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ABSTRACT To address the challenges of obtaining network state information, flexibly forwarding data,
and improving the communication quality of service (QoS) in wireless network transmission environments
in response to dynamic changes in network topology, this paper introduces an intelligent routing algorithm
based on deep reinforcement learning (DRL) with network situational awareness under a software-defined
wireless networking (SDWN) architecture. First, comprehensive network traffic information is collected
under the SDWN architecture, and a graph convolutional network-gated recurrent unit (GCN-GRU) pre-
diction mechanism is used to perceive future traffic trends. Second, a proximal policy optimization (PPO)
DRL-based data forwarding mechanism is designed in the knowledge plane. The predicted network traffic
matrix and topology information matrix are treated as the DRL environment, while next-hop adjacent nodes
are treated as executable actions, and action selection policies are designed for different network conditions.
To guide the learning and improvement of the DRL agent’s routing strategy, reward functions of different
forms are designed by utilizing network link information and different penalty mechanisms. Additionally,
importance sampling steps and gradient clipping methods are employed during gradient updating to enhance
the convergence speed and stability of the designed intelligent routing method. Experimental results show
that this solution outperforms traditional routing methods in network throughput, delay, packet loss rate,
and wireless node distance. Compared to value-function-based Dueling Deep Q-Network (DQN) routing,
the convergence of the proposed method is significantly faster and more stable. Simultaneously, hardware
storage consumption is reduced, and real-time routing decisions can be made using the current network state
information. The source code can be accessed at https://github.com/GuetYe/DRL-PPONSA.

INDEX TERMS Deep reinforcement learning, gradient clipping, intelligent routing, importance sampling,
network situational awareness, and software-defined wireless networking.

I. INTRODUCTION
With the rapid development of wireless local area network
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points (APs) are being provided in more locations to allow
users to access the internet. This has resulted in explosive
growth in wireless network traffic. In addition, the bursty
traffic and rapid mobility of mobile wireless users can cause
significant delay and packet loss issues in traditional wire-
less networks. This situation presents significant challenges
for traditional wireless network architectures in terms of
the physical infrastructure, protocol framework, and trans-
mission performance, severely affecting the communication
quality of service (QoS) for wireless users [1]. The efficient
routing and transmission of data in wireless networks rely on
the timely and flexible acquisition of network state informa-
tion and the design of efficient routing algorithms. Therefore,
researching ways to optimize the wireless network archi-
tecture and routing protocol design to improve transmission
efficiency has important theoretical significance and practical
value for maximizing the utilization of network resources in
current wireless transmission scenarios.

In traditional wireless network frameworks, data forward-
ing and control management are tightly coupled, which limits
network scalability. Consequently, network devices need to
support multiple integrated network functions, leading to
a cumbersome network architecture that hinders network
management and maintenance [2]. Moreover, traditional dis-
tributed network architectures have deployment limitations.
In the deployment of new network services in large-scale
dynamic networks, complex and heterogeneous network
structures can easily arise. To address these issues, software-
defined wireless networking (SDWN) is considered a reliable
solution that aims to improve the programmability and flex-
ibility of wireless network architectures to facilitate more
efficient network management and performance optimiza-
tion. SDWN is an emerging wireless network framework
that is an extension of software-defined networking (SDN).
In this framework, the vertical structure of traditional wireless
networks is broken up by separating the complex control
functions of traditional wireless network devices and log-
ically concentrating them on controllers to decouple data
forwarding and control management. In this way, direct pro-
grammability and centralized control of network logic are
realized along with the abstraction of the underlying wire-
less infrastructure, enabling network management through
software. An SDWN controller schedules network resources
from a global perspective and at a fine-grained level, using the
southbound interface of the OpenFlow protocol and the data
plane for programming control. Thus, the controller achieves
the functions of issuing flow tables and collecting network
status information. Meanwhile, the northbound interface of
the controller provides an open interface with the applica-
tion plane [3]. Based on the advantages outlined above, data
forwarding and control management can be decoupled in
SDWN, providing the possibility for routing algorithms to
reschedule and efficiently utilize network resources.

Efficient routing protocol design is crucial in wireless
networks, and the optimization of routing algorithms is a
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key area of research in traffic engineering [4]. A routing
algorithm aims to find the most efficient routing strategy
from the source node to the destination node in the network
topology. The algorithm’s performance determines the QoS
in the wireless network. Consequently, designing a rout-
ing algorithm that is both efficient and stable is crucial for
enhancing overall performance and resource utilization in an
SDWN environment.

In recent years, researchers have enhanced network perfor-
mance by optimizing routing algorithms. Traditional routing
algorithms, such as the distance vector routing protocols
(DVRPs) [5] and open shortest path first (OSPF) algo-
rithms [6], are primarily based on the shortest-path approach.
However, these algorithms often use only limited link infor-
mation for optimization and cannot fully utilize the global
network information to enhance network performance [3].
Moreover, traditional routing algorithms have shortcomings
such as a slow convergence speed, a long response time, and
difficulty adapting to dynamic networks, which make them
unsuitable for use in an SDWN architecture. Some scholars
have modeled the routing optimization problem as either a
linear programming (LP) problem or a nonlinear program-
ming (NLP) problem [7] and proposed the use of classical
routing optimization algorithms to find the optimal routing
strategy. However, as the network scale increases, it becomes
difficult for such an algorithm to dynamically adjust the
routing and forwarding strategy based on the changing net-
work topology and link information. Some researchers have
proposed improving the effectiveness and stability of rout-
ing algorithms by performing predictive processing on the
available network traffic information before routing opti-
mization [8]. By doing so, accurate traffic information can be
obtained promptly to help the routing algorithm make precise
path decisions. With the development of artificial intelligence
technology, many researchers have begun to apply related
methods to routing optimization problems to improve the per-
formance of large-scale and complex dynamic networks and
simultaneously optimize multiple network links. In particu-
lar, deep reinforcement learning (DRL) [9] is useful for solv-
ing goal-oriented learning and decision-making problems and
thus can help routing algorithms flexibly adapt to complex,
dynamic changes in wireless networks for the optimize the
allocation of wireless network resources. For the wireless net-
work routing problem discussed in this article, DRL utilizes
deep neural networks that can handle high-dimensional and
complex state and action spaces, better adapt to a dynamic
network environment, and adaptively adjust the network
routing strategy to maximize the overall network efficiency.
In previous work, DRL has already achieved some significant
results in routing optimization [9], [10], [11], [12].

This article proposes an intelligent SDWN routing
algorithm, DRL-PPONSA, based on proximal policy opti-
mization (PPO) DRL and network situational awareness
(NSA) [10]. First, this algorithm comprehensively considers
the traffic information on the links in the wireless network.
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To this end, the data plane and control plane of the
SDWN architecture and a graph convolutional network-gated
recurrent unit (GCN-GRU) [11] prediction mechanism are
designed as three key components of the NSA system. The
control plane is responsible for data perception and acquisi-
tion, while the GCN-GRU mechanism is applied for traffic
prediction, thereby achieving awareness of the global net-
work state. Next, traffic matrices (TMs) representing the
predicted remaining bandwidth, link delay, packet loss rate,
packet error rate, and wireless node distance as well as the
network topology are taken as the description of the envi-
ronment for DRL, while next-hop adjacent nodes are viewed
as possible actions. By utilizing the link information in the
network environment and employing various reward and pun-
ishment mechanisms, a reward function is designed to guide
a DRL agent to learn a strategy seeking the highest reward,
ultimately achieving optimal intelligent routing decisions.

The contributions of this paper are summarized as follows:

1) This paper comprehensively considers multiple types
of status information, such as network delay, network
jitter, remaining bandwidth, packet loss rate, packet
error rate, and distance between APs, and uses them
as optimization objectives. This approach can more
comprehensively satisfy QoS requirements, laying a
foundation for efficient and flexible data transmission
and effectively reducing network congestion.

2) This paper presents an NSA mechanism using a
GCN-GRU prediction model based on an SDWN archi-
tecture. This mechanism comprehensively considers
the spatiotemporal characteristics of wireless network
traffic, using current and historical traffic status data to
predict the future traffic situation. This approach can
fully utilize the hidden status information in a wireless
network to improve the reliability and stability of an
intelligent routing algorithm.

3) By designing the action space for DRL to consist of
the next-hop adjacent nodes, the interactivity between
the intelligent agent and the network environment is
enhanced. This enables the routing algorithm to more
intelligently adapt to dynamic and complex changes in
the network. Additionally, different reward functions
are designed based on link information and reward
mechanisms to mitigate the issue of the intelligent
agent becoming stuck in local optima. In this way, the
robustness and effectiveness of the intelligent routing
algorithm are enhanced.

4) An online DRL method based on PPO is employed
to address the issues of low effectiveness of data
samples due to mismatch with the current agent pol-
icy and gradient explosion during the gradient update
process. To overcome these issues, importance sam-
pling (IS) and gradient clipping techniques are utilized
instead of prioritized experience replay (PER) and
the Kullback-Leibler (KL) divergence. This approach
improves the convergence speed and stability of the
designed algorithm.
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The remainder of this article is organized as follows:
Section II introduces mainstream prediction models and
routing methods along with their associated shortcom-
ings. Section III introduces the proposed intelligent routing
architecture based on NSA under the SDWN architecture.
Section IV introduces the environment design for the pro-
posed DRL-PPONSA algorithm and the details of algorithm
implementation for intelligent routing. Section V reports
experiments conducted to verify the stability and reliability
of the algorithm proposed in this paper. Section VI is the con-
clusion, which summarizes the challenges faced and proposes
further research directions.

Il. RELATED WORK

This section introduces commonly used routing optimization
methods and traffic prediction methods used to improve the
reliability and stability of routing algorithms. The mainstream
routing optimization methods are divided into classical opti-
mization algorithms and intelligent optimization methods,
while the traffic prediction methods are also divided into two
main categories: linear prediction and nonlinear prediction.

A. ROUTING OPTIMIZATION METHODS
Routing optimization is a key technology for improving
network performance, providing important guarantees for
network scalability, stability, and security.

1) CLASSIC ROUTING OPTIMIZATION METHODS
This section introduces classical route optimization algo-
rithms based on heuristic algorithms. Common algorithms
of this kind include simulated annealing (SA), genetic algo-
rithms (GAs), ant colony optimization (ACO), and artificial
neural networks (ANNs). As summarized in Table 1, several
research papers [14], [15], [16], [17], [18], [19] have shown
that classical routing optimization methods can improve rout-
ing performance in global optimization problems. However,
they may face slow convergence when dealing with com-
plex problems and large optimization spaces. Additionally,
in paper [19], a long short-term memory (LSTM)-based
traffic prediction method is used. However, compared to
the GRU structure, the LSTM network structure is more
complex and requires more parameters to be set, making it
less convenient in terms of parameter tuning. Consequently,
a significant amount of time is required to train such a pre-
diction model. Moreover, LSTM prediction methods are not
suitable for wireless network traffic with both temporal and
spatial features. The scenario addressed in paper [14] involves
wireless sensor networks, and the SDN architecture is not
utilized, which limits the acquisition of global network infor-
mation. While the methods presented in other papers [15],
[16], [17], [18], [19] do employ the SDN architecture to
improve routing, they cannot construct efficient routes based
on dynamically changing network information, making them
less applicable to complex dynamic network environments.
Although classical optimization algorithms can solve
shortest-path optimization problems to some extent, these
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algorithms typically provide only suboptimal solutions and
often optimize only a single objective. Subtle changes in
the network environment can cause significant fluctuations
and errors in these algorithms, leading to potential scalability
issues and impacting network performance [8]. Therefore,
classical routing optimization algorithms are not suitable for
large-scale, dynamic, and complex SDWN environments.

2) INTELLIGENT ROUTING OPTIMIZATION METHODS

With the continuous development of science and technol-
ogy, traditional classical routing algorithms are increasingly
unable to meet complex and dynamic network demands.
In contrast, intelligent optimization algorithms can better
adapt to complex and high-dimensional dynamic network
environments. Therefore, many researchers have studied the
application of intelligent algorithms to routing optimization
problems and achieved good results. As shown in Table 1,
a supervised machine learning approach is used in paper [4]
to improve routing in SDWN. However, this method requires
a large amount of labeled data and is highly dependent on the
data labels. Furthermore, the model learned during the train-
ing process may not generalize well to unseen data. Paper [20]
employs the particle swarm optimization algorithm to solve
the routing problem in SDWN. Due to the algorithm’s ran-
domness and the local search capability of the swarm, this
algorithm is prone to becoming stuck in local optima and
struggles to escape and find the global optimum. On the other
hand, papers [21], [22] utilize reinforcement learning (RL) to
optimize route selection. In contrast to supervised machine
learning, RL involves interacting with the environment and
improving routing strategies by optimizing their reward val-
ues, thereby eliminating the need for a large amount of
labeled data. However, when dealing with high-dimensional
action and state spaces, RL-based routing methods are not
suitable. Therefore, some papers [3], [8], [23], [24], [25],
[26], [27], [28] suggest using DRL to overcome the limi-
tations of traditional RL methods. They utilize neural net-
works to estimate and extract features from high-dimensional
actions and states. However, most of these papers primarily
focus on optimizing network latency and packet loss while
neglecting other factors such as bandwidth, error rates, and
distance. Moreover, only a few papers consider prediction
mechanisms, and most of them rely on prediction methods
such as GRU networks. Among papers [23], [24], [25], [26],
[27], [28], the majority adopt the k-paths action selection
strategy, which often requires the use of traditional routing
algorithms such as Dijkstra’s algorithm to compute k paths
that meet the given conditions. This leads to higher computa-
tional complexity and resource consumption compared to the
next-hop strategy.

In the abovementioned literature, classical machine learn-
ing algorithms were used to optimize network routing and
improve network performance. Although these approaches
can optimize multiple target parameters simultaneously,
doing so requires a large amount of labeled data for training,
and obtaining corresponding label information from dynamic
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and complex network topologies is extremely difficult and
highly dependent on the accuracy of the data. If the obtained
dataset is inaccurate, the system will not be able to learn
a good network model to predict the optimal routing strat-
egy. Therefore, many researchers have begun to focus on
reinforcement learning as an optimization method for intel-
ligent routing. Compared with traditional routing algorithms
and classical optimization algorithms, reinforcement learn-
ing methods can greatly improve network performance and
have significant advantages in adjusting routing strategies in
dynamically changing networks in a timely manner. There-
fore, reinforcement learning is also a feasible technology
for solving routing optimization problems in large-scale and
complex dynamic wireless networks. However, most of the
related literature to date has focused on intelligent routing
problems in wired SDN environments, and there has been
little in-depth discussion of wireless network routing.

B. TRAFFIC PREDICTION METHODS

Network traffic information is an important feedback indi-
cator of network load. Accurately and reliably predicting
network traffic information can help avoid delays caused by
network congestion and assist routing algorithms in achieving
fault-tolerant processing, thus improving their stability and
reliability. Typically, the algorithms used for network state
prediction can be divided into linear prediction methods and
nonlinear prediction methods.

1) LINEAR PREDICTION METHODS

The most commonly used linear prediction models include
autoregressive moving average (ARMA) models, autoregres-
sive integrated moving average (ARIMA) models, Markov
models, and the Holt-Winters algorithm. Tian et al. [29]
proposed modeling the frequency component of network traf-
fic with an ARMA model to predict network traffic in an
SDN environment. Alghamdi et al. [30] proposed using an
ARIMA model to predict traffic flow in the state of California
in the United States. Tran et al. [31] proposed an improved
algorithm based on Holt-Winters exponential smoothing to
predict abnormal data in cellular traffic environments. How-
ever, traditional linear models have simple structures and
have difficulty accurately perceiving fast-changing network
traffic features, resulting in poor prediction results as well
as weak model adaptability and generalization ability. The
traffic information in wireless networks includes not only
temporal features but also spatial features [21]. Therefore,
using linear models to predict wireless traffic has certain
limitations.

2) NONLINEAR PREDICTION METHODS

For complex and diverse types of network data, accurate
prediction can be achieved through nonlinear modeling; for
example, nonlinear models such as neural networks and
fuzzy logic models can be used to predict network traffic.
Casado-Vara et al. [32] proposed using an LSTM recurrent
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TABLE 1. Related literature on routing approaches.

Paper Description Prediction mechanism Learning approach Performance metrics Action Data transmission scenario
[14] A routing optimization strategy for wireless sensor None Genetic algorithms (GAs) Energy consumption, delay Next-hop Wireless sensor
networks based on improved genetic algorithm networks(WSN)
[15] Discover the optimal ToT packets routing path of None Bee colony optimization Distance Next-hop SDN
software-defined network via artificial bee colony (BCO)
algorithm
[16] Optimization strategy of SDN control deployment based None Simulated annealing (SA) Delay Link weight SDN
on simulated annealing-genetic hybrid algorithm and Genetic algorithm (GA) values
[17] A heuristic traffic engineering algorithm for use in SDN None Not reported Paths load, total packet drop K-paths SDN
networks with multipath forwarding and inter-path and flow properties selection
traffic switching
[18] FH-ACO: Fuzzy heuristic-based ant colony optimization None Fuzzy heuristic-based ant Delay, reliability Not reported Virtual wired network
for joint virtual network function placement and routing colony optimization
(FH-ACO)
[19] SDPredictNet-a topology based SDN neural routing LST™M Artificial neural networks Bandwidth, delay Link weight SDN
framework with traffic prediction analysis (ANNs) values
4] MLaR: machine-learning-assisted link-state None ML (Machine learning) Latency, bandwidth, SNR, K-paths SDWN
routing in software-defined-based wireless networks distance selection
[20] An energy-efficient routing algorithm for None (PSO) Particle swarm Energy of the network Not reported SDWN
software-defined wireless sensor networks optimization nodes
[21] An intelligent routing algorithm based on machine None RL (Q-learning) Delay, transmission quality Link weight SDWN
learning in software-defined wireless networking values
[22] Adaptive Routing in Wireless Mesh Networks Using None RL (Q-learning) Throughput, packet delivery Next-hop Wireless mesh networks
Hybrid Reinforcement Learning Algorithm ratio, and delay
3] DRL-M4MR: An intelligent multicast routing approach None DRL(DQN) Delay, bandwidth, loss Next adjacent SDN
based on DQN deep reinforcement learning in SDN edge
81 Intelligent routing method based on Dueling DQN GRU DRL (DQN) Bandwidth, delay, loss K-paths SDN
reinforcement learning and network traffic state selection
prediction in SDN
[23] An approach to combine the power of deep None DRL (DQN) and GNN Path delay and link usage Link weight Wired network
reinforcement learning with a graph neural network for values
routing optimization
[24] A DRL-based solution for intelligent routing in SDN None DRL (DQN) Link stretch, delay, loss and K-paths SDN
based on path-state metrics throughput selection
125 DRL-R: Deep reinforcement learning approach for None DRL (DDPG) Delay K-paths SDN
intelligent routing in software-defined data-center selection
networks
[26] A Deep Reinforcement Learning Approach for None DRL (DDPG) Throughput K-paths SDN
Deploying SDN Switches in ISP Networks from the selection
Perspective of Traffic Engineering
271 Modeling Data Center Networks with Message Passing None DRL (DDPG) Delay, network jitter, Drop K-paths SDN
Neural Network and Multi-task Learning ratio selection
[28] A scalable deep reinforcement learning approach for GRU DRL (DDPG) Delay K-paths Traffic network
traffic engineering based on link control selection
DRL-PPONSA An SDWN intelligent routing solution based on PPO GCN-GRU DRL (PPO) Bandwidth, delay, loss, Next-hop SDWN
deep reinforcement learning and network situation packet error rate, AP
awareness distance

neural network trained through distributed asynchronous
training to predict web traffic time series, fully exploring the
hidden temporal features of the network traffic and improving
the accuracy of prediction. Hu et al. [33] proposed using an
improved variant of an LSTM recurrent neural network model
in which the forget gate and input gate are combined into
an update gate to predict data information in network traffic.
Bi et al. [34] proposed using a Savitzky-Golay (SG) filter to
preprocess the noise information in the original traffic data,
using a temporal convolutional network (TCN) to extract
the short-term features of the sequence, and using an LSTM
network to capture the long-term dependencies in the data,
effectively capturing the nonlinear features of the network
sequence and improving the prediction accuracy. Huang et al.
[8] proposed using a GRU model instead of an LSTM model
to predict traffic matrix information in the SDN context,
extracting hidden traffic information from the network to con-
struct a corresponding predicted traffic matrix, and using the
predicted traffic matrix to train an intelligent agent, thereby
improving the reliability of the routing algorithm.

Although related studies have addressed the issues of low
linear prediction accuracy and weak generalization ability
and have achieved good prediction results, they have only
considered the temporal features of network traffic and have
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not taken spatial features into account. For wireless net-
work traffic with spatiotemporal characteristics, the predic-
tion effect is not ideal. Therefore, Yuan et al. [35] proposed
a method combining a 3D convolutional neural network
(3D-CNN) and an LSTM network to predict traffic infor-
mation in wireless networks. Pan et al. [36] fully considered
the complex temporal and spatial dependencies among net-
work traffic and proposed a prediction model combining the
GCN and GRU techniques to predict network traffic. The
experimental results showed that this model has long-term
prediction capabilities and is applicable for traffic data
with spatiotemporal characteristics, and the prediction effect
meets expectations. Therefore, in this paper, a network traffic
prediction scheme is designed that also combines the GCN
and GRU approaches for the accurate prediction of wireless
traffic with spatiotemporal features. The integration of this
GCN-GRU prediction algorithm into the intelligent routing
algorithm proposed in this paper is an important means of
improving its reliability and effectiveness.

Ill. THE DESIGN OF THE PROPOSED INTELLIGENT

ROUTING ARCHITECTURE BASED ON SDWN FOR NSA
In this section, we introduce the proposed intelligent routing

architecture designed in this paper based on SDWN for NSA.
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The overall architecture of the intelligent routing system is
composed of an infrastructure data plane, a logical control
plane, a knowledge plane, and an application plane, as shown
in Fig. 1. The structure of each plane is presented in detail
below.

A. INFRASTRUCTURE DATA PLANE

This plane primarily consists of wireless network devices
such as APs and stations (STAs). This plane is responsible for
packet lookup and forwarding as well as packet parsing and
flow table matching. The devices respond to requests sent by
the logical control plane via the southbound interface of the
OpenFlow protocol.

B. LOGICAL CONTROL PLANE

SDWN is a method of utilizing SDN technology to achieve
centralized control in wireless networks. Accordingly, rules
defined by specialized programs, usually referred to as con-
trollers, determine the network behavior. In SDWN, the
wireless control plane and data plane are decoupled and
separated, thereby simplifying the wireless access devices
and forwarding devices and allowing the network to run in
accordance with the rules of logical centralized control plane
scheduling. First, the SDWN controller in the control plane
periodically collects information from the data plane, such
as the network topology, link bandwidths, link round-trip
delays, link packet loss rates, and distances between wireless
APs, through its southbound interface.

The main functions of the controller include link discovery,
topology management, policy formulation, and flow table
distribution. For link discovery and topology management,
the controller utilizes an uplink channel to uniformly monitor
and aggregate the information reported by the underlying
switch devices. Policy formulation and flow table distribution
are achieved through the use of downstream channels to
implement unified control over the network devices.

The purpose of link discovery in SDWN is to obtain
global network information to serves as the foundation for
network address learning, VLAN management, and routing/
forwarding [37]. Unlike traditional network link discovery
methods, link discovery in SDWN networks is accomplished
uniformly through the link layer discovery protocol (LLDP)
by the controller. The objective of topology management is
to collect and monitor information from the SDWN switches
in the network in order to provide feedback on the work-
ing status of the switches and the connection status of the
links [38]. The controller regularly sends LLDP packets
through packet-out messages to the connected SDWN APs
and senses the information of these wireless APs based on the
feedback obtained from packet-in messages, thereby detect-
ing the working status of the wireless switches and updating
its representation of the network topology.

Unlike in most other literature that considers only a single
type of network state information, the network state infor-
mation addressed in this article includes the remaining link
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FIGURE 1. SDWN intelligent routing structure.

bandwidth bwpree(ij), the used link bandwidth bwysj), the
link delay delay;;, the packet error rate pkt.,,(j on a link, the
number of dropped packets pktgop(;j) on a link, the distance
distance;; between wireless APs, and the packet loss rate
loss;; on a link. The controller operates with a cycle time
of t seconds and sends port information query requests to
the data plane. The data plane responds with a reply that
contains the statistics for each port, including the numbers
of bytes transmitted #x; and received rxp, the number of
packets transmitted #x, and received rx,, as well as the effec-
tive time t4. The difference between two consecutive sets
of statistics represents the amount of bandwidth used during
that period. For a link e(; j), the maximum used bandwidth
bwyse(ij) 1s determined by taking the maximum value of the
used bandwidth between the two ports (i and j) on the two
switches connected by the link. The remaining bandwidth
bWfree(ij) on the link is equal to the difference between the
maximum capacity of the link, bW¢gpmax, and the used band-
width, bwyse(ij), as shown in Equation (1). Equation (2) is used
to calculate the maximum used bandwidth of the link, where
(i,j) e (1,2,3,---,n),i # j, the n represent the number of
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AP switches.

beree(ij) = |b Weapmax — bWMSe(lj)| @)
txpi + rxpi) — (txpi + rXp;)
bWuyse(ij) = (e t;), — 1y l d @
[y 1

The round-trip delay calculated for a link is detected by
the controller’s built-in Switches module, and the timestamp
of LLDP [38] data transmission is obtained. The controller
sends an echo request message with a timestamp to the AP
switches, then parses the echo reply message returned by each
switch and subtracts the transmission time parsed from the
data from the current time to obtain the echo round-trip delays
Techo_api and Toepo_apj between the controller and the wireless
switches. The delay between the wireless switches is then
calculated from the LLDP message receiving time minus the
message sending time for each switch, denoted by Tjgp_api
and Tygp_qpj. Accordingly, the delay;; calculation for link e(; j
is as show in (3).

(Tlldpfapi + Tlldpfapj - Techofupi - Techoﬁupi)

2

Equation (4) represents the maximum packet loss rate cal-
culated for link e(; j) from switch port i to j and from switch
port j to i. Equation (5) represents the packet error rate of link
e(i.j) in both directions, from switch port i to j and from switch
port j to i. In Equation (6), the number of dropped packets
for link e(; ; represents the number of packets lost in both
directions, from switch port i to j and from switch port j to i.

Moy ﬁ) 1100%  (4)
1Xpi 1Xpj

delay;; = E))

loss;j = max (1 —

T Xbi — TXbj - 100% 3)

Pkterrj) = e
i

Pktiropi) = |r Xpi — ’xpj| ©)

Here, tx;; represents the number of bytes sent from port
i, rxp; represents the number of bytes received at port i.
1xp; represents the number of packets sent from port i, rxp;
represents the number of packets received at port i, (i,j) €
(1,2,3,---,n),i # j, and n represent the number of AP
switches.

In actual physical scenarios, the distance traveled
corresponds to the energy consumed for wireless trans-
mission; therefore, the algorithm in this article also
considers the distance between APs. The Equation (7)
gives the distance distance;; between two APs, which rep-
resents the distance in physical space between the wire-
less AP switches and is calculated using three-dimensional
coordinates.

distance;; = \/(xi - Xj)2 + ( i— )’j)2 + (Zi - Zj)2 )

Here, (x;,y;, z;) represents the spatial three-dimensional
coordinates between of the i-th switch.

The controller formulates forwarding strategies and gen-
erates corresponding flow table entries based on the
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FIGURE 2. Traffic prediction module.

transmission requirements at the different levels. A designed
DRL mechanism in the knowledge plane learns the optimal
routing strategy based on the current network state infor-
mation and issues flow tables to generate optimized SDWN
forwarding routes.

C. KNOWLEDGE PLANE

The knowledge plane designed in this article applies a combi-
nation of RL based on policy gradients and traffic prediction.
Loading the knowledge plane into the SDWN framework
endows the controller with greater intelligence when mak-
ing policy decisions. Model training in the knowledge plane
requires data obtained from the information pool in advance
and network link information converted into a traffic matrix,
which is predicted by a traffic prediction module. The traffic
prediction module consists of two parts: a GCN and a GRU
network. As shown in Fig. 2, the topology information of
the SDWN network is first obtained, and the Ryu controller
obtains the link information and converts it into graph data
with weights, which are treated as time series data at ¢ time
points. Then, these time series data at ¢ historical time points
are used as input for prediction. First, the spatial features
of the wireless network topology are obtained through the
GCN. Second, the time series data with spatial features are
input into the GRU network for the extraction of temporal
features. Finally, a fully connected layer is used to filter and
output the predicted results. The obtained predicted traffic
data are synchronized into a RL network for training, and
an intelligent agent optimizes the strategy to be executed
based on the currently obtained network state information,
with the maximum reward value as the target, dynamically
adjusting the optimal routing path until the model converges
and stabilizes. Finally, the trained model is deployed to the
SDWN controller to obtain the optimal routing strategy. Data
flow table forwarding is completed by responding to the data
plane through the southbound interface.

D. APPLICATION PLANE

The application plane is a system that manages all
business-related applications and has a programmable API.
Controllers interact with the application plane through their
northbound interfaces to enable the development and deploy-
ment of various network applications, such as load balancing,
fast switching, and interference management.
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E. DESIGN OF THE PROPOSED NSA SYSTEM
ARCHITECTURE BASED ON SDWN
To enable the proposed intelligent routing algorithm to better
optimize the network performance with enhanced stability
and effectiveness, this article presents the design of an NSA
architecture based on SDWN. This NSA architecture is used
to monitor and obtain information on the traffic and network
topology in the wireless network, predict future trends in
network traffic, analyze network conditions from a global
perspective, and provide accurate data support for routing.
Meanwhile, DRL methods are used to search for the opti-
mal wireless routing/forwarding paths to improve network
bandwidth utilization and reduce the network delay, thereby
ensuring the communication quality of the entire network.
Situational awareness refers to the ability to perceive envi-
ronmental factors and events in time or space as well as
predict their future states [39] by processing existing infor-
mation and seeking an optimal solution on a specific timeline.
The application of NSA in intelligent routing mainly involves
perceiving and analyzing real-time data from the wireless
network to optimize and schedule the network topology
and wireless network traffic, thereby improving the network
throughput and response speed and providing important guar-
antees of network security. As shown in Fig. 3, the NSA
system architecture proposed in this article consists of three
layers: a perception layer, a comprehension layer, and a
prediction layer. Among them, the perception layer mainly
collects and processes data information, corresponding to the
data plane in SDWN. The comprehension layer corresponds
to the control plane in the SDWN framework; in this layer,
the Ryu controller comprehends and projects data infor-
mation from the perception layer and evaluates the current
situation of the network environment. As the highest level
of situational awareness, the prediction layer is responsible
for perceiving and understanding various elements of the
network environment and predicting future traffic trends;
this layer corresponds to the traffic prediction model in this
article.

IV. INTELLIGENT SDWN ROUTING ALGORITHM BASED
ON POLICY OPTIMIZATION, DRL-PPONSA

In this section, we first introduce the overall architecture of
the proposed algorithm, then describe the design process of
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the network traffic prediction algorithm and the DRL-PPO
algorithm with NSA, and finally describe the DRL-PPONSA
algorithm framework in detail.

A. OVERALL ARCHITECTURE OF THE DRL-PPONSA
ALGORITHM

In the infrastructure data plane, the wireless network topol-
ogy is abstracted as an undirected graph with relevant link
parameter weights, represented by G = (G, E, W). Where
V is the set of wireless APs, E is the set of links between
nodes, W is the set of link parameter information, and each
side ¢;; represents a link, ¢;; € E. Accordingly, the intelligent
routing algorithm in this article is designed based on an
undirected graph. A diagram of the overall algorithm is shown
in Fig. 4. First, the link information of the network is obtained
based on the SDWN topology, including parameters such as
bandwidth, delay, and packet loss rate, and is transformed into
a multidimensional matrix. Then, the predicted traffic matrix
is obtained through the traffic prediction model, and finally,
the predicted traffic matrix is provided as input to the DRL
algorithm for training. The DRL algorithm is composed of
two main networks: an actor network and a critic network.
The former optimizes a policy to maximize the expected
returns, while the latter evaluates the value of a given policy
in its current state. These two networks collaborate to achieve
efficient policy optimization. This approach based on an AC
network architecture can ensure that the intelligent agent
always makes decisions in the direction of accumulating the
maximum reward while dynamically optimizing parameters
such as network delay, jitter, bandwidth, and throughput rate
to achieve real-time control of the current network, thereby
effectively reducing the network load [40].

B. DESIGN OF THE NETWORK TRAFFIC PREDICTION
ALGORITHM

This subsection mainly introduces the design process of
the GCN-GRN prediction algorithm for achieving NSA.
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Algorithm 1 GCN-GRU Network Traffic State Prediction
Algorithm
Input: traffic matrix data:X;23,.,, graph adjacency
matrix:A, learning rate:c, training episodes: M, batch
size:IC, L, regularization coefficient: .
Output: Predicted traffic matrix data:Y, 41 ;42,143,147 -
1: Inmitialize GCN-GRU network with random weight:6.
2: Input data for standardization.
3: Obtain adjacency matrix A of SDWN network topology
and calculate D~1/2AD~1/2
4: for episode =1 < M do

5: Generate implicit H according to
GCN-GRU  network Hiv1, 41 =
GCGRU(X;_p4+1, D71/2AD~1/2)

6: Calculate the final prediction result based on FC
network Yirt,.tvr = FCXt41,..047)

7: Calculate loss function: Loss =

o\ 2
%Zﬁl (Y, -Y)" +
model weights 6 = 6
8: end for

Ixlel3 — 0, update

Previous studies primarily focused on network traffic
research using the TM [40] as the target, but the use of a single
traffic tracking and statistical method proved to be costly
and yielded limited results. To better adapt to the dynamic
changes and spatiotemporal characteristics of wireless net-
work traffic, this paper proposes a GCN-GRU-based network
state prediction method that incorporates spatiotemporal fea-
ture correlation. This method aims to address the intricate and
complex network traffic issues in SDWN and enhance the
intelligent agent’s perception ability for future time points in
the TM.

As shown in Algorithm 1. we take the converted TM
X1,2,3....1, the adjacency matrix A of the graph, the learning
rate o, the number of training episodes M, the batch size
IC, and the L, regular term coefficient A as inputs. On this
basis, the algorithm will output the predicted TM Y; 2 3... ;.
The first and second lines randomly initialize the network
weights 6 and standardize the input X 3 3... ;. The third line
calculates the degree matrix parameters D used in the predic-
tion network convolution from the adjacency matrix A. The
fourth to eighth lines describe the iterative network training
process. The GCN-GRU network generates the hidden layer
parameters H. Finally, the output is produced by filtering
the prediction results through a fully connected layer. During
training, the weight parameters of the network are updated
based on the minimum quantized true value and the square
difference of the traffic prediction results. The predicted
traffic matrix output by the GCN-GRU traffic prediction
algorithm will serve as the input to the DRL algorithm.

C. DESIGN OF DRL-PPO INTELLIGENT ROUTING
ALGORITHM

The most important task when solving wireless network
routing optimization problems through DRL algorithms is to
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design a state space, a reward function, and an action space
for decision-making that match the current environment. The
state space describes the current state that a DRL agent can
observe from the environment. The agent perceives the cur-
rent network state information, and its learning direction in
updating its policy is then guided by the reward function R.
After the agent executes the action A; in state S;, the current
state transitions to the next state Sy, and A; receives the cor-
responding reward value R,y according to S;11. When the
agent obtains the maximum reward value, the path chosen by
the agent is the optimal path. The corresponding interaction
process is shown in Fig. 5.

In the following, we provide a detailed introduction to the
design of the state space, action space, and reward func-
tion in the DRL algorithm proposed in this article as well
as the importance sampling method, gradient clipping opti-
mization scheme, and PPO update strategy used in the PPO
algorithm [42].

1) STATE SPACE S
The state space describes the current state of the network
environment as perceived by the agent, which includes the
current location state S; and the network state information
Sinfo of that location. The location state S; is composed of
a two-dimensional matrix M; of size H x W, as shown
in Fig. 6. The main diagonal of this matrix represents the
current effective location of the agent, which is specified as
M; = [(x1,y1), (x2,¥2), ..., (X, yn)], where n represents
the number of network topology nodes. The starting point
is represented by start, the ending location is represented
by end, and the remaining elements of the matrix are rep-
resented by 0, indicating location that the intelligent agent
has not yet passed or will not pass. In the update process, the
location information of the intelligent agent will be updated
along with the currently selected action. When the next loca-
tion state of the intelligent agent reaches the end position,
the algorithm has completed the current iteration of routing
decision-making.

In this algorithm, the current network state information
Sinfo 1s composed of multiple two-dimensional state matri-
ces M;; that contain various link information, such as the
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FIGURE 6. M, position state matrix.

remaining bandwidth bwyee(ij), the link delay delay;;, the
packet error rate pkt.. ), the distance distance;; between
wireless APs, and the packet loss rate loss;;. The row number
i and column number j of the matrix represent the identifying
numbers of particular switch nodes; if i # j, the element in
the i row and j column represents the link e(; ;) from node
i to node j; while if i = j, the element in the i row and
Jj column represent node i or j itself. Here, i,j < n, and
eij) = e € E, where E denotes the set of links in the
network. The network state information matrix My, is shown
in Fig. 7. In this matrix, because the elements on the main
diagonal do not correspond to network information between
two switches, they are assigned an infinite nan value. Notably,
the network link data obtained in an SWDN environment
are unfavorable for training neural network models through
gradient descent because the gradient explosion phenomenon
tends to occur during the training process due to their large
numerical values; this phenomenon reduces the model con-
vergence speed of the algorithm and has a significant impact
on the search trajectory of the agent. Therefore, the min-max
method [43] is used to normalize the flow matrix, limiting
the values of the elements in the matrix to within the range
[a, b], where a, b € [0, 1]. In Equation (8), TM;; represents
the normalized flow matrix, m;; represents an element of the
normalized flow matrix, as well as max(TM) and min(TM)
represent the maximum and minimum values of the matrix
elements, respectively. Due to the need for data preprocessing
and the avoidance of calculation errors when the denominator
is zero, a small numerical value is added to the denominator
to ensure the accuracy of the calculation.

TM:: — (mij — min (TM) - (b — a))
j = (max (TM) — min (TM) + 16—6)

®)

During the training process, to meet the input requirements
of convolutional neural networks in RL, the location state
matrices M; and the network state information matrices My,
need to be concatenated in the channel dimension C to form
the input state space matrices. Namely, the two-dimensional
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FIGURE 7. Mj,f, network information state matrix.

matrix M; and M,z of size H x W for C channels are
transformed into a three-dimensional spatial matrix tensor 7;
and Ty, of size H x W x C, where each channel corresponds
to a two-dimensional matrix of H x W.

2) ACTION SPACE A

The action space describes the set of actions among which
an intelligent agent must select during its interaction with the
environment. After the intelligent agent executes an action
based on the current state, the current state transitions to
the next state. The design of the state space in this article
is composed of location information and network informa-
tion to enable the agent to quickly find the optimal path in
the environment, improve the interaction between the agent
and the environment, and reduce the dimensionality of the
possible actions in the action space. In this article, each
next-hop adjacent node is considered as a possible action
node in the DRL action space, which is expressed as A =
{al, a, ..., a;, dy—m, an} € {Nl, No, ..., Ni, Ny, Nn}.
Here, N; represents a next-hop node, m represents the number
of invalid actions, n represents the total number of wireless
nodes, and a; represents the current action being executed.
In the process of action selection, there are three possible
situations of the intelligent agent that need to be considered
to provide corresponding decision-making strategies:

« If the next selected action node is not an adjacent node of
the current node, the selected node will not be added to
the selected path matrix. The agent will remain in its
current location, and the behavior of the agent will be
punished;

« If the selected action node belongs to the set of adjacent
nodes but will cause the paths in the path matrix to form
a loop, the agent will also be punished to some extent.
Nevertheless, the location state of the intelligent agent
will be changed, and the link information matrix Tjf,
will be updated;
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« When the agent selects the endpoint node, its location
state will change, and a reward value should be returned
to incentivize the intelligent agent to select this path, thus
completing the current iteration of the routing decision-
making process.

3) REWARD FUNCTION R

The reward function is used to optimize the direction of
agent learning. In the algorithm designed in this article, the
agent always makes routing decisions toward the direction of
the maximum reward value, comprehensively considering the
overall performance of the network to achieve multi-objective
routing optimization. Therefore, the reward value is calcu-
lated using the remaining link bandwidth bwpe(;j), the link
delay delay;;, the link packet error rate pkt...(;j, the distance
distance;; between wireless APs, and the link packet loss
rate loss;; in the SDWN network. Accordingly, the reward
value between two nodes, also called the reward value for
the next hop, can be represented by a two-dimensional matrix
Rjink, and the final reward value for the entire link can be
represented by a two-dimensional matrix R;y;. The former
allows the agent to make local routing decisions, while the
latter allows the agent to make global routing decisions. The
purpose of designing these two types of reward functions is
to prevent the agent from falling into locally optimal solu-
tions and enable the agent to quickly find the optimal path.
The relationship between the two rewards is represented by
Equation 9, where the row number i and column number j of
the matrix represent the identifiers of particular switch nodes.

n
Riotal = Z Riink (ij) 9)
i,j=0

During its interaction with the environment, an intelligent

agent may encounter the following three situations, and the
reward value for the next hop will be split into three different
rewards accordingly. The intelligent agent will receive the
corresponding reward value based on the current environmen-
tal situation for cumulative learning.

« When the agent selects an adjacent node of the current
node as the next action, the path it passes through does
not form a loop, and the next state is not the destination
state, that is, S;4+1 # None, the reward value obtained
1S Rjink. This reward value is calculated as shown in
Equation (10), where By, B2, B3, B4, Bs € [0, 1]. The
link performance indicators that will be prioritized for
optimization can be controlled by adjusting the weight
values .

Riink = ,Blmij - ﬁ2delayij - :33Werr(ij)
— Badistance;; — Psloss;; (10)

« When the next action selected by the agent is an adjacent
node of the current node and forms a loop in the path
traveled by the agent, the reward value obtained is Rjyqp.
This reward value is given in the Equation (11), where
&1 is the discount factor, the negative sign indicates that
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the agent is penalized with a negative value to discour-
age it from performing this action again, and R; is the
standard reward; &1, Ry € [0, 1]. By varying the size
of the discount factor to optimize the decision-making
direction of the agent, the agent’s motion trajectory can
be made more stable, and the agent’s routing policy can
be dynamically adjusted according to different network
topologies.

Rlaop = —fle (1D

« When the agent selects an action node that is not adja-
cent to the current node, the reward value obtained is
Ruon_edges- As shown in Equation (12), the standard
reward R is multiplied by a discount factor &, where
&,Rs € [0,1], and the negative value is taken to
penalize the selection of invalid actions and increase the
probability of the agent selecting correct actions.

Rnon_edges = - SZRS ( 1 2)

4) IMPORTANCE SAMPLING

The general gradient descent update algorithm is used
because the value estimated by the advantage evaluation func-
tion is not completely accurate, so there will be deviations
in the data. If the data value obtained by the agent deviates
too far from the actual value after the execution of a policy,
the next sample will also strongly deviate from the estimate,
resulting in the agent executing a policy that also strongly
deviates from the predicted policy. At the same time, because
of the different distribution of the data used for training, the
network parameters & will change to 6’ after learning. There-
fore, the importance sampling method is used in this paper to
adjust the distribution of the data, avoid problems caused by
data estimate deviation, and improve the efficiency of policy
updates and sample utilization. Specifically, Equation (13) is
importance sampling, where w{s is the weight of importance
sampling, and g (a;|s;) and 7wy (ar|s;) represent the prob-
abilities of taking action a; in state s; when using the new
policy and the old policy, respectively.

s __ 7o (arlss)

=— (13)
! T hy1q (atlst)

5) GRADIENT CLIPPING OPTIMIZATION

During importance sampling, to avoid a large difference
between the original data distribution p(x) and the data dis-
tribution g(x) that can be sampled, it is necessary to add a
constraint o on the distance between the two, as represented
by the KL divergence. Because the loss function of the PPO
DRL algorithm is constrained by relevant conditions and cal-
culated via the conjugate gradient method and because the KL
divergence constraint, as an additional constraint condition,
does not participate in the update of the convolutional neural
network parameters, it is difficult to dynamically adjust the
parameters in the KL divergence to adapt to different data
distributions. Therefore, the KL divergence is introduced into
the loss function as a regularization term for optimization.
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The gradient descent formula with the KL. divergence regu-
larization term is shown in Equation (14).

Iihp =% (0) — oKL (9, 9")

Py P
Gr.a0) ok (ar|st)

A" (st a) =R +yV (se01) — V (s0) (14)

(slv al‘)

where 6 represents the policy parameters in the neural net-
work; o represents the weight coefficient of the KL diver-
gence, satisfying o € [0, 1]; 6% represents the network
. Y oo
parameters after k iterations; J represents the likelihood
function of gradient decline after & iterations; pg (a|s;) repre-
sents the action-state transition probability distribution func-
tion; A% (s¢, ar) represents the advantage evaluation function
after k iterations, which is used to evaluate the value of the
current strategy of the agent; R, refers to the reward function
at time ¢; y is a reward attenuation factor; and V (s;) and
V (sy+1) are the estimated values for the current state and the
next state, respectively.

Due to the computational complexity of the KL diver-
gence [44] formula and the difficulty of selecting an appro-
priate penalty factor o to adjust the similarity between the
old and new policies, to better adapt to dynamic network
topology changes and uneven data distributions while effec-
tively solving the problem of gradient explosion or vanishing,
this algorithm uses the gradient clipping method in place of
the KL divergence. Gradient clipping not only effectively
limits the policy update amplitude but also improves the
model convergence speed and performance of the algorithm.
The Equation for the gradient clipping method is given
in (15).

clip; () = min (max (n; (0),1 — ¢, 1 4+ €))
e (0) = o (ailsi) (15)

TOp1a (al‘ |St)

where 6 represents the policy parameters in the neural net-
work, € € [0, 1] is the clipping coefficient used to adjust
the amplitude of the policy update, and 1,(0) is the ratio
of the new policy my(a;|s;) to the old policy mgoiq(ar|s:) at
time 7.

Gradient clipping limits the ratio between the new policy
function my(a,|s;) and the old policy function my,q(arls;) to
arange of (1 — €, 1 + €). If the gradient norm exceeds this
range, clipping is applied, and finally, the minimum value is
taken as the output result.

6) PPO UPDATE STRATEGY

The policy update formula of this algorithm maximizes the
upper limit on the expected cumulative return while limiting
the amplitude of the policy updates to ensure the convergence
and stability of the algorithm. The policy update formula of
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the PPO algorithm is shown in Equation (16).

9;+1 =
k
@A (sr,ar).
N ) 0)
B 1n:(0), 16
argmaxy £; | min clip| 1 —e, Aek (8¢, ar) (1o
1+4€

where E, represents the expected value at time ¢, 1, (6) is the
ratio of the new and old policies at time 7, andAek (s¢, ay)is the
advantage evaluation function for executing action a, after k
iterations, used to measure the quality of the executed policy.
The function clip(r+(0), 1 — €, 1 + €) ensures that the update
does not deviate too far from the old policy.

D. DESCRIPTION OF THE DRL-PPONSA ALGORITHM

The implementation of the DRL-PPONSA algorithm frame-
work is shown in Algorithm 2. Based on the input source
node set Ny and destination node set N;, the optimal path
from N; to Ny is found from the currently observed network
environment topology G. The prediction matrix output by
Algorithm 1 is used as the network state information matrix
that is also provided as input to Algorithm 2. In addition, the
input to the algorithm includes the location state matrix M;
corresponding to the current network state, the learning rate
«, the network parameter update frequency fypdase, the size K
of each batch drawn from the experience pool, the hyperpa-
rameter € used in importance sampling, and the number of
training episodes M.

Lines 1-4 mainly initialize the parameters of the policy
function 7y (s) and the value function Vi (s), while leaving
the experience pool empty. In lines 7 and 8, the location
state matrix M; and network state information matrix M,
are reset based on a randomly selected source node Ny and
destination node N;. Then, the two matrices are concatenated
in the channel dimension to form matrices 77 and Tj,5, with
dimensions of N x N x C x K as the initial state S;, where
n is the number of nodes, that is, the size of the action
space, and K is the batch size. Then, training is started in
environments with different remaining bandwidths, delays,
packet loss rates, packet error rates, and link transmission
distances. Lines 5-35 describe one iteration of the training
process, in which the agent travels from the source node to
the destination node and outputs the selected path.

From line 9 to line 14, the agent executes the policy func-
tion g (s) to obtain the current state matrix s;, the selected
action set a;, and the probability p(a,) of selecting each action
as well as the total cumulative reward value r; in the current
environment. The advantage function E, is then evaluated,
and based on the reward, the action policy is updated. Finally,
the obtained next state value, current state value, and cumu-
lative reward are stored in the experience pool to be used to
train the parameters of the neural network.

Lines 15 to 22 describe the process of updating the param-
eters of the algorithm, mainly consisting of the loss function
computation and update processes for the critic and actor
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networks. First, relevant data are retrieved from the experi-
ence pool, including the current state matrix s;, the selected
action and its corresponding probability p(a;) from the policy
distribution, the cumulative reward value r; of the agent, and
information regarding the state matrix s,4; that the agent
updates. The previously initialized advantage function E
is updated, and then the loss function of the policy network
is updated based on the next-action probability p(a;+1) and
the prev10us action probability p(a;), using the likelihood
function J PPO(@) to update the network weights. Finally, the
cumulative reward values are used to calculate the loss value
for evaluating the network, guiding the agent to prioritize the
path with the maximum cumulative reward.

At the end of lines 23 to 38, it is judged whether the
agent has reached the destination. If the next state is not
the destination, the cumulative reward value is calculated.
The calculated reward value is the discounted link reward.
If the agent has reached the destination, the target reward
value is received. At the same time, the parameters of the
two networks are updated in accordance with the likelihood
function. When the agent reaches the destination, the current
iteration cycle ends, and the status of the intelligent agent
is updated to output the currently selected path. After the
path is updated, a reward r, and a new network state s,
will be obtained. In this way, the performance of the network
is optimized toward the maximum reward value until the
optimal routing policy is found.

V. EXPERIMENTAL SETTINGS AND PERFORMANCE
EVALUATION

This section primarily evaluates the DRL-PPONSA
algorithm. First, the parameter settings of the simulation envi-
ronment and the method of traffic generation are described.
Second, the performance of the prediction algorithm and
the parameter settings of the DRL algorithm are analyzed.
Furthermore, performance comparisons are made between
the proposed algorithm and the Dueling Deep Q-Network
(DQN), OSPF, DVREP, and link state routing protocol (LSRP)
algorithms. Finally, a comprehensive analysis of the results is
presented.

A. SIMULATION ENVIRONMENT SETTINGS

The control plane used in these experiments uses Ryu as
the SDWN controller, which is responsible for matching
and issuing flow table entries and responding to events.
For the data plane, the Mininet-WiFi 2.3.1b [50] simulation
environment is used to build a simulated wireless network
topology, and the sFlow-RT tool [45] is used to monitor the
flow situation in the network. The entire simulation envi-
ronment is deployed on an Ubuntu 18.04.6 server equipped
with a GeForce RTX 3090 graphics card. Ryu [48] uses
the southbound interface of the OpenFlow 1.3 protocol to
communicate with Mininet-WiFi’s Open vSwitches [46]. The
dataset is collected by Ryu and stored as a pickle file in graph
format. Finally, the interaction between SDWN and DRL is
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Algorithm 2 DRL-PPONSA

Input: location information matrix M;, network status information
matrix Mjf,, source nodes set Ny, destination nodes set Ny,
learning rate o, n-step ngep, batch-size K, clip-param e, ppo-
update-time 71 qre, training episodes M.

Output: Intelligent path information for (Ng, Ny).

1: Initialize actor network with random weight 6.

2: Initialize critic network with random weight .
3: Initialize PPO policy function 7y (s) and value function Vy; (s).
4: Initialize n-steps buffer-capacity B.
5: for episode = 1 <— M do
6: for M, DWfree s Maelay, Mioss> Mpkteryer » Mdistance in Network
Information Storage do
7: Reset enviroment with (N, Ny).
8: Gets; < stack(M;, Minfo) < (T}, Tinfo). //concatenate
in the channel dimension
9: while True do
10: Run policy mg for mypgare, collecting
(¢, ar, e, p(ar)) . ,
11: Estimate advantages A; = > ., ¥' ~'ry—Vg (s1);
12: Update the strategy of the action myg <— 7p;
13: Execute action a; and observe reward r; and next
state s;11;
14: Store (s¢, ar, 11, p(ar) , Sy4+1) in B.
15: fori =1 < nypgare do
16: for index in (range (len(K)), K, False) do
17: Sample minibatch (s;, a;, 7j:j4n, Si+n) and
get p (a;) from Transition
18: Update the advantages 1(4 ,)and calculate the
evi o — Pl
qualifying ratio r = pGarsn)
19: Calculate the likelihood function of gradient
" descent JPPO Clip //The Equation is given by
(14)
20: . Update 6 by a gradient method w.r.t
J] gPO—Clip
21: Calculate the actor loss and critic loss.
22: end for
23: if s;+,, is not None then
T
24: R < Rijtn+vy Z:l Riink (1)
25: else '
26: R < Ri:i+n
27: end if
28: Update policy network parameters 6 < 6 +
%o VJPPo ctip @)
29: Update ckr1t1c network parameters ¥ <« ¥ +
&y Ve (V)
30: end for
31: if The agent arrives at the destination node then
32: Break
33: end if
34: St <= St41
35: end while
36: Output the path selected by the agent from (Ny, Ny)
37 end for
38: end for

achieved using Python 3.8 and Pytorch 1.11.0. The simulation
tools are listed in Table 2.

The experimental topology built using the Mininet-WiFi
simulation platform is shown in Fig. 8. It is a simulated
wireless 10T data center topology that includes 14 nodes
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TABLE 2. Simulation tools.

Tools Version Function
Mininet-WiFi 2.3.1b network
topology
construction
Ryu 434 flow table
distribution
GPU GeForce accelerated
RTX3090 calculation
Ubuntu 18.04.6 experimental
system
sFlow-RT 3.0 flow monitoring

TABLE 3. Simulation parameters.

Parameters Value Parameters Value
MAC IEEE Frequency 2.4GHz
protocol 802.11¢g band
Number of 14(nodes) Number of 14(nodes)
APs STAs
CCA —62dBm Channel 1,6
threshold
Propagation log- Transmission| 21dBm
loss distance power
Receiving 5dBm Transmitting 5dBm
gain gain
Signal 38 ~ 140m | Simulation | 300x300m>
range area
Modulation OFDM Simulation 180min
technique time

FIGURE 8. The wireless network topology of APs.

and 25 links. The dashed lines in this figure represent wire-
less links between wireless APs, and each wireless AP is
connected to a STA. Table 3 provides information such as
the simulation range, simulation time, and basic parameters
of the simulation environment between the wireless APs
and STAs. The link parameters between wireless APs are
randomly generated following uniform distributions. The
bandwidth is set to 5 ~ 40Mbps, the delay is 1 ~ 10ms,
the link packet loss rate is set to 0.1 ~ 1%, and the distance
between wireless APs is set to 30 ~ 110 meters.

To simulate real wireless network traffic usage, we use the
iPerf3 [49] tool to write Python scripts that generate traffic
information. A script sends User Datagram Protocol (UDP)
traffic requests to a server through a client, randomly select-
ing the client and server for multi-objective traffic and adjust-
ing the size of the traffic based on the gravity model [48].
The flow size is controlled within the range of 0 ~ S0MHz to
ensure that the flow information reaches its peak during the
10:00-15:00 period of the day and slowly decreases during
other periods. The traffic information collection interval is
once every 5 s. Finally, the Ryu controller monitoring module
script generates 1000 instances of graph data for 25 traffic
matrices between the 14 nodes and writes the graph data
to a pickle file. The elements in the matrices include link
information such as residual bandwidth, used bandwidth,
delay, packet loss rate, and distance. The sFlow-RT tool [51]
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is used to monitor the average traffic flow information in bits
per second, as shown in Fig. 9.

B. ANALYSIS OF GCN-GRU PREDICTION NETWORK
PERFORMANCE AND DRL PARAMETERS

The GCN-GRU model fully utilizes the capabilities of GCNs
to obtain spatial graph information and utilizes the advantages
of GRU networks for time series modeling to mine hidden and
unknown traffic information from SDWN networks, thereby
improving the perception ability of the DRL algorithm and
making the generated routing policies more forward-looking
and robust. As shown in Fig. 10(a), the reward values obtained
by an agent using the GCN-GRU prediction mechanism are
significantly higher than those obtained without the predic-
tion mechanism. Moreover Fig. 10(b) show that the number
of steps taken by the agent using the prediction mechanism
is significantly fewer than that taken by the agent without
the prediction mechanism. This is because the prediction
mechanism can capture unknown traffic status information in
the network, allowing the intelligent agent to perceive more
traffic information, make judgments in advance for routing
decisions, and avoid selecting congested nodes. Moreover,
when relying solely on Ryu’s network measurement mech-
anism, it is difficult to detect hidden traffic information in
the SDWN network, and it is also difficult to adjust policies
promptly to adapt to the distribution of traffic. Therefore, the
proposed traffic prediction algorithm based on the GCN-GRU
model can enhance the exploration space of the DRL-PPO
intelligent routing algorithm to optimize the action selection
and increase the reward value, thus yielding more appropriate
routing policies for SDWN network flows and improving
the utilization of network resources. These findings verify
that the proposed prediction mechanism can improve the
performance of intelligent routing algorithms.
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FIGURE 9. The curve of port traffic information versus time.

The intelligent routing algorithm designed in this article
adopts the PPO algorithm, with updates based on policy
gradient descent. It uses an online learning strategy, in which
the same agent is used in both the training stage and the policy
execution stage. During the learning process, the intelligent
agent can complete policy selection for the next state, and
the selection for the previous state does not affect the policy
selection for the next state, while the opposite is true in
offline learning. The basic parameters set for the intelligent
agent during the training process are shown in Table 4. For
PPO DRL, a four-layer network structure is adopted, which
includes a two-layer actor network and a two-layer critic net-
work. The actor network is used to sample the probability of
the current action and the probability of the next state’s action,
while the critic network is used to evaluate the cumulative
reward of the current state and the cumulative reward of the
next state. For the optimizer, adaptive moment estimation
(Adam) is used, which can adaptively update its learning rate
and reduce the consumption of computer memory, enabling
the network model of the intelligent routing algorithm to
quickly converge during the training process.

Choosing appropriate weight factors will improve the
model convergence effect of the intelligent routing algorithm
and accelerate the convergence process. The routing
algorithm in this article is an intelligent routing algorithm
aimed at optimizing the parameters of multiple target links,
which includes maximizing the remaining bandwidth and
minimizing the delay, packet loss rate, packet error rate, and
transmission distance. In the experimental process, we choose
the default weights [0.7, 0.3, 0.1, 0.1, 0.1] for the optimiza-
tion objective, which means that 81 = 0.7, 8, = 0.3, 83 =
0.1, B4 = 0.1, and B5 = 0.1, because these weight settings
do not adversely affect the convergence of the algorithm.
These weights control the proportional contributions of dif-
ferent types of link information during intelligent routing
optimization. For example, the weight with the highest value
is fB1, which means that when selecting a route, the main
consideration will be to maximize the remaining bandwidth,
while other link information will be used as secondary
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TABLE 4. DRL parameter settings.

Parameter Symbol Value
Learning rates a1, Qo le=3 3¢73
Bach size K 32
Clip parameter € 0.2
PPO-update- f 10
time
Buffer-capacity B 3000
Reward ¥ 0.99
attenuation
Discount factors £1,& 0.5,0.8
episodes M 1000

optimization conditions to affect the decision-making of
the agent. This multi-objective optimization approach is
adopted to overcome the shortcomings of single-objective
optimization because it is better to comprehensively consider
the current state of SDWN network traffic to improve the
utilization of network resources. Meanwhile, the setting of
the reward discount factors and the setting of the hyperpa-
rameters of the deep learning network will directly affect
the convergence and stability of the intelligent algorithm;
therefore, a related parameter analysis is given below.

The setting of the reward and penalty weights, & and
&, respectively, can have an impact on the direction of
the agent’s decisions and the convergence efficiency of the
algorithm. Improper values for &1 and &; can prevent the agent
from learning the optimal path, which can affect the conver-
gence of the algorithm and even lead to non-convergence.
As shown in Fig. 11(a), through multiple experiments, it has
been found that setting the standard reward R, to 1 and &; :
& = 0.5 : 0.8 results in the fastest convergence speed with
relatively stable waveforms, while &1 : & = 0.5 : 1.5 results
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FIGURE 10. Comparison of the reward and step change curves with and without the implementation of the GCN-GRU prediction mechanism.

TABLE 5. The impact of the learning rate on algorithm convergence.

aq, e Reward Steps Episodes to
reach con-
vergence
le~ !, 3¢~ ! —0.42 45 800
le=2,3e2 —0.82 34 290
le™3,3¢73 1.78 5 172
le=*, 3e™4 —180 478 890
le™5,3e7® — —— —
1e=6, 3¢5 —— —— ——

in the slowest convergence speed, taking nearly 400 iterations
to reach convergence.

The following analysis focuses on the impact of the
algorithm hyperparameters on the reward received by the
intelligent agent. The following hyperparameters are ana-
lyzed: the learning rate «, the batch size KC, and the PPO
network update frequency f. The value of o determines when
the objective function can converge to a local minimum and
when it will converge to the global minimum. A suitable
learning rate can make the objective function converge to a
local minimum in a suitable amount of time. Since the PPO
convolutional neural network consists of an actor network and
a critic network, two different learning rates are set to adapt
to the different network parameters and loss functions in the
framework, namely, o1 and «2. As shown in Table 5, when
a; = le™3 and ay = 3¢73, the agent obtains the maximum
reward, and the convergence effect is the best. At the same
time, the agent takes the fewest steps when making routing
decisions and seeks the globally optimal routing policy.

The update frequency of the parameters in the PPO net-
work affects the decision efficiency of the actor and critic
networks. A suitable update frequency can enable the agent
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to make more accurate decisions and obtain higher reward
values. In this experiment, we set the frequency f to 1, 5, 10,
and 15. As shown in Fig. 11(b), when the update frequency is
set to 15, the agent obtains the maximum reward value, and
the convergence effect is the best. Convergence is reached
at approximately 170 iterations. However, when the update
frequency is set to 1, the waveform exhibits large-amplitude
jitter, which prevents the algorithm from converging.

The batch size K determines the number of samples sent
to the neural network at one time, i.e., the amount of data
that the agent retrieves from the experience pool. An appro-
priate batch size can make full use of the GPU’s parallel
computing power, thereby improving the training efficiency
of the algorithm and reducing the time required for model
training. When the /C value is changed during training, the
environment of the intelligent agent needs to be reinitialized
to avoid the effects of the differences before and after this
change. In this study, batch sizes of 16, 32, 64, and 128 are
tested. As shown in Fig. 11(c), when the batch size is L =
16 or K = 32, the agent obtains the highest reward values,
and the convergence speed is the fastest, with a relatively
stable convergence effect and small fluctuations. The agent
can obtain the maximum reward value within 200 episodes.
However, when the batch size is = 128, the agent takes
approximately 700 episodes to converge, and the fluctuations
are significant. Therefore, the batch size /C is set to 32 in this
paper to analyze the impact of the PPO-KL and PPO-Clip
methods on the executed routing policy of the intelligent
agent in importance sampling.

As shown in Fig. 11(d), when using the PPO-Clip opti-
mization solution, the agent can converge faster and obtain
the maximum reward value, while the convergence waveform
is relatively stable. When using the PPO-KL optimization
solution, the waveform shows obvious fluctuations due to the
sensitivity of the KL divergence weight o to the data distribu-
tion and the difficulty of setting its value. For PPO-Clip, this
restriction does not need to be considered. Therefore, using
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the PPO-Clip method can improve the performance of the
algorithm.

C. PERFORMANCE ANALYSIS

First, this subsection compares the convergence and stabil-
ity of the proposed DRL-PPONSA algorithm with those of
the value-based Dueling DQN algorithm. Next, it presents
performance comparisons between the proposed algorithm
and other classical and traditional algorithms. Finally, the
experimental results are analyzed.

The policy-based approach shows better convergence and
is more effective for problems with high-dimensional and
continuous action spaces. It not only solves the challenges
of model building for dynamic and diverse networks but
also addresses the slow convergence and experience pool
storage space issues of value-based RL. To avoid any con-
founding influence of the prediction mechanism, this section
analyzes experiments conducted using the predicted traffic
matrix while keeping other parameter settings as consis-
tent as possible. As shown in Fig. 12, the DRL-PPONSA
algorithm reaches convergence at approximately 170 itera-
tions, while the Dueling DQN algorithm takes approximately
300 iterations to converge; thus, DRL-PPONSA shows an
overall improvement of 43.33% in convergence speed. In the
DRL-PPONSA algorithm, the prioritized experience replay
scheme in Dueling DQN is replaced with the importance sam-
pling technique. Importance sampling allows online training
to be performed without storing the current sampled data; the
entire experience pool is immediately deleted after the cur-
rent data are used. In contrast, prioritized experience replay
requires storing the data in the experience pool, and only
some of those data are deleted when the capacity of the
pool is exceeded, as this scheme relies on the extraction
of historical experience data for offline training. Therefore,
DRL-PPONSA can save computer memory, thus improving
the convergence speed of the algorithm.

Next, the DRL-PPONSA algorithm is compared with the
classical Dueling DQN algorithm and the traditional OSPF,
DVRP, and LSRP algorithms. The main performance indi-
cators used to evaluate the algorithms include the average
network throughput 7';, the average network delay delay;;,
the average network packet loss rate %lj, the average net-
work packet error rate %err(lj), and the average distance
distance;; of wireless access points. Equation (17) is used to
calculate the network throughput, where e;; € E represents
one of the edges in the link and b, represents the current
amount of data sent on that link. Equations (18)-(22) gives the
corresponding expressions for average network throughput,
average network delay, and other metrics.

DWise(ey) * \/(1 — (losselj +pkterr(gij))) “ be
2 - delay,,

7)
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Tp
Tl-jzniz > Ty (18)

P k=1 ejj€psa

n
- 1 <&
delay;; = - E E delay;; (19)

P k=1 ejjepw

n
_ 1 &
lossij = . Z z lossjj (20)

P k=1 €jj€Psd

n
1 P
= Z Z Pkterr(ij) 21

P k=1 ejjcps

pkterr(ij)

n
- 1 &
distance;; = P Z Z distance;; (22)
P =1 ejj€Pyq

Here, pgq represents the path from source node s €
{s1, 82, ,s,} to destination node d € {dy,da,--- ,d,},
n, represents the number of pickles used to represent the
amount of global network traffic obtained at time 7.The traffic
situation is collected for one day, and the average values
are taken every three hours as the statistical results. The
corresponding values are shown in the form of bar charts, and
the experimental results are compared as follows.

The performance indicator shown in Fig. 13(a) mea-
sures the average total link throughput along the agent’s
path from the source node to the destination node. The
DRL-PPONSA algorithm proposed in this paper achieves
an average throughput that is 1.94% higher than that
of the Dueling DQN algorithm, 31.04% higher than that
of the OSPF algorithm, 47.81% higher than that of the
DVRP algorithm, and 36.72% higher than that of the LSRP
algorithm. The percentage improvements over the four com-
pared algorithms, when the proposed algorithm performs
best optimally, are 17.83%, 47.66%, 56.68%, and 48.76%,
respectively. These findings indicate that the paths selected
by the DRL-PPONSA algorithm have higher throughput,
enabling the transmission of more data and better meeting the
performance requirements for data transmission.

The measurement indicator in Fig. 13(b) is the average
delay on the agent’s path from the source node to the des-
tination node. The delay achieved with the DRL-PPONSA
algorithm is superior to Dueling DONgeiay, OSPFeiay,
DVRP ge1qy, LSRP g1qy. Specifically, the average delay under
DRL-PPONSA is 6.08%, 39.58%, 61.48%, and 53.26%
lower, respectively, than the average delays under the other
four algorithms. The average link delay results indicate that
compared to the other algorithms, our algorithm is more
inclined to search for paths with lower network latency,
thereby avoiding network congestion and meeting the perfor-
mance requirements of low-latency networks.

The measurement indicator in Fig. 13(c) is the average
packet loss rate on the agent’s path from the source node to
the destination node. Compared to the average packet loss
rates Dueling DONjyss, OSPF 555, DVRP)ygs, LSRP)yss, and
LSRP),g, the average packet loss rate under DRL-PPONSA
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FIGURE 11. Different parameter settings.
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FIGURE 12. Comparison of convergence speed between PPONSA and
Dueling DQN.

is reduced by 50.84%, 72.09%, 89.79%, and 82.07%, respec-
tively; thus, it is significantly lower than the packet loss rates
of the other algorithms. In this experiment, the packet loss
rate on each link is set between 0.1% and 1%, so each link
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will experience packet loss with a certain probability. When
a link is congested, the probability of packet loss increases.
From the experimental results, it can be seen that the link
throughput on the path selected by the algorithm proposed
in this paper is higher than that on the paths selected by the
other algorithms, indicating that the proposed algorithm can
meet the transmission needs of a high-traffic network while
effectively avoiding packet loss.

The measurement indicator in Fig. 13(d) is the average
packet error rate on the agent’s path from the source node
to the destination node. The DRL-PPONSA algorithm has an
average packet error rate that is 77.08%, 92.54%, 89.79%,
and 94.05% lower than Dueling DONpi,,, , OSPFpy,,,,
DVRPyyy,,,, and LSRP,y,,, , respectively, significantly lower
than those of the other algorithms. When a link experiences
certain congestion, the probability of erroneous packets will
increase. From the experimental results, it can be seen that
the link delay and packet loss rate on the path selected by
the algorithm in this paper are both smaller than those of the
other algorithms, indicating that the proposed algorithm can
meet the transmission needs of high-traffic networks while
effectively avoiding packet errors.
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FIGURE 13. Comparison of performance with other algorithms.

The metric shown in Fig. 13(e) is the average link distance
on the agent’s path from the source node to the destina-
tion node. The DRL-PPONSA algorithm achieves average
reductions of 19.68%, 25.49%, 47.75%, and 38.43% in link
distance compared to Dueling DONisiances OSPF gistances
DVRP jistance, and LSRP gistance, respectively. Although the
average link distance of the proposed algorithm is similar
to Dueling DON gistance, it can find markedly shorter trans-
mission distances than the traditional algorithms can. In the
optimization process, the distance between wireless APs is
used as one of the measurement indicators to enable the intel-
ligent agent to find shorter paths for data forwarding, thereby
avoiding the selection of redundant paths and reducing the
consumption of network bandwidth resources.

The experimental results show that the intelligent agent
of the DRL-PPONSA algorithm proposed in this paper can
search for the optimal routing policy based on the designed
reward function. The convergence speed is significantly bet-
ter than that of the Dueling DQN algorithm, and the average
throughput is significantly higher than those of the tradi-
tional OSPF, DVRP, and LSRP algorithms. Meanwhile, the
packet loss rate and transmission distance are significantly
lower than those of the OSPF, DVRP, and LSRP algorithms.
Although the proposed algorithm has shortcomings in terms
of latency, it is still better than the traditional algorithms in
the case of link congestion. The algorithm proposed in this
paper is more stable in terms of transmission delay and more
suitable for a network environment with small delay jitter.
In environments with different volumes of network traffic,
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intelligent agents can adjust their reward functions based
on multiple optimization objectives to dynamically update
their routing policies to effectively ensure that the specified
performance requirements are met during data transmis-
sion. The above experimental comparisons confirm that the
SDWN-based intelligent routing algorithm proposed in this
paper, DRL-PPONSA, not only shows good convergence but
also offers good performance and stability.

VI. CONCLUSION
This paper presents a novel method named DRL-PPONSA
for constructing intelligent routing paths in SDWN networks
using DRL. A GCN-GRU prediction model is also incorpo-
rated to explore unknown traffic information in the network,
allowing the controller to perceive the network situation in
real time and achieve intelligent network control. In dynamic
SDWN environments, DRL-PPONSA utilizes the policy
gradient-based PPO RL method to enable an intelligent agent
to construct routing paths with higher bandwidths, shorter
transmission distances, lower delays, and lower packet loss
and error rates based on the measured network parameters.
Moreover, this agent can intelligently adjust the routing paths
and perform flow table installation when the network param-
eters change. Comparisons with existing routing methods
show that the proposed intelligent algorithm exhibits good
convergence and stability, significantly enhancing the overall
performance and service quality of wireless networks.
Furthermore, the proposed algorithm is effective in
addressing the dynamic network routing optimization
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problem. However, for large-scale and complex dynamic net-
works, relying on a single controller is insufficient to meet the
performance requirements of current networks. Therefore,
in future work, the integration of a multi-controller-based
multi-agent routing optimization method will be investigated
as a possible means of achieving a more efficient solution for
SDWN routing.
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