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ABSTRACT The upcoming 6G networks are sixth-sense next-generation communication networks with an
ever-increasing demand for enhanced end-to-end (E2E) connectivity towards a connected, sustainable world.
Recent developments in artificial intelligence (AI) have enabled a wide range of novel technologies through
the availability of advanced machine learning (ML) models, large datasets, and high computational power.
In addition, intelligent resource management is a key feature of 6G networks that enables self-configuration
and self-healing by leveraging the parallel computing and autonomous decision-making ability of ML
techniques to enhance energy efficiency and computational capacity in 6G networks. Consequently,ML tech-
niques will play a significant role in addressing resource management and mobility management challenges
in 6G wireless networks. This article provides a comprehensive review of state-of-the-art ML algorithms
applied in 6G wireless networks, categorized into learning types, including supervised and unsupervised
machine learning, Deep Learning (DL), Reinforcement Learning (RL), DeepReinforcement Learning (DRL)
and Federated Learning (FL). In particular, we review the ML algorithms applied in the emerging networks
paradigm, such as device-to-device (D2D) networks, vehicular networks (Vnet), and Fog-Radio Access
Networks (F-RANs). We highlight the ML-based solutions to address technical challenges in terms of
resource allocation, task offloading, and handover management. We also provide a detailed review of the
ML techniques to improve energy efficiency and reduce latency in 6G wireless networks. To this end,
we identify the open research issues and future trends concerningML-based intelligent resourcemanagement
applications in 6G networks.

INDEX TERMS 6G, D2D communication, energy efficiency, machine learning, resource management.

I. INTRODUCTION
Wireless communication systems have evolved to the recent
fifth-generation (5G) networks, and upcoming 6G net-
works are anticipated to establish unlimited connectivity
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for a multi-layered and a large number of smart termi-
nals [1]. Despite recent developments in 5G networks to
support massive machine-type communication (mMTC),
enhanced mobile broadband (eMBB), and ultra-reliable and
low-latency communications (URLLC), it is foreseen that
the 6G networks will be able to provide various emerg-
ing services, including end-to-end connected autonomous
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systems, zero-touch cognitive networks, Holographic-Type
Communication (HTC), Tactile Internet, etc. [2], [3], [4].
These emerging applications with diverse requirements such
as peak data rate of 1 Tbps, 99.99999% reliability, and
latency ranging between 10-100 microseconds are beyond
5G communication specifications under International Mobile
Telecommunications-2030 (IMT-2030) standards for 6G
vision [5]. Henceforth, 6G shows its potential to offer higher
bandwidth (THz band) and a promising data rate with lower
latency and more reliability compared to 5G. It will not
only improve the quality of service (QoS) and the quality
of experience (QoE) for end-users but also offer a low-cost
and sustainable communication infrastructure for 6G wire-
less networks to facilitate smart applications, including aug-
mented and virtual reality, contactless payment, holographic
projection, Internet of Senses (IoS), flying base stations,
etc. [6], [7]. Furthermore, to meet the diverse requirements
of 6G, artificial intelligence (AI) is envisioned to enable
autonomous systems with distributed learning models [8].
These AI-enabled 6G networks are intended to automate
network processes, analyze big data to make smart decisions
and realize intelligent edge, fog, and cloud nodes with the
ultimate goal of achieving seamless E2E connectivity that
cannot be achieved with existing 5G standards [9].
Similarly, industry X.0 will also make 6G networks more

dynamic, heterogeneous, and ultra-dense by unleashing new
energy into industrial products. Consequently, heteroge-
neous devices in 6G networks must adhere to different QoS
requirements for intelligent deployment of limited network
resources (radio, computation, energy, etc.). For example,
seamless connectivity and real-time data transfer between
autonomous vehicles necessitate an ultra-reliable and low-
latency network. The same physical infrastructure is antic-
ipated to simultaneously support customers’ demands for
real-time video streaming and multiple entertainment appli-
cations utilizing extended reality (augmented/virtual reality),
telemedicine, etc. [6], [7]. These incipient wireless network
applications necessitate network services with a variety of
performance characteristics such as resource allocation, task
offloading, mobility management, energy efficiency, and
latency minimization, posing fundamental technical chal-
lenges for intelligent resource management in 6G networks.

There is a tremendous need to address the aforementioned
challenges for optimal utilization of network resources in
the design guidelines of 6G networks. Furthermore, resource
management is crucial for information exchange between
vehicles, infrastructure, D2D connections, extended reality in
teleoperation, low-latency transmission of safety-related and
health alert messages, high-precision map navigations, etc.
Particularly, it may be challenging to simultaneously meet
reliability, computing efficiency, high data rate, low latency,
and energy-efficient communication. Consequently, it is nec-
essary to formulate joint optimization problems for resource
management issues such as radio resource allocation, user
association, power allocation, spectrum management, and

computation offloading to meet various demands in 6G wire-
less applications.

In wireless networks, traditional resource management
problems are addressed with suboptimal or heuristic opti-
mization methods. On the other hand, the joint optimiza-
tion problems for energy efficiency, resource allocation,
and computation efficiency in upcoming 6G networks are
NP-hard due to mixed integer nonlinear programming
(MINLP). These NP-hard problems could not be solved
using global optimization algorithms, e.g. the branch-and-
bound algorithm, and sub-optimal or heuristic algorithms,
due to their exponential computation complexity and diffi-
culty quantifying and controlling the performance gaps to
the optimal solution. To balance the computational com-
plexity and performance gap of solving NP-hard problems,
machine learning algorithms (a subset of artificial intelli-
gence) have emerged as an alternative approach to heuristics
and brute-force algorithms. This trend has also motivated
researchers to investigate machine learning methods for
joint optimization problems in 6G wireless networks. More-
over, 6G networks are increasingly stringent in terms of
robustness, resource efficiency, and reliability. Consequently,
a paradigm shift in traditional resource management methods
is required for the joint optimization of network resources
usingML-empowered intelligent resourcemanagement in 6G
networks [10].

Additionally, the large bandwidth of the THz spectrum
range offers high-data rates, which act as the driving force
in optimizing 6G wireless networks using ML techniques.
ML techniques implemented in 6G networks are envi-
sioned to achieve efficient spectrum management, automatic
network configurations, and cognitive provisioning of ser-
vices [11]. Further, the combination of machine learning and
6G networks can intelligently optimize network resources,
real-time learning, and complex decision-making for modern
autonomous systems. Moreover, as the evolution towards
6G networks proceeds, it will be imperative to balance
the expected explosive growth of data traffic, integrating
sensor-based services with real-time analytics, and massive
network densification with the demand for global sustainabil-
ity and fairness [12]. Consequently,ML-enabled 6G networks
will be a fundamental component for the functioning of
virtually all parts of society, and industries, fulfilling the com-
munication needs of humans as well as intelligent machines.

The scope of this survey paper is to provide a detailed
overview of the challenges and potential advantages related
to integrating ML techniques with advanced technologies in
6G networks. It covers theML-assisted resourcemanagement
challenges to enhance the performance of 6G wireless net-
works while optimization of wireless resources to support
ML applications is not covered in this survey [8], [13]. This
article explains how the existing works developed ML-based
solutions to tackle intelligent resource management in 6G
wireless networks, categorized into ML types, including
supervised ML and unsupervised ML, Deep Learning (DL),
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FIGURE 1. Taxonomy of ML techniques.

Reinforcement Learning (RL), Deep Reinforcement Learn-
ing (DRL) and Federated Learning (FL). Fig. 1 explains the
taxonomy of ML types. These ML types have been classified
into broader categories and subcategories presented in this
article. Some types of ML are not mutually exclusive. For
instance, deep learning (DL), a subset of ML, encompasses
supervised DL and unsupervised DL as its subcategories.
Conversely, supervisedML and unsupervisedML, as broader
types of ML, do not encompass deep learning. Likewise,
federated learning exhibits subcategories such as Federated
SML, Federated uSML, Federated DL, Federated RL, and
Federated DRL. Furthermore, DRL is a subcategory that is
a combination of deep learning and reinforcement learning.

A state-of-the-art review of the existing literature is
provided, focusing on the methodology, advantages, and
limitations of each proposed ML algorithm concerning var-
ious network configurations, including D2D communica-
tion, vehicular networks, and Fog-Radio Access Networks.
Furthermore, it categorizes the recent literature based on
ML-empowered resource allocation, task offloading, energy
efficiency, latency minimization, and handover management
to provide guidelines for selecting the suitable category of an
ML algorithm and highlight potential advantages, limitations
and open issues concerning ML-assisted 6G wireless net-
works. Fig. 2 depicts the organization of the paper. In Table 1,
the abbreviations used in this article are listed.

II. RELATED WORK AND CONTRIBUTION
A. RELATED WORK
Intelligent resource management in heterogeneous and
ultra-dense environments is the major challenge for improved

TABLE 1. List of abbreviations.

energy efficiency, ultra-reliability, and overall low latency in
6G wireless networks. Recently, ML methods have emerged
as a promising solution in 6G wireless networks to optimize
network resources and improve system performance. Further,
ML-enabled cross-layer network optimizations enhance the
users’ quality of experience. However, several optimization
challenges of mixed integer nonlinear programming must be
addressed to effectively implement ML methods in emerging
networks such as D2D communication, vehicular networks,
and Fog-RANs. Moreover, the selection of the optimal ML
method for intelligent resource management problems such
as resource allocation, task offloading, and handover man-
agement is also challenging. The researchers have started
working on integrating ML with 6G networks to provide
ubiquitous and reliable communication solutions with ML-
enabled architectures. Nevertheless, many challenges and
open issues still need further investigation.

Recently, many researchers reviewed ML implementation
in wireless networks. For example, in [7], ML algorithms
for effective IoT operations in 6G wireless networks are
discussed. The authors summarized the different ML tech-
niques to address resource allocation and energy efficiency
in IoT scenarios. In [14], AI-enabled resource manage-
ment beyond 5G networks is presented. This survey focuses
on various physical layer design and optimization aspects,
including channel measurements, modeling, estimation, and
resource management. The authors in [15] reviewed the
functions of autonomous and cooperative AI schemes for
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FIGURE 2. Organization of the paper.

resource allocation in 6G communication systems. In another
work [16], the authors proposed a multi-layered design for
6G networks integrated with ML techniques. They discussed
an integrated space–air–ground–underwater network (ISA-
GUN) as the potential core architecture of the 6G network.
The references [7], [14], [15] and [16] proposed AI to enable
intelligent wireless networks without considering how it can
systematically sense data from environments, analyze the
collected data, and then apply the discovered knowledge to
optimize network performance for 6G networks.

Deep Learning (DL) implementation in wireless networks
has been reviewed in recent works [17], [18], [19]. In [17],
a DL-based multi-level architecture is proposed for data-
driven 6G networks. It summarizes the deep learning-based
network service provisioning at the device, edge, and cloud
levels. This survey considers massive IoT cellular technol-
ogy, haptic communication technology, and wireless channel
modeling in 6G networks. The authors in [18] discussed DRL
models, their applications, and challenges in autonomous
IoT systems. The survey focuses on specific types of DRL
models applied in an IoT environment with three layers:
perception, network, and application layer. It highlights the
pros and cons of existing works classified into different layers
of IoT environment under the general DRL model. In another
work [19], the authors reviewed the DL-based works for the
6G radio access networks and highlighted the main steps
of DL model deployment in O-RAN. Moreover, this survey
also covers the ML system operations concept in O-RAN.
Nevertheless, these surveys [17], [18], [19] mainly focused
on deep learning methods in IoT and O-RAN applications
without reviewing the emerging network applications in

6G including D2D communication, vehicular networks, and
F-RANs.

In [20], handover management issues in 6G networks
using DRL and FL are presented. Recent studies have cov-
ered the use of ML in F-RAN systems, including data
fusion and massive MTC applications [21], [22]. Further-
more, ML algorithms applied in D2D communication and
ML-assisted load balancing in heterogeneous networks are
discussed in [23] and [24], respectively. Nevertheless, these
works concentrate on DL, DRL, and FL algorithms without
considering the supervised, unsupervised, and model-free RL
algorithms.

Addressing the network optimization problems in wire-
less communication is essential in 6G networks. ML-enabled
cross-layer network optimization and resource management
have been addressed in recent works [21], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36]. In [25],
the authors discussed the 6G vision in AI-enabled edge
systems. It summarizes the edge learning models in the con-
text of communication-efficient edge training. Furthermore,
it presents a comprehensive review of the resource allocation
for edge AI systems. A detailed survey of ML techniques
at the application and infrastructure level is given in [26],
[27], and [28]. These works focus on resource allocation,
power allocation, spectrum management, and wireless chan-
nel modeling using ML techniques. Additionally, there have
been recent surveys on the implementation of ML methods
for resource allocation and task offloading [29], [30], [31],
[32], [33], [34], [35], resource management optimizations for
ultra-massive access under URLLC constraints [36], whereas
ML-assisted energy efficient communication in D2D [21],
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edge, and fog computing networks [37], [38], and large scale
energy-harvesting networks are discussed in [36].
These aforementioned works have made a significant con-

tribution to the research inML-assisted next-generation wire-
less networks in terms of resource allocation, task offloading,
handover management, latency minimization, etc., which
enhances QoS and QoE in D2D communication, vehicular
networks, and F-RANs. However, many of these issues are
addressed individually in surveys [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36] with a focus on specific types of network scenarios. For
instance, references [23], [28], [33], [37] consider only D2D
communication networks. Similarly, vehicular networks are
discussed in [39] and references [22], [32], and [40] only
focus on F-RANs. Moreover, the D2D and Vnet are jointly
considered in [20], [27], [34], and [35]. On the other hand, ref-
erences [21] and [38] cover both D2D and F-RANs network
scenarios in the context of ML-assisted wireless networks.

To the best of our knowledge, survey papers [7], [37] are
the only ones that discuss all ML types (SML, uSML, DL,
RL, DRL, FL) with a focus on resource management for
D2D networks. However, while these two surveys consider
resource management in D2D networks, they ignore vehic-
ular networks and Fog-RANs. Moreover, they also do not
cover ML-assisted handover management, energy efficiency,
and latency minimization techniques for D2D networks. Fur-
thermore, joint optimizations of resource management issues
are not included in the aforementioned surveys. Nevertheless,
there is no single survey article that combines the use of all
types of ML techniques in D2D, Vnet, and F-RANs together
to address the technical challenges in resource management
issues such as resource allocation, task offloading, energy
efficiency, latency minimization, and handover management.
Table 2 summarizes the comparison of the recent surveyswith
our paper.

B. CONTRIBUTION OF SURVEY
To fill this gap and to stimulate further research in
ML-empowered intelligent resource management in 6G net-
works, we present a novel and comprehensive survey com-
prising recent work on the state-of-the-art ML types (SML,
uSML, DL, RL, DRL, FL) in three network categories
including D2D communication, Vnet, and F-RANs. We also
provide a detailed discussion on ML applications to address
technical challenges in terms of resource allocation, task
offloading, and handover management. A comprehensive
summary of ML techniques to improve energy efficiency and
reduce latency in 6G wireless networks is also provided. Fur-
ther, this survey presents a new perspective and classification
to recently published literature with a focus on ML-assisted
6G wireless networks, which leads us to identify the open
issues and challenges in intelligent resource management
and handover management. Moreover, we propose several
promising future research directions in design guidelines of
ML- empowered 6G wireless applications.

The main contributions in this article are outlined as fol-
lows:

• Present an overview of state-of-the-art ML techniques,
such as supervised (SML) and unsupervised machine
learning (uSML), Deep Learning (DL), Reinforcement
Learning (RL), Deep Reinforcement Learning (DRL),
and Federated Learning (FL) for resource management
applications in 6G networks.

• Discuss the implementation of ML algorithms in emerg-
ing wireless networks such as device-to-device (D2D)
networks, vehicular networks (Vnet), and Fog-Radio
Access Networks (F-RANs).

• Summarize the ML-assisted solutions, including the
learning types, advantages, and limitations for resource
allocation, task offloading, and handover management.

• Provide a comprehensive review of ML-assisted meth-
ods to improve network performance in terms of energy
efficiency and latency minimization.

• Highlight the open issues, research challenges, and pos-
sible solutions with future research trends in the context
of ML applications in design guidelines of 6G wireless
applications.

C. PAPER ORGANIZATION
A conceptual diagram of the topics covered in this article
is shown in Fig. 2. It depicts the section-wise organization
of the paper. Section II highlights the related work with a
summary of the recent survey papers that employ ML in
wireless communication systems and an overview of the
article. Section III discussesMLmethods applied in emerging
wireless networks including, D2D communication, vehicu-
lar networks, and F-RANs. Section IV summarizes the ML
techniques for addressing technical challenges in resource
allocation, task offloading, and handover management. It also
provides a comprehensive survey of ML techniques for
energy efficiency and latency minimization in wireless net-
works. In Section V, open issues and future research trends
are highlighted. Finally, Section VI presents the conclusion
of the paper.

III. ML APPLICATIONS IN EMERGING WIRELESS
NETWORKS PARADIGM
ML-empowered 6G networks are intended to provide
cross-layer network optimizations in emerging wireless net-
works paradigm, including D2D communication, Vnets, and
F-RANs by analyzing the big data to make smart decisions
and enable intelligent edge, fog, and cloud nodes to achieve
seamless E2E connectivity. A multi-layered ML-enabled net-
work architecture for 6G applications is proposed in Fig. 3.
It envisions context-aware smart resource management, self-
healing network configuration, computation offloading, and
intelligent service provisioning using ML techniques.

The architecture can be broadly classified into four lay-
ers, including the sensing layer, data analytics layer, control
layer, and application layer. The sensing layer considers
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TABLE 2. A comparison of recent surveys exploiting ML techniques in wireless networks.

the sensing nodes in the form of different types of UEs or
devices (cellular users, ground vehicles, UAVs, etc.) The
data analytics layer comprises an intelligent cloud with smart
data centres, computation servers, and storage. ML-enabled
SDN controllers are the backbone of the control layer that is
responsible for various functionalities, including perception,
action, feedback, global model aggregation, etc. Intelligent
application servers communicate with edge devices to aggre-
gate local ML models with local data perception to deliver
smart applications using D2D, V2X, and Fog-RAN commu-
nication scenarios.

Furthermore, the proposed architecture includes macro
base stations (MBSs), micro base stations, (µBSs), and small
base stations (SBSs) with multiple computation servers at dif-
ferent layers considering the heterogeneous and ultra-dense
nature of 6G networks. It includes cloud servers, fog servers,
edge servers (access points), and UEs. The MBSs are capable
of communication across sub-6 GHz, mmWave, and THz
frequency bands, while the µBSs and APs support small-cell
connectivity utilizing mmWave and THz frequencies. The
interconnections of MBSs, µBSs, and APs are facilitated
through the deployment of fiber optic links in the backhaul
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FIGURE 3. ML empowered emerging wireless networks architecture.

network infrastructure, enabling efficient, reliable, and low-
latency transmission. These fiber optic links also play a vital
role in facilitating interlayer communication within the net-
work architecture. The transmitted data amongMBSs, µBSs,
and APs primarily consists of control signaling, coordination
information, and routing protocols, which are crucial for
orchestrating network operations, resource allocation, seam-
less handovers, and coverage coordination. Moreover, the
optical network serves as a critical component for supporting
the offloading and distribution of ML tasks across the APs
and BSs, spanning multiple network layers.

The cloud and fog servers can participate in collaborative
learning for task offloading. In this approach, an ML model
can be trained and tested on the cloud or fog server using
collaborative learning. Furthermore, the cloud servers can
collaborate with multiple cloud servers on the same cloud
layer or multiple fog servers at the fog layer. Henceforth,
the cloud servers can communicate with the base stations
in the fog layer to distribute the ML models among the
fog servers to execute the task offloading using collabora-
tive learning. In addition, fog servers can further distribute
machine learning models to edge servers received from the
cloud servers. Nevertheless, a latency-sensitive ML task may

not be distributed among multiple fog servers by the cloud
servers. Consequently, cloud servers execute such tasks to
meet the QoS requirements and minimize the impact of
communication latency and signaling overhead due to multi-
layered architecture.

Furthermore, to train and test a particular ML model,
the cloud, fog, and edge servers can use supervised, unsu-
pervised, and reinforcement learning algorithms. Moreover,
these servers can employ distributed deep learning and deep
reinforcement learning for application-specific ML training.
The proposed architecture is designed around these aspects to
overcome the technical challenges associated with resource
management and handover problems that will inevitably bur-
den 6G networks. This section covers the implementation of
ML algorithms in emergingwireless networks such as device-
to-device (D2D) networks, vehicular networks (Vnet), and
Fog-Radio Access Networks (F-RANs).

A. DEVICE-TO-DEVICE COMMUNICATION (D2D)
With the recent developments in machine learning meth-
ods, more research is turning to implement ML algorithms
for addressing D2D communication challenges in 6G wire-
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less networks. ML methods have the potential to overcome
resource optimization problems in D2D connectivity. In 6G
wireless networks, ML-assisted D2D communication offers
a higher transmission rate, enhanced energy efficiency, and
higher spectral efficiency. It reduces the mobile traffic load
and improves the system’s capacity in many applications,
including public safety, offloading network traffic, multime-
dia services, and ubiquitous vehicular communications [43].
However, the joint optimization of resources (energy, compu-
tation, spectrum, etc.) and interference management in D2D
communications require further investigations to overcome
these challenges. Recent studies for ML-based D2D commu-
nication are reviewed in this section. We have categorized
these recent works according to the type ofML (uSML, SML,
DL, RL, DRL, and FL) and the application scenario in D2D
communication, as shown in Fig. 4.
SupervisedMachine Learning (SML):Amixed-mode clus-

tering approach in D2D communication is proposed in [44].
It identifies whether the users communicate with cluster
heads (CHs) using D2D connectivity or whether the users
establish a direct communication link with eNB. ML models,
including Support Vector Machine (SVM), Random Forest
(RF), and Deep Neural Networks (DNN), are trained as
binary classifiers. These ML models aim to maximize the
throughput of a specific user in binary classification prob-
lems. The accuracy of the classification techniques and the
performance of individual users is compared by measuring
throughput, energy consumption, and fairness of throughput.
However, the proposed approach considers only multimedia
content sharing in a non-heterogeneous environment.
Unsupervised Machine Learning (uSML): In [45], D2D

communication is discussed as an optimization problem
exploiting distributed artificial intelligence techniques. The
authors proposed Belief Desire Intention (BDI) intelligent
agents with extended capabilities (BDIx) to consider every
D2D node separately in an autonomous way without using
the base station. The Distributed Artificial Intelligent System
(DAIS) algorithm is used for transmission mode selection.
The agent’s role is determined by the beliefs and events it
perceives. The weighted data rate (WDR) is proposed as the
decision metric for transmission mode selection for each UE.
Through relays and clusters, the WDR aids in calculating the
optimum route to the BS. The proposed approach considers
high spectral efficiency, better data rate, and low computa-
tional load. However, it is assumed that a BDIx agent always
tends to select the unused resource blocks that thrust aside
resource management and interference management.

ML-based resource management framework in D2D
underlaying cellular network is investigated in [46].
It addresses the reliability requirement for D2D users and the
high throughput requirement of cellular users under uncertain
channel state information (CSI). A robust optimization strat-
egy based on support vector clustering (SVC) is proposed to
create the CSI uncertainty as a compact convex set. It esti-
mates the uncertainty set from CSI samples using the group
of samples with imperfect CSI. The CSI samples with cor-

relation and asymmetries are grouped in a high-dimensional
feature space. The authors proposed a bisection search-based
algorithm that uses convex constraints for power allocation.
The proposed method enhances the system throughput and
convergence. However, inter-cell and intra-cell interference
management are not addressed in throughput maximization.
Deep Learning (DL): DL techniques automatically extract

the features from data with complex structures and inner cor-
relations, making them a suitable candidate for predictions,
classifications, or complex decisions in D2D communica-
tion [47], [48], [49], [50]. In [47], the authors proposed a
framework for content caching in D2D communication using
deep learning models with a combination of RNN and DNN.
It maximizes the average D2D cache-hit ratio. However, the
computation complexity of the proposed approach is not dis-
cussed. The authors of [48] considered DL models, including
FFN, CNN, GRU, and LSTM, to forecast changes in received
signal strength inD2Dpairs. The proposed approach gives the
minimum input-sample length required by the training model
to achieve an optimum prediction performance. However,
LSTM and GRU are not compared in terms of performance
to determine which model is more appropriate under this
application scenario.

In [49], the authors addressed the energy harvesting and
spectrum management issues in D2D communication using
DNN. The authors evaluated the transmitted power and
power splitting ratio using a DNN-based algorithm and
iteration-based approaches, including exhaustive search (ES)
and gradient search (GS). The proposed method provides
global optimality requiring less time. Nonetheless, the hybrid
time-switching and power-splitting with the effect of D2D
pairs require further investigation. In another study [50],
DNN is used for CSI encoding and resource allocation in
D2D cellular networks. This approach maintains the QoS
of cellular users while maximizing the overall spectral effi-
ciency. However, further performance evaluation of the pro-
posedmechanism is required based on real-time experimental
data.
Reinforcement Learning (RL): A mode selection mecha-

nism in a D2D heterogeneous network is proposed in [51].
The process is divided into two phases: the first phase con-
sists of D2D rapid clustering and identification of density
peaks. In the second phase, the transmissionmode selection is
implemented using RL. It maximizes the overall throughput
by exploiting the multi-agent learning (MARL) with Nash-Q-
learning and theWolf-PHC policies. The performance of both
RL strategies is evaluated in comparison with the stochastic
algorithm,DeepQ-learning, and the simple greedy algorithm.
While Nash Q-learning converges more quickly in small-
scale scenarios, the WoLF-PHC algorithm is less complex
and needs less process-

ing space in large-scale scenarios. In [52], MARL based
framework is presented for content delivery in the F-RAN
systemwith D2D users. The authors proposed a decentralized
cross-layer network coding-coalition formation (CLNC-CF)
switch method that provides a stable F-AP and CE-D2D
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FIGURE 4. Recent work classification for ML techniques in D2D Communication.

user coalition. CLNC-CF and MARL solutions, collectively
known as CLNC-CF-RL, enhance the sum rate, optimize the
power level, and improve the transmission rates. However,
the mobility of devices that may affect the system’s power
consumption is not considered.
Deep Reinforcement Learning (DRL): In [53], a DRL

method is presented to minimize the transmit power for D2D
users. The DRL algorithm is trained using periodic complex
decision-making to minimize the loss function and achieve
an optimum solution. The proposed approach has less com-
putational complexity than ES. In [54], D2D-assisted deep
Q-Learning is proposed for random access in mMTC net-
works. It considers a device clustering approach for devices
and non-orthogonal multiple access (NOMA) mechanism to
maximize the system throughput. A pre-clustering strategy is
used to utilize the D2D links allowing the devices to run with
a smaller Q-Table and, as a result, it improves convergence.
Nonetheless, the proposed framework could be extended to
include devices with variable target outage likelihood and
spectral management requirements.
Federated Learning (FL): An intelligent and reliable

D2D caching scheme is proposed in [55]. The authors pre-
sented a blockchain-empowered Deep Reinforcement Fed-
erated Learning (BDRFL) framework to ensure privacy and
enhance data security in cache-enabled D2D networks. The
proposed caching scheme shows significant performance to
minimize the average latency with better convergence speed.
However, congestion-aware data transfer and load balanc-

ing are not considered in cooperative D2D communication.
In [56], the authors investigated resource allocation for D2D-
assisted digital twin-edge networks. A Federated Reinforce-
ment Learning-based approach is proposed to develop a
decentralized global resource allocation strategy. It aims at
optimizing both communication and power resources, ensur-
ing high transmission rates for D2D links while maintaining
efficient communication for cellular links. It also enables
the digital twin edge network to achieve seamless connec-
tions using digital twins of user devices (UD-DT) and digital
twins of access points (AP-DT). However, the cross-cell
interference which may affect the system throughput is not
considered.
Summary: Some of the recent works on ML imple-

mentation in D2D communication are outlined. In addi-
tion, the recent works are categorized according to the
type of ML (SML, uSML, DL, RL, DRL, FL) and the
application scenario in D2D communication, such as user
segregation [44], transmission mode selection [45], [51],
power allocation [46], content caching, and delivery [47],
[52], RSSI prediction [48], spectrum management [49] CSI
encoding [50], transmit power optimization [53], throughput
enhancement [54], content caching [55], and resource allo-
cation [56] as shown in Fig. 4. The proposed ML approach,
an overview of the advantages and limitations of the recent
works are provided in Table 3. The reviewed articles intended
to enhance the throughput, spectral efficiency and reduce
the computation complexity. However, there are several
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limitations to the current research, including load balancing,
throughput fairness, and interference management, which
need to be addressed and considered further.

B. VEHICULAR NETWORKS (VNET)
Vehicular networks are envisioned as fundamental com-
munication platforms for various intelligent transportation
systems (ITS), including traffic management and surveil-
lance, incident management, video-based traffic condi-
tion detection, autonomous transit control, electronic toll
collection, and road safety warnings [57]. The emerg-
ing ITS applications enhance the traffic system’s sustain-
ability, efficiency, and safety. However, these innovative
applications require intensive computations and real-time
data transfer [58]. Vehicle-to-Everything (V2X) networks,
or autonomous vehicle technologies, have evolved into
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
Vehicle-to-Pedestrian (V2P), and Vehicle-to-Sensors (V2S)
connectivity [59]. The V2X networks aim to provide not
only infotainment and multimedia-based applications, such
as augmented reality, autonomous driving, and crowd sens-
ing but also improve road safety-related critical applica-
tions. It requires reliable and latency-aware communications
through ubiquitous connectivity to V2X servers using V2I
links and real-time safety-critical message transmission to
nearby vehicles through V2V or V2S communications. This
section comprises recent studies that employ ML techniques
in vehicular networks. The presented work is classified based
on the type of ML (uSML, SML, DL, RL, DRL, and FL) and
the application scenario in vehicular networks, as shown in
Fig. 5.
Supervised Machine Learning (SML): In [60], supervised

ML techniques, including Naive Bayes, Support Vector
Machine (SVM), K Nearest Neighbor (KNN), and Random
Forest, are developed to forecast congestion warnings in het-
erogeneous vehicular communication. This method aims at
enhancing the stability of the network and the classification
of dynamic congestion. The suggested method minimizes
the packet loss ratio and average delay. It also improves the
system throughput. However, the robustness of the proposed
model could be enhanced by considering more input features
such as mobility, the complexity of scenarios, and the number
of RBs.
Unsupervised Machine Learning (uSML): The authors

in [61] addressedmobility management in fog-assisted vehic-
ular networks. AI-enabled multi-layered F-RAN architecture
is developed for intercity communication. The first level
has a cloud layer offering access to the lower layers. The
service layer is responsible for considering speed (fading,
interference, and shadowing), reliability (packet-loss ratio
and latency), andmobility (throughput andRSSI). In contrast,
the vehicular layer is responsible for integrating the vehi-
cles using V2V, V2I, and vehicle-to-roadside units (RSUs)
communication links. The proposed framework provides an
information exchange mechanism between various heteroge-

neous technologies to develop a hybrid F-RAN-based vehic-
ular environment. However, the proposed approach does not
consider cooperative communication between vehicular and
fog servers.

In [62], a task offloading solution for vehicular networks
under a hybrid fog and cloud model is proposed. It consid-
ers the heterogeneous characteristics of vehicular fog, fog
servers, and the central cloud. The authors proposed the
probabilistic task offloading (PTO) algorithm using the alter-
nating direction method of multipliers (ADMM) and particle
swarm optimization (PSO). It addresses the PTO problem as
a decomposition coordination process. An iterative process
based on three iterations is proposed to update the ADMM
algorithm. The proposed approach reduces energy consump-
tion and improves the average execution delay. Nevertheless,
the proposed model does not take into account the packet loss
and interference that may impact the lower communication
issues.
Deep Learning (DL): In [63], a DL-based method is pro-

posed for resource allocation in cyber twin-driven connected
vehicles. It customizes the complexity of the DL model using
efficient feature selection under the availability constraints
of the computing resources. The proposed framework is vali-
dated through simulations for real-time estimation of battery
status in electric vehicles. A DNN is proposed to monitor the
real-time battery status by learning of relations between bat-
tery features and the system on chip (SoC). The customized
model approach has the lowest computational overhead as
the feature selection phase is executed in one round. The
proposed method leverages adaptive AI modeling to optimize
the model accuracy and computational complexity in cyber
twin-driven connected vehicles. However, cooperative learn-
ing that may reduce the overall computational overhead is not
addressed.

In [64], DL models are discussed for resource allocation
in SDN-enabled vehicular networks. These models include
CNN, DNN, and LSTM-based architecture. The proposed
approach optimizes allocation time and accuracy while allo-
cating the resources to different network slices. Nonetheless,
the proposed approach could be extended to achieve better
throughput using Gated Recurring Units and bidirectional
LSTM.
Reinforcement Learning (RL): In [65], the authors used

reinforcement learning to investigate resource manage-
ment in IoV. In highly dynamic V2X scenarios, the pro-
posed method ensures reliability with lower latency using
software-defined vehicular architecture (SDV-F). It optimizes
the resource utilization and distribution of the traffic and
reduces the average delay. However, considering the dis-
tributed load-balancing strategy could extend the proposed
model to improve networks’ survivability and reliability.
Deep Reinforcement Learning (RL): In [66], the authors

proposed DRL for mode selection and content caching in
F-RAN slicing. The RAN slice instances are exploited to
serve the UEs for the hotspot configuration and V2I appli-
cation. The authors proposed a traditional Epsilon-Greedy
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TABLE 3. Recent work summary of ML techniques in D2D communication.

algorithm to balance the exploration and exploitation rate.
A DQN model is used to learn the content’s popularity
using the current state, selected action, associated reward, and
subsequent state. The target value function and approximate
value function are trained using the experience samples. The
proposed solution increases learning efficiency, particularly
considering the large state and action spaces. It also provides
a framework to obtain network optimizations in autonomous
decision-making by exchanging the minimum information.
However, the issues like robustness to model drift, handling
outliers, and safe learning are not considered.

In [67], a DQN-based framework for radio resource alloca-
tion in vehicular networks is proposed. It optimizes the trans-
mission success rate using the generalized closed-loop. In this
approach, an anchor node exploits the status of radio resource

utilization using the recent uplink of the vehicle. Nonetheless,
data transmission success rates could be improved by allo-
cating both radio and network resources to each downlink
task. In [68], DRL is proposed to address resource man-
agement and multi-vehicle task offloading in fog-assisted
vehicular networks. It exploits the contract theory to examine
an incentive mechanism where vehicles contribute computa-
tion resources and receive rewards from IoV in exchange.
It reduces the computation complexity to take offloading
decisions faster through DQN and improves the QoS. How-
ever, a greater number of vehicles causes the DQN output
value space to increase, which reduces the performance of
the system.

In [69], the authors proposed a DRL method for
blockchain-enabled content caching in vehicular networks.
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FIGURE 5. Recent work classification for ML techniques in vehicular networks.

The deep deterministic policy gradient (DDPG) is exploited
to address the V2V content caching problem while using
blockchain to maintain the security and privacy of content
caching. However, content transmission latency is not con-
sidered in the proposed V2V communication.

In [70], DRL-based autonomous resource provisioning
in virtualized D2D-based vehicular networks is discussed.
In the proposed scheme, the resources of the mobile vir-
tual network operators are adjusted by DRL agents to
ensure an efficient resource allocation for interslice con-
figuration and resource aggregation for D2D pairs. The
proposed method balances the resource allocation and the
QoS satisfaction level in addition to enhancing the over-
all system throughput. Nevertheless, the proposed frame-
work is only validated for D2D-assisted virtualized V2V
communication.

The authors in [71] proposed a DRL method for trans-
mission mode selection and resource allocation in the V2X
network. It addresses QoS heterogeneity issues and reliability
requirements in V2V mode. It optimizes transmission mode
selection, RB allocation, and power allocation to enhance
the combined capacity of V2V links considering latency
and reliability constraints. In the proposed approach, graph-
based vehicle clustering is used on a large timescale, while
federated learning is used on a small timescale for training
the DRL models. However, the impact of packet priority
on QoS enhancement and communication link quality is not
considered.

Federated Learning (FL): In [72], resource allocation
for V2V communication using Federated Multi-agent Deep
Reinforcement Learning is discussed. A joint optimization
problem of channel selection and transmit power control
is formulated using Double Deep Q Network (D3QN).
It exploits the V2V agent for decentralized channel selec-
tion and power allocation while maximizing the sum rate
of cellular users and V2V packet delivery rate. However,
the adaptive switching between centralized and decentralized
channel access for the V2V pair is not considered.
Summary: Some of the recent works using ML techniques

in vehicular networks (Vnets) are presented. The proposed
ML approach and an overview of the advantages and limita-
tions of the recent works are provided in Table 4. In addition,
the recent works are categorized according to the type of ML
and the application scenario in Vnet, such as traffic conges-
tion prediction [60], mobility management [61], hybrid task
offloading [62], resource management [63], [65], [67], [68],
[70], software-defined networking [64], content caching [66],
[69], transmission mode selection [71], resource alloca-
tion [72] as illustrated in Fig. 5. These recent works focused
on improving the QoS of vehicular application, enhancing
learning accuracy, and reduce computation complexity and
the average end-to-end delay. Nonetheless, there are several
limitations to the current research, including co-tier interfer-
ence, cooperative communication between vehicular servers,
and the impact of packet loss which need more attention and
consideration.
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TABLE 4. Recent work summary of ML techniques in vehicular networks.

C. FOG RADIO ACCESS NETWORKS (F-RANS)
The Fog Radio Access Network (F-RAN) combines fog
computing with radio access networks [21]. In F-RANs, com-
putation and storage are brought closer to users at the network
edge, reducing service latency and traffic load. F-RANs can
be key enablers for the 6G wireless applications in industrial
IoTs, D2D communications, and V2X communications due
to their innate computing capability and storage capacity
to overcome the limitations of custom C-RANs [32]. IoT
devices generate large amounts of data, which places an enor-
mous burden on traditional mobile networks [22]. Given this,
the employment of AI models, specifically machine learning

algorithms implemented in the F-RAN domain, enables AI-
driven F-RAN. Besides providing real-time optimization for
F-RAN, it improves delay performance, saves energy in con-
tent delivery, and reduces transmission burdens incurred by
network data collection [41]. Recent studies for ML-assisted
Fog-RANs are reviewed in this section. The presented work
is classified based on the type of ML (SML, uSML, DL,
RL, DRL, and FL) and the application scenario in vehicular
networks as shown in Fig. 6.
Unsupervised Machine Learning (uSML): ML techniques

have been implemented in F-RANs to address many opti-
mization problems related to resource allocation, task
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FIGURE 6. Recent work classification for ML techniques in fog radio access networks.

offloading, and computation-efficient communication. For
instance, a two-stage resource-sharing and task-offloading
mechanism is discussed in [73]. The authors developed a
task-offloading algorithm using computational intelligence
and contract theory to optimize the delay performance of each
UE. Multi-armed bandits (MAB) online learning capabilities
are utilized to alleviate the exploitation-exploration constraint
in the online learning of task offloading. The authors pro-
posed the DOT-VUCB method that allows UEs to learn the
delay performance for each server based on the occurrence
time and distance of fog servers. However, the proposed solu-
tion does not address cooperative communication between
the fog servers.
Deep Learning (DL): A learning-based popularity predic-

tion framework is proposed in [74] to address smart caching
decisions in F-RANs using Bi-LSTM. The authors formu-
lated a joint proactive-reactive caching policy using content
replacement, user location prediction, and popularity predic-
tion in F-RANs. The trend classes are determined using the
k-Nearest Neighbor classifier and the popularity prediction
models. It ensures the accuracy of the popularity prediction
using deep learning, followed by the training of prediction
models for each trend class. The proposed approach max-
imizes the cache hit ratio. However, the computation com-
plexity of the proposed mechanism is not considered. In [75],
a deep transfer learning-based mechanism is proposed for
fault detection in F-RANs. It exploits the core-level informa-
tion for the detection and labeling of the fault data based on
spatial clustering. The authors exploited unsupervised deep
transfer learning with a combination of CNN and a domain

adversarial neural network for the classification of fault data.
The proposed approach gives better convergence and fault
detection accuracy. However, privacy and adaptability issues
are not considered in the proposed methodology.
Reinforcement Learning (RL): In [76], the authors

addressed caching applications in the F-RANs using Rein-
forcement Learning. A multi-arm bandit (MAB)-based AI-
driven edge caching algorithm is proposed as a non-stationary
version of the classic MAB algorithm considering the fog
nodes and cloud as agents. This study addresses the chal-
lenges of traffic-demand variations and limited cache space
at fog nodes considering traffic-demand variations, limited
cache space at fog nodes under spatial-temporal variabil-
ity, and unknown content popularity distribution. Compared
to the benchmark schemes, the proposed caching scheme
improves the cache space at the fog nodes and the cloud while
reducing the average E2E delay. Nonetheless, the computa-
tion complexity of the proposedmechanism is not considered.

Multiple recent works [77], [78], [79] show that RL can
effectively address resource management challenges n F-
RANs. In [77], Q-learning with policy gradient is used for
radio and computation resource allocation in Fog-assisted
IoT networks. The authors used an actor-critic approach
for real-time resource allocation while minimizing the task
delay under the QoS constraints. However, this study does
not consider the users’ mobility, which affects the system’s
reliability. In [78], a Q-learning-based mechanism is pro-
posed for the joint optimization of content placement and
user association in F-RANs. It maximizes the network payoff
and enhances prediction accuracy. The suggested scheme has

83030 VOLUME 11, 2023



H. M. F. Noman et al.: ML Empowered Emerging Wireless Networks in 6G

been confirmed to minimize the overall computation com-
plexity. However, the dimensionality and convergence issues
for the large state and action space are not addressed.

In [79], the authors proposed a joint optimization frame-
work for resource allocation and mode selection in uplink
F-RANs. It aims to reduce the system power consumption
and queue delay using the Q-learning-based DRL method.
A joint optimization problem of mode selection and resource
allocation is developed. Nonetheless, the issues like robust-
ness improvement to model drift and signaling overhead are
not considered. In [80], the authors investigated DRL for
resource allocation and in-network caching optimization in
a layered F-RAN. The proposed approach takes cross-layer
cooperative caching and routing decisions using the DQN
algorithm. It utilizes the systems’ available network resources
and the request history data of the incoming content requests.
A neural network with a weighting parameter is used as an
evaluation network in the proposed DQN. It also uses the
optimal caching and routing options to minimize network
delay. However, the proposed framework considers only the
routing and in-network caching issues in HetNets.

The authors in [81] investigated power allocation and cache
placement in F-RAN using deep Q-learning. F-APs are con-
sidered for cooperative service provisioning at the edge, while
the DRL controller reduces the overall latency within the
constraints of per-UE QoS requirements. At each decision
step, it manages the allocation of the power resources and
the cache placement decision. The proposed method gives
higher convergence performance with lower latency than the
baseline approaches. Nevertheless, the proposed model could
be extended for distributed resource management in F-RANs.
In [82], a DQN model is proposed to optimize the UE asso-
ciation for computation offloading in F-RAN. The proposed
model consumes less energy than the random association and
greedy association methods. However, this approach does not
consider the collaboration of heterogeneous fog nodes.
Federated Learning (FL): Federated learning is an emerg-

ing technique for communication-efficient and privacy-aware
Fog-assisted wireless networks [83], [84], [85]. Joint opti-
mization of the power control and computation latency in
F-RANs is discussed in [83]. The authors proposed a feder-
ated deep reinforcement learning (DRL) based algorithm to
train the DDPG agents in each F-AP. It aims at minimizing
the task execution delay and energy consumption of mobile
devices while maintaining user privacy. However, the overall
learning time could be further improved by exploiting gradi-
ent sparsification.

FL-assisted cooperative hierarchical (FLCH) edge caching
framework for IoT networks is proposed in [84]. It enables
smart caching decisions using cooperative hierarchical edge
caching in Fog-RANs by training a shared global learning
model at the F-AP. FLCH takes advantage of vertical and
horizontal collaborations to optimize the cache hit ratio and
latency of users. However, the convergence of the proposed
method is not considered. In [85], task offloading using Fed-
erated Deep Q-Learning (FedDQL) in a vehicular fog com-

puting (VFC) network is investigated. The authors considered
the collaborative dew-enabled computation offloading mech-
anism to optimize the latency and computation cost in the
VFC network while minimizing the energy consumption of
MFC servers. However, the proposed approach does not con-
sider collaborative communication between MFC servers.
Summary: As a summary, some of the recent studies using

ML techniques in Fog-RANs are outlined. The proposed ML
approach and an overview of the advantages and limitations
of the recent works are provided in Table 5. In addition, the
recent works are categorized according to the type of ML and
the application scenario in Fog-RANs, such as joint resource
allocation and task offloading [73], caching decision [74],
fault diagnosis [75], content caching [76], resource alloca-
tion [77], user association [78], [82], mode selection [79],
cooperative offloading [77], power allocation [81], compu-
tation offloading [83], edge caching [84], distributed fog
computing [85] as shown in Fig. 6. These recent works
focused to maximize the cache hit rate, optimize the system
power consumption and reduce the queue delay and E2E
delay.

Nonetheless, the current research has several limita-
tions, including computation complexity, privacy, adaptabil-
ity issues, and the users’ mobility that could affect the sys-
tem’s reliability, which need to be addressed and considered
further.

IV. MACHINE LEARNING TECHNIQUES IN RESOURCE
MANAGEMENT TECHNICAL CHALLENGES
The upcoming 6G networks will support bandwidth-hungry
applications including extended reality, the Internet of
Senses, zero-touch cognitive networks, and autonomous driv-
ing. These emerging wireless network applications require
the network services to be offered in such a way as to
meet user experience requirements with various network per-
formance characteristics, such as resource allocation, task
offloading, mobility management, energy efficiency, and
latency minimization. Therefore, there is a tremendous need
to address these challenges using ML-empowered emerging
wireless network architecture proposed in Fig. 3 to employ
wireless networks’ limited resources as effectively as pos-
sible. The recent work on machine learning-based methods
for addressing the above-mentioned technical challenges is
reviewed in this section.

A. RESOURCE ALLOCATION
In wireless networks, traditional resource allocation issues
are modeled and solved as optimization problems. Due to
diversified QoS and QoE requirements of upcoming 6G net-
works, resource optimization problems becomemixed integer
nonlinear programming (MINLP) NP-hard problems. Fur-
thermore, channel conditions and user traffic parameters are
challenging to obtain in such dynamically changing sys-
tems [86]. In recent works [87], [88], [89], [90], [91], [92],
[93], [94], [95], [96], [97], [98], [99], ML techniques have
been implemented in resource allocation problems, including
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TABLE 5. Recent work summary of ML techniques in fog radio access networks.

channel allocation, computation offloading, transmit power
control, multi-constraint optimization concerning QoS, user
association, and transmission mode selection. Recent stud-
ies for ML-assisted resource allocation are reviewed in this
section. This recent work is classified into machine learning
types (SML, uSML, DL, RL, DRL, FL) implemented in
resource allocation, as shown in Fig. 7.
Supervised Machine Learning (SML): Resource allocation

in wireless edge networks is proposed in [87]. A joint opti-
mization of system energy consumption, end-to-end latency,
and learning efficiency in Edge Machine Learning (EML)
is formulated. In the proposed approach, two different RA
schemes are considered. The first scheme considers the
model-based cases, which contemplates energy consumption

estimation using Least Mean Squares (LMS) under learn-
ing accuracy and latency constraints. The authors proposed
a data-driven method for online performance evaluation of
model-free cases. The second schememaximizes the learning
accuracy using SVM and NN classifiers for ML task infer-
ence at the edge server. The proposed approaches are quite
flexible and adaptable to supervised, semi-supervised, and
unsupervised learning applications. Nonetheless, the more
sophisticated encoders, such as a vector quantizer could be
used to achieve better rate-distortion pair.

In [88], the authors proposed deep learning for resource
allocation inwireless edge networks. ACNN and SVM-based
energy and time allocation framework is proposed. A statisti-
cal model based on supervised learning predicts the learning
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FIGURE 7. Recent Work Classification for ML Techniques in Resource
Allocation.

accuracy across different tasks using the amount of avail-
able training data. The learning performance and wireless
resources are analyzed using DCP and asymptotic solutions.
It shows that the transmission time and generalization error
are inversely proportional to each other concerning power
allocation. The proposed algorithm is robust in practical
and complex environments for resource allocation. However,
it considers the statistical learningmechanics to predict learn-
ing accuracy.

In [89], the authors used transfer learning to address
MINLPs for resource optimization in wireless networks.
The proposed branch-and-bound algorithm learns the best
pruning strategy to formulate a sequential decision prob-
lem. It exploits the sparse training examples of the prob-
lem data to achieve optimal performance and reduces the
computation complexity. The mismatch issue is addressed
by self-imitation, leading to an optimization mechanism
based on transfer learning. This pruning policy uses a neural
network-based classifier to optimize the computation com-
plexity and performance efficiency. The suggested frame-
work learns the optimization strategy with a few problem
instances and is adaptable to small situation modifications.
However, its performance deteriorates by changing the sce-
nario parameters.
UnsupervisedMachine Learning (uSML): In [90], an unsu-

pervised ML-based framework is proposed to address sub-
carrier allocation in power domain-NOMA systems. The
proposed scheme uses K-means clustering to form the clus-
ters of the users. It facilities the subcarrier allocation based
on associated channel properties to reduce the overall electro-

magnetic field exposure. However, the given approach does
not consider multi-antenna systems.
Deep Learning (DL): The authors in [91] investigated

a deep learning model for resource allocation in personal-
ized wireless networks. A DNN-based surrogate model is
proposed with a framework to manage surrogate models
while aggregating real-time feedback on user satisfaction.
It enhances the user satisfaction level by allocating the opti-
mum resource blocks. Moreover, it gives operators more
operational flexibility in terms of resource consumption rates
and personalized user satisfaction. Nonetheless, personalized
networks with surrogate assistance are not able to maintain
the desired level of satisfaction.
Reinforcement Learning (RL): Reinforcement learning

techniques are employed in resource management issues
considering various application scenarios, including hetero-
geneous networks, ultra-dense networks, NOMA-based sys-
tems, and IoT applications. For example, the authors of [92]
investigated the SBS control algorithm based on multi-agent
Q-learning for resource allocation in ultra-dense wireless
networks with small base stations. It minimizes the system
energy consumption and reduces the number of outage users
in uniform and non-uniform spatial distributions. Despite the
rise in user mobility, the proposed method performs better
than traditional algorithms like distributed Q-learning, ran-
dom action, no transmit power control (TPC), and adaptive
TPC. However, the agent only considers its state while calcu-
lating the computation complexity.
Deep Reinforcement Learning (DRL): In [93], a DRL-

based intelligent resource distribution scheme under NOMA
uplink transmissions is proposed. In three different traffic
densities, the authors used DRL and SARSA algorithms to
optimize the system sum rate for IoT users. Numerical results
depict that the sum rate achieved in the proposed system is
higher than the rate obtained in orthogonal multiple access
systems, and it enhances the average rate. However, the
convergence criteria, which may affect the sum rate, are not
considered. In [94], an intelligent time division duplex (TDD)
resource allocation scheme for the uplink and downlink Het-
Nets is proposed. A DNN is developed that extracts the
relevant features based on network information. The authors
proposed a dynamic reinforcement learning model combin-
ing experienced replay memory with a dynamic Q-value
iteration based on evaluated rewards. Although the network
throughput and the packet loss rate have been considerably
improved yet the computation complexity of the proposed
DRL approach is not addressed.

A framework for resource management and intelligent net-
work selection in Multi-RAT HetNets is discussed in [95].
The authors proposed Deep Multi-agent Reinforcement
Learning (DMARL) to optimize the rewards in network
selection and resource allocation for autonomous end-users
and RANs, respectively. Each group of agents optimizes sys-
tem performance simultaneously based on energy consump-
tion, latency, and learning costs. Besides, in [96], MADRL
is utilized for the state selection of small base stations (SBS).
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It optimizes resource allocation and massive access in UDNs.
The proposed approach enhances the system throughput and
packets’ successful transmission probability. However, the
convergence of the MADRL algorithm could be improved by
minimizing the end-to-end delay.

In [97], resource allocation among the tenants for service
delivery is addressed to maximize the monetization of the
infrastructure of future wireless networks. Based on DRL,
an algorithm for autonomous learning of the optimal accep-
tance policy is proposed that satisfies the tenants’ service
guarantees. The proposed method gives optimal performance
under a wide range of configurations. However, the perfor-
mance is not validated using practical settings for resource
management in the HetNet scenario.
Federated Learning (FL): In [98], the authors investigated

joint optimization of task offloading and resource allocation
in connected automated vehicular networks. A federated rein-
forcement learning (FRL) framework is proposed to reduce
the execution delay of the optimal task offloading and com-
putation resource allocation. Simulation results show that the
proposed scheme minimizes the communication overhead
and enhances the system throughput. However, the mobility
of devices that may affect the system’s power consumption is
not considered. In [99], a federated-DDPG-based framework
is presented to address joint optimization of power allocation
to mobile users, phase shifts of mobile RIS, and RIS deploy-
ment in NOMA networks. The proposed method performs
better than the benchmark schemes considering sum rate,
channel quality, and training latency. Nevertheless, cooper-
ative beam forming using multiple RISs could be considered.
Summary: Some recent studies usingML-assisted resource

allocation in 6G networks are provided. The proposed ML
approach and an overview of the advantages, and limitations
of the recent works are listed in Table 6. Furthermore, a clas-
sification of recent works is provided based on ML types
such as SML [87], [88], [89], uSML [90], DL [91], RL [92],
DRL [93], [94], [95], [96], [97], and FL [98], [99] to address
resource allocation problems as depicted in Fig. 7. These
recent works focused on enhancing the system throughput,
decreasing the packet loss rate and reducing the average load
of base stations. However, several limitations to the current
research, including network heterogeneity, transmit power
constraints, and the convergence criteria that may affect the
sum rate, need to be addressed and considered further.

B. TASK OFFLOADING
A significant number of latency-aware and computation-
intensive tasks will be involved in 6G wireless networks
due to multiple radio access technologies, slices, servers,
and upcoming vehicular applications such as autonomous
vehicles, vehicle-to-everything connectivity, and vehicular
multimedia applications [100]. The ability to make real-time
offloading decisions is a major challenge in reducing latency
and energy consumption. Further, offloading decisions need
to be made in a matter of milliseconds because channel con-

FIGURE 8. Recent work classification for ML techniques in task
offloading.

ditions and other system variables are constantly changing.
As the number of users and tasks increases, listing every
possible decision can be challenging. Task offloading in
Multi-access edge computing (MEC) systems is investigated
in the recent literature [101], [102], [103]. Recent studies for
ML-assisted task offloading are reviewed in this section. This
recent work is classified into machine learning types (SML,
uSML, DL, RL, DRL, and FL), addressing task offloading
scenarios as shown in Fig. 8.
Deep Learning (DL): Several recent works investigate

machine learning-based dynamic computation offloading in
wireless networks [98]. For example, in [101], a Distributed
Deep learning-driven Task Offloading (DDTO) algorithm
is presented to take offloading decisions in the heteroge-
neous network. It adaptively modifies parameters to make
near-optimal offloading decisions by learning from past
offloading events in MEC and MCC heterogeneous environ-
ments. As a result, it uses a high-dimensional search space
to lower the cost of dimensionality. However, the proposed
approach does not address the privacy and adaptability issues.
Unsupervised Machine Learning (uSML): In [102], the

authors designed a task-offloading model by integrating
blockchain technology and ML. The blockchain and smart
contract-based mechanism addresses the privacy and fair-
ness issues in secure task offloading. The authors used
Merkle hash tree and smart contract to implement ‘‘proof-
of-computing’’. Further, an online learning scheme for intel-
ligent task offloading is developed based on QUeuing-
delay aware, hand Over-cost aware, and Trustfulness Aware
UCB (QUOTA-UCB) algorithm. The user vehicle learns the
optimal long-term strategy based on task offloading delay
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TABLE 6. Recent work summary of ML techniques in resource allocation.

minimization subject to long-term queuing delay and han-
dover cost constraints. Compared to the conventional meth-
ods, this approach is robust and provides better performance
regarding convergence, task offloading delays, and handover
costs.
Deep Reinforcement Learning (DRL): DRL methods have

been in trend in recent years to address optimization problems
related to computation offloading due to the adaptability
of DRL in unpredictable environments and complex tasks
offloading scenarios. For example, in [103], a DRL-based
computation offloadingmethod inmachine-type communica-
tion devices (MTCDs) is presented. MTC devices minimize
the energy consumption in their uplink domain, considering
delay-tolerant and non-delay-tolerant scenarios. It allows the
MTCDs to achieve ideal offloading without being aware of
MTC edges and cloud servers. Compared to cloud servers,

deploying edge servers decreases the transmission distance,
enhancing energy efficiency and QoS.

The authors in [104] proposed a DRL method for D2D
offloading and content caching using an incentive mecha-
nism. The estimated optimal solution is obtained using DQN,
and a typical Vickrey-Clarke-Groves (VCG)-based payment
rule is proposed to cover the cost of mobile nodes. The reverse
auction mechanism maximizes the saving cost of the CSP
and the offloading rate under different scenarios. In [105],
a multi-agent double deepQ-learning (MA-DDQN) approach
is presented for partial offloading and binary offloading in
MEC-enabledwireless networks. It considers joint offloading
and resource allocation in the uplink channels. In DDQN,
different values are used while selecting and evaluating
actions to mitigate over-optimistic estimation of the Q-value
function. The proposed scheme enhances the computation
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efficiency and reduces the uplink power and the cost of
computation energy.

The authors in [106] investigated DRL for computation
offloading in a NOMA-based multi-access edge computing
system. It accommodates the wireless channel variability and
trains the DNN using the experience replay instead of Q
values. It maximizes the weighted sum computation rate with
binary computation offloading and gives higher computation
rates than the OMA-based algorithm scheme. In [107], the
authors used a MADRL-based scheme for joint task offload-
ing and multi-channel access in MEC for industrial IoT
networks. The machine-type agents (MTAs) cooperate for
channel access and task offloading to reduce the computation
delay. It formulates a policy using historical observations and
actions without prior knowledge of the system parameters.
The suggested method uses gradual learning to provide a
low-complexity learning solution for multichannel access.

However, in most cases, DRL algorithms aggregate data to
train centralized models. This centralized training mode may
not be effective and raises the possibility of data leakage in
light of the expanding complexity of mobile networks with
increased flexibility of parameters. Additionally, implement-
ing the DRL algorithms in large-scale MEC networks has
several issues. For instance, as the number of edge devices
increases, the state-action space of the MEC system is expo-
nentially increased, which is in-efficient for Q-learning and
DQN algorithms. In addition, the multi-agent DRL (MA-
DRL) algorithm fails to perceive the global environment
resulting in converging into the optimal local solution.
Federated Learning (FL): Federated learning has the

advantage of privacy protection of personal data and has
been recently employed in task offloading problems in MEC
systems [108], [109], [110]. Data privacy is maintained by
FL, as it transfers parameter updates instead of the original
data to the server. The authors in [108] proposed an online
algorithm using a combination of FL and DRL in a wireless-
powered communication-MEC system for task offloading
and resource allocation. In the proposed system, a base station
executes computation-intensive tasks exploiting task offload-
ing. A learning rate adjustment is investigated to improve FL
convergence with non-IID data. The proposed method gives
better performance in terms of convergence time, CPU execu-
tion delay, and stability as compared to traditional numerical
optimization methods. However, the dynamics of tasks under
system environment constraints are not addressed in the pro-
posed approach.

In [109], the problem of computation offloading and ser-
vice caching placement in UDNs is addressed. The authors
proposed FL to train the two-timescale deep reinforcement
learning to protect the personal data privacy of edge devices.
A hybrid computation offloading strategy enables edge users
to offload resource-intensive tasks to the remote cloud
servers, nearby edge servers, or nearby mobile devices using
D2D computation offloading. The suggested method reduces
the overall offloading time and network resource consump-
tion by coordinating the optimization of compute offloading,

resource allocation, and service caching placement. How-
ever, this study does not consider the users’ mobility that
affects the spectrum usage. In [110], the authors investigated
computation offloading in space-assisted vehicular networks.
An asynchronous federated DQN-based algorithm is pro-
posed to address the task offloading in user vehicles. The sug-
gested method reduces the system delay and maximizes the
system’s throughput while maintaining the system’s reliabil-
ity. However, the cost of computation energy is not addressed
in the proposed approach.
Summary: Some recent works addressing task offloading

using ML techniques in 6G networks are discussed. The
proposed ML approach and an overview of the advantages
and limitations of the recent works are provided in Table 7.
Furthermore, the recent works are categorized according to
the ML types such as DL [101], uSML [102], DRL [103],
[104], [105], [106], [107], and FL [108], [109], [110] to
address task offloading problems as explained in Fig. 8. These
recent works focused to increase the computation efficiency,
optimize resource utilization, enhance the convergence speed,
and reduce the system delay. However, there are several lim-
itations to the current research, including the users’ mobility
that may affect the spectrum usage, the impact of intra-cell
interference, and collaborative edge caching in heterogeneous
environments, which need more attention and consideration.

C. ENERGY EFFICIENCY
Energy efficiency has a significant importance in designing
6G devices due to their utilization of higher frequency bands.
Intelligent and self-healing machines, including autonomous
vehicles and connected drones, require communication links
in D2D communication and connectivity with base stations
which increases the concern of energy consumption about
sustainable wireless infrastructure. Further, in MEC-enabled
IoT networks, fog nodes perform low-latency computation
offloading with limited storage and power resources. The
traditional algorithms for supervised learning, reinforcement
learning, and modern federated learning techniques can
reduce energy consumption and enhance communication effi-
ciency in 6G networks. A low-power communication system
integrated with an energy-efficient computing mechanism
could help enhance QoS and QoE for end users in addi-
tion to providing a low-cost and sustainable communication
infrastructure for 6G wireless networks. Recent studies for
ML-based energy-efficient communications are reviewed in
this section. This recent work is classified into machine learn-
ing types (SML, uSML, DL, RL, DRL, FL) implemented to
enhance energy efficiency in wireless networks, as shown in
Fig. 9.
Supervised Machine Learning (SML): Several recent

works employed machine learning techniques to address
energy efficiency in various next-generation wireless appli-
cations. For instance, the authors in [111] used supervised
machine learning for cache localization in D2D commu-
nications. It reduces the access delay of UEs and mini-
mizes energy consumption while predicting accurate cache
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TABLE 7. Recent work summary of ML techniques in task offloading.

placement locations using decision trees and random forests.
A trust factor is used to classify nodes as compact, overlap-
ping, and distributed. The authors conclude that the random
forests algorithm gives the highest accuracy with trust com-
pared to decision trees. Furthermore, in D2D communication,
energy consumption is minimum; however, the energy con-
sumption increases in content sharing between users and the
gateways.
Deep Learning (DL):DL is a promising method to address

non-convex optimization problems. Resource allocation in
underlaying D2D communication exploiting DL has been
investigated in [112]. The authors proposed the Dinkelbach
algorithm with resource allocation to mitigate the cumulative
interference in multi-D2D pairs. It allocates the multi-D2D
pairs to one RB to address the global energy efficiency
problem while both cellular users and D2D pairs fulfill the
data rates requirement. The proposed approach shows less
complexity compared to the exhaustive search and could
be extended for ultra-dense heterogeneous environments to
enhance the GEE.
Reinforcement Learning (RL): RL methods are employed

to solve decision-making problems for energy-efficient wire-

less communication systems, such as end-to-end communica-
tion, user association, and resource management [113], [114],
[115], [116]. In [113], RL is used to reduce transmission
energy in wireless networks. The authors proposed MEC for
small cells to offload traffic from the MBS, and small-cell
users are introduced to cache-enabled D2D communication.
Q-learning algorithm is applied to obtain an optimal caching
policy, while the DQN algorithm is implemented for SBS.
Deep Reinforcement Learning (DRL): In [114], DRL based

power optimization method in an underlay D2D commu-
nication network is proposed. The authors considered two
parallel DQNs to enhance energy efficiency with guaranteed
QoS considering the system throughput. BS selects DQNs
based on the current system state for joint optimization of
system throughput and EE. Nonetheless, with more users, the
extent of the action space expands exponentially, requiring
substantial exploration throughout training.

In [115], joint optimization of resource allocation and
mode selection in a D2D-enabled heterogeneous network is
discussed to maximize the long-term energy efficiency of
D2D links. The user can select a cellular or D2D mode using
a Markov decision process. The authors proposed a DDPG
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FIGURE 9. Recent work classification for ML techniques in energy
efficiency.

(deep deterministic policy gradient) algorithm to achieve an
optimal policy based on continuous state and action space.
It enhances the convergence rate and gives better energy
efficiency compared to other benchmark schemes. However,
this study does not consider the interference incurred during
D2D communications that could impact the QoS.

The authors in [116] considered a DRL model for resource
allocation and task offloading in MEC. It aims at reducing
the energy consumption of each user, considering the latency
and limited computation resources. The authors proposed the
multi-agent deep deterministic policy gradient (MADDPG)
to solve the joint optimization problem. It performs cen-
tralized training and decentralized execution due to which
it uses only the actor network for resource allocation in
the testing phase. Further, MADDPG gives better efficiency
and stability in dealing with the dynamic environment. The
proposed algorithm improves convergence and reduces the
users’ energy consumption. Nonetheless, the computation
complexity of the suggested method is not considered.
Federated Learning (FL): FL with collaborative learning

capabilities has recently received attention due to the benefits
of improved data privacy and energy efficiency [117], [118],
[119], [120], [121], [122]. In [117], the authors proposed a
computation task offloading mechanism in edge computing-
enabled space–air–ground integrated networks. It enables the
IoT devices to take real-time offloading decisions using the
Federated DRL approach. An optimization problem is formu-
lated to minimize the energy consumption of the computation
tasks and the adaptive federated DRL algorithm considers the
privacy protection and communication failure. The proposed
method gives optimal offloading decisions with less energy
consumption compared to the benchmark schemes. However,

the computation complexity considering the user’s mobility is
not addressed.

Joint optimization of resource allocation and task offload-
ing in IoT networks is discussed in [118]. In the proposed
approach, federated-double deep Q-network (F-DDQN)
learning is exploited to optimize transmit power allocation,
offloading decisions, and computation resource allocation.
The proposed approach shows better performance in terms
of the task execution delay and energy consumption of IoT
devices than benchmark schemes. Nevertheless, the compu-
tation complexity of the proposed approach is not addressed.

In [119], a federated-deep reinforcement learning-based
framework is presented to address joint optimization of user
association and power control in UAV-assisted multi-access
edge computing systems. The proposedmethod performs bet-
ter than the benchmark schemes considering the sum power,
data rate, and computation cost. Nevertheless, a distributed
load-balancing strategy could be considered to improve
the system’s throughput. In [120], the authors considered
resource allocation and user association in high-altitude bal-
loon networks. It cooperatively trains an optimal SVMmodel
using users’ data without prior knowledge of user associa-
tion results. The proposed approach reduces the transmission
energy and enhances the computation efficiency. However,
other DL models could be considered with FL for predicting
the optimal user association to reduce energy consumption.

The authors in [121] proposed distributed federated learn-
ing (DBFL) to address energy efficiency in distant IoT or
edge devices. The proposed DBFL effectively handles het-
erogeneous devices and identifies device types among Edge,
IoT, or vehicular devices using variable transmission delay.
Experiment results show that the given framework enhances
the classification accuracy and minimizes the system energy
consumption. In [122], the authors addressed the energy
efficiency in reconfigurable intelligent surface (RIS)-based
indoor multi-robot communication systems. A Federated-
DRL-based approach is proposed to optimize the transmit
power of APs, robot trajectory, and phase shift of RIS. The
proposed method reduces the network energy consumption
and enhances model accuracy and learning efficiency. How-
ever, the transmit power analysis under the different scales of
the networks could be considered.
Summary: Some of the recent studies addressing ML-

assisted energy-efficient communication networks in 6G are
discussed. The proposed ML approach and an overview of
the advantages and limitations of the recent works are pro-
vided in Table 8. Besides, the recent works are categorized
based on ML types such as SML [111], DL [112], RL [113],
DRL [114], [115], [116], and FL [117], [118], [119], [120],
[121], [122] to address energy efficiency problems as shown
in Fig. 9. These recent works focused at maximize energy
efficiency with guaranteed QoS considering system through-
put, give better convergence, reduce the transmission energy,
and reduce the training loss. However, there are several
limitations to the current research, including the computa-
tion complexity considering the user’s mobility and transmit
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TABLE 8. Recent work summary of ML techniques in energy efficiency.

power analysis under the different scales of the networks,
which need further investigations and consideration [123],
[124].

D. LATENCY MINIMIZATION
The upcoming 6G communication systems are designed
to operate at terabit-per-second data rates with extremely
low latency. Massive MTCs and URLLCs have revolution-
ized cellular communications recently. MTC enables a wide
range of intelligent IoT connectivity, including autonomous
transport systems, zero-touch cognitive networks, and crowd
sensing, to name a few. All these MTC scenarios have dif-
ferent QoS requirements. Further, a remote data center, i.e.
a cloud server may not address the low latency constraints
for content access in such applications. These challenges
need to be addressed by integrating advanced ML techniques
with 6G mobile network architectures and intelligent opti-
mization techniques. Recent studies for ML-based latency
minimization are reviewed in this section. This recent work is
classified into machine learning types (SML, DL, DRL, FL)

implemented in latency minimization in wireless networks,
as shown in Fig. 10.
Supervised Machine Learning (SML): ML is a valuable

tool for analyzing big data and making data-driven decisions
to improve network performance by URLLC QoS standards.
For instance, QoS optimization in IoT networks is addressed
in [125]. The authors proposed an extended Kalman filter-
ing (EKF) method for harvesting power prediction in IoT
applications. The UEs then select security suites that meet
their requirements while maintaining continuous service. The
proposed approach achieves satisfactory security protection
for various services and enhances efficiency and throughput
by circumventing energy exhaustion.
Deep Learning (DL): The authors in [126] proposed a Fast

uplink grant (FUG) resource allocation method for massive
IoT. It prioritizes the machine-type communication (MTC)
devices using an SVM classifier while LSTM is proposed
for real-time MTD traffic prediction. The proposed FUG
approach minimizes the access delay and enhances the sys-
tem throughput. However, the learning-based selection of the
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FIGURE 10. Recent work classification for ML techniques in latency
minimization.

appropriate exploration could be further investigated. The
authors in [127] addressed resource allocation using data
sharing and distributed training in mobile edge networks. The
distributed Batch Gradient Descent (BGD) is implemented
for CNN training. The proposed approach minimizes the
training latency and enhances the training speed and accuracy.
Deep Reinforcement Learning (DRL): In [128], DRL-

based multi-channel access in high-mobility communication
systems is proposed. The authors introduced deep determin-
istic policy gradients (P-DDPGs) to address the challenges
of the high-dimensional action space and low convergence
speed of DRL. The P-DDPG algorithm uses a learning-based
DMCA framework that includes the channel prediction mod-
ule (CPM) and the P-DDPG module. With this framework,
the processing delay is effectively reduced by exploiting
the features of the high-mobility system. It reduces the
non-instant decision error with a faster convergence rate
while making channel access policy decisions at each time
slot. However, the E2E latency that could affect the system’s
reliability is not considered.
Federated Learning (FL): FL-based performance opti-

mization of wireless networks in terms of latency minimiza-
tion has been addressed in recent studies [129], [130], [131],
[132], [133], [134]. The authors in [129] proposed federated
learning to address node selection and cache replacement
for collaborative edge caching in D2D-assisted HetNets. The
proposed approach effectively reduces average delay and
improves hit rate and average reward. However, the issues like
security and privacy protection in cache replacement are not
addressed. A federated deep reinforcement learning model
is proposed in [130] for QoS enhancement in UAV-based
vehicular networks. The proposed approach aims tominimize
latency and increase communication reliability. Nonetheless,

the system performance could be improved by considering
fading effects in the proposed model.

In [131], decentralized cooperative edge caching in IoT
networks is investigated. The authors proposed a feder-
ated DRL-based framework to address the duplicate traffic
offloading and enable IoT devices for decentralized collab-
orative training. The proposed method reduces the average
delay, enhances communication efficiency in terms of cache
hit rate, and reduces performance loss. However, this tech-
nique is limited to performance improvement in the content
access delay for UEs. The authors in [132] utilized the net-
work slicing approach for QoS enhancement in Industrial-IoT
(IIoT) applications. A deep federated Q learning (DFQL)
method is proposed to train a global model to maximize
the slices’ rewards by leveraging agents’ self-experiences.
The proposed approach optimizes the self-QoS by enhancing
throughput and reducing latency. However, the computation
complexity of the proposed framework is not considered.

In [133], channel access optimization for new radio in
unlicensed spectrum (NR-U) is investigated. The authors
proposed a federated DRL to optimize the energy detection
thresholds. It ensures a reliable packet delivery for downlink

URLLC transmission in NR-U. The proposed approach
maximizes communication reliability and reduces latency.
However, the constraints on system fairness like propor-
tionate fairness are not addressed in the proposed method.
The authors in [134] proposed a federated DRL approach
to address cooperative caching in mobile edge networks.
It provides a minimal signaling overhead mechanism to share
the model parameters with intelligent edge devices.

The proposed method trains a model in less time, provides
better convergence, and enhances the overall cache hit ratio.
However, the mobility of the users that may impact commu-
nication efficiency is not considered.
Summary: Some of the recent works addressing latency

minimization using ML techniques in 6G networks are dis-
cussed. The proposed ML approach, and an overview of
the advantages, and limitations of the recent works are pro-
vided in Table 9. Furthermore, the classification of the recent
works is also given based on ML types such as SML [125],
DL [126], [127], DRL [128], and FL [129], [130], [131],
[132], [133], [134] to address latency minimization problems
as shown in Fig. 10. These recent works focused on reducing
the access delay, minimizing the processing delay, the strin-
gent delay, and reduce the training latency with joint routing
and spectrum allocation. However, several limitations to the
current research, including the issues like security and privacy
protection, and the E2E latency which could affect the system
reliability need to be addressed and considered further.

E. HANDOVER MANAGEMENT
In 6G communication networks, handover management has
a prime significance in maintaining QoS due to several chal-
lenges, such as reducing throughput and disrupting service.
Furthermore, 6G networks will deploy more mmWave base
stations so that all mobile terminals have a line-of-sight
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TABLE 9. Recent work summary of ML techniques in latency minimization.

(LOS) path to the deployed base stations. Thus, an important
research direction is to develop ML-based decision solutions
that identify the base station to initiate the handover. Recent
studies for ML-based handover management are reviewed
in this section. This recent work is classified into machine
learning types (DL, RL, DRL, FL) implemented in handover
management in wireless networks, as shown in Fig. 11.
Deep Learning (DL): In recent years, ML methods have

been investigated for intelligent handover management in
dynamic wireless environments to enhance communication
efficiency. For instance, in [135] a deep learning model is
proposed to manage handover decisions in B5G RANs. The
authors used LSTM to select the next-Generation Node B
(gNB) based on download time using previous experience
instead of adjusting typical HO parameters. The proposed
approach enhances the initial throughput by selecting a better
MCS. Consequently, it improves the users’ QoE. However,
the impact of the HO process interrupts, which could affect
the system throughput, is not considered.
Reinforcement Learning (RL): RL methods implemented

by some researchers to optimize the handover parame-
ters [136], [137], [138], [139]. The authors in [136] and

[137] discussed Q-learning-based handover parameters opti-
mization for mobility management of dynamic small-cell
networks and reliable connectivity in mmWave networks,
respectively. The proposed solutions reduce the adaptation
time and improve the user satisfaction rate. Nevertheless, the
state and action space expands considerably with more users,
making the traditional RL inept for large-scale networks.

In [138], a multi-agent RL (MARL) is investigated for
smart handover management considering the users’ QoS
requirements. It optimizes the handover efficiency, cost of
handover, and outage probability. Nevertheless, the pro-
posed approach could be extended to address power con-
sumption and interference management. MARL addresses
the Q-learning scalability and value function accuracy for
data collection of each network user. The authors in [139]
proposed MARL to address user association in dense
multiple-radio access networks. The proposed mechanism
limits the HO signaling overhead, achieves significant sum-
rate gain, and reduces computation complexity. Nonetheless,
SBS connectivity is not considered in the decision process.
Deep Reinforcement Learning (DRL): DRL-based algo-

rithms use deep structureswith a combination of reinforcement
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FIGURE 11. Recent work classification for ML techniques in handover
management.

learning to understand the dynamic and changing environ-
ment using state estimation and function approximation.
It derives the optimal decisions for long-term operations in
various network applications [140]. In [141], DRL is applied
for autonomous handover control considering user connec-
tivity and throughput in mmWave communication. A DQN
model intelligently takes action using an epsilon-greedy
policy to enhance the throughput while decreasing the HO
occurrence. Nonetheless, the transfer learning-based mecha-
nism could further be investigated in an ultra-dense network
environment. In another work [142], DDQN-based intelligent
handover management is investigated for vehicle-to-network
communications. It significantly reduces the HO delay and
optimizes the packet loss compared to baseline methods.
However, the inter-slice handover scenario in the network
slice is not considered.

DRL-based joint optimization of power allocation and
handover management in a heterogeneous environment is
investigated in [143]. A multi-agent PPO (MAPPO) method
is presented for the centralized training of multiple users with
decentralized execution. The proposed MAPPO approach
reduces the HO frequency and maximizes the overall
throughput compared to the MADDPG algorithm. Neverthe-
less, ICI effects on system throughput are neglected in the
proposed scheme. The authors in [144] used a model-free
DRL method for adaptive switching between horizontal and
vertical HOs for V2V and V2I communication. The proposed
approach supports hybrid HOs and UC clustering to improve
the connectivity-HO tradeoff. However, the communication
and computation (dual functionality) of RSUs and APs are
not considered.
Federated Learning (FL): A federated deep reinforcement

learning method is presented in [145] for user access control
in O-RANs. In the proposed approach, each UEmakes access

decisions with its DQN independently, while a global model
server installed with the RAN intelligent controller (RIC) is
responsible to update DQN parameters received from every
UE for user access control. The proposed approach reduces
the HO frequency and maximizes the long-term throughput
compared

to the baseline methods. Nevertheless, the proposed
scheme could be extended for multilayer networks with dif-
ferent control cycles.
Summary: Some of the recent studies addressing handover

management issues exploiting ML methods are presented.
The proposed ML approach and an overview of the advan-
tages and limitations of the recent works are provided in
Table 10. Furthermore, the recent works are categorized
based onML types, such as DL [135], RL [136], [137], [138],
[139], and DRL [140], [141], [142], [143], [144], FL [145]
to address handover management problems as depicted in
Fig. 11. These aforementioned works focused on reducing
handover frequency, improving handover efficiency, reducing
the cost of handover, and minimizing the outage proba-
bility. However, several limitations to the current research,
including the HO signaling overhead, the inter-slice handover
scenario in the network slice, and the impact of the HO
process interrupts affecting the system throughput need to be
addressed and considered further.

F. LESSON LEARNED
In this section, we outline the major lessons learned from a
comprehensive review of recent literature on the integration
of ML techniques with advanced technologies in 6G net-
works. The following lists the lessons captured:

• ML-assisted D2D communication has the advantages of
latency minimization and higher throughput efficiency
for next-generation wireless networks. Furthermore, the
proximity in D2D connections and reusability gain in
D2D-enabled wireless communication systems make
them energy efficient and reduce the congestion in cellu-
lar networks [146]. Nevertheless, interference manage-
ment is challenging in such networks due to the absence
of base stations [45]. The performance of D2D users can
be adversely affected by high levels of interference from
other D2D links and cellular users.

• The combination of ML techniques and the Inter-
net of Vehicles (IoV) gives various opportunities for
smart communications such as context-aware decision-
making in autonomous driving, resource allocation,
smart mobility management, task offloading, and load
distribution for optimal deployment and path plan-
ning in V2X networks [59]. It also exhibits signifi-
cant ITS enhancements, which would effectively be
a transportation system for the coming years. Uti-
lizing AI to drive intelligent transportation systems,
highways, railways, aviation, and maritime courses
can be made safer, more efficient, and environment-
friendly. This supports economic growth and environ-
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mental sustainability. Moreover, ML techniques have
been a promising candidate to address these challenges
in dynamic environments such as vehicular networks.

• F-RANs can relieve traffic congestion by using
ML-enabled edge caching and edge computation, which
improves delay performance and conserves energy.
F-RANs have the potential to facilitate the IoV, context-
aware resource allocation, and latency-aware connectiv-
ity to commuters and integrate intelligent parking and
smart traffic lights. Fog nodes need to have varying
characteristics depending on the IoV application. Awide
range of industries with diverse requirements, including
consumer, wearable, industrial, and enterprise goods,
automobiles, and healthcare, are starting to embrace
the Tactile Internet, Industrial Internet of Things (IIoT),
Internet of Everything (IoE), and Internet of Senses
(IoS). Therefore, a large amount of data will be used
for deep learning, resulting in diverse fog nodes with
different capabilities. Fog-based applications in health-

care can also leverage fog computing, which can analyze
the information in real time and send an alert if nec-
essary. Fog-aided IoT networks transfer CPU-intensive
and delay-sensitive operations to a nearby fog node to
overcome the limitations of real-time data transfer.

• Smart resource allocation and intelligent self-
configuration are necessary for 6G wireless networks to
optimize network resources and user satisfaction. There-
fore, a collaborative resource management mechanism
with multiple fog nodes and a cognitive context-aware
resource allocation framework could meet the require-
ments for 6G wireless networks. Due to the enormous
complexity of resource management scenarios, there is
an increased requirement to implement ML algorithms
in resource management in 6G wireless networks [12].
ML-based solutions allow direct access to data without
using statistical models. The ML algorithms are also
more robust to system parameters because they can
utilize all information related to the data. Similarly, the
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intractable problem, such as the NP-hard problem, could
be tackled with affordable computational complexity
using modern ML techniques.

• ML methods can address the complex computation
requirements in 6G wireless networks. Mobile cloud
computing (MCC) and mobile edge computing (MEC)
can be used to transfer computationally intensive tasks
from a mobile device to an adjacent edge or fog
server to reduce latency and achieve computation effi-
ciency [98]. A MEC approach allows mobile devices
to delegate computationally-intensive tasks to a nearby
server, which can be a simple node at the base station,
a vehicle, or some other device. It involves real-time
offloading decisions on a large scale. Traditional task
offloading techniques are based on heuristic algorithms,
game theory, and optimizations that demand a lot of
processing and computational resources to execute the
offloading decisions. Thus, ML algorithms, instead,
offer several advantages over traditional approaches.

• Edge computing capabilities in 6G networks allow sen-
sory data to be processed and analyzed near the source,
significantly reducing the volume of transmitted data
in 6G wireless networks. Hybrid ML-based solutions
such as Fog-Learning integrated with edge computing
could reduce the overall end-to-end system delay and
the communication cost to address the task offloading
and latency minimization in 6G applications. The cen-
tralized learning approach aggregates data frommultiple
devices into a central server. This enables centralized
model training and global decision-making, which is
well-suited for scenarios requiring massive data col-
lection, extensive computations, and global optimiza-
tion objectives, including network resource allocation,
spectrummanagement, network security, and traffic pre-
diction. Nevertheless, it raises concerns regarding data
privacy and security.
On the other hand, distributed learning excels in privacy-
sensitive contexts, such as autonomous vehicles, the
Internet of Medical Things (IoMT), personalized ser-
vices, and extended reality applications in 6G networks.
It emphasizes decentralized decision-making and fosters
collaboration among nodes to create a global model.
The DRL algorithms aggregate data to carry out cen-
tralized training. DRL models with federated training
schemes may not significantly converge in large-scale
MEC networks. However, designing the DRL model for
a dynamic MEC network using frequent accessibility is
still challenging for maintaining system stability.

• Massive self-organizing and self-healing devices will be
vital aspects of 6G networks, which need extensive com-
puting power. GPUs currently used in wireless networks
do not meet next-generation wireless power efficiency
requirements. Consequently, developing a scalable net-
work architecture considering energy efficiency in 6G
applications is necessary. Further, industry X.O appli-
cations and all the devices in IoTs, IoEV, IoMT, and

V2X have sensors deployed everywhere, posing open
research challenges regarding energy efficiency in wire-
less connectivity [119].

On the other hand, the extensive use of energy harvest-
ing techniques and service requirements for 6G networks
make it necessary for security configurations to be adaptable
to available energy and network security risks. This can
increase network security and network performance simul-
taneously [120]. Nevertheless, as network security threats
are frequently anonymous, ML solutions combined with
blockchain technology may represent an efficient technique
for 6G networks to enhance security protectionwhile utilizing
the available power.

As a result of these lessons, we discuss future challenges
in more detail and identify research directions in the next
section.

V. OPEN ISSUES AND FUTURE TRENDS
This section comprises some of the open challenges and
future trends that wireless networks can face while employing
machine learning techniques in 6G communication systems:

A. CONTEXT-AWARE SMART RESOURCE ALLOCATION
There are congestion issues and high signaling overhead
associated with the current random access (RA) allocation
techniques, despite their support for mass machine-type com-
munication (mMTC) [147]. A context-aware smart resource
allocation is required for 6G wireless networks that support
E2E connectivity. Furthermore, smart resource allocation is
challenging for emerging 6G wireless applications such as
tactile internet, extended reality, and the internet of vehicles
due to strict latency requirements and seamless user expe-
riences. Fast uplink grant (FUG) allocation introduced by
3GPP integrated with ML techniques could be an interesting
research direction employed in modern Intelligent Transport
systems (ITS) for latency-aware and reliable IoV applica-
tions under strict QoE constraints [148]. Moreover, machine
learning models can accurately predict the traffic in V2X
communications to avoid random allocation behavior. It can
reduce signaling overhead and eliminate collisions, which
allows IoV devices to consume minimal energy. Moreover,
selecting appropriate exploration rates for V2X communi-
cation is also an attractive open research problem in 6G
applications.

B. ML FOR GREEN COMMUNICATION
Research achievements in AI-based green communication
services in the 6G era still need to be translated into
practical applications [149], [150]. ML methods can be
used in applications involving uncontrollable and predictable
energy sources such as solar, wind, tide, and other renew-
able and partially controllable energy sources, including RF
energy. An analysis of the relationship between uncontrol-
lable but predictable energy harvesting technologies and the
future harvesting power can also be conducted using ML
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methods [151], [152]. ML-assisted solutions are increasingly
compelling for mapping complex relationships between cur-
rent network traces and policies for future transmission as
terrestrial network transmission policies change over time.
These solutions could be extended to the Integrated Air-
Ground-Underwater Network scenario [153].

C. PRIVACY-AWARE FLYING BASE STATIONS
In 6G networks, massive machine-type communication
(mMTC) devices with ultra-dense and heterogeneous connec-
tivity have attracted the research community to address the
issues associated with the users’ privacy and data security.
As an aerial base station, a UAV serves as a space-air-
terrestrial-sea communication channel to provide 6G services
in areas without communication infrastructure and serves
as mobile relays or data acquisition devices [154], [155].
ML techniques must be integrated with UAVs in 6G applica-
tions to support ultra-low latency communications for mMTC
devices.

The UAV-based flying base station receives updates from
the ML-trained models without altering or accessing any
private information. Using D2D communication, UAVs can
transmit the trainedMLmodel to nearby devices for propaga-
tion to other clients. In UAV-assistedmMTC, recent strategies
to train MLmodels, including transfer learning and federated
learning, would be of interest as these methods allow the
sharing of locally trainedmodels while preventing the sharing
of sensitive data to preserve the privacy of learners [156]. Fur-
ther, it accommodates mMTC devices, ensures data privacy,
and supports sustainable energy infrastructure design.

D. FOG LEARNING
Modern wireless applications in 6G networks require het-
erogeneous computation capabilities across devices, which
poses several challenges to employing conventional federated
learning and motivates device-to-device (D2D) intelligence
in fog learning [157]. Fog learning (FogL) is an emerging
paradigm that leverages the architecture of fog computing to
execute machine learning tasks [158]. FogL entails extended
federated learning to manage heterogeneous computation
devices incorporating the fog network [159]. It assists intelli-
gent model training through D2D communications at various
network layers.

This hybrid learning technique intelligently distributes the
ML training model across various nodes, including edge
devices and cloud servers, to achieve optimized performance
for computation capacity and local data distributions [160].
While considering the communication heterogeneity, multi-
layer architecture of large-scale learning, privacy assump-
tions in D2D connectivity, and joint performance metrics as
design parameters for developing Network-Aware Machine
Learning tasks, federated learning has the limitations to be
a suitable candidate for this solution. However, FogL-based
solutions could be an interesting direction to address the task
offloading and latency minimization in 6G applications.

E. MOBILE EDGE LEARNING
Edge computing capabilities in 6G networks allow sensory
data to be processed and analyzed near the source, signif-
icantly reducing the transmitted data volume [161]. Some
technical challenges are still involved in the practical imple-
mentation of mobile edge learning. In general, ML-training
tasks require intensive computations, while edge devices are
typically small and have limited computation and communi-
cation resources. The performance of mobile edge learning is
inherently constrained by both connectivity and processing at
edge devices. Further, mobile edge learning also encounters
the ‘‘straggler’s dilemma’’ in a heterogonous environment
which limits the training time of ML models. Data samples
at these edge devices may also not be independent and iden-
tically distributed (non-IID), compromising the effectiveness
and efficiency of distributed training. However, a federated
edge learning-based system could be a promising candidate to
achieve computation efficiency in privacy and latency-aware
6G applications [162].

F. EXTENDED REALITY IN HEALTHCARE
Internet of Medical Things (IoMT) will become more valu-
able with the 6G communication network [163]. It will
also have improved security features, allowing users to
share sensitive information without any risk of intercep-
tion or manipulation. Furthermore, extended reality (XR)-
assisted teleoperation has demonstrated its ability to improve
operational efficiency in healthcare-related complex sce-
narios [164]. A novel type of traffic with particular QoS
requirements is introduced by the multisensory XR robots for
which 6G network connectivity is anticipated in the coming
years. ML-empowered solutions for cellular-connected VR
and UAV networks in remote surgery using XR could be an
interesting research direction for future applications.

G. INTERNET OF SENSES (IoS)
With the development of 6G, the desire for more advanced
use cases involving the physical and digital worlds will be
even more evident [165]. For instance, our senses will be
expanded beyond our bodies through the Internet of Senses
(IoS). Providing cost-effective and trustworthy solutions for
these use cases will be possible through AI-enabled intel-
ligent networks. The 6G networks will provide immersive
communication in the IoS, enabling full telepresence and
eliminating distance as a barrier to communication [166].
With the help of AI, personalized, immersive devices that can
interact precisely with the human body will allow access to
experiences and actions that are far away to improve human
communications. Additionally, 6G networkswill enable com-
pletely newmodes of communication with strict controls over
access and identity.

VI. CONCLUSION
This article presents a comprehensive survey of recent work
on ML-enabled 6G wireless networks. The state-of-the-art
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ML techniques, such as supervised and unsupervised
machine learning, Deep Learning, Reinforcement Learn-
ing, Deep Reinforcement Learning, and Federated Learn-
ing for resource management applications in 6G networks,
are reviewed. It discusses the implementation of ML algo-
rithms in three network categories including device-to-device
networks, vehicular networks, and Fog-Radio Access Net-
works. Furthermore, it summarizes the ML-based solutions
to address the technical challenges in terms of resource allo-
cation, task offloading, and handover management. Addition-
ally, a comprehensive summary of ML-assisted methods to
improve energy efficiency and reduce latency in 6G wireless
networks is given. The aforementioned technical challenges
and performance metrics will countenance the careful design
of distributed ML architecture to circumvent the diverse
resource optimization issues that will inevitably frost 6G
networks.

This study concludes with the motivation and insight
to leverage ML techniques in intelligent resource manage-
ment for self-healing and self-configuration of 6G networks
towards an end-to-end connected sustainable world. Finally,
we highlight the open issues, challenges, and possible solu-
tions with future research trends in the context ofML-enabled
6G wireless applications. These future research trends are
anticipated to provide a new perspective to consider novelML
techniques in the design guidelines of emerging 6G wireless
networks to automate network processes, analyze big data to
make smart decisions and realize intelligent edge, fog, and
cloud nodes with the ultimate goal of achieving seamless E2E
connectivity.
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