
Received 4 July 2023, accepted 23 July 2023, date of publication 4 August 2023, date of current version 9 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3301994

DeMi: A Solution to Detect and Mitigate DoS
Attacks in SDN
LUBNA FAYEZ ELIYAN 1 AND ROBERTO DI PIETRO 2, (Fellow, IEEE)
1College of Science and Engineering, ICT Division, Hamad Bin Khalifa University, Doha, Qatar
2CEMSE Division, RC3 Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Corresponding author: Lubna Fayez Eliyan (leliyan@hbku.edu.qa)

This work was supported by the Award Thematic Research Grant Program from Hamad Bin Khalifa University (HBKU), Office of the
Vice President for Research, Doha, Qatar, under Grant VPR-TG01-009.

ABSTRACT Software-defined networking (SDN) is becomingmore andmore popular due to its key features
of scalability and flexibility, simplifying network management and enabling innovations in the network
architecture and protocols. In SDNs, the most crucial part is the controller, tasked with managing the entire
network and configuring routes. Given its critical role, a failure or problem occurring at the controller
may degrade and even collapse the entire SDN. A typical threat controllers are subject to is a Denial of
Service (DoS) attack. To cope with the above-introduced threat, in this paper we propose a lightweight
DoS attack detection and mitigation method (DeMi) as well as a heavy-load management module. The
proposed solution for detection leverages a sample entropy approach coupled with an adaptive dynamic
threshold considering an exponentially weightedmoving average (EWMA); the mitigation approach is based
on proof of work (PoW) combined with flow rule installations; and, the heavy-load management method
implements a scheduling approach at the SDN controller. Results are staggering: for instance, when DeMi
is deployed, in an attack scenario the number of exchanged control packets is roughly similar to the attack-
free scenario—without DeMi, the number of control packets in the network is 2,7 times more than what
experienced in an attack-free setting. As per the number of re-transmitted packets, again, DeMi is able to
achieve a re-transmission rate similar to an attack-free scenario—without DeMi the of packets that need
to be re-transmitted is roughly 3,7 times the number of packets re-transmission occurring in an attack-free
scenario. Moreover, DeMi does not block legitimate traffic, contrary to other solutions in the literature. The
novelty of the approach, the demonstrated complete end-to-end solution, and the quality of the achieved
experimental results, other than being interesting on their own, do pave the way for further research in this
field.

INDEX TERMS SDN, DoS, DDoS, security, detection, mitigation, load balancing, proof-of-work.

I. INTRODUCTION
The internet has revolutionized the development of commu-
nication and computer technologies. Cisco predicted that,
by 2023, the number of devices connected to the net-
work would increase from 18.4 billion in 2018 to almost
30 billion devices [1]. Coupling what before with the esti-
mate that more than 50 billion devices will connect to the
internet by 2025, [2], it becomes evident that there is a
need for a networking infrastructure that keeps up with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

ever-changing landscape of users, resources, and services.
Such an infrastructure has several new demands, such as
scalability, security, flexibility, and reliability [3]. Traditional
hardware-based networks operate inadequately because of
constantly changing computing and storage needs. Conse-
quently, SDNs gained significant traction as a novel network
architecture in which several characteristics demand a more
flexible and dynamic approach [4], [5].
The main difference between SDN and traditional

hardware-based networks is the separation of control and
data planes. The control plane is managed by the SDN con-
troller, which has essential functions. These functions include

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 82477

https://orcid.org/0000-0002-3333-8417
https://orcid.org/0000-0003-1909-0336
https://orcid.org/0000-0002-8887-4321

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

FIGURE 1. SDN operation.

flow table management, link discovery, topology, and storage
management [6]. On the other hand, the data plane consists
of forwarding devices known as OpenFlow switches. Each
OpenFlow switch consists of one or more flow tables that
perform packet lookups and forwarding to route the incoming
data streams [7], [8]. Fig. 1 shows the core elements as well
as the operation procedure of the SDN.

The nature of the SDN enables the data plane only to
forward the incoming data stream according to the flow table
rules created by the SDN controller. When there is no match-
ing flow entry for the incoming data stream, a table-miss
process occurs. In such a process, a ‘‘packet_in’’ message
request is sent to the controller from the OpenFlow switch
to resolve the query of the new stream. Such a process could
involve sending the header of the packet of the new stream or
the complete packet, depending on the available buffer of the
OpenFlow switch. Indeed, with a huge volume of network
traffic, the switch may send the entire packet to the con-
troller, which may consume high data bandwidth [9]. Once
the controller receives the ‘‘packet_in’’ request, it evaluates
the routing path of the new stream and installs a flow rule
at the involved switch to instruct how to forward the sequel
of the data stream. By default, the requests are queued in the
controller’s buffer upon arrival and are served in a first-come-
first-serve manner. If the buffer is full, new requests will be
dropped and will never be served [10].
The controller can handle a large but limited number of

simultaneous requests at a time. Under a DoS/DDoS attack,
the attackers generate a massive number of packets with ran-
domly forged headers, making them hardlymatch the existing
flow rules of the OpenFlow switches. This results in initiating
multiple table-miss processes that, in turn, generate massive
‘‘packet_in’’ requests. Such requests overload the controller,
resulting in resource exhaustion and bandwidth/memory sat-
uration [11]. Moreover, such overload floods the communi-
cation channel between the control and data planes, resulting
in dropped communications between the planes under heavy
attack loads [12]. Eventually, the controller will fail and will

not be able to serve legitimate hosts or traffic. Thus, the new
flow requests of the legitimate hosts are delayed or dropped
together with other attacking requests as they are not handled
differently by the controller [13]. Therefore, a severe impact
on the network’s availability, reliability, and efficiency occurs
due to the attack.

As it can be seen, a failure or problem occurring at the
controller may degrade and even collapse the entire SDN
network. The above-discussed threat triggers the need for an
efficient and high-performance DoS detection and mitigation
approach to identify and respond to incidents before they
might negatively affect the network [14]. Securing the SDN
controller from a DoS attack is a challenging and resource-
intensive task that, if not carefully engineered, could reduce
the effectiveness of the controller in managing the network.
This is even more so given that there are different types
of DoS attacks on SDN [11]. Such attacks are easier to
introduce, yet, more difficult to prevent and more destructive
when compared with other attacks [15]. Therefore, any effort
to secure the SDN infrastructure against DoS attacks requires
a comprehensive understanding of SDN characteristics and
how those DoS attacks affect the internals of SDNs [16].

Based on the existing technology, this paper proposes a
lightweight DoS detection and mitigation method as well as
heavy-load management. Deploying methods inherited from
traditional networks to handle DoS/DDoS attacks in SDNs
is neither straightforward nor (in many cases) feasible. The
main reason for that is the architecture and working scheme
of the SDN, which is different from the traditional networks.
In SDNs, the network logic is abstracted in the controller,
whereas in traditional networks, it can be distributed among
different devices. Thus, in this paper, the proposed approach
employs the main properties of the SDN that do not exist in
traditional networks. More specifically, the approach utilizes
the SDN controller that has an entire view of the network.
Thus, deploying the solution on it makes it very effective for
attack detection, mitigation, and management of heavy loads.
The second main property of the SDN environment is the for-
warding functionality of the new flows to the controller. Such
functionality enables the controller to inspect the flows and
identify suspicious behavior in the network at a higher and
more manageable level compared to deploying the solution
at the network devices level—like it is sometimes the case
for traditional networks.

Contribution: Our solution provides the following
features:

• a DoS detection method using sample entropy with an
adaptive dynamic threshold for DoS attack detection;

• a mitigation method using the proof of work (PoW)
approach combined with flow rule installations;

• a heavy-load management method using a scheduling
approach at the SDN controller; and,

• an end-to-end solution to secure the components of the
SDN to protect it against the discussed DoS attacks.
More specifically, these components are:

82478 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

– OpenFlow switches—the proposed approach pre-
vents overflow of the forwarding tables by prevent-
ing the SDN controller from installing flow rules of
the attacking traffic into the OpenFlow switches;

– communication channels—the proposed approach
reduces overhead on the communication channel
by controlling the number of requests sent by each
OpenFlow switch to the SDN controller; and,

– SDN controller—the proposed approach protects
the controller from a massive number of new
requests that cause the controller to fail.

Roadmap: This paper is organized as follows: In
Section II, we discuss related work about DoS/DDoS attacks
on SDNs and existing solutions to address such attacks aswell
as the main components used in the corresponding imple-
mentations. Then, in Section III, we discuss the adversary
model considered for the proposed solution of this work,
followed by the details of the proposed solution in Section IV.
In Section V, we evaluate and show the experimental results
of the proposed solution, while Section VI draws some con-
clusions.

II. RELATED WORK
Many techniques have been proposed to detect DoS attacks
against the SDN controller to secure the network. In the
following such techniques are classified into five main
categories: entropy-based approaches, machine learning
approaches, statistics-based approaches, scheduling-based
approaches, and data plane-based (stateful) approaches. Each
of these approaches has its pros and cons. This section will
shed light on some of these adopted approaches and set the
ground for our contribution.

Starting with the entropy-based approaches, information
entropy is a statistical measure that shows the randomness
in a data set. A higher entropy value indicates that the
distribution of measured attributes is relatively scattered,
while a low entropy value indicates a more concentrated
distribution. Many approaches have adopted the entropy
approach for DoS/DDoS attack detection and mitigation.
For example, Mousavi and St-Hilaire [17] adopted Shannon
entropy [18] over destination IP addresses. Once the evalu-
ated entropy decreases below a predefined static threshold
for a given number of consecutive time windows, an attack is
declared. The same approach is adopted by Wang et al. [19]
with a variation of evaluating the entropy at each edge
OpenFlow switch, making the detection distributed. How-
ever, placing the detection mechanism inside the OpenFlow
switch requires upgrading them to support such a feature.
The entropy-based approach considering the destination IP
address is also adopted in [12] and [20] with a static thresh-
old value. No mitigation process is proposed in [12], while
the targeted port of the specified switch is blocked in [20].
Other authors have considered different features to detect
DoS attacks in entropy-based approaches, such as source IP
address [21], [22] and the number of flows [23]. The attack
is detected when the evaluated entropy exceeds a predefined

static threshold in [21], a dynamic threshold in [22], or is
lower than a predefined static threshold [23].

For a more precise entropy evaluation, the authors in [24]
and [25] considered more than one feature for attack detec-
tion. These features are pairs of source IP and port addresses
and their corresponding destination addresses. The attack
is mitigated by limiting the inflow rate from the switch to
the controller. Instead, the authors in [25] considered the
destination IP and port addresses as features. The attack is
mitigated by installing flow rules that prevent all packets from
reaching the target host, which might affect the legitimate
hosts.

Other works adopted the entropy-based approach for DoS
attack detection in flash events. For example, the authors
in [26] utilized general entropy (GE) and generalized infor-
mation distance (GID), initially proposed by [27], to identify
the variations in the traffic behavior of flash events. However,
no mitigation approach is proposed. Other authors, as in [28]
and [29], used φ entropy, which is an enhancement of Renyi’s
GE [30] and GID metrics proposed by [31]. The attack is
detected when the value of the φ entropy is lower than a
static threshold for several consecutive windows. However,
the proposed approach in [28] is for DDoS detection in tra-
ditional networks, not considering DDoS attacks in the SDN
network environment. The same approach and limitations can
be found in [29].
Other works consider joint entropy to have a more accurate

attack detection. For example, the authors in [32] used flow
duration and packet length. The evaluated entropy is com-
pared to a pre-defined static threshold for attack detection
with no proposal of the mitigation approach. Similarly, the
authors in [33] utilize joint entropy, evaluated for all possible
combinations (in pairs) of the transmission control protocol
(TCP) layer attributes. The mitigation is achieved by drop-
ping the entries from the controller.

Other researchers have considered the adaptive threshold
value for the entropy approach to reflect the fluctuation in
the network traffic. In [34], [35], [36], and [37] the adaptive
threshold is updated each time the evaluated entropy reaches
the threshold. Other approaches, as in [38], consider the
adaptive threshold using the exponential weighted moving
average (EWMA) algorithm proposed by [39] while, in [40],
the threshold is updated based on CPU utilization factor.

Other authors have combined the entropy-based approach
with classification algorithms to enhance attack detection.
The entropy is used as an initial identification step of the
abnormal behavior, followed by triggering the classification
algorithms. For example, the authors in [41], [42], [43],
[44], [45], and [46] trigger the classification algorithm for
extracting additional flow features, while the particle swarm
optimization (PSO)-BP neural network algorithm is triggered
in [14], and the BiLSTM-RNN neural network algorithm is
triggered in [47]. Similarly, authors in [48], [49], and [50]
combine the entropy approach with a convolutional neural
network (CNN) model to distinguish normal traffic from sus-
picious traffic. Deep learning approaches are also considered

VOLUME 11, 2023 82479

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

in [51], [52], [53], and [54] for more precise attack detec-
tion, where authors in [53] considered neural networks while
authors in [54] utilized the information gain (IG) and random
forest (RF) in order to analyze the most comprehensive rele-
vant features of the attack.

Finally, the authors in [55] propose a machine learning-
based misbehavior detection system that considers machine
learning algorithms to detect nine types of attacks on SDNs,
including DoS attacks.

Another well-known approach for addressing DoS/DDoS
attacks in SDNs is the statistics-based approach. Such an
approach involves collecting and analyzing specific network
properties to detect abnormal behavior in the traffic. These
statistics include but are not limited to type, size, number of
packets, number of half-open connections, and rate of pack-
ets associated with a particular application or port number.
For example, the work in [56] collects statistics related to
packet characteristics, while in [57], the authors collect the
number of packets exchanged by sources and destinations.
In comparison, the statistics collected in [58] is the number
of packets that do not have valid IP destination addresses.
The authors in [59] and [60] collect statistics related to
the rate of incoming packets within specific time periods,
while the mitigation is done by dropping incoming packets
of the connected host in [59]. In [60], the mitigation process
blocks the attack source by tracing back over the network
connection.

Other contributions are based on the collection of statis-
tics related to the number of incomplete connections and
compare them to a specific threshold within a time window,
as in [61], [62], and [63]. However, considering pre-defined
thresholds in attack detection might generate false positives
and inaccurate detection as the behavior of the users might
change during the network operation. Additionally, the cited
contributions involve the victim host (server on the network)
in the detection process—requiring additional overhead on
the host.

Finally, the solution discussed in [64] collects statistics
about the number of connections per host and compares them
against a threshold for attack detection, while the mitigation
is achieved by installing a flow rule to drop the packets of the
attacking host.

Other approaches collect statistics of specific parameters
of each unique source IP address as in [65]. The collected
statistics are the number of packets transmitted, their size per
flow (in bytes), and the amount of time the new flow entry
has spent in the OpenFlow switch.

Some works extract more detailed properties related to
the traffic for attack detection. For example, the approaches
proposed by [66] and [67] bind the MAC/IP addresses
of the connected hosts and the OpenFlow switches. Simi-
larly, the authors in [13] and [68] collect statistics related
to ‘‘packet_in’’ messages, including source and destina-
tion MAC addresses and source and destination IP address
properties.

Someworks address theDoS/DDoS attacks bymaintaining
the network’s availability through scheduling approaches on
the controller’s side. The scheduling aims to provide a fair
share of the resources and handle legitimate hosts’ requests
while dropping attacking hosts’ requests through the starva-
tion process. For example, the work in [69] prioritizes the
requests’ handling based on the trust levels of the hosts, where
highly trusted hosts have the highest priority. The trust level
is also considered in [70] with a variation of assigning less
timeout to the flow rules of the malicious switch. Other works
deploy multiple queues to schedule the incoming requests.
For example, the authors in [71] assign each OpenFlow
switch a separate queue while inserting delays between the
incoming requests to limit the effect of the DDoS attack.
The approach in [72] defines functional and user-related
request queues. The user-related queues are served after the
functional queue is empty. This approach protects critical
functional requests from starvation due to DDoS attacks,
where plenty of user-related requests are received. Finally,
the work in [73] proposes a multi-layer fair-queuing approach
where each OpenFlow switch is assigned a separate queue
being served considering the weighted round-robin (WRR)
algorithm.

Other solutions employ the OpenFlow switches to detect
and mitigate DoS/DDoS attacks. For example, Avant-
Guard [74] and OF-Guard [75] add a packet filtering function
on the switch side. Similarly, the authors in [76] employ
the OpenFlow switches for traffic monitoring and entropy
evaluation while [77] and [78] employs OpenFlow switches
to make decisions for attack detection. On the one hand,
these approaches could have a fast reaction time and pre-
vent aggregation of the attack to the controller. On the other
hand, they may lead to delays because of the added func-
tionalities of the OpenFlow switches. Such functionalities
involve the OpenFlow switches in more complex operations
such as statistics collection, packet processing, and decision-
making [79]. Therefore, employing switch-side solutions
requires the OpenFlow switches to bemore intelligent, violat-
ing the SDN’s design principles. Thus, having a switch-side
solution is controversial in the literature since it brings some
capabilities to switches. In contrast, the SDN’s key rationale
is to provide decisions in a centralized manner with a very
streamlined data plane [33].

Finally, some researchers introduced solutions that use
proof of work (PoW) techniques to penalize hosts performing
(alleged) suspicious activities. For example, in [80] and [81],
all the connected hosts need to spend a considerable amount
of computational resources (PoW) before obtaining a connec-
tion with the controller. The controller, in turn, can easily
verify the PoW with relatively low overhead compared to
the host. The solutions can limit the effect of initiating
DoS/DDoS attacks on the controller. Nevertheless, the legit-
imate hosts are affected in terms of spending some resources
before obtaining the connection to the network. Additionally,
the two cited works fail in handling network availability when

82480 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

the latter one is under attack and do not support host promo-
tion from suspicious to legitimate. Additionally, the solution
in [81] is implemented on the OpenFlow switches of the
SDN, which violates the key rationale in providing decisions
in a centralized manner with a very streamlined data plane,
as it is discussed earlier. Table 1 shows a summary of the
most relevant related works compared against our solution,
where the considered features focus on detection, mitigation,
or graceful degradation. We also list major highlights for
reported proposals.

Through the above literature analysis, it emerges that
detection schemes based on information entropy are simple
and take up fewer resources with a relatively low computation
overhead. The machine learning method is highly accurate
but complex with regard to detecting the switch to which the
victim host is connected to. Additionally, it needs pre-sets
and training for the specified attack patterns. The statistics-
based approaches require the controller to collect the flow
table information of each switch, extract the features, and then
perform detection cyclically and periodically. The cited oper-
ations might consume the controller’s resources and impose
delays over the attack detection and mitigation. Scheduling-
based approaches can help maintain network availability,
while the switch-side approaches are against the key principle
of the SDN design. As it can be seen from Table 1, most of the
existing works do not consider all the requirements needed
to provide full protection to the network when addressing
DoS/DDoS attacks. The main requirements are detection,
mitigation, and maintenance of network availability—fully
isolating the victim host or OpenFlow switch cannot be con-
sidered a viable mitigation approach. Thus, our approach
described in the following sections aims to detect and miti-
gate the attack and maintain the network’s availability under
attack scenarios, including promoting hosts back to full legit
node status while at the same time managing heavy-load
conditions.

III. ADVERSARY MODEL
The nature of the reactive packet processing mechanism in
SDN can be a vulnerability exploited by the attackers to
initiate the DoS/DDoS attacks. Such a mechanism is based on
sending ‘‘packet_in’’ requests to the controller for the flaws
that do not have matches at the flow tables of the OpenFlow
switches. The controller, in turn, installs a flow table entry
(rule) on the involved OpenFlow switch to instruct it on how
to route the new flow in the network. Such a mechanism can
be effective for the centralized and managed control nature of
the SDN. Yet, it can be a vulnerability when the number of
new flows targetting the network is massive and overload the
controller’s processing power. Thus, the DoS/DDoS attacks
can be achieved in SDN by initiating a massive number of
new flows that cause a high volume of ‘‘packet_in’’ requests
within a relatively short time. In order to initiate such new
flaws from a single source (DoS) or multiple sources (DDoS),
the attackers need to make the headers of such flaws hardly
match the entries of the flow tables of the OpenFlow switches.

FIGURE 2. Considered adversary model.

This can be done by forging some or all fields of the packets
in the flow randomly, making it hardly match any existing
flow entry of the OpenFlow switch. In our attacker model,
we assume that the attackers have successfully connected to
the SDN through the three-way traditional handshake TCP
procedure. After that, the attackers exploit the reactive packet
processing mechanism’s vulnerability by flooding malicious
packet requests to the OpenFlow switches. Such requests are
addressed to a specific host in the network. At the same time,
the used source IP address and the rest of the header fields
are forged with deliberately random values, making it almost
impossible to match the OpenFlow switch table entries. This
results in numerous table miss-matches in the forwarding
tables, and many ‘‘packet-in’’ messages are flooded to the
controller, resulting in the resource exhaustion of the entire
SDN. More specifically, under the specified DoS attack,
the massive number of new flows saturates the OpenFlow
switches (data plane), the communication channel, and the
SDN controller (control plane). Therefore, the SDN would
not be able to provide any service for legitimate hosts or
traffic. Fig.2 shows the considered adversary model.

IV. THE PROPOSED SOLUTION
In this section, we discuss the details of the proposed solution.
We start with an overview of the solution, followed by the
details of the different modules that build the solution.

A. OUR SOLUTION AT GLANCE
DeMi maintains the network’s availability and ensures the
legitimate hosts’ connectivity. DeMi is an application that
runs on the SDN control plane and communicates with the
data plane through a southbound interface via the Open-
Flow protocol. DeMi is composed of a multi-stage pro-
cess responsible for ensuring the network’s availability,
observing and controlling the connected hosts’ activity, and
maintaining the network’s resources in terms of computa-
tion, such as memory, central processing unit (CPU), and
buffer.

The main stages of DeMi are attack detection, mitiga-
tion, heavy-load, and system management. These stages are
achieved by a composition of modules running inside the
network. Such modules aim to detect hosts that initiate a

VOLUME 11, 2023 82481

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 1. Summary of related work in terms of focus.

massive number of new flow requests and then control the
activity of such hosts or block their access to the network.
Furthermore, these modules aim to maintain operating the
forwarding tables of the OpenFlow switches while protecting
them from overflow due to the massive number of new flow
rules triggered by the attackers. Such protection is achieved
by preventing the controller from installing the flow rules of
the attacking host while promoting the flow rules that block
the traffic of the attacking hosts. This results in reducing the
overhead on the communication channel and protecting the
controller by limiting the number of requests forwarded to it.
The overall architecture of DeMi is shown in Fig. 3 reported
here below: The main underlying operating principles of the
considered modules are as follows: for the detection module,
the entropy concept is considered to measure the randomness
in the exchanged network traffic; for the mitigation module,
the PoW concept is utilized where the suspicious host needs
to spend resources before handling its incoming requests;
and, finally, the last underlying principle considered for
heavy-load management is the scheduling concept, where the
incoming requests are handled based on certain priorities on
the controller side. In the following subsections, we discuss
the detail of each module and show its role in the proposed
solution.

FIGURE 3. DeMi architecture.

B. SDN CONTROLLER MODULES
DeMi comprises four main modules running in the SDN
controller. Each module is responsible for running processes
that maintain SDN availability and connectivity. The details
of these modules are discussed in the following subsections.

1) DETECTION MODULE
The detection module is responsible for detecting suspi-
cious hosts in the network. It has the primary functional-
ities of collecting and analyzing statistics about incoming
‘‘packet_in’’ messages and triggering the mitigation module
once needed.

82482 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

FIGURE 4. Extracted packet_in headers.

The common factor in triggering a DoS attack detection
is the abnormalities in the traffic exchanged in the network.
For example, in typical situations, a particular pattern in the
network traffic is expected to have a certain consumption of
network bandwidth or other network resources, such as CPU
and memory. A sudden change in such a network pattern or
more consumption of resources can be considered abnormal
and a possible attack on the network. Based on what is
above, in DeMi, the detection procedure considers detecting
anomalies in the network pattern via sampling the entropy
of occurring events. In detail, such a method measures the
randomness of events occurring and the concentration of the
network traffic: high entropy values mean high randomness
in network traffic and vice-versa. This method is frequently
used to detect DoS attacks, and it is considered a valid alter-
native with respect to signature-based and anomaly-based
methods [15]. The destination IP address is the feature related
to measuring the randomness in the proposed solution. The
detection procedure starts by collecting flow statistics related
to the controller’s incoming ‘‘packet_in’’ requests initiated
due to the table miss-match processes. The attributes of the
‘‘packet_in’’ requests are extracted and stored for further
processing by the detection module. Such attributes include
the incoming packets’ source and destination IP addresses,
source and destinationMAC addresses, port numbers, and the
OpenFlow switch ID connected to the controller. Fig.4 below
shows the extracted attributes with respect to the different
network layers.

Then, within a specific time window determined by receiv-
ing a specific number of invalid requests (‘‘packet_in’’
messages), the detection module computes the entropy value
based on the destination IP address. The entropy value is
minimal when the traffic is concentrated around a specific
destination in the network. This is because when the incom-
ing packets are directed to the victim host, the number of
unique IP addresses considered in that window is reduced.
In contrast, the entropy is maximum when the traffic is
scattered to several destinations where most destination IP
addresses appear at least once in the window in an attack-
free situation. As per the entropy, we compute it as shown in
the following Eq. 1:

H = −
n∑
i=1

pi ∗ log(pi) (1)

where:
H : entropy value of a particular window containing n

destination addresses with distribution probabilities
for the specified window

TABLE 2. Evaluated metrics for violation windows.

n: the window size. For a window of n elements, it con-
sists of n destination IP addresses

pi: distribution of probability for the incoming packet’s
destination IP address

pi is evaluated as shown in Eq. 2, where xi is the number of
incoming packets directed to the IP address destination IPi:

pi =
xi∑n
i=1 xi

,∀i = 1, 2, 3, .., n; 0 ≤ pi ≤ 1 (2)

Once the entropy is evaluated, it is used to monitor flow
change in the network. Such monitoring compares the mea-
sured entropy value against a predefined initial threshold in an
attack-free situation. An entropy value less than the threshold
value raises the alarm about a possible DoS attack. This,
in turn, triggers other processes of monitoring the source
port of the OpenFlow switch from which the packets are
coming. The detection of the source port would require the
hosts connected through that port of the OpenFlow switch to
verify themselves through the mitigation module.

A direct implementation of the above algorithm would
yield a relatively high number of false alarms. More specifi-
cally, raising the alarm each time the entropy value is below
the threshold might increase the number of false positives.
Therefore, we decided to raise the alarm only after a specific
number of consecutive threshold violations occurred. This
means that if the entropy is violated for a successive num-
ber of windows, only then the alarm is effectively raised in
the network. In order to decide the number of consecutive
violations, a set of metrics is evaluated to achieve reliable
detection, These metrics are sensitivity, specificity, precision,
fall-out, and detection accuracy. We evaluated the considered
metrics setting the threshold to either three or five consecutive
windows of entropy violations. Table 2 shows the evaluated
metrics for the considered windows for an average of 50 runs
for a network topology of sixteen hosts, five switches, and
one controller.

Additionally, the receiver operating characteristic (ROC)
curves are also considered. This is to show the trade-off
between the true positive rate (TPR) and false positive rate
(FPR) by varying the number of consecutive windows under
the attack situation. Based on the experimental measure-
ments, the precision in the case of considering three con-
secutive windows for entropy violations is 97%, while when
considering five windows, it is around 90%.

Additionally, based on Fig. 5 that shows the ROC for
both cases, the solution can achieve better performance when
considering three consecutive violation windows compared
to considering five consecutive windows. Therefore, based

VOLUME 11, 2023 82483

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

FIGURE 5. Receiver operating characteristic for violation windows.

on the measured metrics and the ROC, considering detection
over three consecutive windows leads to better results. There-
fore, in the proposed solution, the trigger of the mitigation
module is done when the entropy value violates the threshold
for three consecutive windows. Each window considered in
DeMi is composed of 50 packets. The main reason for choos-
ing 50 packets is to have a reasonable trade-off between a fast
computation of the entropy and a large enough sample to be
considered representative [36].

Given the variation in traffic volume in a network, setting
a static threshold value for entropy violation might cause
both false negatives and false positives. This is because the
static threshold cannot consider the tendencies and recur-
ring conduct of traffic. Therefore, in the proposed solution,
an adaptive threshold adjustment procedure is considered to
respond to fluctuations in network traffic. Such a threshold
can reflect changes based on traffic volume and aims at
minimizing false negatives and positives.

The exponentially weighted moving average (EWMA)
[39] is used in the proposed solution to evaluate the adaptive
threshold. EWMA is a quantitative measure used to model or
describe a time series where the moving average is designed
to give older observations lower weights. The weights fall
exponentially as the data point gets older. For each sliding
window, for an evaluated entropy value that does not violate
the threshold, the adaptive threshold estimated at time t is
evaluated as follows:

EWMAt = α ∗ xt + (1− α) ∗ EWMA(t−1), α ∈ (0, 1) (3)

where:
• α: is EWMA factor, higher α the more closely the EWMA
tracks the original time series.

• xt : is the signal value at time t (current entropy value).
Therefore, under network traffic changes, the threshold is

set adaptively based on themean value of all experienced traf-
fic while weighing more (exponentially more) recent traffic
measurements.

Fig. 6 below shows the operation procedure of the detection
module.

2) MITIGATION MODULE
The mitigation module is triggered by the detection module
once abnormalities in the traffic are detected. The mitigation

FIGURE 6. Detection module operation procedure.

module is responsible for handling the verification procedure
for suspicious hosts through the PoW process [82]. Such a
process is based on the concept that, for a client to gain
access to a shared resource, it is required to compute some
moderately expensive but not intractable pricing function.
In contrast, the owner of the shared resource should be able
to verify the solution of the pricing function with minimal
effort. The pricing function in the proposed solution is shown
in Eq. 4 such that, given a challenge C , find X such that:

LSBn(SHA_2(C ∥ X)) = 0n (4)

The suspicious host is required to find an input X to a
cryptographic hash function (SHA_2) that generates a digest
with the least significant bits LSBn equal to the number
of zeros specified by the pricing function. As the crypto-
graphic hash functions are one-way functions, under gen-
erally accepted assumptions, the host needs brute force to
find the input X . Such a search process is time-consuming
and thus requires a dedicated computation resource from
the host. Therefore, to generate massive requests for DoS
purposes, an attacker must dedicate a considerable amount
of computational resources to find the input X . On the other
hand, the verification process on the controller side is a single
hash computed on the provided input to check if it yields a
digest with the required number of zeros.

The difficulty of the pricing function is determined by the
number of required zeros n. The initial number of the required
zeros is set to 24. Then, the difficulty doubles if the host has
been marked as suspicious in the system before or in case
the system is in a red security state. Algorithm 1 shows the
implementation of the pricing function.

In Algorithm 1, initially, the host receives a challenge
C , a difficulty n, and a string of length l as inputs
from the controller side. These inputs are fed to the
SOLVE_CHALLENGE function at the host. The func-
tion needs to generate a random string X of length l
and is provided together with the challenge C as inputs
to the GET_ZEROS function. Such a function gener-
ates a hash digest and returns the count of consecutive
zeros in the least significant bits to the function caller
(SOLVE_CHALLENGE). The function caller verifies if the
returned count matches the required number of zeros (n), and
if there is no match, the function generates another random X
and repeats the process until a match is found.

82484 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

Algorithm 1 Implementation of Pricing Function
Input: challenge C , difficulty n, string length l
Output: X with a digest of at least n zeros in LSB
Define: an empty string X , an integer variable Z

1: function get_Zeros(C,X)
2: digest← SHA_2(C||X) ▷ || string concatenation
3: return count_zeros(LSB(digest)
4: end function
5: function solve_challenge(C, n, l)
6: X ← NULL,Z ← 0
7: while Z < n do
8: X ← random_string(l) ▷ string of length l
9: Z ← GET_ZEROS(C,X)

10: end while
11: return X
12: end function

The noteworthy aspects of the considered mitigation pro-
cedure are:
• flexibility: the use of the pricing function can be intro-
duced whenever it is desirable to restrain, but not to
prohibit, access to a resource (SDN controller),

• selectivity: the legitimate hosts are not affected; only the
suspicious hosts are requested to show PoW.

• adjustable difficulty: the level of difficulty can increase
based on the host’s behavior or the status of the system

• complexity: the use of the hash function guarantees the
following:
– preimage resistance, it is computationally expen-

sive to find the input producing a fixed-length
digest;

– collision resistance, it is hard to find two different
inputs that produce the same digest;

– hash are unbiased functions where the produced
digest is unbiased even if the given input is biased,

• ease of verification: the mitigation module can quickly
verify the validity of the given solution with minimal
overhead; and,

• protection:
– in case the host is a real attacker, then it needs

to spend a considerable amount of computational
resources before handling its requests by the con-
troller,

– even if providing a correct solution to the challenge,
a host will be served at a relatively ‘‘low’’ priority
compared to other hosts. Additionally, such a host
will be suspended if it sends a high number of
requests, as will be discussed later in the controlled
host section.

Thus, considering such an approach, an attacker must
spend a significant amount of computational resources to
deliver a large volume of attack traffic that causes the SDN
controller to compute routes, eventually making an attack

FIGURE 7. Flow Rule configured parameters.

FIGURE 8. Mitigation module operation procedure.

prohibitively expensive and, therefore, reducing the overhead
on the controller and mitigating the attack.

Providing an invalid solution to the challenge results in
blocking the suspicious host and dropping its requests. This
is achieved by installing a flow rule by the controller in
the OpenFlow switch to block the host from the network.
Fig.7 below shows the configured parameters of the flow
rule installed by the controller. Receiving a correct solution
to the challenge C provided to the host redefines the sus-
picious host in the system as a controlled host. Such hosts
are considered genuine but have heavy loads with many
incoming ‘‘packet_in’’ requests compared to the other hosts.
Thus, in DeMi, these hosts are controlled by handling and
processing their requests based on the level of the workload
on the controller, network congestion, security status (red
and green—more on this in the following), and the priorities
assigned to them.

Hence, DeMi tries to serve different hosts with regular and
heavy loads depending on network states. Fig. 8 below shows
the overall processes of the mitigation module:

As discussed in the next subsections, controlled hosts have
a specific life cycle in the system and specific processes
managed by the heavy-load management module, which is
described in the following.

3) HEAVY-LOAD MANAGEMENT MODULE
The heavy-load management module is triggered when the
mitigation module marks a host as a controlled host. Each
controlled host has a particular life cycle and associated
attributes. The life cycle of such hosts continues until they
are promoted as regular hosts again.

The controller has specific activities for the controlled
hosts that include: admitting or dropping requests, buffering,
scheduling, and serving requests, suspending or unsuspend-
ing the controlled hosts, and, finally, setting hosts back to the
regular state. The attributes associated with controlled hosts
are updated in values during the aforementioned activities.

The main attributes are the time tc the host is marked
as controlled in the network, the number of initiated
‘‘packet_in’’ requests of the host pktin, and the degree of trust

VOLUME 11, 2023 82485

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 3. Attributes of the controlled host.

tv that increases each time the controller admits a request
from the host, while it decreases when the controller rejects
a request. Another attribute is the suspend/unsuspend flag S,
which is set when the controller suspends a controlled host
for a specific amount of time (controlled by a timeout) due to
its high value of pktin. The last attribute is the priority flag P,
which is set when the host has a higher priority to be served
than other controlled hosts. Table 3 below summarizes the
main attributes of the controlled host in the proposed solution.

The heavy-load management module handles the requests
of controlled hosts with a relatively ‘‘lower’’ priority com-
pared to regular hosts. Such handling depends on the con-
troller’s level of workload and the values assigned to the
attributes of the controlled hosts. Initially, the requests of
the controlled hosts are served by the controller as long
as the controller is not overloaded (in a busy state), meaning
that the controller has a regular rate of incoming requests.
Once the controller’s state switches to a busy state, the incom-
ing requests are buffered and served at a later stage based on
a pre-defined scheduling algorithm.

Each time the host initiates a new request, its pktin value is
incremented and compared to a dynamic threshold thr . Such
thr is computed periodically, and it is the average value of
initiated requests from all controlled hosts. Having the pktin
value of the host above thr , indicates that such a host is more
active, with a high number of initiated requests compared to
other ‘‘controlled’’ hosts. Thus, when pktin > thr results in
suspending the host for a given amount of time (time-out).
Such a suspension results in dropping the incoming requests
for some period and decrementing its tv. On the other hand,
having the host sending requests within the threshold value
results in serving or buffering the request and incrementing
its tv.
Once the timeout of the suspended host is reached, that

host priority flag is set, indicating a high priority for handling
and serving its requests by the controller. Algorithm 2 is
used to admit/drop a request of the controlled host. Handling
the controlled host’s requests depends on the level of the
workload on the controller. Such states are busy and regular.
If in the busy state, the incoming requests of the controlled
hosts are buffered, while if in the regular state, the controller
serves the incoming or buffered requests. Requests are served
in rounds. On a given round, the controller serves some
buffered requests. These requests are selected based on an
algorithm that considers the attributes of the controlled hosts.
Such attributes include the P and S flags, tv, and whether the
host is served at the current round. If the algorithm assigns

Algorithm 2 Handling Requests of Controlled Hosts
Input: threshold thr , host request rqsti, trust value tvi

1: function handle_request(rqsti)
2: if pktini > thr then
3: discard rqsti
4: set Si=TRUE
5: else
6: if Controller State == “BUSY” then
7: buffer rqsti
8: else
9: serve rqsti
10: end if
11: end if
12: end function
13: function update_trust_value(tvi)
14: if Si == TRUE then
15: tvi = tvi − 1
16: else
17: tvi = 0.5 tvi + 1
18: end if
19: end function
20: function update_host_state(Si,Pi)
21: if timeout reached for host then
22: set Si = FALSE
23: set Pi = TRUE
24: end if
25: end function

TABLE 4. Serving controlled hosts priorities.

the hosts a P flag, the host gains the highest priority, while an
S flag gives the host the lowest priority. In case both flags P
and S are not set for a host. Then, the host is served according
to its tv value. The higher the tv value, the higher the priority
of the host. Having two hosts with the same value of the tv,
the host with a longer buffer queue is served first.

To have a fair share of the serving queue among the con-
nected hosts in the controller, one request from each host is
served per round regardless of the priority assigned. When all
cases are covered based on the priority list, some hosts may
have more served requests in the same round.

Table 4 shows the priorities considered in selecting the
request with respect to the set flags, where ‘‘1’’ is the highest
priority.

Each controlled host should eventually be marked as a reg-
ular host in the network. This is achieved based on a selection
process that employs the weighted sum model (WSM) with
beneficial and non-beneficial attributes. Beneficial attributes

82486 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 5. WSM beneficial and non-beneficial attributes.

are trust value and time passed since the host was marked as a
controlled host (CH lifetime), while non-beneficial attributes
are the rate of incoming requests and the number of remaining
buffered requests of the controlled host. Additionally, the host
should match two primary conditions before being involved
in the promotion process. First, it should spend the minimum
time required for a host to be controlled in the network. This
period of time is variable, based on the controller’s level
of workload. Second, the trust value of the host should not
be zero. On a periodical basis, the controlled host with the
highest score based on the WSM is moved by the system
to a queue to be released. Based on a round-robin basis,
the system passes over the selected hosts in the queue and
promotes them to regular hosts when the conditions are met.
The conditions are satisfied when the controlled host has
zero remaining buffered requests to be served in the network.
Table 5 shows the beneficial and non-beneficial attributes
considered and their weights in the WSM. The weights
assigned to the attributes are set to focus the control on the
hosts with high incoming request rates and with high number
of buffered packets. Instead, the hosts with high trust values
are more eligible to be marked as regular hosts.

4) SYSTEM MANAGEMENT MODULE
The System Management Module (SMM) is the module
responsible for setting the controller’s states. These states fall
under two main categories: the first is related to the level of
workload of the controller, while the second is related to the
security state of the system. The level of the workload of the
controller is represented using two states: regular and busy.
Initially, the system and, more specifically, the controller
is set to a regular state. During such a state, the controller
serves all the incoming requests, including controlled hosts’
requests.

As the system management module keeps track of the rate
of incoming requests to the controller and the buffer size,
the state can be changed to busy. More specifically, such
a state is set when the controller’s buffer for the incoming
requests’ handling and processing shows an increase of 10%
with respect to the incoming packets rate.

Switching the controller’s state to busy results in buffering
the incoming ‘‘packet_in’’ requests of the controlled hosts
and, in some cases, suspending them. Hence, higher service-
ability to the regular than to the controlled hosts is provided.
Another effect of the busy state is related to increasing the
minimum time the controlled host needs to spend before
being marked again as a regular host. Therefore, controlled

FIGURE 9. Mealy machine for controller states.

hosts will stay controlled for a longer timewhen the controller
is in a busy state.

As the SMM tracks the controller activity and the Open-
Flow switches, it sets the controller state to regular when
needed. The module tracks the rate of the incoming packets
to the controller and the number of buffered packets of the
controlled hosts. Having the incoming rate of the packets
less than 10% and the ratio of the buffered packets of the
controlled hosts set to more than 10% with respect to the
incoming requests triggers the module to switch the system
state to regular. Such switching is needed to balance serving
regular and controlled hosts as much as possible.

The second category of the system states is related to
security, which can be in two states: ‘‘red’’ or ‘‘green’’,
where each state triggers specific activities. The system is
considered to be in a red state based on the number of active
hosts in the system marked either as suspected or blocked.
The suspected hosts are the hosts that have received a PoW
challenge. The blocked hosts are the hosts that are marked as
suspicious and that are blocked from sending their requests to
the controller. A ratio of suspected and blocked hosts above
10% of the total active hosts in the system results in switching
the system to a red state. The effect of such a state requires
each newly connected host to satisfy a PoW before obtaining
a connection to the network. Another effect is providing more
complex PoW (i.e. increasing the number of zeroes as per
what is in Eq. 4). Fig. 9 shows the Mealy machine for the
controller’s states.

V. SIMULATION AND PERFORMANCE EVALUATION
DeMi is evaluated against multiple performancemetrics. This
section discusses the evaluation steps, including the setup
required for the experiments, simulation environment, topol-
ogy, and experimental results against different metrics.

A. SIMULATION ENVIRONMENT AND TOPOLOGY
Mininet [83] is commonly utilized as an SDN network emu-
lator [13], [20], [33]. In particular, it can emulate a complete
network of end-hosts, links, and switches on a single Linux
kernel using process-based virtualization. It enables the cre-
ation of realistic virtual environment scenarios making it
convenient for experimenting with SDN solutions.

VOLUME 11, 2023 82487

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 6. Simulation parameters.

In our simulation scenarios, the Mininet environment is
integrated into a test environment running on a PC with 8
GBRAM and Intel(R) Core(TM) i7-8650UCPU@1.90GHz
processor. For the network switches, Open Virtual Switches
(OVS) [84] are used, which are virtual switches that enable
network automation through programmatic extension. These
switches are connected with POX [85], which is a python-
based controller. The L3_learning module of the POX con-
troller is used for connecting the controller to the network
created. Scapy [86], a tool used for computer networks to gen-
erate and manipulate packets, is used in simulation scenarios
to generate user datagram protocol (UDP) packets for regular
and attack traffic. Using the Scapy tool, spoofed IP source
packets are generated and addressed to one host. According
to [17], the type of traffic, whether UDP, TCP, or ICMP, does
not affect the solution as long as we look for invalid header
fields in the incoming packet that make the OpenFlow switch
generate a ‘‘packet_in’’ message request due to tablemiss
procedure.

Using Mininet, we simulated a medium-sized topology
of a tree-type network consisting of depth two with five
OpenFlow switches and sixteen hosts is built. The considered
topology is the one already described by Fig. 2. The hosts are
connected to the controller remotely via the OpenFlow switch
through the IP address and the corresponding port of the POX
controller in the simulation system. Table 6 shows the setup
parameters and their values used to create attack scenarios.

We considered such a small/medium size topology fol-
lowing similar solutions described in other works, such as
[20], [24], and [34], to cite a few. Considering more than one
attacking/victim host would require modifying the solution
to consider protecting a subnet instead of a single victim,
as discussed later in our future work.

1) ATTACK SCENARIO
The attacking scenario is the following: one of the connected
hosts is controlled by the attacker and then is used to generate
a DoS attack targeting another host (victim). The legitimate
traffic is generated by another host, neither the victim nor the
attacker. Moreover, the legitimate host communicates with
the controller benignly. Although the created topology is not
a large-scale topology, the attacker can generate malicious
packet streams that seem to come from different IP addresses.
Though the topology is not a large one, the insights that will
be gathered will be useful for understanding how DoS works

FIGURE 10. Evaluated entropy versus number of packets in an attack-free
scenario.

FIGURE 11. Evaluated entropy over time in attack-free scenario.

on small/medium size networks, and they will be the basis for
future work in this direction.

B. INITIAL ENTROPY EVALUATION UNDER ATTACK-FREE
SITUATION
We will start by evaluating the entropy value, the primary
metric for the initial attack detection process. Initially, the
entropy is evaluated under an attack-free situation where the
network generates regular traffic using the Scapy tool. In such
a situation, hosts exchange packets with the same probability.
This means that there is no concentration in the traffic around
a specific destination. Fig. 10 shows the relation between the
evaluated entropy and the corresponding number of incoming
packets to the controller with the traffic generation interval
set to 0.02 seconds. Such an interval means that during each
0.02 seconds time interval, a set of packets are generated and
sent to the controller from the legitimate host.

The entropy shown in the figure is after the system is set
and the exchange of the address resolution protocol (ARP)
requests and replies is over—these activities take place at net-
work setup. As the regular traffic is generated and exchanged
over the network with a uniform distribution, the entropy in
destination IP addresses increases until it reaches its maxi-
mum value (one). The fluctuation of the entropy value around
the value one is due to the small number of hosts (sixteen
hosts). With a larger network size, more diversity is expected
in the destination IP addresses and, therefore, a higher entropy
value. The same pattern of the entropy behavior can be seen
in Fig. 11, showing the evaluated entropy value and the
corresponding time.

The evaluation of the entropy value during the attack-free
situation is considered in the proposed approach to set the
initial threshold value of the attack detection. This is similar
to many IDS approaches in the literature [20], [24], and [34].
Considering an error value of the evaluated entropy in the
attack-free situation set to 10%, the first threshold set for the

82488 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

FIGURE 12. Evaluated entropy versus number of packets under attack
situation.

attack detection is equal to 0.9. Then, that threshold value is
updated based on the adaptive approach using the EWMA
approach discussed earlier to reflect the different changes in
the network traffic.

C. ENTROPY EVALUATION IN ATTACK SCENARIO
Fig. 12 shows the entropy evaluation versus the number of
incoming ‘‘packet_in’’ requests with andwithout DeMi under
the attack scenario. The cited figure shows the measurements
after the system is set, where the exchange of ARP requests
and replies between the hosts during the initial network setup
is over.

In this experiment, the regular traffic generation interval
is set to 0.02 seconds, while the attacking traffic generation
interval is set to 0.005 seconds. This means 25% of the
traffic is malicious. Using the Scapy tool, the source IP of
the generated attacking traffic is spoofed and addressed to the
victim host.

When a large packet volume arrives at a specific host, the
system’s randomness decreases rapidly. Therefore, the value
of the entropy goes below the threshold, reaching the lowest
value. This is because all the spoofed source IP packets have
the victim’s IP address in their destination IP—hence, there
is less variability in the range of destination addresses. This
inverse relationship between the entropy and the IP addresses
variety, and the associated entropy is captured by the fact
that, when the attack traffic rate increases, the entropy value
decreases. In the shown figure, the entropy value drops when
around 2600 packets have been received by the controller.
When DeMi is applied, the entropy value starts to enhance
(increase) within around 240 packets after the initial drop
(at around 2840 packets, as in Fig. 12). Such enhancement
increases gradually until it reaches the maximum value,
reinstating the system to a healthy state. More specifically,
getting the maximum entropy value shows that the traffic is
distributed and not directed to a specific host. Hence, demon-
strating the system’s ability to eliminate malicious traffic.

It is worth noting what would happen to the entropy value
without considering DeMi. After an initial drop in the entropy
value, some slight enhancements can be seen. Such enhance-
ments are due to a partial failure of the controller because
of the high traffic volume. The controller fails because of
the high overload, where such failure results in dropping
some of the incomingmalicious requests or disconnecting the
OpenFlow switch to which the attacker is connected to. Other

FIGURE 13. Attack detection time versus attack rate.

TABLE 7. Attack generation interval and corresponding attacking
percentage.

reasons may include the failure of the OpenFlow switch itself
due to the overload on its tables; and the installed flow rules
by the controller on the OpenFlow switches, which could
reduce the number of incoming ‘‘packet_in’’ requests of the
attacker to the controller. Then, as the attacking traffic is
still directed to the controller, the entropy value drops grad-
ually until the attack period is over. Eventually, the system
improves as the system receives genuine packets when the
attack is over.

D. ATTACK DETECTION AGAINST INTENSITY OF THE
ATTACK
To measure the DeMi’s ability to detect attacks when these
ones are carried out at different attack intensities, we have
developed a set of experiments. Fig. 13 shows the relation
between the attack intensity versus the time needed to detect
the attack. In this experiment, different packet generation
intervals for the attacking traffic are set, and the detection
time is measured. The regular traffic generation interval is
fixed at 0.02 seconds. Table 7 shows the attacking intervals
versus the percentages of the attacking traffic with respect
to the total traffic. Setting larger intervals results in a higher
number of attacking packet generation.

As it can be seen from the figure, higher attacking rates
result in shorter detection times. This is due to the fast drop
in the entropy value within a short period of time.

E. VERIFICATION OF RELIABLE CONNECTION UNDER
ATTACK SCENARIO
In another set of experiments, we have measured the solu-
tion’s ability to provide reliable connections when the net-
work is under attack. For this purpose, Wireshark, a packet
analyzer application that examines the exchanged pack-
ets over the network, is used in the following analysis to

VOLUME 11, 2023 82489

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

FIGURE 14. Exchanged TCP packets over time.

look closely at the network’s behavior. In this analysis, the
exchanged TCP packets marked for re-transmissions are
filtered-out using Wireshark. Such a re-transmission process
is applied to resend the packets lost or damaged due to
network congestion or partial failure.

Fig. 14 shows the exchanged TCP packets marked for
re-transmission in attack-free and under-attack scenarios for
some time period. Initially, the pattern of the exchanged pack-
ets is similar for the case of attack-free and attack scenarios.
Then, as the attacker starts to generate massive ‘‘packet_in’’
requests, at around t = 25 seconds, there is an increase in
the number of packets marked for re-transmission. Such a
re-transmission process indicates packet loss or damage in
the network, increasing latency and lowering the speed of
requests.

With DeMi in place, the number of the re-transmitted
packets drops after an initial increase until the network load
is close to the attack-free scenario. More specifically, when
DeMi is activated, the total number of re-transmitted packets
is roughly the same as the attack-free scenario. These results
show the quality of DeMi in thwarting attacks played at
different packet injection rates. On the contrary, without con-
sidering DeMi, the TCP re-transmissions increase gradually
as the attacking traffic is exchanged over the network. Such
an increase is about 3,7 times higher with reference to the
attack-free scenario. Such a high number of control messages
shows the network’s inability to successfully exchange pack-
ets among the network hosts, OpenFlow switches, and the
controller.

F. EXCHANGED CONTROL PACKETS UNDER ATTACK
SCENARIO
Another set of experiments was designed and carried out
to understand the flow of the exchanged network control
packets. Some of these packets are exchanged during the
initial network setup between the OpenFlow switches and
the controller, while other packets are exchanged periodically
or to raise an alarm about some events during the network
operation. Examples of the control packets exchanged at the
network-setup are hello requests and replies, OpenFlow fea-
tures requests and replies, and configuration packets. These
packets are exchanged between the OpenFlow switches and
controller to set up the communication channels, negotiate
over the protocol version to be used, and communicate the

FIGURE 15. Exchanged control packets over time.

features of the connected OpenFlow switches. The other cat-
egory of the exchanged control packets includes OpenFlow
error messages and echo requests and replies. The Open-
Flow error messages are exchanged to notify the OpenFlow
switches or the controller about communication problems in
the network. In contrast, the echo requests and replies are
used to test the OpenFlow connection when a connection
is hung. These packets are exchanged periodically to verify
proper connectivity over the OpenFlow protocol. Fig. 15
shows the exchanged control packets under attack-free and
attack scenarios. As it can be seen, the trend is similar for
both attack-free and attack scenarios when DeMi is adopted.
The two lines (green and blue) overlap in Fig. 15, showing
the effectiveness of deploying DeMi. However, it is worth
noting that, in an attack scenario where DeMi is not deployed,
the number of exchanged packets increases gradually and
it is roughly 2,7 times more compared to the case when
DeMi is not deployed. This shows the network resources’
exhaustion, affecting the network’s availability. Indeed, as it
can be expected, having a higher attacking rate may result in a
higher number of exchanged control packets over the network
due to link congestion and the inability of the controller to
handle the requests.

Two sample runs were considered to show the distribution
of control packets in an attack scenario. One where DeMi
is deployed and the other one where it is not. The packets’
distribution and corresponding rates are shown in Table 8.
In the sample runs, when DeMi is not in place, a total of
1452 packets are exchanged, ≈ 6.5% of the total OpenFlow
packets captured byWireshark. When DeMi is deployed, just
30 control packets are exchanged, that is≈ 0.14% of the total
exchanged OpenFlow packets.

G. SECURING THE VICTIM IN ATTACK SCENARIO
We also analyzed the ability of DeMi to secure the victim host
from the attacking packets. For this analysis, all the victim’s
successfully received packets were considered. The measures
in Fig. 16 consider all the sources targeting the victim host,
including the legitimate and attacker hosts. Instead, Fig. 17
shows only the packets generated by the attacker host and
addressed to the victim host. These packets were filtered out
using the Wireshark analyzer while considering the destina-
tion IP address of the victim host.

In Fig.16, all the packets addressed to the victim for both
attack-free and attack scenarios are reported from both legit

82490 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 8. Distribution of exchanged control packets for sample runs.

FIGURE 16. Incoming packets to victim from all sources over time.

FIGURE 17. Incoming packets to victim from attacker over time.

and illegit sources. Initially, the trends of the received traf-
fic on the victim host are similar for the two considered
scenarios—the attacker has not started sending malicious
packets yet. Then, as the attacker starts sending spoofed
packets at around t = 25 seconds, the number of packets
received by the victim increases.

The cited figure shows how DeMi can protect the victim
host by reducing the traffic directed at it. Indeed, the victim
continues receiving traffic from legitimate hosts generating
regular traffic or from the controller. This indicates that DeMi
does not entirely stop the incoming traffic to the victim host
but eliminates the attacking traffic, resulting in a similar trend
of an attack-free scenario.

However, when DeMi is not deployed, the incoming traffic
to the victim increases gradually until it starts to drop and
stabilize. That drop is due to the overload in the network that
results in partial failure of the controller or the OpenFlow
switch to which the attacker is connected—hence limiting
its spoofed packets injection capability. Fig. 17 sheds more
light on how the victim host is protected from the attacker’s
traffic. The cited figure shows the transmitted packets from
the attacker to the victim host over time. Using Wireshark,

we selected only the packets directed from the source to the
destination, discarding the control packets associated with the
transmitting process. As seen in the figure, DeMi was able to
thwart the attack on the victim host within a relatively short
time (at t = 27), showing the ability to protect the victim
host.

It should be mentioned that deploying DeMi introduces a
transient start-up phase that requires more communications
due to flow rules installation and attack mitigation processes.
Therefore, at the initial stages of the attack mitigation, it can
be seen that there is an increase in the incoming packets to the
victim host at the beginning of the attack detection—before
eliminating the attacking packets later on.

H. SDN CONTROLLER AVAILABILITY IN ATTACK
SCENARIOS
In order to measure the availability of the POX controller in
an attack scenario, we introduce some specialized metrics.
These metrics are related to the hello requests, the num-
ber of disconnections and the number of OpenFlow errors
exchanged over the network operating time. The exchange
of the hello requests and replies is used when the Open-
Flow switch joins or rejoins the network and connects to the
controller.

As shown in Table 9, in an attack scenario where DeMi is
not deployed, the rate of exchanged hello requests is higher
when compared to a scenario where DeMi is running. Such
an increase is due to the inability of the OpenFlow switches to
connect to the controller under a heavy attacking load. Once
these switches cannot connect to the controller, they initiate
hello requests directed to the controller and wait for replays.

Depending on the controller’s processing and load han-
dling, it responds to the hello requests to keep the connection
with the OpenFlow switches. However, not receiving the
response from the controller within a specific time results
in losing the connection. In turn, the loss of connection
between the controller and the OpenFlow switch results in
a socket disconnection issue. In such an issue, all the flow
rules previously installed by the controller into the tables of
the OpenFlow switches are cleared, as well as the buffered
requests in the switches waiting for routing rules from the
controller. Such a process results in an additional overhead
on the controller to re-install the flow rules again and could
cause OpenFlow errors on the controller side.

VOLUME 11, 2023 82491

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

TABLE 9. Measures of network availability in attack and attack-free situations.

TABLE 10. Comparison of enhancements between selected works and DeMi.

The OpenFlow errors occur mainly when the controller
attempts to install a flow rule into the OpenFlow switch for
an already received buffered packet. Such a buffered packet
is a copy of the packet sent to the controller through the
‘‘packet_in’’ request and referenced by a specific buffer ID.
Such buffering reduces the overhead by eliminating the need
to send another copy of the same packet from the controller
to the OpenFlow switch during the flow rule installation
process to route that packet—thus, improving the latency
and reducing the overhead over the communication channel.
However, due to the heavy load on the controller side and
the OpenFlow switch, and adding to that the loss of the
connection between the OpenFlow switch and the controller,
such a packet (referenced by the buffer ID) may be expired
or no longer exists in the OpenFlow switch. Therefore, when
the controller tries to install the flow rule, it obtains an error
since there is no valid buffer ID at the OpenFlow switch side.

Table 9 summarizes the average number of hello requests,
socket disconnections, and OpenFlow errors under attack and
attack-free scenarios with and without DeMi. The shown data
are for an attacking rate of 25%—a higher attacking rate
would result in more disturbance of the network availability.

Finally, to show some of the enhancements that DeMi
introduces as a solution for DoS attack detection and
mitigation, we highlight some of the related works in the
literature that have performance metrics and methodologies

similar to DeMi. Table 10 shows that DeMi is able to provide
most of the enhancements that other works introduced.

VI. CONCLUSION
In this paper, we proposed DeMi, a solution that addresses
DoS attacks on SDNs. DeMi. The main stages implemented
by DeMi are attack detection, mitigation, and heavy-load
management. Detection is achieved using a sample entropy
approach combined with an adaptive threshold mechanism
based on the EWMA. Mitigation is enforced using the PoW
approach and installing flow rules from the controller into
the OpenFlow switches. Heavy-load management is imple-
mented through prioritized scheduling. The simulation results
of DeMi show an enhanced performance of the POX con-
troller under the DoS attack. Additionally, DeMi effectively
reduces both the number of packets that need to be re-
transmitted (via TCP protocol) and the exchanged control
packets in the network within a relatively short time since the
start of the attack—basically restoring the network condition
of an attack free scenario. Results are staggering: the number
of TCP packets marked for re-transmissions when DeMi is
not in place is 3,7 times higher with respect to when DeMi
is deployed. As per exchanged control packets, an attack
scenario where DeMi is not deployed requires handling about
2,7more control packets. Finally, DeMi can protect the victim
from malicious traffic while not blocking legitimate traffic.

82492 VOLUME 11, 2023

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

Indeed, as shown, DeMi performance is roughly equal to the
ones of the attack-free scenario.

As future work, we would like to investigate how we can
enhance our attack detection approach by considering the
joint-entropy approach, where more than one class of entropy
class can be considered. Additionally, wewould like to extend
the adversary model to consider an attack targeting a whole
subnet instead of a victim host. Finally, we would like to
extend themodel to tackle DDoS attacks in SDNswheremore
than one attacker can perform the attack simultaneously on
the network.

The clear architectural design, the detailed detection and
mitigation solutions, and the shown experimental results,
other than being interesting on their own, also pave the way
for further research in the domain.

ACKNOWLEDGMENT
Dr. Roberto Di Pietro produced part of his contribution while
at HBKU-CSE. The information and views set out in this
publication are those of the authors and do not necessarily
reflect the official opinion of HBKU.

REFERENCES
[1] M. M. Isa and L. Mhamdi, ‘‘An adaptive framework for attack mitigation

in SDN environment,’’ in Proc. IEEE Int. Medit. Conf. Commun. Netw.
(MeditCom), Sep. 2022, pp. 130–135.

[2] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
‘‘Complementing IoT services through software defined networking and
edge computing: A comprehensive survey,’’ IEEE Commun. Surveys Tuts.,
vol. 22, no. 3, pp. 1761–1804, 3rd Quart., 2020.

[3] D. Gao, Z. Liu, Y. Liu, C. H. Foh, T. Zhi, and H.-C. Chao, ‘‘Defending
against packet-in messages flooding attack under SDN context,’’ Soft
Comput., vol. 22, no. 20, pp. 6797–6809, Oct. 2018.

[4] M. Yue, H. Wang, L. Liu, and Z. Wu, ‘‘Detecting DoS attacks based on
multi-features in SDN,’’ IEEE Access, vol. 8, pp. 104688–104700, 2020.

[5] S. Siddiqui, S. Hameed, S. A. Shah, I. Ahmad, A. Aneiba, D. Draheim, and
S. Dustdar, ‘‘Toward software-defined networking-based IoT frameworks:
A systematic literature review, taxonomy, open challenges and prospects,’’
IEEE Access, vol. 10, pp. 70850–70901, 2022.

[6] M. Khalid, S. Hameed, A. Qadir, S. A. Shah, and D. Draheim, ‘‘Towards
SDN-based smart contract solution for IoT access control,’’Comput. Com-
mun., vol. 198, pp. 1–31, Jan. 2023.

[7] A. Sallam, A. Refaey, and A. Shami, ‘‘On the security of SDN: A
completed secure and scalable framework using the software-defined
perimeter,’’ IEEE Access, vol. 7, pp. 146577–146587, 2019.

[8] R. Xie, M. Xu, J. Cao, and Q. Li, ‘‘SoftGuard: Defend against the low-rate
TCP attack in SDN,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1–6.

[9] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, ‘‘Are we ready for SDN? Implemen-
tation challenges for software-defined networks,’’ IEEE Commun. Mag.,
vol. 51, no. 7, pp. 36–43, Jul. 2013.

[10] L. F. Eliyan and R. Di Pietro, ‘‘DoS and DDoS attacks in software defined
networks: A survey of existing solutions and research challenges,’’ Future
Gener. Comput. Syst., vol. 122, pp. 149–171, Sep. 2021.

[11] S. Gao, Z. Peng, B. Xiao, A. Hu, Y. Song, and K. Ren, ‘‘Detection
and mitigation of DoS attacks in software defined networks,’’ IEEE/ACM
Trans. Netw., vol. 28, no. 3, pp. 1419–1433, Jun. 2020.

[12] R. N. Carvalho, J. L. Bordim, and E. A. P. Alchieri, ‘‘Entropy-based DoS
attack identification in SDN,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), May 2019, pp. 627–634.

[13] M. Imran, M. H. Durad, F. A. Khan, and H. Abbas, ‘‘DAISY: A detection
andmitigation system against denial-of-service attacks in software-defined
networks,’’ IEEE Syst. J., vol. 14, no. 2, pp. 1933–1944, Jun. 2020.

[14] Z. Liu, Y. He, W. Wang, and B. Zhang, ‘‘DDoS attack detection scheme
based on entropy and PSO-BP neural network in SDN,’’ China Commun.,
vol. 16, no. 7, pp. 144–155, Jul. 2019.

[15] J. David and C. Thomas, ‘‘Detection of distributed denial of service attacks
based on information theoretic approach in time series models,’’ J. Inf.
Secur. Appl., vol. 55, Dec. 2020, Art. no. 102621.

[16] M. A. Aladaileh, M. Anbar, I. H. Hasbullah, Y.-W. Chong, and
Y. K. Sanjalawe, ‘‘Detection techniques of distributed denial of service
attacks on software-defined networking controller—A review,’’ IEEE
Access, vol. 8, pp. 143985–143995, 2020.

[17] S.M.Mousavi andM. St-Hilaire, ‘‘Early detection of DDoS attacks against
SDN controllers,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC),
Feb. 2015, pp. 77–81.

[18] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[19] R. Wang, Z. Jia, and L. Ju, ‘‘An entropy-based distributed DDoS detection
mechanism in software-defined networking,’’ in Proc. 14th IEEE Int.
Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Aug. 2015,
pp. 310–317.

[20] R. Swami, M. Dave, and V. Ranga, ‘‘Defending DDoS against software
defined networks using entropy,’’ in Proc. 4th Int. Conf. Internet Things,
Smart Innov. Usages (IoT-SIU), Apr. 2019, pp. 1–5.

[21] J. Galeano-Brajones, D. Cortés-Polo, J. F. Valenzuela-Valdés, A. M. Mora,
and J. Carmona-Murillo, ‘‘Detection and mitigation of DoS attacks in
SDN. An experimental approach,’’ in Proc. 6th Int. Conf. Internet Things,
Syst., Manag. Secur. (IOTSMS), Oct. 2019, pp. 575–580.

[22] J. Singh and S. Behal, ‘‘A novel approach for the detection of DDoS
attacks in SDN using information theory metric,’’ in Proc. 8th Int.
Conf. Comput. Sustain. Global Develop. (INDIACom), Mar. 2021,
pp. 512–516.

[23] L. Zhou, K. Sood, and Y. Xiang, ‘‘ERM: An accurate approach to detect
DDoS attacks using entropy rate measurement,’’ IEEE Commun. Lett.,
vol. 23, no. 10, pp. 1700–1703, Oct. 2019.

[24] A. Ahalawat, S. S. Dash, A. Panda, and K. S. Babu, ‘‘Entropy based
DDoS detection and mitigation in OpenFlow enabled SDN,’’ in Proc. Int.
Conf. Vis. Towards Emerg. Trends Commun. Netw. (ViTECoN), Mar. 2019,
pp. 1–5.

[25] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, ‘‘Combining OpenFlow and sFlow for an effective and scal-
able anomaly detection andmitigationmechanism on SDN environments,’’
Comput. Netw., vol. 62, pp. 122–136, Apr. 2014.

[26] K. S. Sahoo,M. Tiwary, andB. Sahoo, ‘‘Detection of high rate DDoS attack
fromflash events using informationmetrics in software defined networks,’’
in Proc. 10th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2018,
pp. 421–424.

[27] Y. Xiang, K. Li, and W. Zhou, ‘‘Low-rate DDoS attacks detection and
traceback by using new information metrics,’’ IEEE Trans. Inf. Forensics
Security, vol. 6, no. 2, pp. 426–437, Jun. 2011.

[28] S. Behal and K. Kumar, ‘‘Detection of DDoS attacks and flash events using
novel information theory metrics,’’ Comput. Netw., vol. 116, pp. 96–110,
Apr. 2017.

[29] R. Li and B. Wu, ‘‘Early detection of DDoS based on ϕ-entropy in SDN
networks,’’ inProc. IEEE 4th Inf. Technol., Netw., Electron. Autom. Control
Conf. (ITNEC), vol. 1, Jun. 2020, pp. 731–735.

[30] A. Rényi, ‘‘Onmeasures of information and entropy,’’ inProc. 4th Berkeley
Symp. Math., Statist. Probab., vol. 1, 1960, pp. 547–561.

[31] P. K. Bhatia and S. Singh, ‘‘On a new Csiszar’s f-divergence measure,’’
Cybern. Inf. Technol., vol. 13, no. 2, pp. 43–57, 2013.

[32] J. Mao, W. Deng, and F. Shen, ‘‘DDoS flooding attack detection based on
joint-entropy with multiple traffic features,’’ in Proc. 17th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big Data
Sci. Eng. (TrustCom/BigDataSE), Aug. 2018, pp. 237–243.

[33] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, ‘‘JESS: Joint entropy-based
DDoS defense scheme in SDN,’’ IEEE J. Sel. Areas Commun., vol. 36,
no. 10, pp. 2358–2372, Oct. 2018.

[34] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, ‘‘SAFETY:
Early detection and mitigation of TCP SYN flood utilizing entropy in
SDN,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 4, pp. 1545–1559,
Dec. 2018.

[35] J. David and C. Thomas, ‘‘DDoS attack detection using fast entropy
approach on flow-based network traffic,’’ Proc. Comput. Sci., vol. 50,
pp. 30–36, Jan. 2015.

VOLUME 11, 2023 82493

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

[36] S. B. I. Shah, M. Anbar, A. Al-Ani, and A. K. Al-Ani, ‘‘Hybridizing
entropy based mechanism with adaptive threshold algorithm to detect
RA flooding attack in IPv6 networks,’’ in Computational Science and
Technology, vol. 481. Singapore: Springer, 2019.

[37] G. Fioravanti, M. G. Spina, and F. De Rango, ‘‘Entropy based DDoS
detection in software defined networks,’’ in Proc. IEEE 20th Consum.
Commun. Netw. Conf. (CCNC), Jan. 2023, pp. 636–639.

[38] P. Zhai, Y. Song, X. Zhu, L. Cao, J. Zhang, andC.Yang, ‘‘Distributed denial
of service defense in software defined network using OpenFlow,’’ in Proc.
IEEE/CIC Int. Conf. Commun. China (ICCC), Aug. 2020, pp. 1274–1279.

[39] P. Cisar and S. M. Cisar, ‘‘EWMA statistic in adaptive threshold
algorithm,’’ in Proc. 11th Int. Conf. Intell. Eng. Syst. (INES), no. 4, 2007,
pp. 51–54.

[40] N. Saritakumar andK. V. Anusuya, ‘‘Early detection andmitigation of DoS
attacks in SDN controller,’’ in Proc. Int. Conf. Intell. Innov. Eng. Technol.
(ICIIET), Sep. 2022, pp. 315–322.

[41] A. B. Dehkordi, M. R. Soltanaghaei, and F. Z. Boroujeni, ‘‘The DDoS
attacks detection through machine learning and statistical methods in
SDN,’’ J. Supercomputing, vol. 77, no. 3, pp. 2383–2415, 2021.

[42] N. Niknami and J. Wu, ‘‘Entropy-KL-ML: Enhancing the entropy-KL-
based anomaly detection on software-defined networks,’’ IEEE Trans.
Netw. Sci. Eng., vol. 9, no. 6, pp. 4458–4467, Nov. 2022.

[43] A. Yadav, A. S. Kori, D. G. Narayn, P. Shettar, and M. M. Moin, ‘‘A hybrid
approach for detection of DDoS attacks using entropy and machine learn-
ing in software defined networks,’’ in Proc. 12th Int. Conf. Comput.
Commun. Netw. Technol. (ICCCNT), Jul. 2021, pp. 1–7.

[44] K. S. Sahoo and D. Puthal, ‘‘SDN-assisted DDoS defense frame-
work for the Internet of Multimedia Things,’’ ACM Trans. Multimedia
Comput., Commun., Appl., vol. 16, no. 3s, pp. 1–18, Oct. 2020, doi:
10.1145/3394956.

[45] S. Y. Khamaiseh, A. Al-Alaj, and A. Warner, ‘‘FloodDetector: Detecting
unknownDoSflooding attacks in SDN,’’ inProc. Int. Conf. Internet Things
Intell. Appl. (ITIA), Nov. 2020, pp. 1–5.

[46] J. Bhayo, S. A. Shah, S. Hameed, A. Ahmed, J. Nasir, and D. Draheim,
‘‘Towards a machine learning-based framework for DDOS attack detection
in software-defined IoT (SD-IoT) networks,’’ Eng. Appl. Artif. Intell.,
vol. 123, Aug. 2023, Art. no. 106432.

[47] W. Sun, Y. Li, and S. Guan, ‘‘An improved method of DDoS attack
detection for controller of SDN,’’ in Proc. IEEE 2nd Int. Conf. Comput.
Commun. Eng. Technol. (CCET), Aug. 2019, pp. 249–253.

[48] Y. Liu, T. Zhi, M. Shen, L. Wang, Y. Li, and M. Wan, ‘‘Software-defined
DDoS detection with information entropy analysis and optimized deep
learning,’’ Future Gener. Comput. Syst., vol. 129, pp. 99–114, Apr. 2022.

[49] R. M. A. Ujjan, Z. Pervez, K. Dahal, W. A. Khan, A. M. Khattak, and
B. Hayat, ‘‘Entropy based features distribution for anti-DDoS model in
SDN,’’ Sustainability, vol. 13, no. 3, p. 1522, Feb. 2021.

[50] L. Wang and Y. Liu, ‘‘A DDoS attack detection method based on infor-
mation entropy and deep learning in SDN,’’ in Proc. IEEE 4th Inf.
Technol., Netw., Electron. Autom. Control Conf. (ITNEC), vol. 1, Jun. 2020,
pp. 1084–1088.

[51] A. El Kamel, H. Eltaief, and H. Youssef, ‘‘On-the-fly (D)DoS attack mit-
igation in SDN using deep neural network-based rate limiting,’’ Comput.
Commun., vol. 182, pp. 153–169, Jan. 2022.

[52] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, ‘‘Adversarial
deep learning approach detection and defense against DDoS attacks in
SDN environments,’’ Future Gener. Comput. Syst., vol. 125, pp. 156–167,
Dec. 2021.

[53] J. Hussain and V. Hnamte, ‘‘A novel deep learning based intrusion detec-
tion system: Software defined network,’’ in Proc. Int. Conf. Innov. Intell.
Informat., Comput., Technol. (ICT), Sep. 2021, pp. 506–511.

[54] M. S. E. Sayed, N.-A. Le-Khac, M. A. Azer, and A. D. Jurcut, ‘‘A flow-
based anomaly detection approach with feature selection method against
DDoS attacks in SDNs,’’ IEEETrans. Cognit. Commun. Netw., vol. 8, no. 4,
pp. 1862–1880, Dec. 2022.

[55] R. P. Nayak, S. Sethi, S. K. Bhoi, K. S. Sahoo, and A. Nayyar, ‘‘ML-
MDS: Machine learning based misbehavior detection system for cognitive
software-defined multimedia VANETs (CSDMV) in smart cities,’’ Multi-
media Tools Appl., vol. 82, no. 3, pp. 3931–3951, Jan. 2023.

[56] M. Nugraha, I. Paramita, A. Musa, D. Choi, and B. Cho, ‘‘Utilizing
OpenFlow and sFlow to detect andmitigate SYNflooding attack,’’ J. Korea
Multimedia Soc., vol. 17, no. 8, pp. 988–994, Aug. 2014.

[57] M. A. Al-Adaileh, M. Anbar, Y.-W. Chong, and A. Al-Ani, ‘‘Proposed
statistical-based approach for detecting distribute denial of service against
the controller of software defined network (SADDCS),’’ in Proc. MATEC
Web Conf., vol. 218, 2018, p. 02012.

[58] N. I. G. Dharma, M. F. Muthohar, J. D. A. Prayuda, K. Priagung,
and D. Choi, ‘‘Time-based DDoS detection and mitigation for SDN
controller,’’ in Proc. 17th Asia–Pacific Netw. Oper. Manage. Symp.
(APNOMS), Aug. 2015, pp. 550–553.

[59] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and C. YanRen,
‘‘A novel design for future on-demand service and security,’’ in Proc. IEEE
12th Int. Conf. Commun. Technol. (ICCT), Nov. 2010, pp. 385–388.

[60] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, ‘‘SDN security plane:
An architecture for resilient security services,’’ in Proc. IEEE Int. Conf.
Cloud Eng. Workshop (ICEW), Apr. 2016, pp. 54–59.

[61] K. Hong, Y. Kim, H. Choi, and J. Park, ‘‘SDN-assisted slow HTTP DDoS
attack defense method,’’ IEEE Commun. Lett., vol. 22, no. 4, pp. 688–691,
Apr. 2018.

[62] R. Sanjeetha, K. N. A. Shastry, H. R. Chetan, andA.Kanavalli, ‘‘Mitigating
HTTP GET FLOOD DDoS attack using an SDN controller,’’ in Proc.
Int. Conf. Recent Trends Electron., Inf., Commun. Technol. (RTEICT),
Nov. 2020, pp. 6–10.

[63] S. Park, Y. Kim, H. Choi, Y. Kyung, and J. Park, ‘‘HTTP DDoS flooding
attack mitigation in software-defined networking,’’ IEICE Trans. Inf. Syst.,
vol. E104.D, no. 9, pp. 1496–1499, 2021.

[64] A. N. H. D. Sai, B. H. Tilak, N. S. Sanjith, P. Suhas, and R. Sanjeetha,
‘‘Detection and mitigation of low and slow DDoS attack in an SDN
environment,’’ in Proc. Int. Conf. Distrib. Comput., VLSI, Electr. Circuits
Robot. (DISCOVER), Oct. 2022, pp. 106–111.

[65] C. Gkountis, M. Taha, J. Lloret, and G. Kambourakis, ‘‘Lightweight
algorithm for protecting SDN controller against DDoS attacks,’’ in Proc.
10th IFIP Wireless Mobile Netw. Conf. (WMNC), Sep. 2017, pp. 1–6.

[66] Y. E. Oktian, S. Lee, and H. Lee, ‘‘Mitigating denial of service (DoS)
attacks in OpenFlow networks,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Oct. 2014, pp. 325–330.

[67] R. Wang, Z. Jia, and L. Ju, ‘‘An entropy-based distributed DDoS detec-
tion mechanism in software-defined networking,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2015, pp. 310–317.

[68] V. Pashkov and A. Antipina, ‘‘Protection of the control plane from DDoS
attacks in software-defined networks,’’ in Proc. Int. Conf. Mod. Netw.
Technol. (MoNeTec), Oct. 2022, pp. 1–7.

[69] L. Wei and C. Fung, ‘‘FlowRanger: A request prioritizing algorithm for
controller DoS attacks in software defined networks,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2015, pp. 5254–5259.

[70] A. Shoeb and T. Chithralekha, ‘‘Resource management of switches and
controller during saturation time to avoid DDoS in SDN,’’ in Proc. IEEE
Int. Conf. Eng. Technol. (ICETECH), Mar. 2016, pp. 152–157.

[71] S. Lim, S. Yang, Y. Kim, S. Yang, and H. Kim, ‘‘Controller scheduling for
continued SDN operation under DDoS attacks,’’ Electron. Lett., vol. 51,
no. 16, pp. 1259–1261, Aug. 2015.

[72] Y. Cui and Q. Qian, ‘‘MIND: Message classification based controller
scheduling method for resisting DDoS attack in software-defined network-
ing,’’ in Proc. 5th Int. Conf. Comput. Commun. Syst. (ICCCS), May 2020,
pp. 486–490.

[73] P. Zhang, H. Wang, C. Hu, and C. Lin, ‘‘On denial of service attacks
in software defined networks,’’ IEEE Netw., vol. 30, no. 6, pp. 28–33,
Nov. 2016.

[74] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, ‘‘AVANT-GUARD: Scal-
able and vigilant switch flow management in software-defined networks,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013,
pp. 413–424.

[75] H. Wang, L. Xu, and G. Gu, ‘‘FloodGuard: A DoS attack prevention
extension in software-defined networks,’’ in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2015, pp. 239–250.

[76] J. Boite, P.-A. Nardin, F. Rebecchi, M. Bouet, and V. Conan, ‘‘Statesec:
Stateful monitoring for DDoS protection in software defined networks,’’
in Proc. IEEE Conf. Netw. Softwarization (NetSoft), Jul. 2017, pp. 1–9.

[77] K. Kalkan, G. Gür, and F. Alagöz, ‘‘SDNScore: A statistical defense
mechanism against DDoS attacks in SDN environment,’’ in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jul. 2017, pp. 669–675.

[78] J. E. Varghese and B. Muniyal, ‘‘An efficient IDS framework for DDoS
attacks in SDN environment,’’ IEEE Access, vol. 9, pp. 69680–69699,
2021.

[79] H. D. Zubaydi, M. Anbar, and C. Y.Wey, ‘‘Review on detection techniques
against DDoS attacks on a software-defined networking controller,’’ in
Proc. Palestinian Int. Conf. Inf. Commun. Technol. (PICICT), May 2017,
pp. 10–16.

[80] T. Wolf and J. Li, ‘‘Denial-of-service prevention for software-defined
network controllers,’’ in Proc. 25th Int. Conf. Comput. Commun. Netw.
(ICCCN), Aug. 2016, pp. 1–10.

82494 VOLUME 11, 2023

http://dx.doi.org/10.1145/3394956

L. F. Eliyan, R. D. Pietro: DeMi: A Solution to Detect and Mitigate DoS Attacks in SDN

[81] C. B. Serna and C. Mas-Machuca, ‘‘Preventing control plane overload in
SDN networks with programmable data planes,’’ in Proc. 18th Int. Conf.
Netw. Service Manage. (CNSM), Oct. 2022, pp. 37–45.

[82] C. Dwork and M. Naor, ‘‘Pricing via processing or combatting junk
mail,’’ in Advances in Cryptology—CRYPTO, E. F. Brickell, Ed. Berlin,
Germany: Springer, 1993, pp. 139–147.

[83] Mininet. (2018). Mininet Overview—Mininet. Accessed:
May 6, 2023. [Online]. Available: http://mininet.org/overview/ and
http://mininet.org/overview/

[84] (2010). Open vSwitch. Accessed: May 6, 2023. [Online]. Available:
http://www.openvswitch.org/ and http://www.openvswitch.org/

[85] L. R. Prete, A. A. Shinoda, C. M. Schweitzer, and R. L. S. de Oliveira,
‘‘Simulation in an SDN network scenario using the POX controller,’’ in
Proc. IEEE Colombian Conf. Commun. Comput. (COLCOM), Jun. 2014,
pp. 1–6.

[86] (2022). Scapy. Accessed: May 6, 2023. [Online]. Available:
https://scapy.net/ and https://scapy.net/

LUBNA FAYEZ ELIYAN received the B.Sc. degree
in computer engineering and the M.Sc. degree
in computer networks from Qatar University. She
is currently pursuing the Ph.D. degree in com-
puter science and engineering program with CSE,
HBKU, Doha, Qatar, with a major in cyberse-
curity. Her research interests include computer
networks and security and privacy of networks,
the IoT, and crowd simulation for studying human
behavior.

ROBERTO DI PIETRO (Fellow, IEEE) received
the M.Sc. degree in computer science and the
M.Sc. degree in informatics from the University
of Pisa, in 1994 and 2003, respectively, and the
PMC degree in operations research and strategic
decisions and the Ph.D. degree in computer sci-
ence from the University of Rome ‘‘La sapienza,’’
in 2003 and 2004, respectively. He was a Full
Professor of cybersecurity with CSE, HBKU; the
Global Head of the Security Research, Nokia Bell

Labs, France; an Associate Professor (with tenure) of computer science with
the University of Padua; and a Senior Military Officer with MoD, Italy.
He has been working in the security field for more than 25 years, leading
both technology-oriented and research-focused teams in the private sector,
government, and academia (MoD, United Nations HQ, EUROJUST, IAEA,
and WIPO). He is currently a Full Professor of cybersecurity with CEMSE,
RC3 Center, KAUST. His research interests include AI driven cybersecu-
rity, security and privacy for wired and wireless distributed systems (e.g.,
blockchain technology, cloud, the IoT, and OSNs), virtualization security,
applied cryptography, computer forensics, and data science. Other than being
involved in M&A and strategic advising of start-up—and having founded
one (exited)—he has been producing more than 280 scientific papers and
patents over the cited topics, has coauthored three books, edited one, and
contributed to a few others. He is the Scientific Advisory Board for a few
knowledgeable Universities. In 2011 to 2012, he was a recipient of the Chair
of Excellence from the University Carlos III, Madrid. In 2020, he was a
recipient of the Jean-Claude Laprie Award for significantly influencing the
theory and practice of Dependable Computing. In 2022, he was awarded
the Individual Innovation Award from HBKU. He is a ACM Distinguished
Scientist.

VOLUME 11, 2023 82495

