dαe + Kpe

]]
(27)

By simplifying the above equation, the following equation
can be obtained:

V̇ = sT
[
−τ + Mθ̈d + MDα+1e + MKpė

+ G + τ d + Cθ̇d + CDαe + CKpe

− Ge − Me

(
θ̈d + Dα+1e + Kpė

)
− Ce

(
θ̇d + Dαe + Kpe

)]
(28)

In the above equation, there are a number of terms caused by
external disturbance and model errors which are denoted by
Edis as follows:

Edis = Meθ̈d + Ceθ̇d + Ge − τ d

+ Me

(
Dα+1e + Kpė

)
+ Ce

(
Dαe + Kpe

)
VOLUME 11, 2023 86405
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FIGURE 11. Applied torque to joint 1 for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

Since disturbances are limited values, there is an upper
bound for Edis as follows:

|Edis| < ϵi, i ∈ {1, 2, 3}, ϵi > 0.

Eq. (28) can be simplified as:

V̇ = sT
[
−τ − Edis + Mθ̈d + Cθ̇d + G

+ M
(
Dα+1e + Kpė

)
+ C

(
Dαe + Kpe

)]
(29)

by substituting Eq. (23) in the above equation, the following
equation can be obtained:

V̇ = sT
[
−Edis − Ksls −

n1sign(s1)n2sign(s2)
n3sign(s3)

]
(30)

So, by assuming ni ≥ ϵi, the following inequality holds:

V̇ ≤ −sTKsls ≤ 0 (31)

According to the Lyapunov stability theory, the proposed
controller can make trajectory-tracking errors converge to
zero [43].

V. SIMULATION RESULTS
In this section, the performance of PD, SMC and FOSMC
methods for trajectory tracking, according to their RootMean
Square (RMS) and Root Mean Square Error (RMSE) values

TABLE 2. Obtained parameters from PSO algorithm for PD, SMC, and
FOSMC controllers.

for the position and joint errors, and the individual and global
norms, mentioned in [44], are compared.

Using PSO algorithm, the obtained parameters for PD,
SMC, and FOSMC controllers are illustrated in Table 2.

Fig. 6 presents mentioned experiment trajectories for
performance evaluation of PD, SMC and FOSMCcontrollers.
Fig. 7 shows tracking response of moving plate of Delta robot
when PD, SMC and FOSMC methods are utilized for three
different trajectories. As can be seen in the figure, FOSMC
method performs trajectory tracking much better than two
other control strategies. Fig. 8 shows position error of moving
plate of Delta robot for three trajectories when exploiting
PD, SMC and FOSMC schemes. It can be seen that FOSMC
has less position error than two other controllers. Also, the
position error at the beginning of three test trajectories is less
while FOSMCmethod is utilized which implies that FOSMC
is able to overcome the initial inertia of Delta robot faster than
two other control methods.
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FIGURE 12. Trajectory tracking response with disturbance for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

The actual joint errors for θ1 are shown in Fig. 10, while
exploiting PD, SMC and FOSMC methods. As can be seen
in the figure, FOSMC method generates less error interval
at the start of three trajectories. The response of FOSMC
controller is smooth for actuator joint that shows superior
control strategy when comparing with two other control
methods. The applied torque signal to actual joint θ1 for PD,
SMC and FOSMC controllers is shown in Fig. 11. As can be
seen in the figure, the control signal for three controllers is
similar, but PD needs more torque to break the robot’s initial
inertia.

A. QUANTITATIVE ANALYSIS OF PD, SMC AND FOSMC
METHODS
Specific performance indexes are used to quantify the
performance of PD, SMC and FOSMC schemes. The RMSE
is used for actual joint and position errors in trajectories. The
value of RMSE is calculated as follows:

RMSE =

√√√√ 1
N

N∑
i=0

(Xd (i) − Xa(i))2, (32)

in which N returns the number of elements, Xd (i) is
desired value and Xa(i) denotes the obtained value from
Solidworks/Matlab/SimScape/Multibody simulation model
at the instant i.

The RMS torque value is used for performance comparison
in trajectories. The RMS torque value is calculated as follows:

τRMS =

√√√√ 1
N

N∑
i=0

τ (i)2, (33)

where N returns the number of elements, and τ (i) denotes the
obtained value fromSolidworks/Matlab/SimScape/Multibody
simulation model at the instant i. The mean value of applied
torque is measured according to RMS torque equation.
In order to evaluate the tracking performance of a joint in
Delta robot, the individual tracking norm N is used which is
defined as follows:

∥∥θ1,2,3
∥∥
Individual =

√√√√ 1
N

N∑
i=0

(θ̃1,2,3(i)2 +
˜̇θ1,2,3(i)2),

(34)
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FIGURE 13. Trajectory tracking response with mass uncertainty for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

whereN returns the number of elements, θ̃1,2,3(i) and ˜̇θ1,2,3(i)
are Delta parallel robot joint and joint velocity error at instant
i, respectively. The trajectory tracking performance of Delta
parallel robot is measured using trajectory tracking global
norm as follows:

∥∥Xx,y,z∥∥Global =

√√√√ 1
N

N∑
i=0

(X̃x,y,z(i)2 +
˜̇X x,y,z(i)2), (35)

where N returns the number of elements. The position
and velocity errors are denoted as X̃x,y,z(i) and ˜̇X x,y,z(i),
respectively.

Performance indexes for PD, SMC and FOSMC methods
are given in Table 3. As can be seen in the Table, for three
trajectories, the RMSE values for SMC and FOSMC are
similar at joints error. For position errors, the RMSE values
for x and y coordinates of themoving plate are similar for both
SMC and FOSMC controllers but the advantage of FOSMC
controller is quite clear. For z coordinate, the value of RMSE
for FOSMC controller is less than 50% of SMC controller.
It can also be seen that using FOSMC controller, less torque

is required to track all trajectories. At the end, individual
and global norms for FOSMC controller have less value
than other controllers, which shows superior performance of
FOSMC method in tracking desired trajectories.

VI. ROBUSTNESS ANALYSIS
The robustness of PD, SMC and FOSMC controllers
are evaluated in three different experiments i.e. applying
disturbance to joint actuator of Delta parallel robot, applying
random noise to the input of controllers and applying
a critical payload to the moving plate. The performance
indexes (32)-(35) are employed to evaluate performance of
controllers in each experiment.

A. EVALUATING PERFORMANCE OF CONTROLLERS IN
PRESENCE OF EXTERNAL DISTURBANCES
Here, the external disturbancewhich is defined as followswill
be applied to all three robot joints.

d(t) = 1.5 × 105e−2t sin(500t). (36)

86408 VOLUME 11, 2023



B. Alizadeh et al.: Robust Trajectory Tracking of Delta Parallel Robot

FIGURE 14. Tracking response with random noise for (a) : trajectory 1, (b): trajectory 2 and (c): trajectory 3.

TABLE 3. Performance indexes for PD, SMC and FOSMC methods.

For all trajectories, this disturbance begins at t = 5s and
ends at t = 6s. Fig. 12c represents the response of trajectory
tracking in presence of disturbance for PD, SMC and FOSMC

controllers. It is clear that FOSMC method is faster than
two other suggested controllers and it also has a disturbance
rejection. The performance indexes (32)-(35) for PD, SMC
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TABLE 4. Performance indexes for PD, SMC and FOSMC controllers in presence of external disturbance.

TABLE 5. Performance indexes for PD, SMC and FOSMC controllers with mass uncertainty.

and FOSMC methods in presence of external disturbance
which is applied to actual joints, are presented in Table 4.
In FOSMCmethod, the value of RMSE for actual joint errors,
is at least 60% less than two other proposed controllers. This
is also true for RMSE related to position error in tracking
all three trajectories that again confirms higher performance
of FOSMC controller in presence of external disturbances.
The experiment is conducted while the torque applied to the
actuators is the same for all three controllers. Individual and
global norms also indicate less value for FOSMCamong three
controllers in presence of external disturbance. From Table 4,
it can be confirmed that FOSMC controller shows robustness
against external disturbances.

B. EVALUATING PERFORMANCE OF CONTROLLERS
WHILE APPLYING PAYLOAD
Here, the controllers’ performance is evaluated in presence of
critical payload of 0.5 kg on the moving plate to track three
trajectories of the experiments. Trajectory tracking response
of suggested controllers for all trajectories is illustrated in
Fig. 13. As expected, FOSMC controller performs better than
two other controllers. It should be noted that critical payload
changes the dynamic parameters of Delta robot. Despite these

conditions, FOSMC controller shows the best performance
in trajectory tracking. The performance indexes (32)-(35) for
PD, SMC and FOSMC methods with mass uncertainty of
moving plate, are presented in Table 5. The results of RMSE
for actual joints and position errors, as well as individual
and global norms, show higher performance of FOSMC
controller. The average amount of torque applied to this
controller is a little higher, despite the mass uncertainty; But,
since the controller has minimum tracking errors, it can still
confirm that according to the Table 5, FOSMC controller
is more robust against mass uncertainty in tracking various
trajectories.

C. EVALUATING PERFORMANCE OF CONTROLLERS WHILE
APPLYING RANDOM NOISE
In this section, random noise with a range of ±0.5◦ is
applied to the input of controllers. Fig. 14 shows the effect
of this noise on performance of controllers in which the fast
response of FOSMC method and its stable performance is
clear. According to Table 6, it can be announced that the
RMSE error, individual and global norms in presence of
random noise for FOSMC method, is the lowest among all
controllers. The RMS of applied torque to this controller is
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TABLE 6. Performance indexes for PD, SMC and FOSMC controllers with random noise.

slightly higher however the least errors in tracing various
trajectories can be seen. As a result, it can be announced
that the proposed FOSMC controller is also robust to random
noise in the input of controllers.

VII. CONCLUSION
In this research, the effects of three different types of
controllers i.e. PD, SMC and FOSMC, on error min-
imization of trajectory tracking of Delta parallel robot
have been investigated. The proposed controllers have
been designed with CTC technique. To estimate dynamic
parameters and validate proposed controllers, a Solid-
works/Matlab/SimScape/Multibody simulation model has
been exploited. Dynamic parameterizations of delta robot
have been performed and parameters of dynamic model have
been estimated using PSO algorithm. The evaluations have
been performed in presence of external disturbance, mass
uncertainty and random noise. The results confirm that in all
experiments, FOSMC method shows the best response and is
more robust than other two controllers.
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