
SPECIAL SECTION ON ADVANCES ON HIGH PERFORMANCE
WIRELESS NETWORKS FOR AUTOMATION AND IIOT

Received 6 July 2023, accepted 1 August 2023, date of publication 4 August 2023, date of current version 10 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3302264

AutomAdapt: Zero Touch Configuration of 5G
QoS Flows Extended for Time-Sensitive
Networking
FRANCISCO LUQUE-SCHEMPP , LAURA PANIZO , MARÍA-DEL-MAR GALLARDO ,
AND PEDRO MERINO
ITIS Software Institute, Universidad de Málaga, 29010 Málaga, Spain

Corresponding author: Francisco Luque-Schempp (schempp@uma.es)

This work was supported in part by the EVOLVED5G Project (European Union Horizon 2020) under Grant 101016608; in part by the
5G+TACTILE Project (NEXTGENERATION.UE, Spanish UNICO 5G I+D) under Grant TSI-063000-2021-11; and in part by the RFOG
Project (Spanish Government) under Grant RTI2018-099777-B-I00.

ABSTRACT The aim of IEEE Time-Sensitive Networking (TSN) standards is to grant deterministic
communication in traditional Ethernet networks for Industry 4.0. Insofar as the use cases in the Factory
need some mobility, the extension of the TSN capabilities over the fifth-generation (5G) cellular network is
the next step. Some challenges in TSN over 5G, such as TSN translators time synchronization functionality,
are well defined in the standards, even if they have not yet been addressed in the market. However other
challenges, such as the dynamic configuration of the entire network (or part of the it) based on quality
requirements of the current TSN traffic pattern, are defined at a very high level and delegated to vendors
for implementation. This paper addresses this challenge, using an Automata Learning approach to monitor
and reconfigure the end-to-end 5G QoS flow to keep the quality of a TSN session within the required
values. Additionally, algorithms are provided to build the automata from network data and predict potential
deviations of the requirements to meet the expected quality. Moreover, this work presents a functional TSN
over a 5G testbed where the algorithms have been tested, demonstrating that the proposed solution achieves
an improvement of around 40% compared to the usual operation of the network.

INDEX TERMS Zero touch configuration, automata learning, time-sensitive networking, 5G.

I. INTRODUCTION
The competitiveness in the industry is vastly increasing due
to the interest in obtaining products with a certain qual-
ity and reliability while maintaining cost-effectiveness. The
Industrial Automation concept is progressively becoming rel-
evant for the Industry 4.0 and numerous emerging use cases
are coming across new challenges that need to be solved.
Protocols and standards, such as PROFINET or EtherCAT,
are implemented to complement Ethernet networks, pro-
viding reliable communications between devices. Moreover,
Time-Sensitive Networking (TSN) is a series of standards
developed by the IEEE 802.1 Working Group to implement
deterministic connectivity (bounded latency, low jitter and

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianluca Cena .

low packet loss) over traditional Ethernet networks. Fea-
tures such as time synchronization and scheduled traffic,
among others, are two pillars to guarantee the Quality of
Service (QoS) for these stringent communications. These
mechanisms fulfill the communication requirements in wired
environments. The combination of the above-mentioned
standards with wireless communication technologies allows
industrial networks to obtain the benefits associated with
these technologies. A clear example of this ismobility, allow-
ing the user tomove from one place to another. These wireless
technologies could be used as an alternative to replacing
cables in the industry. However, currently it is not possible
to replace the wired solutions in industrial environments alto-
gether due to the stringent requirements of the applications.
This results in a combination of both wired and wireless
technologies, called hybrid networks.

82960 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8389-5660
https://orcid.org/0000-0002-6399-6162
https://orcid.org/0000-0003-3481-5307
https://orcid.org/0000-0003-2456-4946
https://orcid.org/0000-0003-0084-5321

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

In the case of TSN networks, there are two wireless
technologies leading progress toward hybrid TSN networks.
On the one hand, the IEEE 802.11 standard provides the infor-
mation related to wireless local area networks (WLANs), and
has been proposed as a candidate to implement wireless TSN
in [1], since it supports precise clock synchronization and
moderately time-aware scheduling. Additionally, the authors
have identified the challenges for supporting TSN in Wi-
Fi 7 as well as some low latency use cases (e.g. process
automation). Although 802.11 is a promising enabling tech-
nology, it can not meet all the requirements to guarantee
deterministic communications, mainly because it does not
provide protection against interference from other users or
radio services operating in the same frequency band, since
the spectrum is unlicensed.

On the other hand, 5G is the main candidate for wire-
less TSN implementation. 5G networks have emerged as an
alternative to Wi-Fi in industrial environments to increase the
quality with reserved spectrums, thus the definition of TSN
over 5G seems to be the next natural step. Techniques and
procedures related to TSN over 5G integration are detailed
in [2]. Other works also tackle this integration from different
perspectives, such as optimizing the end-to-end delay per-
formance [3] or the implication on the multi-scheduling of
end-to-end traffic flows [4]. In addition, industry has pushed
the standardization bodies to define thewhole set components
to achieve TSN over 5G in specifications like [5] and [6].
These 3GPP documents introduce the concept of translators,
the process to manage time synchronization as well as the
general role of a new entity in the 5G network to ensure
the quality in the end-to-end TSN traffic session, the TSN
Application Function (TSN AF). This paper focuses on the
implementation of a smart TSN AF that covers the features
not fully defined in the standards and is delegated to vendors
for their implementation.

The problem addressed is how to dynamically guarantee
the expected quality for the end-to-end TSN session in a fully
manageable and controllable private 5G network deployed
in an industrial plant. Our initial hypothesis, confirmed by
previous experimental work on our 5G testbed [7], is that once
the entire 5G network has been configured and the specific
parameters of a given device are connected to the network, the
values of Key Performance indicators (KPIs), such as latency,
jitter, packet loss, etc., exhibit a high variability during a TSN
session. These variations are due to internal implementation
aspects, such as the size of the buffers that could provoke
packet loss from time to time, changes in the location of the
device resulting from its work plan, or the presence of more
devices in the area. Although 5G defines some methods to
adjust parameters, such as transmission power when coverage
is poor, they are not always sufficient to meet TSN traffic
requirements. In addition, the previous work also confirmed
that the network exhibits a deterministic behavior, obtaining
the same behavior under the same conditions (e.g. number of
devices, network configurations, mobility, etc.). It is worth
noting that in this context, a private network is considered

FIGURE 1. Application function loop.

within the limited area of a factory, where most of the devices
connected to the network have well-defined work plans and
the network conditions can be controlled to achieve the men-
tioned network behavior.

Our proposal, already introduced at a high level in [7],
consists of building a smart TSNAF that implements a closed
loop for Zero Touch Configuration, which is represented in
Figure 1. This loop includes the network monitoring and
the reconfiguration of the network parameters that have an
impact on the expected quality of the specific end-to-end
session, called 5G QoS flow, for the devices that support the
TSN session.

Following the previous work, this paper shows how to
increase the quality of the TSN session by dynamic reconfig-
uration parameters of the 5G QoS flow, like, for instance, the
values of timers at the Radio Link Control (RLC) layer (more
parameters are presented in Section III). The Zero Touch
Configuration is implemented by using learning techniques
in the area of Automata Learning [8], [9], [10] to be able to
predict potential deviations of the KPIs and to reconfigure the
end-to-end 5G QoS flow in order to avoid such deviations.
More specifically, the contributions of this paper with respect
to previous work presented in [7] are as follows:

1) The definition of a new kind of automata, called Traffic
Oriented input/output Automata (TOA), to represent
the evolution of the TSN session in relation to time,
including information of the 5G QoS flow configura-
tion, the device location and context, the values of the
KPIs and relevant events like network configuration
actions. This definition of automaton is a time-oriented
extension of the previous proposal that is also richer in
terms of information.

2) The improvement of the Automata Learning algorithm
already defined in order to generate TOA based on real
TSN network behavior over 5G from network trace
monitoring.

3) The design of a first prediction and reconfigura-
tion algorithm that exploits the TOA for a particular

VOLUME 11, 2023 82961

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

scenario where it is assumed that the TSN devices
follow the same work plan and use the same traffic
pattern already learned by the TOA.

4) A TSN over 5G testbed that solves the main low-level
aspects like time synchronization and TSN translators
in charge of translation between TSN and 5G domains.

5) A full implementation of the new algorithms in the tool
calledAutomAdapt and its evaluation on top of the TSN
over 5G testbed.

This paper reports a novel method and a tool for Zero
Touch Configuration of 5G QoS flows based on learning
methods that can be integrated in a TSN AF.

The rest of the paper is organized as follows. Section II
describes related work in the areas of learning techniques
for communication networks, Zero Touch Management of
5G networks and TSN implementations. Section III intro-
duces the context of our research, describing the TSN over
5G technologies and the specific problem of (dynamically)
mapping the expected quality of the TSN traffic in the 5G
QoS flow configuration. Section IV presents our Automata
Learning-based Zero Touch approach, including algorithms
for learning and prediction. Then, Section V describes the
implementation of a TSN over 5G testbed that includes all
the relevant features defined in the 3GPP standards as well
as our algorithms to complete a functional TSN Application
Function. Finally, the conclusions and future work are pre-
sented in Section VI.

II. RELATED WORK
This section presents the three main topics related to our main
contribution. First, the use of learning techniques to create an
automaton that represents the network behavior. Second, the
implementation of a Zero-Touch configuration mechanism to
predict deviations and reconfigure the 5G network dynami-
cally. Third, the integration of this approach into the TSN over
5G testbed at the University of Malaga.

A. LEARNING NETWORK TRACES
In the literature, there are two main approaches to learning
and constructing models of interactions based on observa-
tions that can be used to learn on network traces. On the one
hand, traditional methods of Artificial Intelligence (AI) based
on machine learning such as reinforcement learning [11] and
learning automata [12], and on the other hand, the automata
learning approaches [8], [9] studied in the context of Formal
Methods. It is worth noting the confusing terminology used
to name the AI technique (learning automata) and the formal
method learning technology (automata learning).

Reinforcement learning and learning automata are
well-known AI techniques to learn from observed interac-
tions. Both techniques learn how tomap the environment state
into actions that maximize the so-called reward. Algorithms
perform an iterative process that ends when the optimal
reward has been reached. This reward could be, for instance,
the system’s performance or the use of certain resources.

These techniques have been used to optimize, for exam-
ple, the configuration of wireless networks [13], [14]. It is
worth mentioning that in reinforcement learning and learning
automata, algorithms are aware of the environment situa-
tion (state) during their lifetime. However, the intermediate
environment states are not explicitly shown in the learned
model; instead they are hidden in the calculated probabilities.
For this reason, it is difficult to find an explanation for a
reconfiguration decision made.

In contrast, automata learning techniques try to construct a
state machine model from a black-box system. There are two
main approaches, namely active and passive learning. Active
learning is based on queries to the underlying system that
guide the construction of the automata. For instance, active
automata learning has been used to construct a learned model
of the Non-Access Stratum (NAS) layer in 4G networks [15]
and the state machine for the IEEE 802.11 4-Way Hand-
shake [16]. Passive learning techniques only use the observed
system behavior without explicitly interacting with it. One
example is the use of reverse engineering to obtain the state
machines for FTP and SMTP protocols in [17] and [18].
Compared with traditional AI techniques, automata learning
techniques produce a formal model of the system whose
relation with the original system may be formally analyzed.
In addition, any decision made on the original model by
exploring the formal model can be mathematically explained.
Therefore, in this paper the automata learning approach is
followed to represent the evolution of the whole TSN over
5G system. In this way, the reasoning behind each decision
can be explained and understood by humans.

B. ZERO-TOUCH NETWORKS APPROACH
The complex task of efficiently managing a network to
meet all requirements makes approaches such as Zero-Touch
Network Management (ZTM) and Zero-Touch Network and
Service Management (ZSM) a necessity. In particular, for
technologies such as 5G and TSN that have applications with
demanding requirements that are difficult to manage. More-
over, since our work focuses on meeting the expected quality
of end-to-end connections, network automation must take
into account all network pieces (i.e. Radio Access Network,
5G core network, User Equipment, and TSN endpoints).

In the current literature, there are works that consider the
different segments of the network separately. In the case of
Radio Access Network (RAN), there exists a lot of proposals
and solutions. On the one hand, diverse learning techniques
are used to operate and manage the resources. The authors
in [19] address the problem of optimizing resource alloca-
tion over time. For this purpose, they introduce an online
learning algorithm and perform experiments via simulation
to evaluate its performance. In [20], the authors identify
the different factors affecting the Channel State Information
(CSI) (e.g. frequency band, location, and weather), which
is a essential concept to know the radio link quality. They
propose a learning framework to predict CSI in 5G networks.

82962 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

The aforementioned concepts and others related to the radio
configuration (e.g. modulation and coding scheme - MCS)
and link quality measurement (e.g. received signal strength
indicator - RSSI) are important in terms of QoS assur-
ance. However, they alone are not sufficient for demanding
applications. On the other hand, the use of closed control
loops (CCLs) to adequately provide services with minimum
human intervention has been used for years. The authors
in [21] use an automated CCL to configure and deploy
the service, capturing its relevant management information
and the objective. This paper follows a similar strategy, since
the expected requirements of the application to configure
the network are considered at the beginning of the connec-
tion. Furthermore, the CCLs are key enablers for Zero-Touch
approaches. The authors of [22] address the automation
aspects ofmulti-domain environments using several CCLs for
end-to-end service management.

Nonetheless, an integrated approach of the network has to
be considered to deal with end-to-end connectivity require-
ments. Other approaches exist to avoidmanual configurations
at deployment time and enable the flexibility and programma-
bility of converged networks. Additionally, they pursue
dynamic configuration and troubleshooting during service
operation, which is fundamental for these kinds of appli-
cations with stringent requirements. First, Self-Organizing
Networks (SON) [23] was originally developed to optimize
the RAN deployment. However, new capabilities (e.g. self-
learning) have been added to extend the scope of SON,
including different network segments such as core and trans-
port network. For example, the authors in [24] propose the
use of big data to address the stringent 5G requirements (for
example, ultra-low latency) with the aim of creating an end-
to-end smart network. They also identify the useful network
information at different levels that can be exploit for self-
optimization. Some of the information that the authors have
identified (for example, packet jitter, delay, throughput, drop
rate, etc.) is used in our work to learn and subsequently make
predictions in order to reconfigure the network when neces-
sary. Second, the concept of network slicing allows to create
isolated networks tailored to fulfill diverse requirements on
top of a common physical infrastructure. Similarly to SON,
this concept can cover one or more network segments. The
paper in [25] studies network slicing as the sharing of uplink
RAN resources for the main types of 5G traffic. On the
contrary, the work in [26] present an end-to-end perspective
of network slicing, considering the slicing in the User Equip-
ment (UE), the transport network and the core network; in
addition to the RAN. Additionally, several practical examples
are presented to support this approach. The combination of
these concepts and approaches can be found in the literature.
For instance, the use of CCLs to support the 5G network
slicing [27] and the application of learning techniques to
optimize the RAN resources [28], [29].
Our work focuses on the Zero-Touch approach to imple-

ment the dynamic reconfiguration of the 5G QoS flow based
on the current traffic requirements, similar to the ideas

presented above. Moreover, a tool named AutomAdapt has
been designed and implemented, inwhich a CCL and learning
techniques are combined to perform this task. The work cycle
of this loop is explained in detail in Section IV.

C. INTEGRATION OF TSN WITH 5G
The actual implementation of TSN over 5G is an active field
which still has few testbeds or experimental implementations.

The first proposals to evaluate TSN over 5G are coming
from the simulation community. In [30] the authors use the
OMNeT++ simulator and the TSN model NeSTiNg to eval-
uate the integration of 5G into TSN as a transparent bridge.
They add a new model of the end-to-end data path to start
evaluating different configurations of the end-to-end path.
Their model plays the role of our 5G QoS Flow extended for
TSN (including the translators described in the next Section).

Regarding physical testbeds, the work in [31] reports a
testbed to reproduce the idea of full synchronization using
IEEE standards for TSN. The main requirement here is to
allow the UE to access some timing information in the 5G
radio channels in combination with timing information from
the TSN domain. Unfortunately, they only use 4G networks
due to instability of the 5G version’s OpenAirInterface [32]
software used for the wireless segment.

The work in [33] presents a testbed with 3GPP Release
15 hardware to evaluate an industrial control system. They
also discuss the configuration of TSN over 5G systems and
methodologies needed to characterize the Quality of Expe-
rience (QoE) for industrial use cases. Insofar as Release
15 does not support features needed for TSN, the authors
extend the basic 5G network with emulation of Ethernet PDU
sessions, Ethernet TSN capable devices and synchronization
with explicit wired connection of both sides. This is the
closest testbed to our development. This paper shares with
them the use of 5GRelease 15 and TSN devices. However, the
wired synchronization is replacedwith GPS-based clocks that
allow more practical wireless deployments. Additionally, the
actual commercial gNB with Stand Alone 5G is used instead
of their NSA mode based on the Keysight 5G emulator. And
more importantly, this work includes intelligent reconfigura-
tion of the network during the TSN session instead of keeping
a fixed configuration.

All previous works follow the same principle as our
paper’s, namely the extension of Ethernet-based TSN to
the wireless domain using 5G. However, there is a another
approach followed by the OPC foundation that combines
TSN with their application layer protocol [34]. The recent
survey [35] summarizes the state of the art in the integration
of TSN and 5G. The integration of TSN over 5G is presented
in SectionV-A,which is implemented on the testbed available
at the University of Malaga.

III. TSN OVER 5G
Themainmotivation of this work is to attain Zero Touch Con-
figuration for TSN over 5G. Therefore, this section provides

VOLUME 11, 2023 82963

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

FIGURE 2. Fully centralized TSN network architecture - IEEE 802.1Qcc [37].

an overview of TSN over 5G and introduces the main chal-
lenges, entities, and concepts mentioned in the rest of the
paper.

The name Time-Sensitive Networking mainly refers to the
standards defined by IEEE to expand Ethernet for Time-
Sensitive communications [36]. In the wired scenario, the
network interfaces of the final devices, called TSN endpoints
(TSN EP), and the TSN switches deployed in the network
support specific methods for sharing time information and
ensuring the requirements of each traffic pattern sent by the
endpoints. In addition, these standards state that the QoS
requirements should be communicated in advance. In the case
of the fully centralized TSN network architecture, depicted
in Figure 2, the QoS requirements are communicated from
TSN endpoints to theCentralizedUser Configuration (CUC).
Then, CUC exchanges this information with the Centralized
Network Configuration (CNC) which manages the configu-
ration of the TSN Bridges on behalf of the TSN endpoints.

The benefits of removing cables in factories pushed 3GPP
to define in Release 16 [5] an architecture where the whole
5G network, called 5G System (5GS), can act as a transparent
TSN bridge, here called 5GS Bridge. Figure 3 shows the
TSN over a 5G architecture. The 5G network is composed
of the 5G core, the Radio Access Network (RAN), and the
User Equipment (UE). The usual components of the 5G core
have a relevant role to get the 5GS Bridge working, but they
basically follow the 3GPP standards. For instance, User Plane
Function (UPF) and other 5G Network Functions (NFs) are
participating in many procedures to support TSN over 5G.
As mentioned in the introduction, this architecture includes
two new types of entities that are specialized to support TSN
features over 5G, the TSN translators (DS-TT and NW-TT)
and TSN AF.

Full commercial or academic TSN over 5G solutions are
not yet widely available due to some open challenges. On the
one hand, the TSN translators defined in recent standard
releases by 3GPP (e.g. Rel. 16 or Rel. 17) are still relatively
recent. In addition, they have not been tested in real scenarios
by vendors. This may be due to the limited demand that
currently exists, coupled with the development complexity.
On the other hand, there are issues related to the complexity

FIGURE 3. TSN over 5G network architecture.

of implementing a general TSN AF module that, according
to 3GPP, must be open to algorithms defined by network
vendors. The rest of the paper is mainly focused on this
topic, since our goal is to include our intelligent loop, called
AutomAdapt, as part of the TSN AF functions, which will be
thoroughly explained in Section IV.

A. STANDARDIZED FEATURES
The TSN translators (TTs), represented in Figure 3 at the
edges of the 5G System Bridge, are responsible for ensur-
ing interoperability of the user and control planes between
the 5G and TSN networks, transforming the 5G network
into a 5GS Bridge (logical TSN bridge) and achieving
the aforementioned transparency for the users. In the most
common scenario, the TSN endpoint connects to the 5G
wireless access (5G UE) using Device-Side TSN Translator
(DS-TT), while the wired part of the application is con-
nected to the 5G network (UPF) using the Network-Side TSN
Translator (NW-TT).

One of the key features of the TSN over 5G networks
is time synchronization, which allows having a unique time
reference through both TSN and 5G domains, which is indis-
pensable for Time-Sensitive Communications (TSC). The
TSN translators fulfill all functions related to time synchro-
nization. Since 3GPPRelease 16 onwards, the Precision Time
Protocol (PTP) has been proposed to achieve this synchro-
nization. However, current 5G devices (e.g. smartphones and
modems) and network components like the gNBs do not
yet support this feature. A transitory solution is proposed in
Section V-A. Another key feature is the traffic translation
between TSN and 5G network, which includes the support for
TSN sessions; for instance, the QoS mapping from incoming
TSN traffic, the buffering mechanism, the PDU session and
TSN translator port connection (the relationship information
is stored by TSN AF).

B. THE PARTIALLY-STANDARDIZED TSN APPLICATION
FUNCTION
The TSN Application Function (TSN AF), which is located
within the 5G core in Figure 3, is the entity in charge of the
control and configuration of the 5GS Bridge based on the
traffic pattern declarations coming from the TSN endpoints
through CUC and CNC. In addition, the TSN AF stores the
information of the connection related to the TSN translator

82964 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

ports and Packet Data Unit (PDU) session, such as relation-
ships, stream filters, QoS mapping, time synchronization,
etc. Some aspects of the TSN AF are clearly defined in
the standards, such as 5GS Bridge management, information
exchange with TSN translators, and interaction with CNC for
configuration. However, most of the details on how to expose
and implement this function are vendor specific and not
standardized. The main concepts managed by an advanced
TSN AF, which will be used in the rest of the paper, are the
following:

• A TSN session refers to the connection of a mobile
TSN endpoint to interact with a fixed TSN endpoint.
For example, when a human operator with a remote
controller connects to drive a robot that performs a given
task.

• The TSN traffic pattern defines the kind of traffic sent
in the TSN session. The traffic pattern is communicated
by the TSN endpoints to the TSN AF through the CUC
and CNC. For example, the traffic pattern can define
cyclic-synchronous traffic with a typical period of 1 ms
and 1000 bytes of payload (more examples are presented
in Table 2).

• The expected KPIs refers to the acceptable values for a
number of metrics for a TSN traffic pattern. An accept-
able delay and jitter for a TSN industrial application
running over 5G should be under the typical period,
for instance, [6-10] ms and [0-1] ms respectively (see
Table 1 for more examples).

• The 5G QoS flow configuration refers to the values of
all the configurable parameters in the 5G network for
a given TSN session (without affecting other sessions).
Examples of these configurable parameters include the
RLC mode (AM, TM, UM), the timers in AMmode, the
buffer discard threshold in MAC layer, and the reorder-
ing timer in PDCP layer.

• The session trace refers to the sequence of observed
states of the network and the connected devices in a spe-
cific TSN session. Each state includes the configurable
parameters, the state of the devices (e.g. the location),
and the actual observed values of the KPIs; for instance,
a mobile device connected to the network while the loca-
tion is changing. Therefore, the network configuration is
being adapted and, in turn, the session trace has a number
of different observed states.

The main goal of the TSN AF is to configure each 5G
QoS flow dynamically in order to offer the expected KPIs
to support the specific TSN traffic patterns in a given
TSN session. Meanwhile, the session trace containing all
the information related to the network states (e.g. network
parameter values, current KPIs values, etc.) is generated. The
connection between the TSN AF and other components is
crucial to attain said objective. On the one hand, the connec-
tion of the TSN AF and certain 5G core components, called
Network Functions (NFs), is involved in the establishment of
TSN QoS Flows. The TSN AF and other NFs are responsible

FIGURE 4. Example MSC of TSN over 5G.

for storing the information related to the mapping between
TSN QoS profiles and 5GS QoS profiles. Regarding the 5G
QoS profiles, it is possible to use the standardized 5QIs (QoS
Identifier), define pre-configured 5QIs or dynamically assign
different 5QIs. Then, the PDU Session together with the 5G
QoS Flows needed can be created. On the other hand, the TSN
AF is also connected with the CNC for the time synchroniza-
tion service configuration. The PTP functionalities supported
and configured by TSN translators are also part of the TSN
AF functioning.

Figure 4 depicts a Message Sequence Chart (MSC) of
the system behavior including the most significant iterations.
First, the TSN endpoint asks TSN AF (through CUC/CNC)
for a certain QoS for a TSN session, indicating in advance the
traffic pattern together with the expectedKPIs. Then, the TSN
AF and the CNC apply the necessary configuration to the
5G network and the TSN translators, respectively. Once the
network configuration is adjusted to meet the traffic require-
ments, the TSN AF notifies the TSN endpoints that TSN
traffic can be sent and received. This notification is performed
through an RRCReconfigurationmessage which includes the
new values of the network parameters. An example of this is
presented in Section V. During the TSN session, if the TSN
AF detects a deviation of the observed KPIs, it can perform
a reconfiguration of the network in order to fulfill the traffic
requirements.

IV. AUTOMATA LEARNING APPROACH
A. OVERALL APPROACH
In order to make the TSN AF smart enough to dynamically
carry out the required changes in the 5G QoS flow con-
figuration, a closed loop with four main phases has been
defined, like the one shown in Figure 5, as part of the TSN
AF module. Once the TSN AF has made the first 5GS
bridge configuration and the actual traffic starts from one
TSN endpoint to the other, the process works as follows.

VOLUME 11, 2023 82965

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

Themonitoringmodule captures snapshots of the whole TSN
session including the 5G QoS flow configuration and the
actual values of the KPIs as concrete network states. These
states conform the network traces that are used as input to the
learning module to produce an automaton that represents the
network behavior. In Section IV-B, the so-called Traffic Ori-
ented input/output Automata (TOA) is formally defined as the
underlying formalism of learned automata. Since automata
are finite statemachines, the TOA states are abstract and finite
representations of the concrete network states. The prediction
module uses the learned automaton to predict if the observed
behavior of the real network will lead to an undesirable state
(wrt the TSN and 5G QoS profiles) and proposes in advance
an alternative network configuration, if possible. Finally, the
reconfigurationmodule applies a new configuration to the 5G
QoS flow, when required.

The whole process of monitoring, prediction and recon-
figuration should be done in parallel with the actual TSN
session, without negative impact on the KPIs. The learning
process to build the TOA can be done in different ways. One
option is just to run a number of trials to produce real session
traces to build the TOA and use it later in the closed loop
process. Another option is to build or to extend the TOA
within the loop.

As described above, the network produces concrete states,
composed of the current configuration and the observedKPIs,
which must be mapped into simpler versions of network
states, called abstract states, to be part of the TOA. Abstrac-
tion of concrete states is essential to produce finite and
manageable TOA able to be analyzed during the prediction
phase. In consequence, a major decision for the construction
of the TOA is how to carry out the abstraction of concrete
states. On the one hand, since the number of different 5G
QoS flow configurations defined by 3GPP standards is finite,
they can directly be part of the abstract states. However,
actual values of the KPIs will make the TOA unfeasible
unless some abstraction procedure is applied to them. The qty
function, detailed below, is used to compact sets of values for
all the observed KPIs to single values to be used for quick
comparison with respect to the ideal or acceptable range of
expected KPIs in the TSN session. In a practical scenario,
this function will be defined by the network operator, when
installing or upgrading the TSN AF module, and will provide
quality ranks for the observed KPIs. For instance, Table 1
shows a realistic definition of qty for a specific TSN traffic
pattern (cyclic-asynchronous traffic with a typical period of
10 ms and 1000 bytes of payload) and their observed KPIs.
In this example, the positive values of qty represent valid
thresholds defined by the operator for the mentioned traffic
pattern. Conversely, the negative values denote at least one
invalid threshold of the observed KPIs for this traffic pattern.

In the next sections, the whole process for learning TOA
from network traces along with the prediction module is
formally described. The prediction module makes use of the
learned TOA to anticipate the non desirable quality deviation
of the KPIs and suggest configuration changes when possible.

TABLE 1. Example of qty function values for a given traffic pattern.

FIGURE 5. AutomAdapt tool: a Zero Touch Configuration closed loop.

However, when no reconfiguration can be suggested with
the available information, the network operator will receive
warnings in order to try to fix the issues manually. Such a
manual configuration and its effect could be integrated into
the TOA for further decisions.

B. TRAFFIC ORIENTED INPUT/OUTPUT AUTOMATA
In this section, the notion of Traffic Oriented input/output
Automata (TOA) is introduced as the specific formalism that
captures the behavior of the network N to be learned.

Let C be the set of all possible network configurations
with confd ∈ C being the initial default configuration. It
is assumed that KPI = {kpi1, · · · , kpik} is the set of the k
network KPIs to be monitored, and are represented as vectors
ō = ⟨o1, · · · , ok ⟩ ∈ Rk where each oi corresponds to the
value of KPI kpii. The symbol ⊥ is used to represent that KPI
values are unknown.

Definition 1: Network states (N -states) are defined as
pairs of the form (conf,ō) ∈ C × (Rk

∪ {⊥}), conf and ō
being a network configuration and a vector with the KPIs
values (or ⊥, if they are unknown), respectively. A net-
work trace (or N -trace) is a finite sequence of N -states as
(conf0, ō0) · · · (confn, ōn).
Network states observed during a network session have an

additional timestamp attached that records the time instant
when the state has been registered.

Definition 2: Observed network states (observed N -
states) are defined as 3-tuples of the form ⟨ts, conf,ō⟩, where
ts ∈ R≥0 is the timestamp component and (conf,ō) ∈

C × (Rk
∪ {⊥}) is an N -state. An observed network trace

82966 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

(or observed N -trace) ⟨ts0, conf0, ō0⟩ · · · ⟨tsn, confn, ōn⟩ is a
finite sequence of observedN -states satisfying that ∀0 ≤ i <
n. tsi < tsi+1.
As mentioned above, a quality function of KPIs is used to

abstract the N -states so that they can be finitely stored by
TOA.

Definition 3: Amap qty : Rk
∪{⊥} → Z is a valid quality

function iff the image of qty (img(qty) ⊆ Z) is a finite set and
qty(⊥) = 0.

Definition 4: An abstract N -state is a pair of the form
(conf, v) ∈ C×Z. Given a valid quality function qty and aN -
state (conf, ō) ∈ C × (Rk

× {⊥}), the abstraction of (conf, ō)
is defined using qty as qty(conf, ō) = (conf, qty(ō)).
TOA, defined below, is built using abstractN -states. In the

sequel, qty denotes the valid quality function that relates N -
states and abstract N -states.
Definition 5: A TOA is a tupleA = ⟨Q, q0,E, fA⟩ where

Q is a finite set of automaton states, q0 ∈ Q being the
initial state. fA is an injective function that associates each
automaton state q ∈ Q with an abstract N -state (conf, v) ∈

C × Z. It is assumed that fA (q0) = (confd , 0). E is a map
with the TOA edges of the form (q, q′) 7→ label with q ̸= q′.
States q and q′ are, respectively, the source/target states of the
edge and label is one of the two possible actions:

• cf(conf) with conf ∈ C, which represents a transition due
to a configuration change;

• rd(n) with n ∈ N+, which represents a transition due to
a change in the quality of the observed KPIs. Argument
n is a guard to register when it is possible to fire the
transition.

Definition 6: Given A = ⟨Q, q0,E, fA⟩, the concretiza-
tion function γ : Q → C × (Rk

∪ {⊥}) is defined as
γ (q) = {(conf, ō)|fA(q) = qty(conf, ō)}.
Intuitively, each TOA state q ∈ Q is a label of the abstract

state fA (q) = (conf, v) oriented to finitely represent the set of
N -states γ (q) in the automaton. In addition, a TOA transition
(q, q′) 7→ label means a network evolution due to a config-
uration change (label cf(conf)) to conf, or to a change in the
quality of the observed KPIs (label rd(n)), when more than
n time units have passed. Each state q ∈ Q may have several
outgoing cf-transitions, since the network configuration can
always be substituted by a different one. However, assuming
that the network behaves in a deterministic manner, there
may be at most one possible deviation in the quality of the
observed KPIs due to the time passing, as established in the
following condition:

Deviation Condition: Each TOA A = ⟨Q, q0,E, fA⟩

must satisfy that for every state q ∈ Q, there may exist at
most one outgoing edge of the form (q,−) 7→ rd(−) in E .

Example 1: Figure 6 shows an example of TOA that rep-
resents the behavior of a simple network with the RLC AM
profile pAM and the delay δ being the only configurable
parameter and observed KPI, respectively. It is assumed that
parameter pAM can take values p1 (the initial default value)
or p2. Delay δ (measured in millisecs) is abstracted using

FIGURE 6. Example of TOA.

function qty : R ∪ {⊥} → Z defined as follows: qty(⊥) =

0 and

qty(δ) =


1 iff δ ∈ (0, 5]
2 iff δ ∈ (5, 10]
−1 otherwise

In Figure 6, each automaton state q also shows the value
of fA (q) in which the first component is the RLC AM profile
configured and the second one is the abstraction of the delay.
Note that in the initial state q0 the configured RLC profile is
p1 and the delay is unknown. Transitions labeled with rd(−)
(e.g. (q0, q1) 7→ rd(4), (q1, q2) 7→ rd(45), (q3, q4) 7→

rd(48) and (q5, q3) 7→ rd(8)) represent a change in the
quality of the observed delay (when 4, 45, 48 and 8 time units
have passed). Finally, transitions labelled with cf(−) (e.g.
(q1, q3) 7→ cf(p2), (q3, q1) 7→ cf(p1) and (q2, q5) 7→ cf(p2))
are fired by a change in the RLC AM profile.

The aim of the rest of this section is to formally relate each
TOA with the subset of N -traces it represents. To do this,
in Definition 8 the so-called trace-based semantics of TOA
is constructed using a transition system that produces a set
of N -traces. This set is constructed using function γ , given
in Definition 6, which relates each TOA state with the set
of N -states it abstracts. Similarly, the following definition
describes how TOA are also able to abstract consecutive N -
states of the real network.

Definition 7: Let A = ⟨Q, q0,E, fA⟩ be a TOA. The
semantics of A is defined by means of the transition system
(S, s0,

−
−→) with S ⊂ Q×R≥0

×R≥0
×C× (Rk

∪{⊥}). Each
state s = (q, c, ts, conf, ō) ∈ S contains a TOA state q ∈ Q,
a clock value c ∈ R≥0 and an observed N -state ⟨ts, conf, ō⟩.
The initial state is s0 = (q0, 0, 0, confd , ⊥) ∈ S. Each state
(q, c, ts, conf, ō) ∈ S must satisfy that (conf, ō) ∈ γ (q).
Transition relation

−
−→⊂ S × {cf, rd,dl} × S is defined

by rules (1), (2) and (3) presented below. In these rules,
component ts registers the global timestamp and the value

VOLUME 11, 2023 82967

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

of clock cj of the target state sj = (qj, cj, tsj, confj, ōj) is
calculated to register the time elapsed in qj.
1) Transition produced by a TOA edge labelled with a

change in the quality of the observed KPI. This transi-
tion is fired for si = (qi, ci, tsi, confi, ōi) if there exists
a TOA edge of the form (qi, −) 7→ rd(n) andmore than
n time units have passed at state qi:

(qi, ci, tsi, conf, ōi)
rd
−→ (qj, 0, tsj, conf, ōj),

if ∃n > 0
a) (qi, qj) 7→ rd(n) ∈ E and
b) ci + (tsj − tsi) ≥ n

2) Transition produced by a TOA edge labelled with a
configuration change. This transition is fired for si =

(qi, ci, tsi, confi, ōi) if there exists a TOA edge of the
form (qi, −) 7→ cf() and rule (1) cannot be applied:

(qi, ci, tsi, confi, ōi)
cf
−→ (qj, 0, tsj, confj, ōj), if

a) (qi, qj) 7→ cf(confj) ∈ E and
b) if there exist qk ∈ Q and n ∈ N such that

(qi, qk) 7→ rd(n) ∈ E , then ci + (tsj − tsi) < n
3) Transition produced only by the time passing. It can be

fired when rule (1) cannot be applied:

(q, ci, tsi, conf, ōi)
dl
−→ (q, cj, tsj, conf, ōj) if

a) cj = ci + (tsj − tsi) and
b) if there exist qk ∈ Q and n ∈ N such that

(q, qk) 7→ rd(n) ∈ E , then cj < n
The deviation condition given above assures that there

is no ambiguity when applying rule (1), since at most one
outgoing rd-transition exists for each state qi. In addition,
observe that the rd-transition defined in rule (1) is mandatory
if conditions (1.a) and (1.b) hold. Otherwise, rules (2) and (3)
can be applied in a non-deterministic manner, if possible.
Example 2: The transition system determined by a TOA

is clarified by demonstrating two sequences of states pro-
duced by the automaton in Figure 6:

seq1 = (q0, 0, 0, p1, ⊥)
rd
−→ (q1, 0, 4, p1, 2ms)

dl
−→

(q1, 4, 8, p1, 1ms)
dl
−→ (q1, 8, 12, p1, 4ms)

rd
−→

(q2, 0, 45, p1, 7ms) · · ·

Transition from (q0, 0, 0, p1, ⊥) to (q1, 0, 4, p1, 2ms) is
produced by rule (1) when 4 time units have passed. The two
consecutive dl-transitions in seq1 are generated by rule (3)
since the elapsed time is less than 45. The last transition is
produced by rule (1) and involves a change in the quality of
the observed KPI. Note that the sequence could continue by
applying dl-transitions indefinitely.

seq2 = (q0, 0, 0, p1, ⊥)
rd
−→ (q1, 0, 4, p1, 2ms)

cf
−→

(q3, 0, 8, p2, 2ms)
dl
−→ (q3, 4, 12, p2, 4ms)

cf
−→

(q1, 0, 16, p1, 3ms) · · ·

Sequence seq2 starts as seq1 and then carries out two
cf-transitions. The sequence could continue by alternatively

changing the network configuration as long as the time
elapsed at the corresponding states is less than 16 or 48.

Given a state s = (q, c, ts, conf, ō) of the transition system
(S, s0,

−
−→), theN -state s↓ is constructed by projecting s over

its two last components as s↓ = (conf, ō).
Definition 8: The trace-based semantics of the transition

system (S, s0,
−
−→) is given by O(S, s0,

−
−→) defined as

{s0↓ · s1↓ · · · sn↓ | ∀ 0 ≤ i < n. si
−
−→ si+1}.

That is, O(S, s0,
−
−→) contains the set ofN -traces (accord-

ing to Definition 1) that can be constructed applying transi-
tion relation

−
−→ from the initial state s0 and projecting the

resulting states over their two last components.
Definition 9: A TOA A accepts a set of N -traces T iff

T ⊆ O(S, s0,
−
−→), (S, s0,

−
−→) being the transition relation

determined by A
Example 3: The sequence of projected states determined

by seq1 and seq2 of Example 2 is shown to clarify how the
elements of O(S, s0,

−
−→) are constructed:

seq1↓ = (p1, ⊥) · (p1, 2ms) · (p1, 1ms) · (p1, 4ms) · (p1, 7ms)
seq2↓ = (p1, ⊥) · (p1, 2ms) · (p2, 2ms) · (p2, 4ms) · (p1, 3ms)

C. CONSTRUCTION OF THE LEARNED AUTOMATON
The algorithm Learn is now described as a method for con-
structing a TOA from a finite set of observed network traces
T = {π1, · · · , πp

} produced during p different TSN sessions
in a given 5G network. Each trace π i

= zi0 · zi1 · · · · · zin−1 ∈ T
is a finite sequence of observed N -states zij (Definition 2)
produced when a configuration change event takes place or
when a fixed time threshold has elapsed. Algorithm Learn
returns a TOAAp which is able to accept all the behaviors in
T according to Definition 9. To construct this automaton, the
algorithmmakes use of a valid quality function qty as defined
by Definition 3.
Algorithm Learn proceeds as follows. Firstly, it creates an

initial TOAA0, with only an initial state q0 and no transitions.
It also creates the dictionary lv to associate each automaton
state with the last time instant that was visited. Initially, the
dictionary only includes the pair q0 7→ 0 to indicate that state
q0 is reached at time 0. Finally, it calls function Compose
to successively expand the TOA, incorporating the behavior
displayed by each trace of T .

The algorithm works by traversing the input automaton
and adding new states to it when required. Thus, in the
function, variable qc always points to the current automa-
ton state and confc is the current configuration at qc. The
following auxiliary functions are used in the algorithm to
consult/update the automaton under construction A or the
map lv. Function qty(ō) (e.g. line 13) calculates the abstract
representation of the observed (see Definition 3). Function
get(conf, qty(ō)) (e.g. line 13) returns (if it exists) a state
q ∈ Q such that fA (q) = (conf, qty(ō)). Otherwise, it returns
None. Function newState(conf, qty(ō)) (e.g. line 15) creates a
new state q, adds it to Q, and extends fA to associate q to the
pair (conf, qty(ō)). Function addTran(q, lb, q′) (e.g. line 17)

82968 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

creates a new transition from state q to q′ labeled by lb. If key
(q, q′) is not in E , addTrans simply adds pair (q, q′) 7→ lb
to E . Otherwise, if the label is of the form cf(conf), E does
not change. When the label is of the form rd(t), if (q, q′) 7→

rd(t ′) is the current pair in E , it is substituted by (q, q′) 7→

rd(min(t, t ′)), min(t, t ′) being the minimum value between t
and t ′. Function update(q, ts) (e.g. line 18) adds or updates
lv so that pair q 7→ ts is in the dictionary. Finally, function
getValue(q) (e.g. line 21) returns the time stamp registered in
lv for state q, if q is in the dictionary, or None otherwise.

The function Compose, shown in Algorithm Learn, pro-
ceeds as follows. First, it initiates the current state qc to
q0. Then, it iterates through all observed N -states zi =

⟨ts, conf, ō⟩ and modifies the current automaton to incorpo-
rate the observed behavior when required. It uses the function
get to check whether the automaton contains a state q that
matches the configuration and the observed quality of zi.
If not, a new state (also called q) is created to force the
automaton to accept zi.
Compose distinguishes two cases. On the one hand,

lines 16-19 manage the case in which zi has a configuration
conf that differs from that of the current state confc. On the
other hand, lines 20-24 focus on the case in which zi has the
same configuration conf as the current state, but the quality
of the observed values qty(ō) is different, which leads to a
different automaton state q. In both cases, the algorithm adds
a new transition from the current state qc to q. Observe that
when the transition is fired by a change in the quality of
the observed values (lines 20- 24), it is labelled with rd(t ′),
where t ′ is the time elapsed in qc. In any case, when a new
transition is added to the automaton, the dictionary of lvmust
also be updated with the map q 7→ ts and q becomes the new
current state. When all trace states have been traversed, the
new automaton is returned in line 27.
The following results establish the correctness of the

algorithm in the sense that all the N -traces used to construct
the TOA are accepted by the automaton.

Definition 10: Given an observed N -trace π =

⟨ts0, conf0, ō0⟩ · · · ⟨tsn−1, confn−1, ōn−1⟩, πi↓ (0 ≤ i < n)
denotes the N -trace (conf0, ō0) · · · (confi, ōi) obtained dis-
carding the last n− i− 1 states and removing the timestamp.
When no states are discarded, π↓ is written instead of πn−1↓.

Lemma 1: LetB0 = A be the input TOA ofCompose and
π = ⟨ts0, conf0, ō0⟩ · · · ⟨tsn−1, confn−1, ōn−1⟩ the observed
N -trace to be learned. For all 0 < i ≤ n, ifBi is the automaton
built after the i-th iteration of loop for (line 10), then Bi
accepts the N -trace πi↓.
Lemma 2: For all 1 ≤ i ≤ p, the automaton Ai returned

by function Compose (line 5) accepts the set of N -traces
{π1

↓
, · · · , π i

↓
}.

Theorem 1: Let A be the TOA returned by Algorithm
Learn from the set of observedN -traces T = {π1, · · · , πp

}.
Then the set ofN -tracesT = {π1

↓
, · · · , π

p
↓
} is accepted byA.

The convergence of the Algorithm Learn depends on the
number of states of the automaton built from the set T

Algorithm LearnConstruction of the AutomatonAk
Accepting a Set of Traces T
1 Algorithm Learn(↓ T = {π1, · · · , πp

}, ↑ Ap):
2 A0 := ⟨{q0}, q0, ∅, {q0 → (confd , 0)}⟩;
3 lv = {(q0, 0)};
4 for i := 1 . . . p do
5 Ai := Compose(Ai−1, π

i, lv) ;

6 return Ap;

7 Function Compose(↕ A, ↓ π = z0 . . . zn−1,↕ lv):
8 qc := q0;
9 B0 := A;

10 for i := 0 . . . n− 1 do
11 (confc, _) := fA (qc);
12 ⟨ts, conf , ō⟩ := zi;
13 q := Bi.get(conf , qty(ō));
14 if q = None then
15 q := Bi.newState(conf , qty(ō));
16 if conf ̸= confc then
17 Bi.addTran(qc, cf(conf), q);
18 lv.update(q, ts);
19 qc := q;

20 else if q ̸= qc then
21 t ′ := ts− lv.getValue(qc);
22 Bi.addTran(qc, rd(t ′), q);
23 lv.update(q′, ts);
24 qc := q;

25 Bi+1 := Bi;
26 A := Bn;
27 return A;

which constitutes its input. If it is assumed that T is finite
and that the number of states in each trace of T is also
finite, then termination of the Algorithm Learn holds trivially.
However, assuming that the automaton is continuously being
updated with new observed traces to record new behaviors,
convergence depends on the number of different possible con-
figurations (the size of set C) and on the number of possible
abstract KPI values (the size of img(qty)). However, on the
one hand, it is assumed that img(qty) is finite and on the other,
following [5], it can also be assumed that there exists a finite
number of realistic configuration values. In consequence, the
automaton built is finite.

Finally, it is worth noting that Learn returns an automaton
that represents the behavior of the network for sessions with
a specific traffic pattern. Since TSN specifies a finite set
of possible traffic patterns [2], and the traffic pattern does
not change over a session, our approach is to generate a set
of independent automata, each one representing the network
when using a different traffic pattern. Thus, in prediction and
reconfiguration phases, the automaton corresponding to the
announced traffic pattern will be used.

VOLUME 11, 2023 82969

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

D. AUTOMATA FOR PREDICTION AND RECONFIGURATION
This section describes Algorithm Predict, which can predict
the deviation of the observed KPIs to undesirable quality
values and propose some alternative network configurations
in advance based on a learned TOA A. The strategy is based
on analyzing the transitions of the form rd(n) of A (i.e,
those that reflect a change in the quality of the KPIs). Thus,
when the network stays at an automaton state in which a
KPI degradation is observed after n time units, the algorithm
informs that a reconfiguration action should be carried out,
if possible.

The algorithm executes in parallel with the network. Both
the algorithm and the network communicate via channels cin
and cout . The network sends periodically observed N -states
of the form ⟨ts, conf,ō⟩ through cin, and the algorithm uses
cout to send the result of the prediction. The CSP notation is
used to denote the emission (!) and reception (?) of messages.
When Predict receives a new observed N -state nextState,

it responds through channel cout with one of the following
messages:

• Continue: nextState has the expected quality wrt its con-
figuration, and no action is needed.

• Reconf (List(conf)): The network must be reconfig-
ured with any of the configurations in List(conf) to
avoid having the observed KPIs reach an undesired
observed quality. Deciding which of the proposed con-
figurations is the best is beyond the scope of the
algorithm.

• Warning: nextState has an undesired quality level, but
the algorithm cannot suggest any reconfiguration action.

• Unknown: nextState is not recognized by the automaton.
In this case, the algorithm ends.

Algorithm Predict makes use of function desirable : Z →

B, which given an integer number that represents a quality
value (of img(qty)), returns whether this quality level is desir-
able for the observed KPIs. In addition, the algorithm uses
the auxiliary functions getConfigs and getRd. Function get-
Configs takes the TOA A, a state qc of A and it returns a list
with the configurations, which label the outgoing transitions
from qc, leading to automaton states with desirable quality
values. Function getRd has the same input as getConfigs.
It returns the natural number (greater than 0) that goes with
the outgoing transition from qc labelled with rd(), if it exists,
or 0, otherwise. Finally, it is assumed that the network recon-
figuration takes at most Tr time units. This constant is used in
the algorithm to control when a reconfiguration action must
be carried out.

As commented above, algorithm Predict proceeds by read-
ing network states (line 4) from channel cin and responding
via cout . To calculate the proper response, it traverses the
TOAA, using variable qc (initialized to the automaton initial
state) and variable t used to register the timestamp when the
current state qc was last reached.

The algorithm first checks whether the sequence of
network states being observed is accepted by the TOA

(lines 10-19). When the current observed state is not rec-
ognized by A, the algorithm returns Unknown (line 33).
In particular, this occurs in the following cases:

• no automaton state matches nextState (line 10),
• no transition from qc to q exists, q being the automaton
state representing nextState (line 14),

• A contains a transition of form rd(n) from qc to q, but the
network has not spent at least n time units at the current
state to enable the transition (line 16).

Otherwise, nextState is accepted by A and variables qc and
t are properly updated. Lines 20-31 decide the actions to be
taken considering the current observed N -state:

• if the observed values do not have the desired quality, a
Warning message is sent via cout (line 21),

• if the observed KPIs have the desired quality and there is
no forthcoming rd-transition in less than Tr time units,
value Continue is sent through cout (line 25),

• if the observed values still have the desired quality but
there is an imminent rd-transition towards a state with a
non-desired quality, the algorithm consultsA to check if
this can be avoided by means of a network reconfigura-
tion (line 27). If there are no alternative configurations,
the algorithm sends a Warning (line 29) and otherwise,
it sends a Reconf message with the list of possible new
configurations (line 30).

Example 4: Following with the previous examples, let us
suppose that the TOAA in Figure 6 is the input to the Predict
algorithm and that the value of Tr is 4 time units. 0 and 1 are
considered to be the desirable quality values for KPI δ, that
is, Predict will help to avoid reaching states q2, q4 and q5. It
is assumed the algorithm receives the following sequence of
observed N -states through cin:
⟨0, p1, ⊥⟩ · ⟨4, p1, 2ms⟩ · ⟨8, p1, 3ms⟩ · ⟨12, p1, 2ms⟩ ·

⟨16, p1, 3ms⟩ · · ·

The first observed N -state corresponds to q0 in A, the
second one represents a valid transition rd(4) from q0 to q1.
The third and fourth states correspond to stay in q1. Until
now, the algorithm has responded to each observed N -state
with Continue since all states are recognized by A and the
network has elapsed just 8 time units in q1, which is less than
16 − Tr (the time instant at which q5 could be reached). The
fifth state also corresponds to stay in q1 but, at this point,
the network has spent 12 time units at this state, and in less
than Tr = 4 time units the system may reach q5. This is
why the algorithm calls function getConfigs and obtains a list
with just one alternative configuration, which means that it
is possible to change the RLC AM mode from p1 to p2 to
avoid the undesirable quality. In this case, Predict sends the
message Reconf ({p2}) suggesting that the network should
be reconfigured to p2. Depending on the action performed
by network, the next observed N -state could probably show
the change in the configuration (e.g. transition cf(p2) from
q1 to q3) or the evolution of observed KPIs to an undesirable
quality (e.g. transition rd(16) from q1 to q2). In this last case,
the next response of Predict will beWarning.

82970 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

Algorithm Predict Reconfiguration

1 Algorithm Predict(↓ A,↓ cin, ↓ cout):
2 qc := A.q0;
3 t := 0;
4 cin?nextState;
5 if (nextState = None) then
6 goto line 34 ;

7 (ts, conf , ō) := nextState ;
8 qty := qty(ō);
9 q := A.get(conf , qty);
10 if (q = None) then
11 goto line 33;

12 else if (q ̸= qc) then
13 label = A.getTrans(qc, q);
14 if (label = None) then
15 goto line 33;

16 if (label = rd(n) && ts− t < n) then
17 goto line 33;

18 qc := q;
19 t := ts;

20 if (!desirable(qty)) then
21 cout!Warning

22 else
23 m := getRd(A, qc);
24 if (m = 0||m− (ts− t) > Tr) then
25 cout!Continue;

26 else
27 lconf := getConfigs(A, qc);
28 if (lconf .isEmpty()) then
29 cout!Warning;

30 else
31 cout!Reconf (lconf);

32 goto line 4 ;
33 cout!Unknown;
34 return;

Function getConfigs

1 Function getConfigs(↓ A, ↓ qc, ↑ lConf):
2 succd := A.getCfSucc(qc).filter(desirable);
3 for q in succd do
4 lConf .add(A.getTrans(qc, q));

5 return lConf ;

V. TESTBED AND EVALUATION
The objective of this section is to present some experiments
carried out to evaluate the AutomAdapt tool for Zero Touch
Configuration. For this purpose, the following main elements
are introduced. First, the TSN over 5G testbed available at the

Function getRd

1 Function getRd(↓ A, ↓ qc, ↑ m):
2 trd := A.getRdTrans(qc);
3 m := 0;
4 if trd ̸= None then
5 (qc, q,m) := trd ;
6 if desirable(q) then
7 m := 0;

8 return m;

University of Malaga,1 which includes prototype implemen-
tations of the standardized features, namely the time synchro-
nization and the development of TSN translators to support
TSN sessions ; second the key implementation details of the
partially standardized TSNAF presented in Section III-B, the
AutomAdapt tool, which follows the architecture shown in
Figure 5. Finally, the results of the different experiments that
evaluate AutomAdapt implementation.

A. TSN OVER 5G TESTBED
Currently there are no commercial 5G testbeds that fully
integrate TSN technology, mainly because of the open issues
described in Section III. A solution for these open challenges
is proposed as follows.
First, due to the fact that the network does not yet have

the necessary capabilities to transport the synchronization
packets as introduced by recent 3GPP standards, this paper
proposes the use of two TSN Grand Master (GM) clocks
(instead a single GM clock) to achieve the time synchroniza-
tion at the edges of the 5G network. A single GPS (Global
Positioning System) signal is split to provide the same time
reference to these GM clocks. The difference between the
synchronization packets distributed by both GM clocks has
been verified with an oscilloscope as negligible.

Secondly, since there are no TSN translators on the market
either, the TSN translators in our testbed have been developed
using P4 domain-specific language [38], which is an ideal
candidate for data plane programming of network devices.
The P4 functionality is based on match-action tables, which
contain different table entries. In addition, the P4Runtime
interface allows programming the control plane in real time.
Therefore, the table entries can be managed (added, removed,
or modified) dynamically and the packet headers can be
adapted, for instance, by inserting or eliminating the IEEE
802.1Q protocol (also called dot1Q).

Eventually, the use of an Application Programming Inter-
face (API) on the user application side allows declaring in
advance the traffic to be sent. This way, the TSN AF can ini-
tiate all necessary procedures and communications with the
other NFs previously. The API has been developed within the

1ITIS/Victoria Network http://www.victoria-network.eu

VOLUME 11, 2023 82971

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

FIGURE 7. TSN over 5G testbed at the university of malaga.

scope of the EVOLVED-5G project and details are available
at TSN AF API repository.2

Figure 7 shows the main elements of the TSN over 5G
testbed:

• Two TSN endpoints (Relyum), in this case a ball balanc-
ing table (ACROME), is used as a visual demonstrator.

• A 5G UE (Telit fn980m modem).
• TSN translators, DS-TT and NW-TT, running on two
workstations.

• A fixed TSN bridge (Relyum) acting as CNC and CUC.
• The Open5GS,3 which is an Open Source implementa-
tion for 5G Core.

• The RAN part is composed of a Nokia indoor deploy-
ment (n78 band) managed by the Nokia AirScale sys-
tem.

• Time synchronization devices (ADVA) used as TSNGM
clocks.

B. AutomAdapt IMPLEMENTATION
This section describes some implementation issues of
AutomAdapt. In particular, it presents the design of the zero
touch configuration loop shown in Figure 5. The AutomAdapt
functionality is divided into four modules: monitoring, learn-
ing, prediction and reconfiguration. In addition, the figure
shows other components that are part of the testbed, such
as the network components, and the learned automata. The
functionality of each module is explained below, together
with the connections between them, the inputs-outputs, and
the interaction with the learned automata and the real net-
work components. The AutomAdapt code is available at
AutomAdapt repository .4

Themonitoringmodule is in charge of collecting informa-
tion from the different points of the network. This information
includes all relevant header information of the packets sent
and received to/from TSN endpoints, through RAN, 5G core
network and TSN translators. Currently, the monitoring mod-

2TSN AF API: https://github.com/EVOLVED-5G/TSN_FrontEnd
3Open5GS: Open Source 5G Core https://open5gs.org
4AutomAdapt repository: https://github.com/FLSchempp/AutomAdapt

ule has access to all these network components. However, the
most relevant task for the monitoring implementation and,
in turn, for the final users, is to obtain this information at the
TSN endpoints, thus making it possible to have end-to-end
KPIs.

The monitoring module is composed of two Java pro-
grams (talker and listener) that capture all packets at the
TSN endpoints, process them to extract all the relevant infor-
mation (e.g. timestamp, packet ID, headers, etc.) and insert
this information into Kafka topics. Then, the KPI generator,
which is another Java program, uses Kafka streams to process
the data, generate the KPIs (delay, jitter, throughput, and
packet loss), and inject the resulting KPIs into specific Kafka
topics. Eventually, these KPIs are inserted in an Influx Data
Base (InfluxDB), where they can be processed with different
functions, such as sum or average. Note that fine-grained
information can be obtained, even differentiating between
each packet sent through the network.

The data can be visualized through a dashboard that allows
plotting several types of graphs and selecting the time frame
to be displayed. Note that the dashboard provides an extra
function for users, allowing them to see at a glance the status
of the network (KPIs and values of relevant parameters) as
an extra function for the user, although it is not required for
AutomAdapt operation.

The learning module is responsible for constructing a set
of Automata, where each automaton represents the behavior
of the network during TSN sessions with a given traffic
pattern and the defined qty function. The module, written in
Python, implements the Learn algorithm explained in depth
in Section IV-C, and also the functionality necessary to make
queries to the InfluxDB in order to obtain the traces to be
learned.

The prediction and reconfiguration module is written in
Python and implements the Predict algorithm explained
in detail in Section IV-C. It is in charge of detecting in
advance a plausible deviation of the observed KPIs. If a
deviation is detected, the module tries to fetch a list of valid
network configurations. Then, it decides on the best config-
uration to apply. Since the selection of the best proposed

82972 VOLUME 11, 2023

https://github.com/EVOLVED-5G/TSN_FrontEnd
https://github.com/FLSchempp/AutomAdapt

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

configurations is beyond the scope of the Predict algorithm,
it has been decided to sort the configurations proposed for
reconfiguration based on the elapsed time in those states, i.e.,
the configuration learned with the longest elapsed time is
selected. Finally, the TSN 5G Bridge is reconfigured.

Some parameters defined by the network operator are spe-
cific to the implementation, and are explained below:

• Monitoring cycle time. Period used to calculate the aver-
age results of the KPIs (e.g. 1s, 10s, 60s). It is worth
noting that a lower value allows for finer-grained results.
Conversely, this requires further data processing.

• Configuration goal time. Minimum time needed to con-
sider a proposed configuration suitable to reconfigure
the network (e.g. 5min, 1h). It is important to note that
a higher value will possibly result in a better perform-
ing network configuration. However, in this case fewer
configurations are likely to be proposed.

• Stability time. Time required after a network reconfig-
uration for the changes to be propagated and reflected
in the monitoring module (e.g. 1min, 3min). Note that
no other network configurations are applied during this
period.

• qty function error value. An additional value of the qty
function is defined (in this case, qty = -30) to take into
account, in the learning process, any range of values
different from those defined in Table 1.

C. EVALUATION
Now, the details of the AutomAdapt tool evaluation are pre-
sented, as follows: first, the identification of the specific
aspects such as the scenario, traffic pattern, and network
configuration; then, the explanation of the evaluation process
of the AutomAdapt operation cycle, which includes moni-
toring, learning, prediction, and reconfiguration. Moreover,
the results of the experiments performed using the TSN over
5G testbed at the University of Malaga are analyzed. Note
that the setup used for evaluation can be replicated using the
hardware components presented in Section V-A. In addition,
the software components and the instructions to reproduce the
process are available at the AutomAdapt repository4.

• The evaluation scenario is made up of the hardware and
software included in the TSN over 5G testbed shown in
Figure 7.

• TSN endpoints can inject different traffic patterns.
Table 2 shows some examples of traffic patterns based
on the TSN traffic classes defined in [39]. Different
experiments have been carried out with several traffic
patterns, which have different typical periods and pay-
loads.

• The TSN over 5G testbed supports the configuration
of multiple parameters from the core network to the
RAN. This leads to millions of different 5G network
configurations. To simplify the presentation, in the fol-
lowing experiments AutomAdapt will learn a set of
network traces with different configurations of the RLC

TABLE 2. Traffic pattern examples.

TABLE 3. 5G network configuration (RLC AM) examples.

AM parameters. Currently, the Nokia RAN supports the
configuration of 12 parameters (6 parameters for both
downlink and uplink) in the RLC layer (AM mode),
which are the following:

– MaxRetxThreshold : the maximum number of ARQ
retransmissions allowed.

– PollByte: the interval between polls relative to the
number of bytes transmitted.

– PollPDU : the interval between polls in PDU.
– tPollRetr : the value of the timer to retransmit a poll
– tStatusProhibit : timer to prohibit the transmission of

acknowledgment status reports.
– tReassembly: the value of the timer for reassembly

These parameters can accept between 8 and 62 possible
different input values (for more information, see [40]).
Table 3 shows 2 possible sets of configurations for these
parameters.

Once the specific aspects of the evaluation have been iden-
tified, in order to use AutomAdapt, the qty function has to be
defined by specifying the correspondences of the observed
KPIs with the intervals. The experiments use a qty based on
the examples presented in Table 1, which defines different
intervals for the observed delay and jitter. Furthermore, the
desirable function has to be established, that is, the desirable
observed KPIs during the TSN session. The evaluation pro-
cess of the AutomAdapt operation cycle consists mainly of
two phases, explained below.

1) INITIAL LEARNING PHASE
In this phase, different network configurations with a given
traffic pattern have been randomly applied. AutomAdapt has
been fed with the observed network traces produced by each
network configuration in order to produce an automaton for
each traffic pattern. In order to perform an evaluation of
AutomAdapt, different automata have been generated that
will be used in the next phase of prediction and reconfig-
uration. To generate these automata, a starting point and

VOLUME 11, 2023 82973

https://github.com/FLSchempp/AutomAdapt

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

TABLE 4. Automata learned during initial learning phase.

TABLE 5. 5G network configurations (RLC AM) used to obtain baseline
results for comparison.

several time intervals (e.g. 24h or 48h) are chosen to gen-
erate automata with a number of different states. Table 4
represents the details of these automata, including the time
it took to build each automaton, the number of states created
and the number of different network configurations tested.
Predictably, the number of network states and configurations
progressively increases over time.

2) PREDICTION AND RECONFIGURATION PHASE
Once the aforementioned automata have been created,
AutomAdapt is ready for prediction and reconfiguration.
Specifically, AutomAdapt continuously monitors the current
status of the network. In case AutomAdapt has learned from
the current network state that it is possible to reach another
state with deviations of the expected quality or the current
state does not meet the requirements, it explores network con-
figurations that can be applied in order to fulfill the expected
requirements using the automaton learned during the initial
learning phase. In order to evaluate AutomAdapt, several
tests were performed using traffic pattern 3 (see Table 2).
In addition, the desired network state is to maintain the
delay in the range of [0, 7]ms and the jitter in the range of
[0, 1]ms, corresponding to qty = 1 (see Table 1). First, the
network’s observed KPIs are monitored for at least 12 hours
using the same network configuration, i.e., without running
AutomAdapt. This information will be used as a baseline
for comparing the improvement in network performance,
specifically KPIs, when AutomAdapt is not in operation
versus when it is in operation. Table 5 shows the network
configurations together with the baseline observed KPIs in
terms of elapsed time in the desired network state.

Secondly, AutomAdapt is executed multiple times using
the automata presented in Table 4 to obtain the observed KPI
results while making predictions and applying reconfigura-
tions to the network.

FIGURE 8. AutomAdapt impact: elapsed time in desired network state.

Figure 8 presents a comparison of elapsed time within the
desired network state, where the observed KPIs meet the traf-
fic requirements. The figure specifically illustrates the per-
centage change, ideally improvement, in elapsed time within
the desired network state when AutomAdapt is running and
its reconfigurations are applied, as compared to the elapsed
time in the same desired network state when AutomAdapt
is not running (i.e., with a fixed network configuration).
It can be observed that the improvement increases progres-
sively if an automaton with a larger number of states is used
(see Table 4), which is logical given the extended duration
of the initial learning phase and a greater number of net-
work configurations. Consequently, AutomAdapt possesses
more information, enabling it to predict and reconfigure the
network more effectively. Table 6 presents the information
related to the automata resulting from the prediction and
reconfiguration phase, called Automaton ID’.

After the evaluation and comparison process, the following
conclusions are drawn:

• A considerable improvement (in terms of time elapsed
with desirable network KPIs) is obtained from a certain
number of states learned by the automaton. For example,
in the case of Automaton ID 1 and 2 (<500 states)
the percentage of improvement is low, even becoming
negative in the case of baseline configuration 4 and using
the Automaton ID 1. On the contrary, Automaton ID
3 and 4 can reach an improvement of about 35-45%,
which is a remarkable impact on the expected traffic
quality.

• Since AutomAdapt continuously learns, even during
the prediction and reconfiguration phases, the resulting
automata could contain new states that differ from the
previously learned ones. This indicates that the automa-
ton did not learn these states during the initial phase,
rendering them unusable for prediction and reconfig-
uration. Nonetheless, once these new states are added
to the automaton, they are considered for AutomAdapt.
During the different executions, approximately the same
number of new states were added (see Table 6).

• The number of reconfigurations applied byAutomAdapt
(see Table 6) to maintain the network in the desired state

82974 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

TABLE 6. Resulting automata during prediction and reconfiguration
phase.

during a given period of time decreases as the number
of states learned becomes larger, reaffirming that the
amount of information learned by AutomAdapt is linked
to effectiveness.

• It is important to have a set of baseline observed KPIs
for comparison, since the results obtained may differ by
about 15-20%.

The complete AutomAdapt data set (learned automata, net-
work configurations and reconfigurations applied over time)
is accessible in the AutomAdapt repository4, including all
details and files of the evaluation process.

An example trace of the operating cycle is presented below.
Figure 9 depicts the evolution of the observed KPIs obtained
from an experiment during the initial learning phase, in which
the left y-axis represents the delay and the right y-axis the
jitter. During this experiment, AutomAdapt monitors and
learns the behavior of the network during a TSN session; by
using the same conditions as in the evaluation process, i.e.
qty = 1 (see Table 1) and traffic pattern 3 (see Table 2).
In addition, the network configuration ID 1 (see Table 3) is
used. In this case, AutomAdapt creates the network state q1,
which is shown in Figure 6, and learns that using this network
configuration the requirements for the given traffic pattern are
met for about 230s. This is followed by several deviations,
which are also learned by the automaton and are essential for
prediction and reconfiguration.

This way, next time AutomAdapt is monitoring and detects
that the network has returned to an already learned network
state, AutomAdapt is able to predict the deviations of the
expected KPIs and apply the necessary reconfiguration to
meet the requirements. An example of this process during
the prediction and reconfiguration phase is represented in
Figure 10. The left part shows the evolution of the observed
KPIs, with which AutomAdapt identifies that the network
is in the automaton state q1, which was previously learned.
Since a deviation of the observed KPIs is expected after 230s
in this automaton state, a reconfiguration of the network has
to be carried out in advance. AutomAdapt will apply a known
configuration that continues to meet the traffic requirements
during the TSN session. On the right side of Figure 10,
the evolution of the observed KPIs after the network recon-
figuration is represented. In this case, AutomAdapt creates
the automaton state q2, which is also shown in Figure 6.
Note that qty = 1 (see Table 1) and traffic pattern 3 (see
Table 2) are still being used. However, network configuration
ID 2 (see Table 3) is now in use,which has greater values
of PollPDU and tPollRetr . On the one hand, a higher value for

FIGURE 9. Observed KPIs during the initial learning phase.

FIGURE 10. Observed KPIs during the prediction and reconfiguration
phase.

PollPDU can reduce control signaling and decrease delay by
allowing the transmission of a larger number of PDUs before
requesting status information to the UE. On the other hand,
a longer tPollRetr value gives the UE more processing and
response time to send the status information, which could
reduce unnecessary retransmissions and decrease the delay.
Additionally, by increasing tReassembly allows waiting for all
RLC data PDUs from higher layers to arrive and be reassem-
bled and can prevent these unnecessary retransmissions. The
decrement of the tStatusProhibit value also reduces the delay
between PDUs. However, it can lead to higher control sig-
naling. As a result of the reconfiguration, KPIs are improved,
effectively meeting the requirements for the given traffic.
Note that, although the explanation is valid for all types of
traffic, AutomAdapt does not apply this reconfiguration to
another type of traffic if it is not a state previously learned in
the automaton corresponding to that type of traffic.

VI. CONCLUSION
This paper presents AutomAdapt, which is a novel imple-
mentation of TSN over 5G with self-reconfiguration based
on learning techniques. Automata learning is used to build
the Traffic Oriented input/output Automata (TOA) which
abstracts the behavior of the network based on real traces of
TSN sessions. Then the TOA is employed for prediction and
reconfiguration with actual TSN applications. In addition, the

VOLUME 11, 2023 82975

https://github.com/FLSchempp/AutomAdapt

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

paper shows the evaluation of AutomAdapt and an example
of its operation cycle, including the analysis of the results
obtained when running the tool in a real scenario. These
results show the percentage of improvement during the time
inwhich the network is in the desired state whenAutomAdapt
is used versus baseline values of the network obtained with
static network configurations, that is, without any prediction
or reconfigurations applied.

There are three main open lines for future work; first,
regarding prediction and reconfiguration, adding Machine
Learning techniques based on the actual automaton (TOA)
to enhance the current prediction algorithm when reaching
unknown orwarning states; and second, improving the under-
lying testbed infrastructure by moving to 5G Release 16 and
using Ethernet PDU sessions. In addition, time synchroniza-
tion will be improved in the Device-Side Translator (DS-TT)
by sending the TSN synchronization information over the 5G
network.

REFERENCES
[1] T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, ‘‘Time-sensitive net-

working in IEEE 802.11be: On the way to low-latency WiFi 7,’’ Sensors,
vol. 21, no. 15, p. 4954, Jul. 2021.

[2] 5G-ACIA. (Feb. 2021). White Paper: Integration of 5G with Time-
Sensitive Networking for Industrial Communications. [Online]. Available:
https://5g-acia.org/whitepapers/integration-of-5g-with-time-sensitive-
networking-for-industrial-communications/

[3] P. M. Rost and T. Kolding, ‘‘Performance of integrated 3GPP 5G and IEEE
TSN networks,’’ IEEE Commun. Standards Mag., vol. 6, no. 2, pp. 51–56,
Jun. 2022.

[4] D. Ginthör, J. von Hoyningen-Huene, R. Guillaume, and H. Schotten,
‘‘Analysis of multi-user scheduling in a TSN-enabled 5G system for indus-
trial applications,’’ in Proc. IEEE Int. Conf. Ind. Internet (ICII), Nov. 2019,
pp. 190–199.

[5] 3GPP System Architecture for the 5G System (5GS), docu-
ment 3GPP TS 23.501, version 16.15.0, 3rd Generation Partnership Project
(3GPP), Technical Specification (TS), Dec. 2022. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-gf0.zip

[6] 3GPP System Architecture for the 5G System (5GS), docu-
ment 3GPP TS 23.501, version 17.7.0, 3rd Generation Partnership Project
(3GPP), Technical Specification (TS), Dec. 2022. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h70.zip

[7] F. Luque-Schempp, L. Panizo, M.-d.-M. Gallardo, P. Merino, and J. Rivas,
‘‘Toward zero touch configuration of 5G non-public networks for time sen-
sitive networking,’’ IEEE Netw., vol. 36, no. 2, pp. 50–56, Mar./Apr. 2022.

[8] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’
Inf. Comput., vol. 75, no. 2, pp. 87–106, Nov. 1987.

[9] B. Steffen, F. Howar, and M. Merten, ‘‘Introduction to active automata
learning from a practical perspective,’’ in Formal methods for Eter-
nal Networked software Systems (Lecture Notes in Computer Science),
vol. 6659, M. Bernardo and V. Issarny, Eds. Berlin, Germany: Springer,
2011, pp. 256–296.

[10] A. Stevenson and J. R. Cordy, ‘‘A survey of grammatical inference in
software engineering,’’ Sci. Comput. Program., vol. 96, pp. 444–459,
Dec. 2014.

[11] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
IEEE Trans. Neural Netw., vol. 9, no. 5, p. 1054, Sep. 1998.

[12] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Intro-
duction. Upper Saddle River, NJ, USA: Prentice-Hall, 1989.

[13] M. N. Qureshi, M. I. Tiwana, and M. Haddad, ‘‘Distributed self opti-
mization techniques for heterogeneous network environments using active
antenna tilt systems,’’ Telecommun. Syst., vol. 70, no. 3, pp. 379–389,
Mar. 2019.

[14] Y. Guo, S. Li, W. Jiang, B. Zhang, and Y. Ma, ‘‘Learning automata-
based algorithms for solving the stochastic shortest path routing problems
in 5G wireless communication,’’ Phys. Commun., vol. 25, pp. 376–385,
Dec. 2017.

[15] M. Chlosta, D. Rupprecht, and T. Holz, ‘‘On the challenges of automata
reconstruction in LTE networks,’’ in Proc. 14th ACM Conf. Secur. Privacy
Wireless Mobile Netw., New York, NY, USA, Jun. 2021, pp. 164–174.

[16] C. M. Stone, T. Chothia, and J. de Ruiter, ‘‘Extending automated protocol
state learning for the 802.11 4-Way Handshake,’’ in Computer Security,
J. Lopez, J. Zhou, and M. Soriano, Eds. Cham, Switzerland: Springer,
2018, pp. 325–345.

[17] J. Antunes, N. Neves, and P. Verissimo, ‘‘Reverse engineering of Protocols
from network traces,’’ in Proc. 18th Work. Conf. Reverse Eng., Oct. 2011,
pp. 169–178.

[18] C. Lee, J. Bae, and H. Lee, ‘‘PRETT: Protocol reverse engineering using
binary tokens and network traces,’’ in ICT Systems Security and Privacy
Protection, L. J. Janczewski and M. Kutyłowski, Eds. Cham, Switzerland:
Springer, 2018, pp. 141–155.

[19] M.A. Qureshi andC. Tekin, ‘‘Fast learning for dynamic resource allocation
in AI-Enabled radio networks,’’ IEEE Trans. Cognit. Commun. Netw.,
vol. 6, no. 1, pp. 95–110, Mar. 2020.

[20] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, ‘‘Channel state information
prediction for 5G wireless communications: A deep learning approach,’’
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 227–236, Jan./Mar. 2020.

[21] F. Cuadrado, J. C. Duenas, and R. Garcia-Carmona, ‘‘An autonomous
engine for services configuration and deployment,’’ IEEE Trans. Softw.
Eng., vol. 38, no. 3, pp. 520–536, May 2012.

[22] N. F. S. de Sousa, M. T. Islam, R. U. Mustafa, D. A. L. Perez,
C. E. Rothenberg, and P. H. Gomes, ‘‘Machine learning-assisted closed-
control loops for beyond 5G multi-domain zero-touch networks,’’ J. Netw.
Syst. Manage., vol. 30, no. 3, p. 46, Jul. 2022.

[23] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, ‘‘A survey
of machine learning techniques applied to self-organizing cellular net-
works,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392–2431,
4th Quart., 2017.

[24] A. Imran, A. Zoha, and A. Abu-Dayya, ‘‘Challenges in 5G: How to
empower SON with big data for enabling 5G,’’ IEEE Netw., vol. 28, no. 6,
pp. 27–33, Nov. 2014.

[25] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, ‘‘5G wireless
network slicing for eMBB, URLLC, and mMTC: A communication-
theoretic view,’’ IEEE Access, vol. 6, pp. 55765–55779, 2018.

[26] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, ‘‘Net-
work slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[27] K. Govindarajan, S. Goel, P. Jayachandran, S. Glover, J. P. Villaverde,
J. Cresp, J. Viale, S. Martin, and F. Livigni, ‘‘Closed loop optimization
of 5G network slices,’’ in Proc. 15th Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2023, pp. 186–188.

[28] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and H. Mineno,
‘‘Flexible resource block allocation to multiple slices for radio access
network slicing using deep reinforcement learning,’’ IEEE Access, vol. 8,
pp. 68183–68198, 2020.

[29] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and
W. Jiang, ‘‘Dynamic reservation and deep reinforcement learning based
autonomous resource slicing for virtualized radio access networks,’’ IEEE
Access, vol. 7, pp. 45758–45772, 2019.

[30] L. Martenvormfelde, A. Neumann, L. Wisniewski, and J. Jasperneite,
‘‘A simulation model for integrating 5G into time sensitive networking as a
transparent bridge,’’ in Proc. 25th IEEE Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), vol. 1, Sep. 2020, pp. 1103–1106.

[31] M. Gundall, C. Huber, P. Rost, R. Halfmann, and H. D. Schotten, ‘‘Inte-
gration of 5G with TSN as prerequisite for a highly flexible future
industrial automation: Time synchronization based on IEEE 802.1AS,’’
in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2020,
pp. 3823–3830.

[32] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
‘‘OpenAirInterface: Democratizing innovation in the 5G era,’’ Comput.
Netw., vol. 176, Jul. 2020, Art. no. 107284.

[33] K. Nikhileswar, K. Prabhu, D. Cavalcanti, and A. Regev, ‘‘Time-sensitive
networking over 5G for industrial control systems,’’ in Proc. IEEE
27th Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2022,
pp. 1–8.

[34] F. Prinz, M. Schoeffler, A. Lechler, and A. Verl, ‘‘Dynamic real-time
orchestration of I4.0 components based on time-sensitive networking,’’
Proc. CIRP, vol. 72, pp. 910–915, Jan. 2018.

82976 VOLUME 11, 2023

F. Luque-Schempp et al.: AutomAdapt: Zero Touch Configuration of 5G QoS Flows

[35] Z. Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sjödin, and
S. Mubeen, ‘‘A comprehensive systematic review of integration of time
sensitive networking and 5G communication,’’ J. Syst. Archit., vol. 138,
May 2023, Art. no. 102852.

[36] L. Lo Bello and W. Steiner, ‘‘A perspective on IEEE time-sensitive net-
working for industrial communication and automation systems,’’ Proc.
IEEE, vol. 107, no. 6, pp. 1094–1120, Jun. 2019.

[37] IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements, Standard 802.1 WG,
Higher Layer LAN Protocols Working Group, Oct. 2018.

[38] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[39] IEC/IEEE 60802 TSN Profile for Industrial Automation, document Draft
V1.4, Jun. 2022. [Online]. Available: http://www.ieee802.org/1/files/
private/60802-drafts/d1/60802-d1-4.pdf

[40] 3GPP Radio Link Control (RLC) Protocol Specification, docu-
ment 3GPP TS 38.322, version 15.5.0, 3rd Generation Partnership Project
(3GPP), Technical Specification (TS), Mar. 2019. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-gf0.zip

FRANCISCO LUQUE-SCHEMPP received the
B.Sc. degree in telematics engineering and the
M.Sc. degree in telematics engineering and
telecommunication networks from the Univer-
sity of Malaga, where he is currently pursuing
the Ph.D. degree in computer science. His cur-
rent research interests include time-sensitive net-
working, deterministic communications, automata
learning, and mobile networks.

LAURA PANIZO received the B.S. degree in
telecommunications engineering and the Ph.D.
degree in computer science from the University
of Malaga. She is currently an Assistant Profes-
sor in computer languages with the University of
Malaga. She has participated in different European
projects, such as EuWireless and, more recently,
EVOLVED-5G. Her research interests include for-
mal methods for embedded and mobile communi-
cation systems.

MARÍA-DEL-MAR GALLARDO is currently a
Professor in computer languages with the Univer-
sity of Malaga. She has a large number of publica-
tions in high-impact journals and conferences and
has participated in 24 regional and national and
European projects. Her research interest includes
application of formal methods for building reliable
software.

PEDRO MERINO is currently a Professor of
computer communications and the Director of
the ITIS Software Institute, University of Malaga
(UMA). He is involved in software defined 5G/6G
networks and software reliability. He has partici-
pated in more than 40 projects, including 12 Euro-
pean FP7 and H2020 projects. He represents UMA
in NetworldEurope and 6G IA.

VOLUME 11, 2023 82977

