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ABSTRACT With the rise of downstream image tasks, the requirements for the quality of images obtained
upstream are becoming higher and higher. In view of the many structural features of remote sensing
images, we propose a novel deep neural network architecture for hyperspectral image fusion that integrates
attention mechanisms and multi-layer perceptron blocks. The proposed network can capture long-range
spatial dependencies between image elements, which is critical for capturing multi-scale features in remote
sensing applications. The attention mechanisms selectively focus on important image features while dis-
regarding redundant information, and the multi-layer perceptron blocks can capture multi-scale features by
processing image features at different scales. The experimental results demonstrate that the proposed network
outperforms other state-of-the-art methods in terms of both objective evaluation metrics and visual quality.
The proposed method achieves higher Peak Signal to Noise Ratio and Spatial Consistency and Contrast
values compared to other methods while preserving fine details and textures in the fused images. Overall,
the proposed network provides an effective and efficient solution for hyperspectral image fusion that can
contribute to the development of more accurate and reliable remote sensing applications.

INDEX TERMS Image fusion, pansharpening, multilayer perceptron, attention mechanism.

I. INTRODUCTION
Pansharpening is a data fusion technique that involves merg-
ing panchromatic (PAN) and multispectral (MS) images cap-
tured simultaneously over the same geographical area [1]. Its
primary purpose is to merge the spatial detail from the PAN
image (which is not present in the MS image) with the spec-
tral detail from the MS image to produce a high-resolution
multispectral image. This process is currently the best way
to obtain high-resolution images because it is not feasible
to achieve this through a single sensor due to physical lim-
itations. Commercial satellites like IKONOS and GeoEye
are capable of capturing both PAN and MS images [2].
Pansharpening is also utilized as a pre-processing step in vari-
ous remote sensing applications, including change detection,
target recognition, and scene interpretation, to improve the
images and yield better results.

Pansharpening encompasses two primary approaches [3]:
component substitution (CS) and multiresolution analy-
sis(MRA). CS techniques involve using the PAN image
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to substitute or replace components and include methods
like intensity-hue-saturation (IHS) [4], principal component
analysis (PCA) [5], and Gram-Schmidt (GS) [6] spectral
sharpening. On the other hand, MRA techniques involve
enhancing spatial details by resampling the MS bands using
a multi-resolution decomposition of the PAN image. Differ-
ent forms of MRA can be utilized to extract spatial details,
including discrete wavelet transform (DWT) [7], undec-
imated wavelet transform (UDWT) [8], adaptive wavelet
transform (ATWT) [9], and Laplacian pyramid (LP) [10].
The increasing prevalence of deep neural networks in

image processing has prompted researchers to investigate
their potential for solving the image fusion problem. In recent
years, various methods have been proposed, including PNN
[11], which is based on convolutional neural networks and
adopts the architecture previously proposed for image super-
resolution. Another notable approach is PanNet [25], which
emphasizes the preservation of both spatial and spectral
information. These methods represent a departure from tra-
ditional techniques for image fusion and offer the poten-
tial for significant improvements in image quality and
accuracy.
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FIGURE 1. Details of the structure of MLP block.

The methods mentioned earlier treat pansharpening as a
straightforward image regression problem and do not take
into account the deep features of the images [13]. In contrast,
this paper proposes a novel approach that incorporates deep
learning techniques to enhance pansharpening. Themain con-
tributions and significance of this paper are summarized as
follows:

• This paper proposes a panchromatic sharpening method
that integrates distal pixel feature extraction into the
deep learning framework. Pixels that are not in the 3 × 3
receptive field are defined here as distant pixels. This
receptive field is chosen because traditional convolution
usually uses 3×3 as the convolution kernel. Unlike pre-
vious methods, this approach fully considers the unique
characteristics of remote sensing images and leverages a
fully connected layer to extract the relationship between
distant modules. By incorporating deep learning tech-
niques and taking into account the spatial relationships
between pixels, this method is able to achieve superior
results compared to traditional approaches.

• Furthermore, in order to mitigate redundancy in infor-
mation caused by the fully connected layer, the present
study incorporates the fully connected and attention
blocks to effectively extract spectral information from
images.

The paper follows the outlined structure: The introduc-
tory section presents an extensive review of previous studies
on remote sensing image fusion. Subsequently, attention is
directed towards the examination of fully connected networks
and attention mechanisms in relation to the proposed network
architecture. The third section outlines the problem formu-
lation, accompanied by a comprehensive exposition of the
Attention Multilayer Perceptron Fusion Network (AMPFN)
architecture proposed in this study. In the fourth section, the
experimental evaluation of the AMPFN model is discussed,

encompassing comparative analyses with existing method-
ologies and a meticulous examination of its constituent ele-
ments. Finally, the concluding section summarizes the key
findings of the proposed AMPFN model, which have signifi-
cantly advanced image fusion accuracy, quantitative analysis
indices, and visual assessments. Moreover, this section puts
forth potential avenues for future research.

II. RELATED WORK
In recent years, numerous techniques for pansharpening have
been introduced, with the most popular being component
replacement techniques such as IHS [4], PCA [18], and
Brovey [19]. While these methods are fast and provide imme-
diate results, they only approximate the spatial resolution of
high-resolution multispectral (HRMS) images contained in
PAN images and introduce spectral distortion. To address
this problem, more advanced techniques, such as adaptive
and dependency-based methods [20], have been developed.
The multi-resolution method decomposes PAN images and
low-resolution multispectral (LRMS) images, usually using
wavelets [23] or Laplacian pyramids [24], and then combines
them. On the other hand, model-based approaches encode
beliefs about the relationship between PAN, HRMS, and
LRMS images into regularized objective functions, treating
the fusion problem as an image restoration optimization prob-
lem [14]. Various algorithms based on these methods have
demonstrated outstanding performance.

A. MLP-MIXER
The MLP Block, which is introduced in this article, is mainly
inspired by the MLP-Mixer [15] computer vision framework
that was recently developed by the Google ViT team. The
framework substitutes the traditional convolutional opera-
tions found in conventional CNNs and the self-attention
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mechanism in Transformers with multilayer perceptron
(MLP) operations.The specific structure is shown in Fig.1.

The MLP-Mixer framework consists of three main com-
ponents: Per-patch Fully-connected, Mixer Layer, and Clas-
sifier. The Classifier component [16] uses the standard
Global Average Pooling (GAP) method followed by a
Fully-connected layer (FC) [17] and Softmax function. How-
ever, unlike the convolutional layer, the Fully-connected layer
cannot capture information between local regions. To over-
come this limitation, MLP-Mixer converts the input image
into a 2D table via Per-patch Fully-connected, which enables
the fusion of information between local regions in subsequent
stages.

The MLP block in this paper is slightly modified on the
basis of MLP-mixer, and the fully connected layer used
for classification is replaced by the Reshape layer, so as to
achieve the purpose of extracting multispectral image fea-
tures. This paper draws on this idea of replacing traditional
convolutions with fully connected blocks and proposes the
AMPFN network architecture, which will be described in
detail in Section III later.

III. METHODOLOGY
A. LOSS FUNCTION
This section mainly describes the loss function. Let a
low-resolution multispectral or noisy input image M ∈

RC,w,h, and a high-resolution panchromatic image P ∈

Rc,W ,H , where c,W ,H represent the number of channels, the
image width and the height of the image, respectively. In the
panchromatic sharpening problem, w ≪ W , h ≪ H , and
c ≪ C . X ∈ RC,W ,H is the output after passing through the
network. In this paper, we use the following loss function to
solve the optimization problem:

Loss = L(M ,X ,P) (1)

The variable L represents a loss function for each task.
In this formula, the optimization problem incorporates both
multispectral image M and panchromatic image P. This
structure efficiently integrates multiscale spatial details and
semantic features.

Equation (1) mainly describes the loss function form of
each task in this paper, without specific calculation. For
example, the loss functions for spectral preservation and
spatial information preservation may differ in detail, but
Equation(1) is the main structure in terms of structure.

According to the main structure of Equation(1),
Equation(2) is proposed for the evaluation of spectral infor-
mation preservation and spatial information preservation.

L = ∥θW (P, ↑ M )+ ↑ M − X∥
2
F (2)

1) SPECTRAL PRESERVATION
In order to better fuse the spectral information, M is upsam-
pled and skip connections [22] are added to achieve the
purpose. We feed ↑M to the network to learn how spatial
information in PAN maps to different spectral bands in X.

In (2), ↑M represents the MS image after up-sampling, and
θW represents the transformation through the MLP block,
which will be discussed in a later section.

2) STRUCTURAL PRESERVATION
In this paper, PAN images and upsampled LRMS images
are fed into MLP block θW . In (2), we observe that since
M is low-resolution, which can be viewed as a low-pass
spectral content-like network containingX, θW can then learn
a mapping to fuse the spatial information contained in PAN
into X.

B. EVALUATION INDEX
In order to quantitatively validate the results, this study
employed both full-reference and no-reference performance
metrics. As shown in Table 1, all indicators covered in this
article are listed together with references.

1) FULL-REFERENCE
Reference-based standards included Peak Signal-to-Noise
Ratio (PSNR), Spectral Angle Mapper (SAM), Spatial Cor-
relation Coefficient (SCC), and the relative dimensionless
global error in synthesis (ERGAS).

MSE = E[(I − J )]2 (3)

RMSE(I , J ) =
√
MSE (4)

Here, I represents the pixel vector of the n-band unfused
MS image, J represents the predicted vector of n band
HRMS. Here, we give priority to spatial/radiation distortion,
and in this paper, mean square error (MSE) and root mean
square error (RMSE) are introduced to facilitate the definition
of subsequent evaluation indexes. The ideal value of both
indices is 0, which is realized if and only if I = J .

PSNR = 10 · log10(
MAX2

MSE
) (5)

Equation (5) is Peak Signal to Noise ratio, used to measure
the ratio between the effective information and noise of the
image, can reflect whether the image is distorted or not. Here,
MAX is the difference between the maximum and minimum
gray values of the ideal reference image (typically 255). The
larger the value of PSNR, the better the quality of the fused
image.

SAM (Ii, Ji) = arccos(
< Ii, Ji >

∥Ii∥∥Ji∥
) (6)

Here, < ·, · > denotes the inner product, and ∥ · ∥ denotes
the magnitude. The SAM global value for the entire image is
calculated by taking the average of individual measurements
over all pixels. The optimal value for SAM is 0, indicating
perfect spectral alignment between the fused image and the
reference image.

ERGAS =
100
R

√√√√ 1
N

n∑
i=1

(
RMSE(Ii, Ji)

µ(Ii)
)2 (7)
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FIGURE 2. Details of the structure of AMPFN.

TABLE 1. Full-reference and no-reference performance metrics.

Equation (7) is Erreur Relative Globale Adimensionnelle de
Synthèse(ERGAS). This is a more plausible global index,
where RMSE is defined in (4), µ denotes the average of the
image (average over pixels), and since ERGAS is composed
of the sum of RMSE values, its optimal value is 0.

2) NO-REFERENCE
In the context of full-color sharpening, there exist various
criteria for assessing the method’s performance on the origi-
nal spatial resolution image in the absence of reference data.
These standards include the spectral quality index (Dλ), the
spatial quality index (DS ), and the no-reference spectral and
spatial joint quality index (QNR).

Dλ =
p

√√√√√ 1
N (N − 1)

N∑
i=1

N∑
j=1,j̸=i

|di,j(MS, M̂S)|p (8)

where di,j(MS, M̂S) = Q(MSi,MSj) − Q(M̂Si, M̂Sj).
Equation (8) aims to generate a synthetic image with

the same spectral characteristics as the original MS image.
Therefore, the relationship between the mass bands must be
preserved during the enhancement process. The Q-index is
used to calculate the difference between band pairs, and the
parameter p is usually set to one.

Ds =
q

√√√√ 1
N

N∑
i=1

|Q(M̂Si,P) − Q(MSi,PLP)|q (9)

Equation (9), PLP is a low-resolution PAN image of the same
scale as theMS image, and q is usually set to 1. From a practi-
cal point of view, perfect alignment between the interpolated
MS image and the PAN image should be guaranteed to avoid
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FIGURE 3. Detailed structure of the Mix Layer.

the loss of meaning of this quality metric.

QNR = (1 − Dλ)α(1 − Ds)β (10)

Equation (10) integrates (8) and (9) to quantify spectral and
spatial distortions, respectively, weighted by coefficients α

and β. The higher the QNR index, the better the quality of the
fused product. The maximum theoretical value of this index
is 1 when both Dλ and Ds are 0.

C. AMPFN ARCHITECTURE
Through the study of PanNet network architecture, this study
carried out further research and construction on the basis of
PanNet’s success. Like other pan-sharpening methods, our
deep network is designed to preserve both spectral and spatial
information. Considering the potential correlation between
remote blocks in remote sensing images, we introduce a
multi-layer perceptron (MLP) module to extract remote fea-
ture relationships. Remote block here refers to pixel points
that are not in the 3 × 3 receptive domain. To prevent the
introduction of redundant information, the attention module
is used in the MLP module to extract important information.
We discuss these topics in more detail below.

The overall architecture is shown in Fig. 2, which mainly
includes the network structure of two multi-layer perceptron
(MLP) blocks with attention mechanism. At the same time,
the attention mechanism is used on the channel dimension.
Before applying the squeeze-excitation (SE [21]) attention
mechanism, the feature map assigns equal importance to
each channel. The SE block then assigns different weights to
different channels, as shown in different colors. This results
in different importance for each feature channel, allowing
the neural network to prioritize channels with higher weight
values.

1) MLP BLOCK
The lower part in Fig. 2 uses MLP blocks to extract the
relationship features between distant pixels of the image and
prevents the redundancy of information through the attention
mechanism. The Mixer Layer and MLP structure used are
shown in Fig. 3 and Fig. 4 respectively. The specific structure
is shown in Table 2.

2) ATTENTION MECHANISM
The attention mechanism shown in Fig. 5 uses another new
neural network to obtain the importance of each channel of

FIGURE 4. Detailed structure of the MLP.

FIGURE 5. Details of the structure of attention block.

the feature map by means of automatic learning, and then
assigns a weight value to each feature using this importance,
so that the neural network can focus on certain feature chan-
nels. The channels of feature maps that are useful for the
current task are promoted, and the feature channels that are
not useful for the current task are suppressed.

Here, Squeeze compreszes the two-dimensional features
(H ∗W ) of each channel to 1 real number by global average
pooling, and the feature map is transformed from [c,w, h] =>
[c, 1, 1]. excitation generates a weight value for each feature
channel. In this paper, two fully connected layers are used
to build the correlation between channels, and the number
of output weight values is the same as the number of input
feature maps. Finally, Scale is used to weight the previously
obtained normalized weights to the features of each channel.
Multiplication is used in this paper, multiplying the weight
coefficients channel by channel. [c,w, h] ∗ [c, 1, 1] =>

[c,w, h].

IV. EXPERIMENTS
We conducted several experiments using data acquired
from the IKONOS satellite, which has a PAN resolution
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TABLE 2. The detailed structure of the MLP block.

of 4m. To minimize the objective function in equation 1,
we employed the adaptive momentum stochastic optimiza-
tion method Adam. For our experiments, we extracted
PAN/LRMS/HRMSpatch pairs of size 64× 64.We randomly
divided these patches into training and validation sets, with
a ratio of 90% and 10%, respectively. We compared the
performance of six commonly used pan-sharpening meth-
ods, namely IHS, Brovey, GSA, MTF-GLP-HPM, PanNet,
and PNN. Multiple parameter settings were tested for each
method, and the optimal configuration was selected based on
performance metrics.

A. DATASET
IKONOS is a high resolution, optical remote sensing com-
mercial satellite, including land, agriculture, forestry, envi-
ronmental protection and other departments to provide HD
satellite images. The resolution of panchromatic images and
multispectral images used in this paper is 4m and 1m,
respectively. Here, four different image scenes are selected
for experiments, including agricultural, urban, forest, or a
mixture of these scenes. In subsequent comparison and abla-
tion experiments, this data set was used in this paper for
experimental verification.

B. IMPLEMENTATION DETAILS
Here we set validation ratio = 0.1, batch size = 32, epochs =

50, Adam optimizer, learning rate= 9×10−4, training image
size = 64, and reconstruction size = 320. All parameters
obtained are the most effective values obtained after multiple
parameter tuning, and will not be described here.

C. RESULTS
1) QUANTITATIVE INDEX TEST
In Fig.6, this paper shows the PSNR changes of the pro-
posed AMPFN and the current more efficient network during

FIGURE 6. Variation of PSNR for each network structure.

training. We can see that all training methods rise rapidly
at the beginning of training and tend to be stable after a
period of time. The PSNR of AMPFN is obviously higher
than that of the other two network structures, but it is not
enough to only use PSNR to evaluate our results. In this paper,
other reference and non-reference indicators mentioned in
Section III-B are used to further refine the analysis of image
indicators.

In Table 3, where MGH stands for MTF-GLP-HPM.
It presents the results of the test images in terms of
quantitative metrics, indicating that AMPFEN outperforms
existing methods across all metrics. It also shows that
MTF-GLP-HPMproduces theminimum value ofDλ, indicat-
ing that it provides the most similar reconstructed spectrum to
the LR-MS image’s spectrum. Meanwhile, all other indicator
values are optimal for AMPFEN, implying its superiority in
terms of spatial details over other methods, and its strong
performance in spectral preservation. Moreover, AMPFEN’s
superiority in the QNR index over other methods suggests
its ability to balance the trade-off between spectral resolution
and spatial resolution effectively, resulting in a superior QNR
value.
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TABLE 3. Quantitative evaluation results of pansharpening in different image scenes. ↓ indicates the lower the better, ↑ indicates the higher the better,
and bold indicates the optimal value.

FIGURE 7. Image fusion result. First row: RGB image of the pansharpening MS image. Second row: magnified RGB image.

2) VISUAL INSPECTION
Additionally, visually, the HRMS images reconstructed by
AMPFEN exhibit superior spectral and spatial informa-
tion quality. Fig. 7 displays the RGB image of the fused
HR-MS image, with detailed image comparisons provided
after zooming in. Our analysis reveals that while PanNet,
and PNN obtained clearer edges in the fused image, they
also suffered from significant spectral distortion, which led
to discrepancies in color and reference images. In contrast,
AMPFEN retains the spectral information while also gener-
ating spatial details that are similar to the reference data. This
reduces the error of the fused image.

3) COMPUTATION ANALYSIS
In order to comprehensively analyze the performance of the
network proposed in this paper, we also compare the compu-
tational complexity on the three deep learning networks. As
shown in Table 4, AMPFN greatly outperforms the other two
network architectures in terms of computation and memory
application. At this point, it can be proved that the AMPFN
architecture proposed in this paper is an efficient remote
sensing image network with comprehensive improvement.

D. ABLATION EXPERIMENT
In order to investigate the role of certain modules within the
AMPFN framework, a series of ablation experiments were

TABLE 4. Computation complexity of different methods.

conducted in this study. The experiments involved 3 different
configurations, and the results are presented in Table 5.

1) ATTENTION BLOCK
In configuration I and II, we investigated the impact of
integrating SE blocks with attention mechanisms to enhance
the network’s performance. The results presented in Table 5
demonstrate a significant improvement in the performance of
various indicators when attention blocks are included.

2) MLP BLOCK
The inclusion of MLP blocks in the network architecture
improves the ability to extract long-range point relationships,
which is particularly relevant for remote sensing images.
In the first and second experiments, we have demonstrated
that the addition of MLP blocks leads to significant improve-
ments in various performance indicators, while the removal of
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TABLE 5. The results of ablation experiments.

this module results in a deterioration of these indicators. This
suggests that the MLP block plays a crucial role in capturing
distant point relationships.

All in all, the addition of attention block and MLP block
structure can reduce the amount of parameters while paying
attention to extract the relationship between distant pixels of
the image, and obtain more accurate high-resolution remote
sensing images.

V. CONCLUSION
This paper proposes an attention multi-layer perceptron
fusion network based on the two goals of previous deepmodel
pansharpening: Spectral and spatial information preservation
introduces a multi-layer perceptron with attention mecha-
nism, which allows the network to focus on the relationship
between distant pixels of remote sensing images. At the
same time, the attention mechanism is used to deal with the
redundant information that may be brought by the fully con-
nected layer, reducing the amount of parameters used in deep
learning training. Experimental results show that AMPFN
achieves better image reconstruction than PNN and PanNet,
and achieves excellent results in both quantitative index test
and visual test.
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