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ABSTRACT A stroke, particularly when it occurs during sleep, is likely to have a negative prognosis due
to delayed detection. Timely and early detection plays a vital role in ensuring prompt administration of
reperfusion therapy and preventing permanent disabilities. To address this, we propose a wearable system
comprising two wristbands that monitor asymmetric motion patterns (hemiparesis) during sleep. A novel
deep learning framework called Early Detection of In-sleep Stroke (EDIS) serves as the core engine for
stroke detection during sleep. The framework employs cascading windows of various sizes for convolutional
neural networks (CNNs) to enhance both the detection performance and the detection time. We utilize 1D
accelerometer sensor data from both hands to generate 2D matrix images, which serve as input for multiple
CNNmodels. Predictions from these models are combined using blending ensemble learning to make a final
decision. Although the EDIS framework requires a larger parameter size and longer inference time due to its
network architecture with multiple CNNs, it outperforms five single-CNN models by improving detection
performance and reducing detection time. Extensive evaluation results demonstrate that EDIS framework
accurately and quickly detects in-sleep stroke within the deadline (3 hours). EDIS-Resnet50 has the best
classification performance out of the ten DL model candidates, with an F1-score of 0.955 (0.950, 0.960).
We believe that our framework will be a fundamental component of real-time stroke monitoring systems,
contributing to a reduction in mortality rates among patients suspected of having a stroke.

INDEX TERMS Deep learning, ensemble learning, stroke detection, sleep, wearable computing.

I. INTRODUCTION
Stroke is a medical emergency. It is the fifth leading cause of
death in the United States [1]. Every year, more than 795,000
people in the United States have a stroke (Of those, 610,000
are first stroke and 185,000 are recurrent stroke) [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

Stroke can be classified into two categories: ischemic
stroke caused by blockage of a blood vessel in the brain
and hemorrhagic stroke caused by bleeding [3]. The majority
(87%) of the strokes are the ischemic stroke in nature [4].
During a stroke, every minute counts because the stroke
cuts off oxygen and nutrients from the blood and causes
brain cells to die within minutes. Depending on what region
of the brain is affected, several symptoms occur, such
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as weakness, numbness, speech abnormalities, confusion,
headache, visual abnormalities, and dizziness [5]. Therefore,
it is crucial to recognize these symptoms early and treat
the stroke as quickly as possible so that the damage is
not permanent. Time from stroke onset to hospital arrival
(onset-to-door time) is important for determining clinical
outcomes, i.e., early arrival (≤4.5 hours) is likely to get
better outcomes [6]. Thrombolytic therapy with intravenous
(IV) tissue plasminogen activator (t-PA) within 4.5 hours
after stroke onset is used for the standard treatment of
stroke and heart attack [7], [8], [9]. Within the eligible
time, thrombolytics help limit stroke damage and disability.
Otherwise, the risk of bleeding may increase.

Additionally, we need to consider the emergency medical
service (EMS) response time from stroke detection to hospital
transfer. In fact, the EMS response time takes 83 minutes
before COVID-19 and 103.7 minutes in the early stages
of COVID-19, respectively [10]. Due to the delay before
hospitalization, this work aims at detecting a stroke during
sleep within 3 hours (180 minutes), i.e., the deadline of stroke
detection.

Stroke can occur during sleep. Approximately 25% of all
strokes occur during sleep without knowing the exact time
when stroke symptoms began [11]. The stroke during sleep is
difficult to recognize in time andmay not be detected until the
next morning. This phenomenon is called Wake-Up Stroke
(WUS), and it refers to a patient who wakes up with stroke
symptoms after falling asleep normally [12]. WUS poses a
therapeutic dilemma for thrombolytic therapy because it is
difficult to know when a stroke occurs. In order to distinguish
a stroke during sleep from WUS, we introduce the term
in-sleep stroke.

Clinical imaging approaches [13] using non-contrast
computed tomography (CT) [14], and Magnetic Resonance
Imaging (MRI) [15] have been proposed to identify eli-
gible patients within 4.5 hours for thrombolytic therapy.
According to the American Heart Association/American
Stroke Association (AHA/ASA) guidelines for healthcare
professionals, MRI findings (DWI+/FLAIR-) can be useful
for selecting eligible patients who may benefit from IV t-PA
treatment [16]. However, MRI-based approaches have a good
spatial resolution but lack temporal resolution, making them
unsuitable for real-time stroke detection.

For the real-time detection and assessment of stroke, non-
invasive sensor technologies have been developed mainly
using two sensors: Electroencephalography (EEG) and
Accelerometer. The basic principle behind these sensor
technologies is the use of stroke-induced lateralization
properties. That is, hemispheric dominance and lateralization
of brain activity are commonly observed after stroke [17].
Motor lateralization, which shows paralysis on one side of the
body (also called hemiparesis or hemiplegia), is also common
in stroke survivors [18].
EEG is used to detect abnormal frequencies between sides

of the brain in lateralization detection of brain activity.

Abnormal frequencies, such as increased delta-to-alpha
ratio (DAR) or (delta+theta)/alpha+beta ratio (DTABR),
are observed during ischemic stroke due to lowering of
cerebral blood flow (CBF) in EEG signals [19]. Symmet-
rical metrics such as Brain Symmetry Index (BSI) [20]
and modified BSI [21] have also been proposed for the
assessment and prognosis of stroke by quantifying the
difference in spectral characteristics between the left and right
hemispheres.

Generally, the 10-20 system is an internationally accepted
and a standardized EEG placement method using 16 or
21 electrodes [22]. Portable EEG devices, e.g., the Muse
headband by InteraXon Inc. [23] and AlphaStroke by Forest
Device Inc. [24], have been developed to detect stroke by
providing wireless functionality and reducing the number of
electrodes. Nevertheless, EEG is still cumbersome to use in
a sleeping environment, and electrodes may not be properly
positioned during sleep.

Accelerometer-based measurements, a.k.a., actigraphy, are
helpful for identifying movement impairments in the upper
extremity (UE), classifying the level of activity limitations,
and performing rehabilitation based on recovery goals [25].
Feasibility studies on upper extremity asymmetry showed
that, for stroke patients, the asymmetry ratio index for the
24 hours (AR2_24h) positively correlated with the National
Institutes of Health Stroke Scale (NIHSS), a clinical standard
for measuring hemiparetic severity in stroke [26], [27].
In addition, AR2_24h parameter can be used as an additional
prognostic predictor to the modified Rankine Scale (mRS),
which measures the severity of disability after 90 days [28].
However, AR_24 requires a long actigraphic recordings

(more than 24 hours) to evaluate the asymmetry. An auto-
mated hamiparesis scoring measurements [29] or novel
asymmetric parameters [30] have been proposed to address
the long recording problem by formulating well-defined
upper limb movements for a short time.

Nevertheless, classifying the motor asymmetry during
sleep is difficult because sleep motions occur unconsciously
and asynchronously over long periods of time. We propose
a novel approach for early detection of stroke during sleep
within the deadline (≤3 hours) in real-time. To the best
of our knowledge, it is one of the first approaches to
detect strokes (asymmetric motion patterns) during sleep in
real-time using long sliding windows. In particular, we create
two-dimensional matrix images from two accelerometer
sensor data. We then apply the images to a new developed
deep learning (DL)model tailored to in-sleep stroke detection
based on sliding windows.

In our previous study, RISK-Sleep [31] showed insight
into stroke detection during sleep by classifying asymmetric
motion patterns based on sliding windows. Fig. 1(a) shows
our motivation of developing an in-sleep stroke detection sys-
tem using wearable devices. By using wearable devices con-
taining Inertial Measurement Unit (IMU) sensors, as shown
in Fig. 1(b), preliminary study showed the system could
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FIGURE 1. Motivation of developing a system for early detecting in-sleep
stroke.

detect in-sleep stroke with simple Machine Learning (ML)
models. Clearly, a stroke patient with hemiparesis, could not
move the affected arm freely on the affected side, resulting in
reduced sleepmotion patterns in both intensity and frequency,
as shown in Fig. 1(c).

Developing a system to detect strokes during sleep presents
several key challenges, including the selection of optimal
window size, the generation of distinctive asymmetric
features, and the building of effective classification models.
In this study, we enhance the RISK-Sleep by gathering
additional sleep data and developing a new deep-learning
framework, called EDIS-framework.

To achieve early detection of strokes during sleep,
we propose a novel framework called EDIS framework,
which utilizes multi-stream Convolutional Neural Networks
(CNNs) based on cascade windows. The primary objective
of the proposed EDIS framework is to identify asymmetric
motion patterns (hemiparesis) during sleep. The uniqueness
of the EDIS framework lies in its network design, which
leverages aligned cascading sliding windows. By employing
the same deep learning model on windows of varying sizes
and aligning the present time, the EDIS framework improves
classification performance and reduces the detection time.

The major contributions of this paper are as follows:

• Wepropose a system using twowristbands for the timely
detection of strokes during sleep within the deadline.
In particular, we develop a DL model framework, the
core engine of the system, to accurately and quickly
detect an in-sleep stroke.

• To classify the asymmetric sleep motion pattern asso-
ciated with stroke patients, specifically hemiparesis,
we introduce a novel feature called a two-dimensional
matrix image. The matrix image is generated by
accelerometer sensor data on sliding windows of both
hands. Since the asymmetric motion pattern is reflected
in the matrix image according to the window size,

we conduct a comprehensive evaluation of classification
performance to determine the optimal window size.

• We develop a new DL framework, called EDIS
framework. EDIS framework is a network architecture
combined with homogeneous multi-CNN models using
blending ensemble learning. The design of the network
architecture includes multiple inputs to improve classi-
fication performance and aligns the cascade windows at
the current time to reduce detection time.

• Utilizing a network architecture incorporating multiple
CNN models increases the number of parameters and
increases inference time, but the EDIS framework
improves classification performance and reduces detec-
tion time compared to single CNN models in extensive
evaluation results.

The rest of the paper is organized as follows. Section II
introduces sliding window-based techniques to classify
time-series data in related work. Section III describes exper-
imental setup, data pre-processing, and EDIS-framework
in detail. In Section IV, three performance evaluations are
performed for classification performance, computation per-
formance, and detection time. Finally, this paper concludes
in Section V.

II. RELATED WORK
In this section, we discuss a sliding window based approach
for detection of time-series motion patterns. A sliding
window approach uses sub-sequences of streams data from
accelerometer sensors, called a window, and classifies activ-
ities as the window moves. Window length directly impacts
performance on recognition performance and latency. That
is, a small-sized window speeds up activity recognition
but can slow recognition performance. For Human Activity
Recognition (HAR), it is recommended to use on-body
wearable sensors [32] and smartphone sensors [33] for
1∼2 seconds and 2.5∼3.5 seconds, respectively.

Accelerometer-based wrist-worn devices (e.g., smartwatch
and smartband) have been widely developed for monitoring
physical activities, such as walking, running, biking, and
sleeping, due to their portability and relatively low cost [34].
Among them, sleep monitoring is a representative application
that uses smart bands/watches to manage health and sleep.
For example, activity-based sleep-wake monitoring, a.k.a.,
actigraphy, has become an important assessment tool in sleep
research and sleep medicine [35]. In addition, functions such
as sleep apnea detection [36], sleep posture estimation [37],
and sleep-wake cycles estimation [38] have also been
developed.

HAR is a problem of adequately matching time-series
sensor data with well-defined movements. There are several
challenges, such as massive sensor data generated per
second, the temporal nature of sensor data, and the unclear
relationship between sensor data and activity patterns.
Classical approaches for HAR extract handcrafted features
from times-series sensor data in a fixed-size window and
train machine learning models, such as a decision tree and
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FIGURE 2. Overview of EDIS framework development process.

a support vector machine. The difficulty is that feature
engineering requires expertise in the field, i.e., background
and knowledge in the application domain.

With advances in deep learning technology, DL mod-
els have significantly been improved by designing only
model architectures. Deep learning introduces a concept
of end-to-end learning where results are obtained by only
providing input data to the DL model without feature
engineering.

Convolutional Neural Networks (CNNs), a representative
model structure of DL for computer vision, outperform
conventional machine learning models such as support vector
machines and k-nearest neighbors [39]. By converting time-
series sensor data into activity image data, CNNs can be used
for HAR [40]. CNNs are also used a feature extractor to
improve classification performance [41].

Recurrent neural networks (RNNs) has been used for
sequential data, such as text, audio, and video. A long short-
term memory (LSTM) network is a model that improves the
problems of long-term dependencies of RNNs by including a
memory to store temporal dependencies [42]. LSTM is more
suitable for time series classification than CNNs because
CNNs require a fixed-size window of sensor data, but LSTMs
do not strictly require a fixed-size window [43].
Nowadays, hybrid deep learning model architectures

have been developed based on CNNs and LSTM, such as
CNN-LSTM [44] and DeepConvLSTM [45]. The models
combines the strengths of CNN and LSTM. That is, CNNs
are used to extract local features as feature extractors and
LSTM is used to capture time-dependent relationships from
the local features. However, the hybrid model design has a lot
of freedom and requires expertise in model design.

Compared to existing works, conventional approaches uses
short windows to extract specific motion patterns. However,
sleep motion occurs unconsciously, making it challenging
to classify abnormal motion patterns using a short window.
To address the challenge, we use a long sliding window to
extract abnormal sleep motion patterns (hemiparesis) and
make 2D images. We also propose a new DL framework

using multiple CNNs with the goal of detecting stroke during
sleep within the deadline (3 hours). We note that the proposed
framework uses a CNN approach because the input data is a
2D image using a fixed long sliding window.

III. METHOD
This section outlines the EDIS framework development
process, as shown in Fig. 2.We first describe the experimental
setup and data preprocessing based on sliding windows.
We propose EDIS framework using two-dimensional matrix
images. Finally, we assess the performance of the framework
by considering classification performance, computational
performance, and detection time.

A. EXPERIMENTAL SETUP
This section describes the experimental setup of the hardware
& software prototype for designing the EDIS framework and
also describes the sleep dataset we collected.

1) HARDWARE AND SOFTWARE PROTOTYPE
Our prototype consists of hardware in the form of awristband,
as shown in Figure 1(b), and software that collects motion
data during sleep.

For the hardware setup, we configure a set of wearable
devices consisting of two transmitters (9-axis Inertial Mea-
surement Unit (IMU) module), one receiver (2.4 GHz wire-
less communication module), and a laptop. The embedded
modules were developed by the E2BOX company in the
Republic of Korea. EBIMU24GV2 module is used for the
two transmitters, and EBRF24GRCV module is used for
the receiver. The transmitter size is 32mm×24mm, and the
sampling rate is 100Hz.

In the software setup, the data logging software is
developed using an open source java library that provides
serial port communication, RxTx. The software is installed on
the laptop and configured to launch the program when a user
initiates a sleep experiment. Healthy participants perform
the sleep experiment at their home, and stroke patients are
conducted in hospital with the help of medical staff.
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2) SLEEP DATASET
We collect sleep data1 using our prototype. Our sleep data
consists of 46 healthy people and 43 stroke patients with
hemiparesis. We noted that the EDIS framework uses a
sliding window-based approach. For our dataset to train and
test the DL models, we generate motion patterns from the
sleep data by shifting two sliding windows by 30 minutes.

Depending on the severity of the stroke, the degree of
paralysis on one side of the body varies. This severity can
be assessed using manual muscle testing (MMT). MMT is a
commonly used assessment tool to assess muscle dysfunction
and deficits in stroke patients [46]. The MMT evaluates three
upper and three lower extremitymuscles (shoulder abduction,
elbow flexion, wrist extension, hip flexion, knee extension,
and ankle dorsiflexion) on a six-point scale (0: None, 1:
Trace, 2: Poor, 3: Fair, 4: Good, 5: Normal) [47]. Among
these evaluation indicators, the wrist sensor directly detects
the movement of the forearm and is greatly affected by the
elbow joint. Therefore, we use the elbow flexion score as an
indicator of stroke severity.

The MMT score is 2.558 (2.094, 3.023) on the affected
side and 4.7442 (4.596, 4.892) on the unaffected side in the
stroke dataset. The score is mean (95% confidence Interval).
Healthy people have an MMT score of 5 on both sides.

3) DATASET CLEANING
Before processing sleep motion data, data cleaning task is
necessary for reducing errors in performance.

It is important to use high-quality data to improve
performance in making deep learning models. An origin
sleep data was generated by manually checking sleep data
and removing the data after participants woke up. Besides,
we remove the sleep data at the initial 30 minutes and the last
30 minutes to prevent noise caused by experimental setup and
motions before getting asleep.

During normal REM sleep, we experience temporary mus-
cle paralysis [48]. Because of the REM sleep, we sometimes
observe few motion data on sliding windows in the sleep
datasets for both stroke patients and healthy people. This is
natural sleep rhythms. An abnormal sleep pattern, i.e., stroke,
is detected by comparing the differences in left and right
movements in these movement patterns.

We define a new metric called Motion Contention Rate
(MCR) to evaluate data quality in a sliding window ω to
remove low-quality data, as shown in Eq. 1. We collect sleep
data for different window sizes to train a DL model. Data sets
less than 25% MCR are deleted for each window size. The
25% criterion has been established empirically.

MCR =
length of nonzero (ωL

+ ωR)
length of ω

(1)

1All participants in this work were approved by the Institutional
Review Board (IRB) of DGIST and the IRB of Kyungpook National
University Hospital, respectively. Sleep data collection was performed
from May 1, 2015 to December 31, 2019. The IRB approval number
is KNUMC_13-1057, KNUH_2013-12-030-001, DGIST_160114HR00404,
and DGIST_171221HR04005.

FIGURE 3. Simulation study for detection time in real-time in-sleep
stroke detection.

4) SIMULATION STUDY FOR DETECTION TIME
Detection time is a critical metric for evaluating the DL
model in early-detection applications. However, it is difficult
to verify the developed model by directly applying it to stroke
patients. Therefore, we simulate a stroke onset event during
sleep by using the collected sleep dataset.

After training the deep learning model with the training
dataset, we can simulate a stroke onset event with the
remaining test dataset. We can generate a simulation data,
a total length of 2× ω, for the stroke onset by concatenating
normal test dataset and stroke test dataset, as shown in Fig. 3.
By moving a sliding window by 1 minute, we investigate

the minimum time that the trained DL model detects a stroke.
If detection is failed by ω minutes, the detection time is
recorded as ω minutes. This detection time test is repeated
100 times.

B. DATA PRE-PROCESSING
Sleep data consists of stream data over a long time.
We generate a motion dataset by moving a sliding window
on sleep data in 30-minute increments. We construct several
motion datasets with different window sizes to find the
optimal sliding window size. This section describes how to
perform pre-processing on sleep data.

1) 1-DIMENSIONAL MAGNITUDE ACCELEROMETER DATA
We use 9-axis Inertial Measurement Unit (IMU) sensors
(3-axis accelerometer sensors, 3-axis gyroscope sensors, and
3-axis magnetometer sensors) to capture motion patterns.
The IMU sensors are on the wristbands. This work uses
only raw data from 3-axis accelerometer sensors. The first
process is to convert 3-dimensional accelerometer data ξ

to 1-dimensional (1D) magnitude data ξm using Euclidean
distance. Because sleep motion occurs unconsciously, there
is no uniform pattern along any particular axis. This
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FIGURE 4. EDIS framework using a blending ensemble learning.

transformation removes data noise along the axis and focuses
solely on the intensity and frequency of motion.

ξm(i) =
√
(ξx(i))2 + (ξy(i))2 + (ξz(i))2 (2)

where x, y, and z denote each axis on the 3-axis accelerometer
sensor data, and i denotes the data point. The transformed
1D magnitude data ξm is sampled at the rate of 100Hz.
Because this work observes long-term time-series data
patterns, the transformed data is also resampled at 1Hz to
reduce the computational workload required for the following
pre-processing procedures.

2) SLIDING WINDOW
We use a long-sized sliding window to effectively extract
the differences in sleep motion between healthy people and
stroke patients.

As a sliding windowmoves with time, it collects sequences
of sensor data. A sliding window ω can be defined as:

ω(t) = [ξm(t − s+ 1), . . . , ξm(t − 1), ξm(t)] (3)

where t represents the current date point, and s denotes the
sliding window size.

We use the minimum length of sliding window with
30 minutes, empirically. Because we observed that asymmet-
ric sleep motion patterns were well expressed when sliding
windows with window sizes greater than 30 minutes were
used. We increase the size in 30-minute increments to find
the optimal window size that provides the best performance.

3) 2-DIMENSIONAL ASYMMETRIC MATRIX
There are 1-dimensional sequences of sensor readings ωL

and ωR, on Left sliding window and Right sliding window
respectively. We create 2-dimensional Matrix M by inner
product of the two 1D sequences as follow.

ωL
= {d(t − s+ 1), . . . , d(t − 1), d(t)} (4)

ωR
= {d(t − s+ 1), . . . , d(t − 1), d(t)} (5)

M = ωL
· [ωR]−1 (6)

where dt denotes the sensor reading at time t .

4) IMAGE DATA
For the use in the pre-trained CNNs as input data, we need to
transform 2D matrix data into image data. Matlab provides
functions for the transformation. imagesc displays the array
data as an image data Iimg using the full range of colors in the
colormap. ind2rgb converts image data Iimg into RGB image
format data Irgb as input image data of the CNN model.

Iimg = imagesc(M ) (7)

Irgb = ind2rgb(Iimg) (8)

In pre-trained CNN models, the size of input images for each
model is different. Therefore, it is necessary to adjust the
input size of the dataset. We resize the input image file into
the input size of pre-trained CNNmodels to apply our dataset.
We perform resizing using a imresize function provided by
Matlab.
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C. PROPOSED FRAMEWORK
The basic idea of the EDIS framework comes from the two-
stream multi-channel convolutional neural networks [49],
[50], [51]. We aim at building a DL model with improved
performance similar to these approaches using multiple
inputs to improve performance.

In order to detect in-sleep stroke accurately and quickly,
we propose a new framework, called EDIS framework,
as shown in Fig. 4. EDIS framework has a network
architecture consisting of several homogeneous pre-trained
CNN models and one meta-model. We note that the multiple
CNNs are retrained using our dataset in the EDIS-framework,
i.e., transfer-learning.

For making the EDIS framework model using multiple
CNN inputs, we use a Blending ensemble learning. Blending
is an ensemble machine learning technique that combines
predictions from multiple base models (Level-0 models)
and builds an ensemble model (Level-1 model). Blending
is called stacked generalization, and it has the advantage of
shortening the optimization processing time for deep learning
because the training procedure is simple. Blending trains a
meta-model using predictions from the validation dataset in
one holdout set (Single-split) [52].
We construct the DL datasets (training, validation, and

test set) by performing two random splits with a 7:3 ratio.
The first random split is performed on the motion dataset to
make pre-training and test sets. The second random split is
performed on the pre-training set to make the final training
set and validation set.

1) BASE MODELS
EDIS framework uses a pre-trained CNN model as a base
learner Lbase in blending. The framework uses multiple base
learnersLibase, where i= 1, 2, . . . , k , and k is the total number
of sliding windows.

h̄i = Libase(xi) (9)

where xi is a 2D matrix image on ith sliding window. hi is
prediction results of ith base learner Libase, i.e., probabilities
for Normal class and Stroke class.

In our observations on the sleep motion dataset, motion
data with less than 25% percentile of MCR is not suitable for
classification performance. Thus, we perform a conditional
probability filter f on the prediction results of base learners,
as shown in Algorithm 1. When the input data is less than
predefined thresholds (less than 25% MCR of the training
dataset, i.e., Threshold T ), the conditional probability
function f modifies the prediction results.

h̄∗i = f (h̄i) (10)

2) META MODEL
To aggregate prediction results from the base learner models,
we use a softmax layer as a meta model. Meta model uses a
filtered prediction result set H̄∗ from base learners Lbase to

Algorithm 1 Conditional Probability Function

Input: ωL , ωR,MCRtrain,Mtrained
Output: H̄
1: Imatrix ⇐ image(ωL

· ωR)
2: P ⇐ predictProb(Mtrained , Imatrix)
3: T ⇐ percentile(MCRtrain, 25)
4: MCR⇐ element(ωL

+ ωR)/length(ω)
5: ifMCR ≤ T then
6: H̄∗← [1/2, 1/2]▷ *Probability for [Class0, Class1]
7: else
8: H̄∗← P
9: N ⇐ n
10: end if

make new predictions.

H̄∗ = Lbase(X ) (11)

A meta learner Lmeta makes the final predictions am for each
class, where m = 0, 1, tacking into account both prediction
results of base learners h∗i and weights wi, as follows.

Lmeta(C = m|H̄∗) = am =
∑
i

h∗i wi (12)

where am is the outcome of a meta learner L. C denotes a set
of classes: normal(0) and stroke(1).

Softmax is used to make predicted probabilities as the
standard approach for classification problems using deep
learning. Softmax S has 2 nodes denoted by pm, where m =
0, 1.

S = pm =
exp(am)∑c
j exp(aj)

(13)

where c is number of class. pm specifies a discrete probability
distribution, therefore,

∑
m pm = 1.

For optimizing the softmax, we use the cross entropy
function as the loss function. The cross entropy function E
is given by:

E = D(S,D) = −
c∑
j

Dilog(Sj) (14)

where D is target matrix and S is output matrix from the
softmax. For implementation to optimize the softmax, we use
a function of trainSoftmaxLayer in Matlab.
After optimizing the softmax, we can use the trained

weights w to make the final predictions (probabilities) pm for
each class m in the meta model Lmeta. The final predicted
class ȳ is classified by using the argmax function.

ȳ = argmax
m

pm = argmax
m

am (15)

IV. EVALUATION
This section evaluates algorithm performance in terms of
three considerations: classification performance, computa-
tion performance, and detection time.
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A. EVALUATION SETUP
In this section, we first describe how to set up the evaluation
settings in terms of classification performance, computational
performance, and detection time.

A confusion matrix is widely used for evaluation of clas-
sification performance. The confusion matrix can visualize
the performance of an algorithm. Based on the values in the
table, the table generates four basic performance metrics:
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). Using these four basic performance
metrics, the table also provides more specific performance
metrics: Precision, Sensitivity, Specificity, Accuracy, and
F1-score. A detailed description of the performance metrics
follows.
Precision (Positive Predictive Value): Measures the num-

ber of correct positive predictions out of the total number of
positive predictions.

Precision =
TP

TP+ FP
(16)

Sensitivity (True Positive Rate): Measures the number of
correct positive predictions out of the total number of
positives.

Sensitivity =
TP

TP+ FN
(17)

Specificity (True Negative Rate): Measures the number of
correct negative predictions out of the total number of
negatives.

Specificity =
TN

TN+ FP
(18)

Accuracy: Measures the number of all correct predictions out
of the total number of the dataset.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(19)

F1-score: A weighted harmonic mean of precision and
sensitivity

F1-score =
2

1
Sensitivity +

1
Precision

= 2×
Precision× Sensitivity
Precision+ Sensitivity

(20)

Because the sleep duration of each individual is slightly
different, it was difficult to collect the same number and sleep
time for the normal and patient groups. That is, our sleep
dataset is an imbalanced dataset in which the classes are
not evenly distributed. The appropriate performance metric
is vital for algorithm evaluation in the imbalanced dataset.
We evaluate classification performance using F1-score and
select the best algorithm. F1-score is widely used as an
important metric for evaluating model performances for
an imbalanced dataset [53], [54]. We also assess the
classification performance with other performance metrics.

1) CLASSIFICATION PERFORMANCE METRICS
DL models classify two labels in our dataset: Stroke (True)
and Normal (False) classes. This classification problem
is a binary classification problem (boolean-typed labels).
We evaluates the performance of detecting Stroke (True) in
the classification performance evaluation.

2) COMPUTATION PERFORMANCE METRICS
For computational performance evaluation, we consider two
computational metrics [55]: model complexity and inference
time. Model complexity is calculated by counting the total
of learnable parameters in DL models. Model complexity
is proportional to the total memory usage of the GPU.
Thus, a high-complexity DL model (with many parameters)
requires GPUs with large memory sizes.

Inference time is calculated using the average time per
image inference time over 100 runs. Inference time is
critical to real-time computing performance. We evaluate the
inference time with two environmental conditions: CPU and
GPU. We measure inference time using the same batch size
(64) and run on using a desktop. The desktop is equipped
with an Intel Core i9-10900F, CPU @ 2.80GHZ, 64GB
DDR4 RAM 3200MHZ, and NVIDIA Geforce RT 3090. The
operating system is Window 10.

3) SIMULATION STUDY FOR DETECTION TIME
When applying the developed DL algorithm to sleep data
in real-time, it is crucial to check how quickly it performs
in-sleep stroke detection. Unfortunately, the DL algorithm
cannot be applied to patients who are likely to have a
stroke. Thus, we simulate an event of in-sleep stroke using
the collected sleep dataset. For example, we randomly
select a test dataset (ω minutes) from normal people and
stroke patients, respectively. Then, two test datasets are
concatenated to generate one in-sleep stroke event (2ω
minutes). We check how quickly DL models detect the
stroke by applying the trained DL algorithm to the newly
created in-sleep stroke event data, i.e., simulation data. This
simulation test is performed 100 times. The sliding window
moves every minute until the ω minutes and records the
first time of five consecutive detections (5 minutes threshold)
on the simulation data. The 5-minute time threshold is
determined heuristically. If DL models does not detect until
ω minutes, the detection time is marked as ω minutes.

B. CLASSIFICATION PERFORMANCE EVALUATION
Wefirst evaluate the classification performance of DLmodels
according to the sliding window time. For this evaluation,
we perform n-repeated hold-out cross-validation, where n is
30. We use the F1-score metric for model evaluation and
selection.

Fig. 5 is a bar graph with error bar (95% confidence
interval) showing the classification performance of ten DL
models considering six sliding window times. Overall, the
classification performance improves as the sliding window
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FIGURE 5. In-sleep stroke detection performance evaluation depending on sliding window size.

TABLE 1. Classification performance evaluation.

time increases. More precisely, the classification perfor-
mance peaks at 120 minutes and then degrades, indicating
that 120 minutes is the optimal window time for ten
DL models. The other two models (Single-Alexnet and
EDIS-Alexnet) have the best classification performance at
180 minutes.

When the EDIS framework is applied to the five
pre-trained CNN models, the classification performance is
improved in all five models. The results show that blending
ensemble learning enhances the classification performance
by aggregating the prediction results of base models.

In addition, the performance improvement at 30 minutes
in EDIS framework is due to a softmax layer. In the
EDIS framework, a softmax layer is added to combine the
prediction results of base models, and the trained softmax
layer eventually leads to better performance.

By examining all sliding window sizes, we can select the
optimal sliding window size for each model that shows the
best classification performance. Among the ten DL models,

EDIS-Resnet50 shows the highest classification performance
with F1-score of 0.955 (0.950, 0.960), while Single-Alexnet
shows the lowest performance with F1-score of 0.909 (0.901,
0.917). The performance metric of Accuracy also shows the
same trend as the F1-score. The other performance metrics,
such as Precision, Sensitivity, and Specificity, are also shown
in Table 1. As the final model, we select the EDIS-Resnet50
with a 120-minute sliding window.

C. COMPUTATION PERFORMANCE EVALUATION
Computational performance is a crucial factor to consider
when deploying a developed AI model on a target GPU
embedded platform for real-time systems. We compare
and evaluate the computation performance of ten DL
models in terms of Model complexity and Inference time.
Table 2 examines the number of learnable parameters
of ten DL models and CPU and GPU inference times,
respectively.
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FIGURE 6. Histogram of detection time in DL models.

1) MODEL COMPLEXITY
Model complexity is related to the number of learnable
parameters of the DL model. Since model complexity is
proportional to the total memory usage of the GPU, this
complexity is used to determine the GPU specifications
required to run the developed model on an actual real-time
embedded hardware platform.

We use five basic pre-trained CNNmodels: Alexnet, Shuf-
flenet, Resnet18, Resnet50, and Resnet101. EDIS framework
consists of homogeneous multi-DL models with different
window sizes. Depending on the number of parameters of
the selected pre-trained CNN model and the window size,
the number of parameters in the EDIS framework increases
proportionally.

The sliding window size showing the best performance
for EDIS-Alexnet is 180 minutes. EDIS-framework-Alexnet
consists of six duplicated Alexnet models. AlexNet shows
relatively weak classification performance compared to
other models, and the performance improvement over the
ensemble-based architecture is up to 180 minutes. On the
other hand, other models show that the effect of the architec-
ture is maximized up to 120 minutes, and the performance
decreases after that. EDIS framework for the four models
(Shufflenet, Resnet18, Resnet50, and Resnet101) consists of
four duplicated models each.

The final model chosen for the EDIS framework,
EDIS-Resnet50, has 94,154,760 trainable parameters.

2) INFERENCE TIME
Inference time is measured by using CPU and GPU in a
desktop environment (CPU: Intel i9-10900F, GPU: NVIDIA
GeForce RTX 3090). We put a tic-tok function before
and after the code that runs the prediction of the DL
model. The prediction task is then repeated 100 times
to measure the average elapsed time with CPU and
GPU.

In general, the inference time of deep learning is shorter
when using GPU than CPU. CNN models with relatively
large parameter sizes (Alexnet, Resnet18, and Resnet101)
have shorter inference times when using GPU than CPU.
However, pre-trained CNN models with relatively small
parameters, such as Shufflenet and Resnet18, show shorter
inference times using CPU than GPU.

EDIS framework has more parameters than single CNN
models because the network architecture consists of several
homogeneous CNN models.

The inference time of the EDIS framework is more affected
by the parameter size of a single CNN model than the
overall parameter size of the framework. For example, EDIS-
Resnet18 has relatively large parameters but shows that CPU
inference time is shorter than GPU inference time. Because
the inference time of single Resnet18, one of the basic CNN
models on the EDIS framework, greatly influences the overall
inference time of the framework.

The final model chosen for the EDIS framework,
EDIS-Resnet50, shows that the inference time with GPU
is 0.0807 milliseconds, while the time with CPU is
0.0923 milliseconds.

D. DETECTION TIME EVALUATION
Detection time is important performance metric because it
tells how quickly a real-time monitoring system can detect
a stroke. Because the developed model is difficult to apply
and test at the moment of an actual stroke, we simulate a
stroke event using collected sleep data from healthy people
and stroke patients. A stroke event is generated by randomly
selecting test datasets of healthy people and stroke patients,
resulting in a total of 100 simulated data. Every minute,
a sliding window shifts to determine how rapidly DL models
can detect a stroke from its onset.

Fig. 6 shows a histogram plot of the simulation results
for detecting a stroke during sleep in real time. Simulation
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TABLE 2. Computation performance evaluation.

results show that the EDIS framework shortens the detection
time on five basic pre-trained CNN models. The detection
time is reduced by 1 to 9 minutes at the 50% percentile
(median), and 2.2 to 12.65 minutes at the 95% percentile,
respectively. The detection times of the selected DL model
(EDIS-Resnet50) are 36 minutes at the 55% percentile
(median) and 81.1 minutes at the 95% percentile,
respectively.

Note that ten DL models show that 100% detection rate
in all simulation results within 180 minutes (the deadline).
This simulation study for detection time checks whether
EDIS framework helps reduce the detection time on single
pre-trained CNN models. We select the most accurate
detection model for the final DL model in the EDIS
framework than the fastest detection model.

V. CONCLUSION
We propose a system that utilizes two wristbands to mitigate
the risk of WUS and ensure timely stroke treatment. The core
of this system is the development of an EDIS framework,
which enables accurate and rapid detection of in-sleep
strokes.

The primary objectives of the EDIS framework are
twofold: enhancing detection performance and minimizing
detection time. To achieve these goals, we introduce a novel
network architecture known as the EDIS framework. This
architecture comprises several homogeneous CNN models
with varying window sizes. The framework combines the
prediction results from these models using the Blending
method to generate a final prediction. By employing multi-
image data and aligning windows of different sizes with
the current time (aligned cascading windows), the network
architecture improves classification accuracy and reduces
detection time.

To classify the asymmetrical sleep motion patterns
(hemiparesis) exhibited by stroke patients, we devised a
method for generating two-dimensional matrix images from
accelerometer data captured from both hands. For evaluating
the performance of the proposed framework, we employ a

total of ten DLmodels: five pre-trained CNNmodels and five
enhanced models incorporating the EDIS framework. Each
model utilizes the optimal window size that yields the highest
classification accuracy.

The EDIS framework, due to its multiple CNNs, possesses
a greater number of parameters and requires a certain amount
of inference time compared to pre-trained CNN models.
Nonetheless, extensive evaluation results demonstrate that the
EDIS framework improves classification performance and
shortens detection time in all five pre-trained models.

This study primarily focuses on the development of a
deep learning algorithm for in-sleep stroke detection in the
domain of wearable computing. In future research, we intend
to explore optimization challenges pertaining to hardware
and software embedded systems, including reliable real-time
computing within limited hardware resources, model com-
pression, and the reduction of false alarms during practical
use. Additionally, since the EDIS framework uses 2D image-
based classification, we plan to apply the framework to
other applications, such as human Electrocardiogram (ECG)
Classification: Cardiac Arrhythmia and Congestive Heart
Failure.

Given that brain cells begin to deteriorate immediately
after a stroke, every second counts in saving the life of a
stroke victim. We envision that the EDIS framework plays
an important role in saving lives affected by stroke.
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