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ABSTRACT In recent dentistry research, deep learning techniques have been employed for various tasks,
including detecting and segmenting thirdmolars and inferior alveolar nerves, as well as classifying their posi-
tional relationships. Prior studies using convolutional neural networks (CNNs) have successfully detected
the adjacent area of the third molar and automatically classified the relationship between the inferior alveolar
nerves. However, deep learning models have limitations in learning the diverse patterns of teeth and nerves
due to variations in their shape, angle, and size across individuals. Moreover, unlike object classification,
relationship classification is influenced by the proximity of teeth and nerves, making it challenging to
accurately interpret the classified samples. To address these challenges, we propose a masking image-based
classification system. The primary goal of this system is to enhance the classification performance of the
relationship between the third molar and inferior alveolar nerve while providing diagnostic evidence to
support the classification. Our proposed system operates by detecting the adjacent areas of the third molar,
including the inferior alveolar nerve, in panoramic radiographs (PR). Subsequently, it generates masked
images of the inferior alveolar nerve and third molar within the extracted regions of interest. Finally,
it performs the classification of the relationship between the third molar and inferior alveolar nerve using
these masked images. The system achieved a mean average precision (mAP) of 0.885 in detecting the region
of interest in the thirdmolar. Furthermore, the performance of the existing CNN-based positional relationship
classification was evaluated using four classification models, resulting in an average accuracy of 0.795. For
the segmentation task, the third molar and inferior alveolar nerve in the detected region of interest exhibited
a dice similarity coefficient (DSC) of 0.961 and 0.820, respectively. Regarding the proposed masking
image-based classification, it demonstrated an accuracy of 0.832, outperforming the existing method by
approximately 3%, thus confirming the superiority of our proposed system.

INDEX TERMS Deep learning, radiography, dentistry, medical diagnostic imaging.

I. INTRODUCTION
Among all teeth, the mandibular third molar (M3) has the
highest impaction rate, and the eruption state, position,
and angle are individually different [1], [2]. Impacted M3
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can cause various symptoms, such as pericoronitis, pain,
swelling, root resorption of adjacent teeth, dental cysts, and
tumors [3]. Due to these factors, people with impacted teeth
undergo tooth extraction, dentistry’s most common surgi-
cal procedure [4]. However, when extracting the impacted
M3, inflammation or infection of the inferior alveolar nerve
(IAN) and sensory disturbance occur [5]. IAN damage, which
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causes sensory disturbances in the lower teeth, jaw, and lips,
is a representative complication [6], [7]. The leading cause of
this IAN corruption is the contact between the M3 root and
the IAN [8], [9]. Therefore, to minimize the M3 extraction
complications, understanding the relationship between the
M3 impaction pattern and adjacent nerves in advance [10] is
crucial.

Panoramic radiography (PR) and cone beam computed
tomography (CBCT) are imaging modalities used in den-
tistry [11], [12], [13], [14], [15]. Recently, research has been
conducted to directly perform or assist diagnosis using deep
learning to detect and segment teeth automatically in PR or
CBCT [16], [17], [18], [19], [20]. In particular, research is
being conducted to predict the challenges of tooth extraction
or the possibility of nerve damage before tooth extraction
or to classify the relationship between adjacent structures of
impacted teeth [21]. Yoo et al. [22] proposed a system to
predict the depth, ramal relation and angle of M3 in PR. M3s
were detected using a single- shot multibox detector (SSD)
and pre-trained ResNet-34. They demonstrated the accuracy
of predicting the position of the M3 with a convolutional
neural network (CNN). Lee et al. [23] proposed a system for
detectingM3 in PR and diagnosing the difficulty of extraction
and the possibility of damage to the inferior alveolar nerve.
They detected M3s using Retinanet and classified them using
a vision transformer (ViT). Results demonstrated that deep
learning could support M3 extraction diagnosis. Vollmer et
al. [24] proposed a system for classifying the depth and
root shape of M3s in PR. They used pre-trained VggNet16,
ResNet50, Inceptionv3, EfficientNet, and MobileNetV2 with
manually defined maxillary sinuses. They demonstrated that
PR could be used to classify the depth and root morphology
of impacted M3s.

CNN is an effective deep learning algorithm for medi-
cal image classification tasks [25], [26], [27], [28], [29].
It extracts features from the input image and performs clas-
sification. When applying CNNs to M3 pattern or IAN
positional relation classification tasks, existing methods used
the area around M3 as an input to a deep learning model for
classification. However, because M3 and IAN have different
shapes, positions, and angles for each object, the classifica-
tion performance of a model that learns image features is
limited. Also, the M3 pattern or position is more influenced
by the proximity between adjacent structures in the M3 than
by the shape of the teeth. In addition, as CNN models create
probability values for each class for images, it is challenging
to provide a reasonable explanation for classification. There-
fore, applying an interpretable model for the classification
task is necessary.

This paper proposes a classification system using masked
images to improve the classification performance of M3
and IAN relationships and explain classification results. The
system performs descriptive diagnoses and can be a useful
diagnostic tool for dentists. The proposed system consists
of three steps: region of interest (RoI) detection including
M3 region, masked image generation of M3 and IAN, and

TABLE 1. Previous research on segmentation and detection of oral
structures using PR and CBCT.

relationship classification. The experimental results verified,
the RoI detection performance, including M3, with a mean
average precision (mAP) of 0.886. The dental fossa and nerve
segmentation performance was verified using the extracted
RoI with Dice scores of 0.961 and 0.820, respectively. The
proposed system verified the classification performance with
an improved accuracy of 0.833 using masked images.

Themain contribution of the proposed system is to improve
the classification performance of M3 and IAN relationships.
It also increases the medical diagnosis accuracy and effi-
ciency by providing explainable diagnostic results to medical
professionals. For the healthcare industry, these technological
advances are critical and can help improve patient treatment
options while reducing healthcare costs. Additionally, these
techniques can potentially expand the applications of image
classification and segmentation in various domains beyond
medicine.

II. RELATIVE WORKS
Recently, research has been conducted to automatically detect
and segment teeth and nerves in PR or CBCT using deep
learning. Table 1 lists research that detects or segments the
M3 or IAN.

Celik [30] proposed a system to detectM3s in PR. TheM3s
were detected using Faster-RCNN and YOLOv3. The detec-
tion performance was verified with mAP@0.5 of 0.910 for
Faster-RCNN and 0.960 for YOLOv3. Maheswari et al. [31]
proposed a model with edge enhancement, candidate classi-
fication, and candidate pixel clustering to accurately visu-
alize and detect the inferior alveolar nerve canal (IAC) in
PR. The proposed method effectively segmented the IAC
with an average dice similarity coefficient (DSC) of 0.854.
Vinayahalingam et al. [32] segments M3 and IAN in PR
automatically. U-net was used to segment the M3 and IAN.
The mean DSC for M3 and IAN were 0.947 and 0.847,
respectively, verifying that they can be used for clinical
decision-making. Ariji et al. [33] constructed and evaluated
a segmentation model to visualize the proximity between
the impacted M3 and the IAC in PR. The IAC was seg-
mented using U-net. The mean DSC was 0.831, validating
the segmentation performance and demonstrating adequate
visualization of the IAC in the PR. Lahoud et al. [34] seg-
mented the IAC using 3D U-Net in CBCT. The mean DSC
was 0.774, validating the segmentation performance and
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TABLE 2. Previous research on classifying impaction patterns of the third
molar or the relationship between the M3 and IAN using PR and CBCT.

demonstrating the potential of the AI tool in CBCT. Orhan
et al. [35] segmented the M3 and IAC using U-net to diag-
nose an impacted M3 in CBCT. Performance was evaluated
using Kappa analysis and validated as 0.862. It can detect
impacted M3s and improve the mandible’s anatomy and
pathology.

Research is also being conducted to classify tooth
impaction patterns or relationships between adjacent nerves
using deep learning. Table 2 lists research classifying the M3
and IAN relationship.

Kim et al. [36] predicted IAN sensory impairment after
M3 extraction, using CNN in PR taken before M3 extrac-
tion. They used SSD300 and ResNet18 and achieved a mean
accuracy of 0.827. They confirmed that CNN could pre-
dict IAN sensory impairment after M3 extraction using PR.
Maruta et al. [37] evaluated the classification performance
of an automated M3 impact classification system based on
machine learning in PR. They performed Pell and Gre-
gory classification and Winter classification using VggNet16
and achieved accuracies of 0.861 and 0.843, respectively.
Zhu et al. [38] developed a new detection model, YOLOv4-
based MM3-IANnet, that evaluates the contact relationship
between the IAN and M3 in PR. They achieved a detection
accuracy of 0.830, and the collaborative approach combin-
ing dentists and MM3-IANnet showed the highest accuracy
of 0.881. Sukegawa et al. [39] evaluated contact between
M3 and IAC and bone continuity classification in PR. They
utilized ResNet50 and achieved accuracies of 0.860 and
0.766, respectively. Fukuda et al. [40] evaluated the impact
relationship between the M3 and IAC in PR and com-
pared the performance of several CNNs. They used AlexNet,
GoogLeNet, and VggNet16 and compared performance with
different patch sizes, achieving AUCs ranging from 0.88 to
0.93. Liu et al. [41] developed a CNN-based deep learning
approach to detect M3 and IAC in CBCT and classify their
relationships. They used U-Net for M3 and IAC detection
and pixel-by-pixel segmentation and ResNet-34 for relation-
ship classification. The average DSC of M3 and MC was

0.973 and 0.925, respectively, verifying the performance of
the detection model. The classification model achieved an
average accuracy of 0.933, giving results similar to those of
dentists.

Existing research classifies the relationship between teeth
and nerves using PR or CBCT and deep learning models.
However, this method is challenging to support diagnosis
because it cannot provide a basis for classification and only
outputs the probability value of each class [42], [43]. This
paper proposes a system that classifies the IAN and M3
relationship in PR into three states: ‘‘non-contact,’’ ‘‘partial
contact,’’ and ‘‘complete contact,’’ using mask images of
them. This verifies the evidence for the classification result
and supports the diagnosis. In addition, this paper evalu-
ates and compares the performance of CNN-based and mask
image-based classifications. Our research provides a basis for
improving classification performance and assisting diagnosis
by utilizing mask images to classify the relationship between
teeth and nerves.

III. RELATIONSHIP CLASSIFICATION SYSTEM BASED ON
GENERATED MASK IMAGES
In previous research, the M3 or IAN segmentation in PR has
been used as a diagnostic aid system for dentists. In addition,
various diagnostic results were output using the M3 region
detected in the PR as input to the model. Classification
and segmentation research using PRs have been conducted
separately. The main objective of the proposed system is to
extract masked images of M3 and IAN from cropped PRs and
classify the relationship between them. By defining relation-
ships using segmented masking images, the proposed system
aims to provide explainable diagnostic results to dentists and
patients. An outline of the proposed system is described in
Figure 1.

A. MANDIBULAR THIRD MOLAR DETECTION
To facilitate the classification of the positional relationship
between the M3 and IAN, the first step involves utilizing
an object detection model to detect the presence of M3 in
the PR images. The object detection model is employed to
identify and locate theM3 object within the PR. By accurately
detecting the M3, we can proceed with further analysis and
classification of its relationship with the IAN. In this case,
the model is trained on PR images with bounding box anno-
tations and class information. The bounding box represents a
rectangular area where the M3 object exists, while the class
information indicates the type of object. The object detection
model identifies the M3 object in the PR and outputs the
bounding box coordinates and class information. The size of
the bounding box is determined based on the location and size
of the M3 object. To include the adjacent nerve, the bounding
box is set to be 1.5 times larger than the tooth size. The class
information corresponds to the 38th tooth, representing the
lower left M3, and the 48th tooth, representing the lower right
M3.
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FIGURE 1. Overview of the proposed system. The proposed system detects the adjacent areas of the M3, including the IAN, in PR images. It then extracts
regions of interest, generates masked images of the IAN and M3 within these regions, and classifies the relationship between the M3 and IAN using the
generated masked images.

B. CLASSIFICATION OF THE RELATIONSHIP BETWEEN
THE THIRD MOLAR AND THE INFERIOR ALVEOLAR NERVE
For the purpose of comparison with our proposed system,
we employ a CNN-based classification model to classify the
contact states between the M3 and IAN. This classification
model allows us to determine and categorize the different
states of contact between the M3 and IAN. By leveraging
the classification model, we can evaluate its performance and
compare the results with those obtained from our proposed
system, thereby assessing the effectiveness of our approach.
Classification involves assigning input data to predefined
classes or labels and outputs probabilities for each class based
on the features of the input data. In addition to binary contact
classification, a 3-level classification is performed to cate-
gorize the positional relationship between the M3 and IAN
into three groups: partial contact, complete contact, and non-
contact. The group with complete contact poses the highest
risk for nerve damage after tooth extraction.

C. MANDIBULAR THIRD MOLAR AND INFERIOR
ALVEOLAR NERVE SEGMENTATION
Once theM3 region is detected, we employ an image segmen-
tation model to perform the segmentation of the M3 and IAN
based on this region. The segmentation model used in our
system is a neural network model specifically designed for
image segmentation tasks, structured in a U-shaped architec-
ture consisting of encoding and decoding paths. It takes the
input image and divides it into individual pixels, analyzing
each pixel separately and assigning it to a corresponding class
or category. In the context of M3 and IAN segmentation, the
segmentation model aims to label each pixel as either belong-
ing to the M3 region or the IAN region. To ensure efficient
and accurate segmentation, we specify a Region of Interest
(RoI) as the input to the segmentation model. The RoI defines
a specific area within the image where the segmentation is
performed. In our case, the RoI is set to be within the range

of 100 to 400 pixels, allowing the segmentation model to
focus its analysis on this targeted area. During the training
phase of the segmentation model, we utilize RoI and mask
images obtained from the M3 and IAN as training data. The
mask images represent binary masks where the M3 and IAN
regions are separated from the rest of the image. By training
the segmentationmodel with these RoI andmask image pairs,
it learns to accurately segment the M3 and IAN regions in
future input images. In summary, the segmentation model
employed in our system utilizes a neural network architecture
to perform pixel-level segmentation, dividing the input image
into pixels, analyzing them individually, and assigning each
pixel to the appropriate class. The model is trained using RoI
and mask images, allowing it to accurately segment the M3
and IAN regions based on the detected M3 region.

D. CLASSIFICATION BASED ON MASKED IMAGES
To classify the contact states between the M3 and IAN,
we utilize a predefined algorithm that operates on masked
images generated by the segmentation model. These masked
images are created by retaining only the regions correspond-
ing to the teeth and nerves, while removing all other elements
from the original image. The flow chart of the masked
image-based classification algorithm, depicting the sequence
of steps involved in the classification process, can be referred
to in Figure 2. This flow chart provides a visual representation
of the algorithm’s workflow, illustrating how the masked
images are processed and classified to determine the contact
states between the M3 and IAN.

Based on the classification algorithm, the contact state
between the M3 and IAN is categorized into three distinct
groups: partial contact, complete contact, and non-contact.
These classifications provide valuable information for den-
tists to assess the relationship between the M3 and IAN,
aiding in the development of an appropriate surgical plan.
Partial contact refers to a contact state where there are
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FIGURE 2. Flow chart of the masked image-based classification algorithm.

FIGURE 3. Definition of the relationship between the M3 and the IAN.

overlapping pixels between the M3 and IAN regions in the
masked images. However, in this state, the tooth does not
pass through the nerve. It indicates a proximity between the
M3 and IAN, but without direct physical contact or risk of
nerve damage. Complete contact occurs when the M3 tooth
crosses or intersects with the IAN in the masked images,
resulting in a split appearance of the tooth. This contact
state poses the highest risk for potential nerve damage during
tooth extraction or surgical procedures. On the other hand,
the non-contact state indicates an absence of overlapping
pixels between the M3 and IAN regions when the masked
images are overlapped. In this state, the M3 and IAN are
visually separated, indicating a safe distance between the
tooth and the nerve. To provide visual examples and enhance
understanding, Figure 3 showcases representative images for
each contact state group.

IV. EXPERIMENTS
A. DATASET AND EXPERIMENT SETTINGS
The dataset used in this experiment consists of 5408 PR
images of patients who underwent M3 tooth extraction treat-
ment at Chosun University Dental Hospital. The PR size is
about 2000-3000 pixels in width and 1000-1500 pixels in
height. Seven dental specialists plotted the M3 ground truth

TABLE 3. PR dataset composition.

(GT) and the IAN as polygons. Excluding images without
M3s, 8976 M3s included in 5131 images were used for train-
ing, validation, and evaluation. Contrast-Limited Adaptive
Histogram Equalization (CLAHE) was applied to the image
to reduce noise, improve contrast, and enable efficient model
training [44]. Table 3 shows the composition of the dataset.

We verified the proposed system using an Inter Core i9
processor and NVIDIA TITAN RTX and performed exper-
iments using Python 3.8. All experiments were trained with
the training set in the data configuration table. Themodel with
the best performance in the validation set was selected and
evaluated in the test set.

The relationship betweenM3 and IANwas predicted using
VggNet [45], ResNet [46], DenseNet [47], and ViT [48]
to compare with the proposed method. These four models
achieved state-of-the-art performance in the ImageNet com-
petition.We used RoIs, includingM3, andmanually collected
labels to train these models. For the hyperparameters of
model training, we set the image size to 224× 224, the batch
size to 64, and the epoch to 300. We used the Adam optimizer
to update the model weights.

Then, to evaluate the proposed system, we detected M3
using YOLOv7 [49], a one-stage detector mainly used for
object detection tasks. The detection target is two tooth num-
bers 38 and 48, and the bounding box is 1.5 times the size of
M3. As for the hyperparameters of model training, we set the
image size to 1280× 1280, the batch size to 8, and the epoch
to 300. We used the adaptive moment estimation (Adam)
optimizer to update the model weights.

We use Swin-Unet to perform M3 and IAN segmentation
on the RoI extracted from PR [50]. Swin-Unet is a segmen-
tation model based on a U-shaped encoder-decoder archi-
tecture with a transformer using a shifted window. It learns
local-global semantic features by tokenizing images patch-
by-patch. The extracted RoI and masked image are used as
the model input. For model training, we set the window size
to 7, the image size to 224 × 224, the batch size to 24, and
the epochs to 150. The stochastic gradient descent (SGD)
optimizer updated the model weights.

B. EVALUATION METRICS
For the evaluation of the experiment, the following metrics
are used: TP represents cases where the model predicted
positive and the actual class is positive. TN represents cases
where the model predicted negative and the actual class is
negative. FP represents cases where the model predicted posi-
tive but the actual class is negative. FN represents cases where
the model predicted negative but the actual class is positive.
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TABLE 4. Detection performance of the M3.

Accuracy (1), Precision (2), Recall (3), F1-score (4) and AUC
(5) are used for evaluating the classification performance.
Area Under the Curve (AUC) is an indicator of the area under
the Receiver Operating Characteristic curve (ROC curve).
The ROC curve is used to evaluate the performance of a
binary classification model and represents the change in the
false positive rate (FPR) against the true positive rate (TPR)
while varying the threshold of the classification model.

Accuracy =
TN + TP

TN + FP+ FN + TP
(1)

Precisionk =
TPk

FPk + TPk
(2)

Recallk =
TPk

FNk + TPk
(3)

F1 scorek = 2 ·
precisionk · recallk
precisionk + recallk

(4)

AUC =

∫
TPR(FPR) dFPR (5)

DSC (6), hausdorff distance(HD) (7) are used for evaluat-
ing the segmentation performance. A represents the predicted
segmentation mask, while B represents the ground truth seg-
mentation mask. In the formula, A and B represent two sets of
points or regions. The function d(a, b) represents the distance
between point a in set A and point b in set B.

DSC =
2 × |A ∩ B|

|A| + |B|
(6)

H (A,B) = max(sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)) (7)

mAP (8) are used for evaluating the detection performance.
AP is a metric that measures the precision of a retrieval
system at various recall levels. It is computed for each indi-
vidual class. mAP is the mean of AP values across all classes.
It provides an overall measure of the system’s performance.

mAP =
1
n

n∑
i=1

APi (8)

V. RESULTS AND ANALYSIS
We detected M3 in PR and assessed the CNN-based posi-
tional relationship between the M3 and IAN using the
detected regions. Next, to evaluate the proposed system,
we performed M3 and IAN segmentation within the detected
regions and sequentially conductedmask-based the positional
relationship between the M3 and IAN. Finally, we compared
the performance of CNN-based classification with mask-
based classification.

TABLE 5. Classification performance of the positional relationship
between the M3 and the IAN using CNNs.

Table 4 shows the result of the detection performance
verification of M3 in PR. The precision and recall of the
lower left M3 #38 were 0.985 and 0.982, respectively, and
mAP@0.5:0.95 was confirmed at 0.880. The precision and
recall of the lower right M3 #48 were 0.982 and 0.984,
respectively, and mAP@0.5:0.95 was confirmed at 0.889.
These results confirmed that the RoI extracted through the
detection model could be sufficiently used as an input for
classification and segmentation models.

The evaluation results for the classification of the M3 and
IAN relationships using VggNet, ResNet, DenseNet, and ViT
are presented in Table 5. For the three-class classification
task, the average classification accuracy, precision, recall,
and F1 score of the four classification models are 0.795,
0.758, 0.649, and 0.689, respectively. It is worth noting that
the higher precision and relatively lower recall suggest the
influence of class imbalance. This indicates that the models
tend to predict the majority class more frequently. On the
other hand, for the binary classification task, the average
classification accuracy, precision, recall, F1 score and AUC
of the four classification models are 0.872, 0.796, 0.719, and
0.746, 0.719, respectively. The binary classification models
demonstrate higher performance compared to the multi-class
classification models. Notably, the recall of 0.719 is rel-
atively high, while the precision of 0.796 is even higher.
This indicates that the models effectively identify the contact
status but may misclassify some instances of the None status.
Therefore, the performance of the models can vary depending
on the number of samples in each class, and the values of
precision and recall are crucial. It is essential to consider these
metrics when evaluating the models and determining their
effectiveness. Based on this analysis, there are opportunities
to improve the models or implement additional measures to
enhance their performance.

Figure 4 illustrates examples of misclassifications made
by the CNN-based model, where samples and masks are
misclassified. In the left image, a non-contact instance is
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FIGURE 4. Visualization of relationship misclassification results by
Convolutional Neural Networks (CNNs).

TABLE 6. Segmentation performance of the M3 and IAN.

incorrectly classified as complete contact, while in the right
image, a complete contact instance is erroneously classi-
fied as non-contact. The black-box nature of deep learning
models makes it challenging to pinpoint the exact cause
of misclassifications. There could be several factors con-
tributing to these misclassifications, such as the shape of
the tooth or nerve, or their proximity to each other. Even
when the teeth and nerves are clearly separated or in contact,
CNN-based models may encounter difficulties in accurately
extracting the corresponding features. It is important to note
that these misclassifications highlight the limitations of the
CNN-based model and emphasize the need for further anal-
ysis and improvement. Understanding the underlying causes
of misclassifications can potentially lead to enhancements in
the model’s performance and accuracy.

Table 6 presents the performance evaluation results of
the M3 and IAN segmentation in the extracted Regions of
Interest (RoI). M3 achieved a mean Dice Similarity Coeffi-
cient (DSC) of 0.961 and a mean Hausdorff Distance (HD)
of 8.012. On the other hand, IAN achieved a mean DSC
of 0.820 and a mean HD of 11.888. Since most of the
nerve is on the teeth, which often overlap, the segmentation
performance of IAN is relatively lower compared to M3.
The mask images generated by the segmentation models are
used for classification, making them closely related to the
classification performance. Although there is a difference in
performance between the twomodels, they are both sufficient
for classifying the positional relationship. In this context,
the positional relationship refers to whether the nerve passed

FIGURE 5. Example output of Nerve and tooth segmentation from the
segmentation model.

through the tooth, which is more important than achieving
perfect segmentation.

Figure 5 illustrates examples of mask images generated
by the segmentation models for the M3 and IAN. While the
majority of the mask images are accurately generated, there
are instances where the nerves appear sparse or interrupted.
This can pose challenges in determining the presence of
contact between the M3 and IAN.

Table 7 illustrates the performance of M3 and IAN in
classifying the spatial relationships based on masked images,
taking into account class imbalance. A comparison was made
with the conventional CNN-based classification approach.
For the 3-class classification in mask-based classification,
considering the class imbalance, the accuracy, precision,
recall, and F1 score were measured as 0.832, 0.829, 0.832,
and 0.825, respectively. For binary classification, also con-
sidering the class imbalance, the accuracy, precision, recall,
and F1 score were measured as 0.903, 0.898, 0.903, and
0.898, respectively. In both cases, the performance showed
an improvement of approximately 3% compared to the CNN-
based classification. These findings demonstrate that despite
class imbalance and potential imperfections in generating
masked images caused by IAN segmentation, the proposed
approach effectively predicts the relationship between M3
and IAN.

Figure 6 displays examples of false and true positive
images obtained during the classification using masked
images. The proximity between objects serves as the cri-
terion for class classification, and utilizing a segmentation
model enhances the visual interpretation of the results. Most
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TABLE 7. Classification performance of the M3 and IAN positional
relationship using the proposed system.

FIGURE 6. Visualization of classification results by the proposed system.

misclassifications result from blurry images or incorrect seg-
mentation of teeth and nerves. This indicates that by improv-
ing the segmentation model to generate more precise masks,
it is possible to achieve a substantial enhancement in the

FIGURE 7. Confusion matrix of classification results by the proposed
system.

overall classification accuracy. Thus, focusing on refining the
segmentationmodel is crucial for attaining higher accuracy in
the classification process.

The proposed system demonstrates promising perfor-
mance in classifying the positional relationships between
teeth and nerves based on masked images. By outperform-
ing the conventional CNN-based classification approach by
approximately 3%, the system showcases its ability to accu-
rately predict the complex relationship between these struc-
tures. Additionally, the integration of a segmentation model
allows for visual interpretation of the results, facilitating a
better understanding of the proximity between objects. How-
ever, the accuracy of the segmentation model plays a critical
role in generating precise masks, thereby influencing the
overall classification accuracy. Figure 7 depicts the confusion
matrix for the classification results of the proposed system.
From the matrix, it can be observed that there is a deficiency
in the number of instances classified as the non-contact class.
Addressing these limitations, such as through techniques for
handling class imbalance and improving the segmentation
model’s accuracy, will be essential for further enhancing the
system’s capabilities.

VI. CONCLUSION
Unlike object classification, the criterion of relationship clas-
sification is the M3 and the IAN proximity. Hence, proximity
is more important than the tooth shape. Because the tooth
shape and size are different for each person, the possibil-
ity of incorrect classification increases when an unfamiliar
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tooth shape is entered. Deep learning models have black
box characteristics making it challenging to process inputs
and make predictions; hence, the causes of incorrect samples
cannot be explained. We proposed a proximity classification
system using M3 and IAN masked images generated by the
segmentation model to solve this problem. The proposed
system showed adequate detection and segmentation perfor-
mance for classifying the M3 and IAN relationship in the
original PR. In addition, compared to the existing classifi-
cation model, the classification performance was improved
by approximately 3%. Thus, even if the segmentation model
does not produce a perfectly masked image, it can accurately
classify proximity. However, noises in the mask and ambigu-
ous images may lead to incorrect classification. Therefore,
the segmentation model performance needs to be improved
in the future, which will improve classification performance.
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