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ABSTRACT Chaotic maps have been widely applied on image encryption for their complexity and
sensitivity to key variation. In this work, we propose second-order chaotic maps with optimized random
coefficients to generate chaotic sequences for image encryption. Two screening conditions are proposed to
identify 300 candidate chaotic maps in terms of complexity indices K and spectral entropy (SE). A particle
swarm optimization algorithm is developed to search for the optimal chaotic maps under eight different
weighting schemes. The optimal chaotic maps can achieve Np = 2, DKY = 2, CD = 2, K > 0.9, SE > 0.9
and PE > 0.7. Key sensitivity analysis on all the system parameters and initial values confirms high security
of the optimal chaotic maps. A hybrid sequence generation (HSG) scheme is also proposed to further reduce
the image encryption time.

INDEX TERMS Image encryption, chaotic map, chaotic sequence, key sensitivity.

I. INTRODUCTION
A chaotic map of dimension N can be characterized with
N first-order difference equations as xn[ℓ + 1] = fn(xn[ℓ]),
with n = 1, 2, · · · ,N [1]. The generated N sequences can
be represented as x̄[ℓ] = (x1[ℓ], x2[ℓ], · · · , xN [ℓ]) in an
N -dimensional phase space. The functional form of fn can be
tuned with a few system parameters to manifest chaotic trace
of x̄[ℓ] in the phase space as ℓ marches on [2].
A small perturbation to the initial value x̄[1] of a chaotic

map usually results in a very different trace in the phase space.
Most chaotic systems manifest dense periodic-like traces,
also called strange attractors [3]. The trace of a continuous
chaotic system can hardly pass the same point twice, but that
of a discrete chaotic map can possibly pass the same point
after a sufficient number of marching steps [4].
Chaotic dynamic systems emerge in many theoretical

problems. In [5], a logistic map was developed to describe the
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evolution of population. In [6], a Lorenz system was derived
to describe the coupling of Navier-Stokes equations with
thermal convection, under an Oberbeck-Boussinesq approxi-
mation. In [7], a 2D chaoticmapwas introduced to capture the
stretching and folding dynamics of a Lorenz system. In [8],
a predator-prey chaotic mapwas used tomodel the population
evolution of prey and predator, respectively.

Conventional chaotic dynamic systems may have limited
range of system parameters [9] and low complexity [4],
restricting their available key space for encryption applica-
tions. Many researches have been conducted to increase the
number and range of system parameters as well as the com-
plexity of chaotic maps [2], [4], [10], [11], [12], [13]. In [14]
and [15], new chaotic dynamic systems were synthesized
by combining different functions or their Taylor’s series.
In this work, we extend the Taylor’s series of some first-order
difference equations to propose a more general form of power
series.

Chaotic systems have been used to enhance data security
in image transmission, cryptography [16], [17] and secure
communications. The complexity of a chaotic system can be
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evaluated with various indices, including Lyapunov exponent
(LE) [10], [11], [15], correlation dimension (CD) [10], [11],
growth rate K out of 0-1 test [15], [18], spectral entropy
(SE) [19], and permutation entropy (PE) [20], [21].
For an N -dimensional chaotic map, N LEs can be esti-

mated. A positive LE implies the system is chaotic, and the
system is considered hyperchaotic if the number of positive
LE, Np, is two or higher. A Kaplan-Yorke dimension (DKY )
derived from LEs can be used to predict the dimension of the
strange attractor [1]. The CD measures the dimension of the
strange attractor in the N -dimensional phase space of state
variables.

The growth rate K of sequence xn[ℓ] measures the mean-
square displacement of a 2D-trajectory in the pq plane, with
p[ℓ + 1] = p[ℓ] + xn[ℓ] cos(caℓ) and q[ℓ + 1] = q[ℓ] +
xn[ℓ] sin(caℓ). If K is close to 1, the trajectory manifests
chaotic behavior like Brownian motion and the mean-square
displacement increases linearly with sequence index ℓ.

The complexity of sequence xn[ℓ] can be measured by
examining its frequency spectrum or SE. The frequency spec-
trum appears more uniform if xn[ℓ] is more chaotic. The
PE of sequence xn[ℓ] measures its complexity from possible
order patterns within a given window d , and d = 5 was
recommended in [22]. The occurrence rate of each order
pattern is derived by scanning through xn[ℓ], with ℓ = 1 · · · L.
In [4], a 2D-SCMCI hyperchaotic map was proposed by

using cascade modulation couple and two 1D chaotic maps.
In [23], a 2D chaotic map comprised of mod functions
was optimized to yield high complexity. In [14], a chaotic
map consisted of a few nonlinear terms was derived from
a Cournot Duopoly game. The chaotic maps in [4], [14],
and [23] were designed to achieve higher complexity, larger
number and range of system parameters.

Table 1 summarizes the complexity indices of some 2D
chaotic maps in the literature. These chaotic maps usually
have 2-6 system parameters (SPs) and two initial conditions
(ICs), yielding a key space of 2200∼400. Typically, they have
one positive LE, CD < 2, DKY < 2, K ≤ 0.8, SE ≤ 0.5 and
PE ≤ 0.7. A force convergence (FC) mechanism is designed
to ensure the convergence of two sequences a chaotic map
generates. The chaotic maps with FC mechanism usually
yield better performance indices of K , SE and PE than their
counterparts without such mechanism.

The first chaos cryptography proposed in [31] was
achieved by permutation and diffusion of pixels. A color
plaintext image of size LrLc is stored in 3LrLc bytes of
memory. Two chaotic sequences of length L = 3LrLc were
generated with a 2D chaotic system. The pixel positions of
the plaintext image were permuted with the first sequence,
then the permuted pixels were taken XOR with the second
sequence to derive a ciphertext, which resembled 3LrLc ran-
dom numbers in [0, 255] [15], [32].
In [33], an anti-dynamic degradation theorem was pre-

sented to ensure the general secrecy of chaotic cryptography
systems. Consider a 1D chaotic map with system parameters
in 64 bits, the generated chaotic sequences are in principle

TABLE 1. Performance indices of chaotic maps in the literature,
SP: number of system parameters, IC: number of initial conditions,
FC: force convergence.

periodic due to the finite precision of system parameters.
In practice, however, the period will be long enough that the
probability of yielding repeated sequences is negligible. Such
probability can be further reduced if higher-order chaotic
maps are used [34], [35], [36].

Numerous chaotic cryptography schemes have been pro-
posed to improve the security and efficiency of encryp-
tion. In [4], a 2D-SCMCI hyperchaotic map was used to
improve the security of cryptography schemes. In [14], bit-
level operations were taken to improve the security of algo-
rithms. In [37], an image encryption scheme was proposed
to achieve high encryption efficiency, based on non-adjacent
parallelable permutation and dynamic DNA-level two-way
diffusion. In [38], an image encryption algorithm based on
plane-level image filtering and discrete logarithmic trans-
formation was proposed to balance security and efficiency.
In [39], memristive chaotic systems with complex dynamics
were proposed to improve the security of encryption schemes.
In [17], a one-dimensional sine chaotic system (1DSCS)
with large parameter interval was introduced to improve the
security. In [40], an image encryption algorithm based on a
roulette jump selection chaotic system and an alienated image
library transformation was proposed to enhance the security.
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TABLE 2. Performance indices of various image encryption methods.

Typical image encryption schemes were proposed to
defend against plaintext attack and differential attack [41],
[42], [43]. Their efficacy was usually evaluated in terms of
key space [4], [14], key sensitivity [4], [14], [38], infor-
mation entropy (IE) [13], and correlation coefficients CRh,
CRv and CRd in horizontal, vertical and diagonal directions,
respectively [13]. A typical plaintext image has nonuniform
distribution of pixel values and high correlation between
adjacent pixels. The ciphertext image is preferred to have
random values on pixels, implying the IE is close to 8 and
the CRs are close to 0.

The resilience of an encryption scheme against exhaustion
attack and occlusion attack can be evaluated with the size of
key space and a structural similarity index measure (SSIM),
respectively [23]. An encryption scheme with large key space
is more capable of defending exhaustion attacks which try on
every combination of possible keys. Occlusion attack intends
to block part of the ciphertext image, which takes little effect
on the decrypted image in the face of a permuted sequence.

The resilience to differential attacks can be evaluated in
terms of the number of pixel change rate (NPCR) [13], unified
average changing intensity (UACI) [13] and key sensitiv-
ity [4]. The NPCR gives the proportion of affected pixels in
the ciphertext if one bit of the plaintext is changed. An effec-
tive image encryption scheme yields NPCR ≃ 99.61%,
considering the probability for two random bytes to be the
same is 1/256 ≃ 0.39%. The UACI measures the change
of pixel values. The expectation value of the absolute differ-
ence between two bytes picked from a uniform distribution
in [0, 255] is 85.33, which is normalized by 255 to have

UACI = 33.46%. The key sensitivity can be evaluated in
terms of the NPCR and UACI of the decrypted images with
exact key and perturbed key, respectively. With an effective
image encryption scheme, the plaintext image cannot be
recovered if the key is slightly perturbed.

Table 2 lists the performance indices of various image
encryption methods. The values of IE and CRs are close
to 8 and zero, respectively, confirming the randomness of
ciphertext image. The NPCR and UACI are close to the ideal
values of 99.61 % and 33.33 %, respectively. The slight
differences among different schemes are possibly attributed
to the difference of image size. The image encryption time
on an image of size 512 × 512 is about 0.2 s with most
methods.

In this work, we propose the second-order chaotic maps
with optimized random coefficients to generate chaotic
sequences for image encryption. Two screening conditions
are proposed to identify 300 candidate chaotic maps in terms
of complexity indices K and SE. A particle swarm optimiza-
tion method is then applied to search for the optimal chaotic
maps under eight different weighting schemes. The optimal
chaotic maps are evaluated in terms of the complexity indices
Np, DKY , CD, K , SE and PE. The sensitivity of all the system
parameters and initial values is simulated to evaluate the
security performance of the optimal chaotic maps. A hybrid
sequence generation (HSG) scheme is also proposed to fur-
ther reduce the image encryption time.

The rest of this work is organized as follows. The opti-
mization of chaotic maps is presented in Section II, image
encryption is presented in Section III, and some conclusions
are drawn in Section IV.

II. OPTIMIZATION OF CHAOTIC MAPS
A general chaotic map can be implemented as

x̄[ℓ+ 1] = f̄ (x̄[ℓ])

where x̄[ℓ] = (x1[ℓ], x2[ℓ], · · · , xN [ℓ]) in an N -dimensional
phase space constitutes N sequences, xn[ℓ], with 1 ≤ n ≤ N .
Let’s consider anM th-order power-series form of fn(x̄[ℓ]) as

xn[ℓ+ 1] =
m=0,1,···M∑

m1+m2+···+mn=m

anm1m2···mn

× xm1
1 [ℓ]xm2

2 [ℓ] · · · xmnn [ℓ] (1)

where mn is the exponent of xn and {anm1m2···mn} are the
system parameters.

In this work, we will focus on 2D chaotic maps (with
N = 2), which generate two chaotic sequences to implement
permutation and diffusion, respectively, on pixels for the pur-
pose of image encryption. To provide sufficient complexity,
M = 2 is chosen and (1) is thus reduced to

xn[ℓ+ 1] =
m=0,1,2∑
m1+m2=m

anm1m2x
m1
1 [ℓ]xm2

2 [ℓ], n = 1, 2 (2)
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Explicitly,

x1[ℓ+ 1] = a100 + a110x1[ℓ]+ a101x2[ℓ]

+ a120x21 [ℓ]+ a111x1[ℓ]x2[ℓ]+ a102x
2
2 [ℓ] (3)

x2[ℓ+ 1] = a200 + a210x1[ℓ]+ a201x2[ℓ]

+ a220x21 [ℓ]+ a211x1[ℓ]x2[ℓ]+ a202x
2
2 [ℓ] (4)

which take 16 multiplications to march on ℓ. To reduce the
number of multiplications, (3) and (4) are rearranged as

x1[ℓ+ 1] = a100 + (a110 + a111x2[ℓ]+ a120x1[ℓ])x1[ℓ]

+ (a101 + a102x2[ℓ])x2[ℓ] (5)

x2[ℓ+ 1] = a200 + (a210 + a211x2[ℓ]+ a220x1[ℓ])x1[ℓ]

+ (a201 + a202x2[ℓ])x2[ℓ] (6)

which take 10 multiplications.

A. SCREENING OF INITIAL POPULATION
A chaotic map candidate is created by selecting the system
parameters anm1m2 ’s as random numbers from a uniform dis-
tribution in [−1, 1] and setting x1[1] = 0.5 and x2[1] = 0.5.
Then, (5) and (6) are used to generate sequences x1[ℓ]’s
and x2[ℓ]’s of length Lt = L + Lig = 10, 500, where
L = 10, 000 is the preplanned length and Lig = 500 is the
extended length. If the two sequences do not diverge, the first
Lig elements of each sequence are removed to form two new
sequences x1[ℓ]’s and x2[ℓ]’s of length L.
By trial and error, we get 22 viable chaotic maps accom-

panied with 184 divergent maps. If the range of system
parameters is extended to [−1.5, 1.5], we get 9 viable chaotic
maps accompanied with 253 divergent maps. Similarly, if the
range is extended to [−2, 2], we get 5 viable chaotic maps
accompanied with 274 divergent maps. It seems adopting
a wider range reduces the number of viable chaotic maps
although the key space for encryption is increased. As a trade-
off, the range of [−1, 1] is adopted in this work.
Based on the literature survey listed in Table 1, we set a

condition for screening the initial population of chaotic map
candidates as

(maxK > 0.5) or (max SE > 0.5) (7)

where high growth rate K tends to exclude stand-still
sequences [23] and high SE favors sequences with spectral
power resembling white noise. This condition admits can-
didates with at least one of the complexity indices, K1, K2,
SE1 and SE2, greater than 0.5.
Fig.1 shows the complexity indices of 300 maps that sat-

isfy the screening condition (7), which are relabeled in an
ascending order of their K1 index. The indices K , SE and PE
of sequence xn[ℓ] is labeled asKn, SEn, and PEn, respectively,
with n = 1, 2.

Fig.1(a) shows that more than 50% of the maps have
K1 = 0.12 or K2 = 0.12. We arbitrarily set a threshold of
K1 = 0.8, marked by the dashed line, to distinguish between
chaotic maps and non-chaotic ones. Figs.1(b)- 1(f) confirm
that this dashed line also roughly separates chaotic maps from

FIGURE 1. Complexity indices of 300 chaotic maps satisfying (7),
relabeled in ascending order of K1 index, (a) •: K1, •: K2, (b) •: SE1,
•: SE2, (c) •: PE1, •: PE2, (d) Np, (e) DKY , (f) CD.

non-chaotic ones in terms of the other five chaotic indices.
Fig.1(b) shows that the maps before map index 197 have
max{SE} < 0.75, although some maps with low SE exist
betweenmap indices 197 to 259. Fig.1(c) shows that themaps
after map index 197 have PE > 0.4. Figs.1(d)-1(f) show
that most of the maps after map index 197 have Np ≥ 1,
DKY > 1 and CD> 0.9.
Based on these observations, a more strict screening con-

dition is set as

(minK > 0.8) and (min SE > 0.8) (8)

Fig.2 shows the complexity indices of 300maps that satisfy
(8), which are relabeled in ascending order ofK1 index. These
maps in general have PE > 0.5, Np ≥ 1, DKY > 1 and
CD > 1, in addition to K > 0.8 and SE > 0.8 as set in (8).
Fig.2(b) shows that the SE falls within [0.8, 0.95]. Fig.2(c)
shows that most maps have PE falling within [0.5, 0.8].
By comparing Fig.2 and Fig.1, (8) is proven a more effective
condition for screening chaotic maps.

Figs.3(a) and 3(b) show the distribution of 12 system
parameters in 300 chaotic maps generated under the screen-
ing conditions of (7) and (8), respectively. Each system
parameter of the 300 chaotic maps roughly follows a uniform
distribution in [−1, 1], under either screening condition.
In conventional chaos encryption, the system parameters

of a chaotic map are used as keys, and the key space is deter-
mined by the range of system parameters. Encryptions with

83836 VOLUME 11, 2023



T.-C. Yeh, J.-F. Kiang: Second-Order Chaotic Maps

FIGURE 2. Complexity indices of 300 chaotic maps satisfying (8),
relabeled in ascending order of K1 index, (a) •: K1, •: K2, (b) •: SE1,
•: SE2, (c) •: PE1, •: PE2, (d) Np, (e) DKY , (f) CD.

FIGURE 3. Distribution of coefficients in 300 chaotic maps, (a) under
condition (7), (b) under condition (8).

larger key space are more resilient to attacks. In most chaotic
maps, the range of system parameters are restricted to a small
range or have discontinuity within the preplanned range.
A viable chaotic map remains chaotic if the system param-
eters are slightly perturbed.

B. PHASE PORTRAITS OF CHAOTIC MAPS
Fig.4 shows the phase portrait of four chaotic maps picked
from the 300 chaotic maps screened with (7). Their system
parameters are listed in Table 3. Fig.4(a) manifests three
clusters of points and and Fig.4(b) manifests six clusters of
points.

Fig.5(a) shows the phase portrait of M-w1 for closer
inspection, with points in the three clusters marked by dif-
ferent colors. Figs.5(b) and 5(c) illustrate that the elements
of x1[ℓ] or x2[ℓ] jump alternately from one cluster to another,
as tracked by color.

TABLE 3. System parameters (SP) of chaotic maps M-w1,2,3,4 and
M-s1,2,3,4.

TABLE 4. Complexity indices of chaotic maps M-w1,2,3,4 and M-s1,2,3,4.

Fig.6 shows a similar phase portrait with two clusters [2].
The elements of either sequence jump alternately between
these two clusters.

Clustering in phase portrait and alternating sequences are
correlated to low SEs and low PEs, as listed in Table 4.
For example, M-w1 has SEs of 0.1399, 0.1255 and PEs of
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FIGURE 4. Phase portraits of chaotic maps among 300 chaotic maps
screened with (7), L = 10, 000, (a) M-w1 with Np = 1, DKY = 1.95 and
CD = 1.58, (b) M-w2 with Np = 1, DKY = 2 and CD = 1.73, (c) M-w3 with
Np = 2, DKY = 2 and CD = 1.74, (d) M-w4 with Np = 1, DKY = 1.62 and
CD = 1.07.

FIGURE 5. (a) Phase portrait of M-w1, (b) x1[ℓ], (c) x2[ℓ].

0.4778, 0.4760; M-w2 has SEs of 0.1399, 0.1255 and PEs of
0.5958, 0.7442.

M-w1 has lower PEs than M-w2, attributed to gaps in
sequences of M-w1. For M-w1, no elements of x1[ℓ] fall in
[0.1, 0.4] and no elements of x2[ℓ] fall in [−1.1,−0.3]. For
M-w2, x1[ℓ]’s fall in [−0.6, 0.57] and x2[ℓ]’s fall in [0.3, 1],
without gap or discontinuity.

The complexity indices Np, DKY and CD characterize the
dimension of the strange attractor. The Lyapunov exponents
(LEs) in anN -dimensional phase spacemeasureN separation

FIGURE 6. (a) Phase portraits of 2D chaotic maps [2], with L = 104,
Np = 1, DKY = 2, CD = 1.71. (b) x1[ℓ], (c) x2[ℓ].

rates, of sequences generated with a given chaotic map,
in N independent directions from a starting point [48],
which are used to evaluate the complexity of the chaotic
map [15], [20], [49], [50]. The number Np of positive LEs
indicates the dimension of the strange attractor. However,
LEs may fluctuate around zeros, yielding ambiguous Np.
Take Fig.4(d) of map M-w4 for example, despite the 2D-like
strange attractor, its Np value is one.
TheDKY derived with Kaplan-Yorke formula estimates the

dimension of the strange attractor [51]. Higher DKY implies
larger Np hence higher complexity. Take chaotic map M-w1
for example, it has LEs of 0.381 and−0.403, yieldingDKY =
1+ 0.381/0.103 = 1.95. It seems DKY tends to overestimate
the dimension of the strange attractor.

The correlation dimension (CD) measures the dimension
of the distribution formed by the N -sequences in the phase
space. An N -dimensional map with CD close to N has high
complexity. The dimension of the strange attractor can be
estimated more accurately with the CD index, but its com-
putational time is O(L2), as compared to O(L) for computing
the other indices.

As listed in Table 4, chaotic maps with high-dimensional
strange attractor is expected to have better encryption perfor-
mance. For a chaotic map with 1D-like phase portraits, the
value of x1 can be used to predict x2.
Figs.4(a) and 4(b) manifest clusters in the phase portraits,

forming partial 2D stranger attractors. Hence, M-w1 has
Np = 1, DKY = 1.95, CD = 1.58, and M-w2 has Np = 1,
DKY = 2, CD = 1.73. The phase portrait in Fig.4(c)
appears continuous over 2D region. Chaotic maps with 2D-
like strange attractor typically have Np = 1, high DKY and
high CD, as exemplified in Table 4 that M-w3 has Np = 2,
DKY = 2 and CD = 1.74. Fig.4(d) manifests a 2D-like
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FIGURE 7. Phase portraits of chaotic maps among 300 chaotic maps
screened with (8), L = 10, 000, (a) M-s1 with Np = 1, DKY = 1.30 and
CD = 1.35, (b) M-s2 with Np = 1, DKY = 2 and CD = 1.69, (c) M-s3 with
Np = 2, DKY = 2 and CD = 1.71, (d) M-s4 with Np = 1, DKY = 1.48 and
CD = 1.30.

strange attractor, but with many elements falling on the con-
tour, hence its CD index is only 1.07.

Fig.7 shows the phase portraits of four maps picked from
the 300 chaotic maps generated under (8), with their system
parameters listed in Table 3. Figs.7(a) and 7(b) manifest
2D-like strange attractors, which are less evenly distributed
as compared with that in Fig.7(c). Hence, the CD indices of
M-s1 and M-s2 are 1.35 and 1.69, respectively, smaller than
1.78 of M-s3.
Since condition (8) implies SE1,SE2 > 0.8, clustering

features as in Figs.4(a) and 4(b) are less likely to appear. Thus,
no gaps are likely to appear in the values of x1[ℓ] and x2[ℓ],
which is correlated to higher PE, as confirmed in Table 4.
Maps satisfying the condition in (7) are more likely to

generate sequences with finite period or converging to a fixed
point. Suchmaps are likely to be screened out under condition
(8). The maps satisfying the condition in (8) are likely to have
higher values of K , SE and PE indices.

Next, a particle swarm optimization (PSO) algorithm is
proposed to fine-tune the system parameters of chaotic maps
in terms of Np, DKY , CD, K , PE and SE.

C. OPTIMIZATION OF SYSTEM PARAMETERS WITH
PSO ALGORITHM
Next, a particle swarm optimization (PSO) algorithm is devel-
oped to boost the complexity of chaotic maps to the highest
possible level by optimizing the system parameters anm1m2 ’s.
The objective function is defined in terms of the complexity

indices Np, DKY , CD, K , SE and PE as

ξ = αNp
1

1+ Np
+ αDKY

1
1+ DKY

+ αCD
1

1+ CD

+ αK

(
1+

N∑
n=1

Kn

)−1
+ αSE

(
1+

N∑
n=1

SEn

)−1

+ αPE

(
1+

N∑
n=1

PEn

)−1
(9)

where α’s are the weighting coefficients on different com-
plexity indices. The ranges of these indices are {Np|Np =
0, 1, 2}, {DKY |0 ≤ DKY ≤ 2}, {CD|CD ≥ 0}, {Kn|0 ≤
Kn ≤ 1}, {SEn|0 < SEn < 1} and {PEn|0 < PEn < 1}. The
denominator of each term is added by one to avoid possible
numerical singularity.

The 300 chaoticmaps screenedwith condition (7) or (8) are
used as the initial particles of the PSO algorithm. The system
parameters anm1m2 ’s of the pth chaotic map are equivalent to
the position coordinates of the pth particle, r̄ (g)p , where the
superscript g means the gth iteration. The position r̄ (g)p and
velocity v̄(g)p of the pth particle are updated as

v̄(g+1)p = vµv̄(g)p + pµw̄p(r̄
(g)
pb − r̄

(g)
p )+ gµw̄g(r̄

(g)
gb − r̄

(g)
p )

r̄ (g+1)p = r̄ (g)p + v̄
(g+1)
p

where vµ is the inertial weight, pµ is the personal weight, gµ is
the social weight, r̄gb is the global best position, r̄pb is the per-
sonal best position of particle p, w̄p = {wp1,wp2, · · · ,wpN }
and w̄g = {wg1,wg2, · · · ,wgN } are weighting vectors, with
wpn and wgn random numbers uniformly distributed in [0, 1].
In this work, we choose vµ = 0.8, pµ = 0.1 and gµ = 0.1.

D. OPTIMAL CHAOTIC MAPS UNDER DIFFERENT
WEIGHTING SCHEMES
Table 5 lists the complexity indices of the optimal chaotic
maps under different weighting schemes, which are labeled as
uni-s/w, K -s/w, SE-s/w, PE-s/w, respectively, pending on the
weighting vector ᾱ = [αNp , αDKY , αCD, αK , αSE, αPE]. The
uni scheme is assigned with uniform weighting coefficients
of α = 1, the K scheme, SE scheme and PE scheme are
assigned with αK = 100, αSE = 100 and αPE = 100,
respectively, while the other α coefficients are set to one. The
attached labels w and s indicate the weak condition in (7) and
the strong condition in (8), respectively.

Performance indices Np and DKY are not assigned with
large weighting coefficients because the maximum values of
Np = 2 and DKY = 2 are relatively easy to achieve. The
value of LE varies slightly as L is incremented, leading to
alternation of Np between 1 and 2.

The CD index characterizes the dimension of a strange
attractor, but it cannot distinguish between chaotic and non-
chaotic maps. For example, a stationary 2-sequence with
x1[ℓ] = 0 and x2[ℓ] = 0 for all ℓ has an infinite CD index.
From the simulation results, we observe that under the

K -s/w scheme, the resulting sequences manifest Brownian-
like motion in the pq plane. Under the SE-s/w scheme, the
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resulting sequences behave like white noise in the spectral
domain. Under the PE-s/w scheme, adjacent elements in the
resulting sequences possess unbiased ordering pattern. Simi-
lar observations will be elaborated in the rest of this Section.

FIGURE 8. Iteration of global best objective function under weighting
scheme of (a) uni-s/w, (b) K -s/w, (c) SE-s/w, (d) PE-s/w. ———: screened
with (8), − − −: screened with (7).

Fig.8 shows the iteration of global best objective function
gb under weighting schemes of uni-s/w, K -s/w, SE-s/w and
PE-s/w, respectively. It is observed that the objective function
converges faster if the chaotic maps are screened with (8)
instead of (7). The initial value of gb screened with (8) is
lower than that with (7).

Given a perfect chaotic map with the highest possible com-
plexity indices of Np = 2, DKY = 2, CD = 2, K1 = K2 = 1,
SE1 = SE2 = 1 and PE1 = PE2 = 1, the objective function
under the weighting scheme of K , SE or PE in (9) will be 35.
The distributions of K , SE and PE in Figs.1 and 2, show that
SE and PE are capped by 0.95 and 0.8, respectively. Hence,
the global best objective function under weighting schemes
of SE-s/w and PE-s/w are more difficult to converge to the
ideal value of 35 than that under weighting scheme of K -s/w.

Table 5 shows that uni-s scheme achieves complex-
ity indices of CD = 2.0387, K = [0.9917, 0.9942],
SE = [0.9335, 0.9380] and PE = [0.8735, 0.9131], which
are higher than their counterparts of uni-w scheme, with
CD= 2.0292,K = [0.9493, 0.9631], SE= [0.8868, 0.9070]
and PE = [0.8440, 0.8776]. The K -s scheme achieves
the highest K of 0.9990 and higher CD of 1.9138 than
1.8845 under K -w scheme. The SE-s scheme achieves higher
SE = [0.9463, 0.9461] than SE = [0.9465, 0.9380] under
SE-w scheme. The PE-s scheme achieves higher PE =
[0.9495, 0.9409] than PE = [0.8742, 0.8762] under PE-w
scheme.

Table 6 lists the system parameters of the optimal chaotic
maps under different weighting schemes. It is observed that
several system parameters are out of the initial range of
[−1, 1], for example, a101 = 1.74 under SE-w scheme and
a100 = 2.172 under PE-s scheme.

TABLE 5. Complexity indices of optimal chaotic maps screened with
condition (7) or (8).

TABLE 6. System parameters (SP) of optimal chaotic maps under
different weighting schemes.

Fig.9 shows the phase portrait of the optimal chaotic maps.
Except that under SE-s scheme, all the other phase por-
traits manifest 2D strange attractor, correlated to CD > 1.8.
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FIGURE 9. Phase portrait under scheme of (aw) uni-w, (bw) K -w, (cw)
SE-w, (dw) PE-w, (as) uni-s, (bs) K -s, (cs) SE-s, (ds) PE-s, with L = 10, 000.

The strange attractor is preferred to be 2D than 1D for the
purpose of image encryption.

The phase portrait in Fig.9(dw) resembles that in
Fig.9(aw), and their system parameters are also comparable.

Table 5 shows that uni-w and uni-s schemes achieve
Np = 2, DKY = 2 and CD ≃ 2. The uni-s scheme achieves
SE of [0.9335, 0.9380], higher than [0.8868, 0.9070] under
uni-w scheme.

Fig.9(aw) manifests a larger low-density area than in
Fig.9(as), implying the former has lower SE than in the latter.
In general, larger and more uniform phase portrait imply
higher SE.

Fig.9(cw) displays a 2D strange attractor composed of line
features, with CD = 1.888. Fig.9(cs) displays a 1D-like
strange attractor, with CD = 1.526. It seems an SE scheme
tends to manifest line-like features in the phase portrait.

The phase portrait shown in Fig.9(ds) manifests square
regions with slightly different density, similar to that shown
in Fig.10 [4]. The PE-s achieves good complexity indices
of K = 0.9964, 0.9982, SE = 0.9404, 0.9465 and PE =
0.9495, 0.9409.

E. DEMONSTRATION UNDER UNI-S SCHEME
Fig.11(a) shows the system parameters of top 10 chaotic
maps rated by their objective functions, optimized under the
uni-s weighting scheme on candidates screened with (8).
The red diamonds mark the system parameters of the best
chaotic map, which are also listed in Table 6. Note that some
coefficients lie beyond the range of [−1, 1].

Fig.11(b) shows the phase portrait of the associated
2-sequences, with length L = 4000. The phase portrait
manifests a 2D patch with relatively uniform distribution.

Fig.11(c) shows the phase portrait of the 2-sequences with
length L = 10000. The patches become more conspicu-
ous compared to those in Fig.11(b). Table 5 shows that the
LEs characterizing the separation rate of the 2-sequences
are 0.6790 and 0.1224, leading to Np = 2, DKY = 2 and
CD = 2.0387, consistent with a 2D-like strange attractor.

Figs.12(a) and 12(b) show the probability (power spec-
trum) of x1[ℓ] and x2[ℓ], respectively, with L = 10000.
Figs.12(c) and 12(d) show their counterparts with L = 4000.
The probability distributions with two different sequence
lengths L appear similar. The probability distributions of
x1[ℓ] and x2[ℓ] are relatively uniform, associated with
SE = 0.9335, 0.9380.

Let’s define the p and q sequences of a sequence x[ℓ] with
length L as [52]

p[ℓ] =
ℓ−1∑
ℓ′=1

x[ℓ′ − 1] cos[ca(ℓ′ − 1)] (10)

q[ℓ] =
ℓ−1∑
ℓ′=1

x[ℓ′ − 1] sin[ca(ℓ′ − 1)] (11)

where p[1] = 0, q[1] = 0, and ca is a number ran-
domly picked from (0, 2π ), excluding π . Eqns.(10) and (11)
become conventional cosine and sine transforms, respec-
tively, if the upper bound of summation is fixed at L − 1 and
ca = 2π (ℓ− 1)/L.
If a sequence x[ℓ] manifests regular features, a circular pq

trace will emerge. Take x[ℓ] = cos(c′aℓ) for example, with
0 < c′a − ca ≪ 1, the pq sequences are

p[ℓ] =
ℓ−1∑
ℓ′=1

cos[c′a(ℓ
′
− 1)] cos[ca(ℓ′ − 1)]

≃
1

4 sin(ca2/2)
sin

(2ℓ− 3)ca2
2

+
1
4

(12)

q[ℓ] =
ℓ−1∑
ℓ′=1

cos[c′a(ℓ
′
− 1)] sin[ca(ℓ′ − 1)]

≃
1

4 sin(ca2/2)

[
cos

(2ℓ− 3)ca2
2

+ cos
ca2
2

]
(13)

where ca2 = c′a − ca ≃ 0.
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FIGURE 10. Phase portrait of chaotic map in [4], with L = 10000,
CD = 1.15, Np = 1, DKY = 2.

In this work, 200 ca’s are randomly picked from a uniform
distribution in (0, 2π ) to compute the pq sequences with (10)
and (11) [52]. Then, the pand q sequences are used to compute
a mean-square displacement M [ℓ], which is the sum of the
power spectra at ca of elements x[ℓ′ + 1], · · · , x[ℓ′ + ℓ].
For a regular sequence like x[ℓ] = cos(c′aℓ), there are two
spikes at ℓ/L = c′a on the power spectrum. For a chaotic
sequence, M [ℓ] will increase with ℓ, regardless of ca. A cor-
relation coefficient of M [ℓ] and ℓ is computed for each of
the 200 ca’s. These correlation coefficients are then averaged
to yield the growth rate K . The growth rates of K = 0 and
K = 1 indicate a regular map and a highly chaotic map,
respectively [4], [18], [23].

Figs.13(a) and 13(b) show the evolution of p and q
sequences, respectively, of a sequence x[ℓ] = cos(c′aℓ), with
c′a = 0.11 and ca = 0.1008. The sequences derived with
complete and approximate forms are very close. Fig.13(c)
shows the corresponding pq trace of complete form and
approximate form, respectively. Both traces appear to be
circular. Fig.13(d) shows the pq traces of the sequence x[ℓ] =
cos(c′aℓ) with c

′
a = 0.11 and ca = 2π (cℓ/200) with cℓ =

1, 2, · · · , 200. The traces are composed of multiple rings and
the growth rate is K = 0.0446.

Figs.14(a1) and 14(a2) show the pq traces of x1[ℓ′] and
x2[ℓ′], respectively, with ca = 2π (123/200), under uni-s
scheme. Both traces appear chaotic. In contrast, Figs.14(b1)
and 14(b2) show the pq traces of x1[ℓ′] and x2[ℓ′], respec-
tively, with ca = 2π (1/200), under uni-s scheme. The
ring-like pattern indicates a regular map.

Figs.15(a1) and 15(a2) show the pq traces of x1[ℓ′]
and x2[ℓ′], respectively, under uni-s scheme, with ca =
2π (cℓ/200) and cℓ = 1, 2, · · · , 200. Most pq traces are
chaotic and manifest Brownian-like features. There are a few
ring-like patterns immersed in the pq traces, attributed to
specific ca’s as demonstrated in Figs.14(b1) and 14(b2).
Figs.15(b1) and 15(b2) show the pq traces of x1[ℓ′]

and x2[ℓ′], respectively, under K -s scheme, with ca =
2π (cℓ/200) and cℓ = 1, 2, · · · , 200. No regular traces as
in Figs.15(a1) and 15(a2) are observed. The K indices are
K1 = 0.9970,K2 = 0.9990, slightly higher than their coun-
terparts of K1 = 0.9917,K2 = 0.9942, under uni-s scheme.
Figs.15(c1) and 15(c2) show the pq traces in [4], which
manifest similar features to those in Figs.15(b1) and 15(b2).

FIGURE 11. Optimal chaotic maps under uni-s weighting scheme,
(a) system parameters of top 10 chaotic maps, the best is marked by red
diamond, (b) phase portrait of best chaotic map, L = 4000, CD = 2.0489,
Np = 2, DKY = 2, (c) phase portrait of best chaotic map, L = 10000,
CD = 2.0387, Np = 2, DKY = 2.

Fig.16 shows the probability distribution of a regular
sequence x[ℓ] = mod (ℓ− 1, 5)+ 1, with running-window
size d = 5. Only five possible permutations emerge with
equal probability, leading to PE = 0.336.

Fig.17 shows the probability distribution of permutation in
x1[ℓ] and x2[ℓ], respectively, with sequence length of L =
10000 or L = 4000, under uni-s scheme.
The distributions are insensitive to the sequence length L.

Fig.2 shows that the PE index is capped around 0.8. However,
the optimal map under PE-s scheme can achieve PEs of
0.9495, 0.9409, comparable to 0.9744, 0.9807 in [4]. The
high values of Np = 2, DKY = 2 and CD = 1.8273, as listed
in Table 5, indicate a 2D strange attractor.
As summarized in Table 5, the optimal maps under weight-

ing schemes uni-s, K -s and PE-s achieve CD > 1.8, K >

0.99, SE > 0.9 and PE > 0.8, making them suitable for
image encryption. Fig.9(cs) shows 1D-like strange attractor
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FIGURE 12. Probability (power spectrum) of (a) x1[ℓ] and (b) x2[ℓ], with
L = 10000, (c) x1[ℓ] and (d) x2[ℓ], with Ł = 4000.

FIGURE 13. p and q sequences of x[ℓ] = cos(c ′
aℓ), with c ′

a = 0.11 and
ca = 0.1008, (a) p sequence, ———: complete form, ———: approximate
form in (12), (b) q sequence, ———: complete form, ———: approximate
form in (13), (c) pq trace, ———: complete form, ———: approximate form in
(12) and (13), (d) pq trace, x[ℓ] = cos(c ′

aℓ) with 1 ≤ ℓ ≤ 10000,
ca = 2π(cℓ/200) with cℓ = 1, 2, · · · , 200, K = 0.0446.

under SE-s scheme, associated with low CD of 1.53, losing
some edge for image encryption.

III. IMAGE ENCRYPTION
The optimal chaotic maps acquired in the last Section are
used to generate chaotic 2-sequences, which are then used
to implement image encryption.

A. CRYPTOGRAPHY WITH HYBRID SEQUENCE
GENERATION
Fig.18 shows the flow-chart of the proposed image encryption
scheme, implemented with Algorithm 1. The hash values
b1 and b2 are computed in step 1 and multiplied to the initial
values (x1[1], x2[1]) in step 2 to enhance the resilience against

FIGURE 14. pq traces of x1,2[ℓ′] with 1 ≤ ℓ′ ≤ 10000, under uni-s scheme,
(a1) x1[ℓ′], ca = 2π(123/200), (a2) x2[ℓ′], ca = 2π(123/200), (b1) x1[ℓ′],
ca = 2π(1/200), (b2) x2[ℓ′], ca = 2π(1/200).

FIGURE 15. pq traces of x1,2[ℓ′] with 1 ≤ ℓ′ ≤ 10000, ca = 2π(cℓ/200)
with cℓ = 1, 2, · · · , 200, (a1) x1[ℓ′] under uni-s scheme, K = 0.9917
(a2) x2[ℓ′] under uni-s scheme, K = 0.9942. (b1) x1[ℓ′] under K -s scheme,
K = 0.9970 (b2) x2[ℓ′] under K -s scheme, K = 0.9990. p and q sequences
of x1,2[ℓ′] with 1 ≤ ℓ′ ≤ 10000 in [4], (c1) x1[ℓ′] in [4], K = 0.9982
(c2) x2[ℓ′] in [4], K = 0.9965.

differential attacks. In steps 3-5, 2-sequence x1[ℓ] and x2[ℓ]
of length Lm = ⌈

√
3LrLc/2⌉ are generated with initial values

(x1[1], x2[1]) and chaotic-map system parameters {anm1m2}.
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FIGURE 16. Probability distribution of a regular sequence x[ℓ] =

mod (ℓ − 1, 5) + 1, with running-window size d = 5, PE = 0.336. Each
permutation index indicates a specific permutation order, for example,
index 1 corresponds to x[ℓ] ≥ x[ℓ + 1] ≥ x[ℓ + 2] ≥ x[ℓ + 3] ≥ x[ℓ + 4].

FIGURE 17. Probability distribution of permutation, under uni-s scheme,
(a1) x1[ℓ], L = 10000, PE = 0.8755, (a2) x2[ℓ], L = 10000, PE = 0.9142,
(b1) x1[ℓ], L = 4000, PE = 0.8735, (b2) x2[ℓ], L = 4000, PE = 0.9131.

In step 6, a hybrid sequence generation (HSG) method
implemented with Algorithm 2 is proposed to generate a
hybrid sequence xh[ℓ]. The HSG method is designed to save
the encryption time by reducing the required sequence length
since the generation of 2-sequences is time consuming. For an
image of size (Lr ,Lc,Lp), the required length of conventional
2-sequences is LrLcLp, which is reduced to

√
3LrLc/2 by

using the HSG method.
In step 7, a diffusion sequence xd [ℓ] is generated. In step 8,

the plaintext image Ip[ℓr , ℓc, ℓp] is vectorized to a 1D array
of Ip1[ℓ]. In step 9, Ip1[ℓ] is permuted via xh[ℓ] to acquire
I ′c1[ℓ]. In step 10, Ic1[ℓ] is obtained by applying XOR on
I ′c1[ℓ] and xd [ℓ]. In step 11, Ic1[ℓ] is reformatted to a cipher-
text image Ic[ℓr , ℓc, ℓp].

Algorithm 2 shows the hybrid sequence generation (HSG)
scheme to acquire a hybrid sequence xh[ℓ]. In step 1, 2D
arrays x̃1[ℓ1, ℓ2] and x̃2[ℓ1, ℓ2], each of size Lm×Lm, are gen-
erated in terms of the 2-sequences x1[ℓ1] and x2[ℓ2]. In step 2,
the two arrays x̃1[ℓ1, ℓ2] and x̃2[ℓ1, ℓ2] are vectorized into
1D arrays x̃ ′1[ℓ] and x̃

′

2[ℓ], respectively. In step 3, a hybrid
sequence xh[ℓ] of length 3LrLc is acquired by alternately
copying the elements of x̃ ′1[ℓ] and x̃

′

2[ℓ].
Algorithm 3 shows the decryption scheme, which has

the same architecture as the encryption scheme shown

FIGURE 18. Flow-chart of image encryption scheme implemented with
Algorithm 1.

FIGURE 19. Demonstration of image encryption and decryption with
optimal chaotic map under uni-s scheme, (a) plaintext image of Lenna,
(b) encrypted image, (c) decrypted image.

in Algorithm 1. Note that the diffusion operation is applied
before permutation in the decryption scheme, while the order
is reversed in the encryption scheme.

B. ENCRYPTED IMAGES
Fig.19 demonstrates the results of image encryption and
decryption with the optimal chaotic map under uni-s scheme.
Fig.19(a) shows the plaintext image of Lenna, Figs.19(b)
and 19(c) show the encrypted image and decrypted image,
respectively. An ideal ciphertext image manifests random
pixels, and the deciphertext image looks almost the same as
the original plaintext image.

The information entropy (IE) is often used to measure the
randomness of pixels in an image. Given a ciphertext image
Ic[ℓr , ℓc, ℓp], the occurrence rate (probability) p[ℓe] of pixel
value ℓe − 1, with 1 ≤ ℓe ≤ 256, is computed as

p[ℓe] =
1

3LrLc

Lr∑
ℓr=1

Lc∑
ℓc=1

3∑
ℓp=1

Q(Ic[ℓr , ℓc, ℓp], ℓe)

where

Q(I, ℓe) =


1, I = ℓe − 1

0, otherwise

The information entropy is defined as

IE = −
256∑
ℓe=1

p[ℓe] log2 p[ℓe]
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Algorithm 1 Encryption Scheme
Input: plaintext image Ip, initial values (x1[1], x2[1]), and

system parameters {anm1m2}.
Output: ciphertext image Ic, hash values (b1, b2).

Algorithm:
1) compute hash values b1 and b2.

compute extended length Le as
Le = 2

∑
ℓr ,ℓc,ℓp

Ip[ℓr , ℓc, ℓp].

compute xn[ℓ] of length Le+ 100 with chaotic map
of system parameters {anm1m2} and initial values
(x1[1], x2[1]).
xnf = xn[Le + 100].
bn = xnf , n = 1, 2.

2) perturb the initial values as
xn[1]← xn[1]+ 0.1× xn[1]× xnf , n = 1, 2.

3) acquire image row number Lr and column number
Lc.

4) Lm = ⌈
√
3LrLc/2⌉

5) generate x1[ℓ] and x2[ℓ] of length Lm with chaotic
map of system parameters {anm1m2} and initial val-
ues (x1[1], x2[1]).

6) construct hybrid sequence xh[ℓ], 1 ≤ ℓ ≤ 3LrLc,
with Algorithm 2.

7) create diffusion sequence xd [ℓ] as
xd [ℓ]← mod{⌊105xh[ℓ]⌋, 256}.

8) vectorize Ip[ℓr , ℓc, ℓp] to Ip1[ℓ], 1 ≤ ℓ ≤ 3LrLc.
for ℓr = 1 : Lr
for ℓc = 1 : Lc
ℓ← Lc(ℓr − 1)+ ℓc
Ip1[ℓ]← Ip[ℓr , ℓc, 1]
Ip1[LrLc + ℓ]← Ip[ℓr , ℓc, 2]
Ip1[2LrLc + ℓ]← Ip[ℓr , ℓc, 3]
end
end

9) I ′c1[ℓ]← permute Ip1[ℓ] with xh[ℓ].
10) Ic1[ℓ]← I ′c1[ℓ]⊕ xd [ℓ].
11) generate ciphertext Ic[ℓr , ℓc, ℓp].

for ℓr = 1 : Lr
for ℓc = 1 : Lc
k ← Lc(ℓr − 1)+ ℓc
Ic[ℓr , ℓc, 1]← Ic1[k]
Ic[ℓr , ℓc, 2]← Ic1[LrLc + k]
Ic[ℓr , ℓc, 3]← Ic1[2LrLc + k]
end
end

The maximum value of IE is 8, which is achieved with
p[ℓe] = 1/256 for 1 ≤ ℓe ≤ 256.
Fig.20 shows the histograms of the plaintext images and the

ciphertext images, in red, green and blue channels, respec-
tively, associated with the images shown in Fig.19. It is
observed that the pixels in each color channel of the plain-
text image follow a non-uniform distribution, while their

Algorithm 2 Hybrid Sequence Generation (HSG)
Input: 2-sequences x1[ℓ] and x2[ℓ], with 1 ≤ ℓ ≤ Lm, image

size (Lr ,Lc).
Output: hybrid sequence xh[ℓ], with 1 ≤ ℓ ≤ 3LrLc.

Algorithm:
1) generate 2D arrays x̃1[ℓ1, ℓ2] and x̃2[ℓ1, ℓ2] of size

Lm × Lm.
for ℓ1 = 1 : Lm
for ℓ2 = 1 : Lm
x̃1[ℓ1, ℓ2] = x1[ℓ1]+ x2[ℓ2]
x̃2[ℓ1, ℓ2] = x1[ℓ1]− x2[ℓ2]

end
end

2) vectorize x̃1[ℓ1, ℓ2] and x̃2[ℓ1, ℓ2] to x̃ ′1[ℓ] and
x̃ ′2[ℓ], respectively, with 1 ≤ ℓ ≤ L2m.
for ℓ1 = 1 : Lm
for ℓ2 = 1 : Lm
x̃ ′1[Lm(ℓ1 − 1)+ ℓ2] = x̃1[ℓ1, ℓ2]
x̃ ′2[Lm(ℓ1 − 1)+ ℓ2] = x̃2[ℓ1, ℓ2]
end
end

3) generate hybrid sequence xh[ℓ], with
xh[1 : 2 : 3LrLc]← x̃ ′1[1 : ⌈(3LrLc − 1)/2⌉ + 1]
xh[2 : 2 : 3LrLc]← x̃ ′2[1 : ⌈3LrLc/2⌉]

counterparts in the ciphertext image follow a uniform distri-
bution, indicating random pixels.

The values of adjacent pixels in a typical plaintext image
are highly correlated, while those of an effective ciphertext
image are highly uncorrelated. Given an image I[ℓr , ℓc, ℓp]
with size (Lr ,Lc,Lp), correlation coefficients CRh, CRv
and CRd in the horizontal, vertical and diagonal directions,
respectively, are determined as

CRph =
cov(I[ℓr , ℓc, ℓp], I[ℓr , ℓc + 1, ℓp])
σ (I[ℓr , ℓc, ℓp])σ (I[ℓr , ℓc + 1, ℓp])

CRpv =
cov(I[ℓr , ℓc, ℓp], I[ℓr + 1, ℓc, ℓp]))
σ (I[ℓr , ℓc, ℓp])σ (I[ℓr + 1, ℓc, ℓp])

CRpd =
cov(I[ℓr , ℓc, ℓp], I[ℓr + 1, ℓc + 1, ℓp])
σ (I[ℓr , ℓc, ℓp])σ (I[ℓr + 1, ℓc + 1, ℓp])

where cov(a, b) is the covariance between pixels a and b, and
σ (a) is the standard deviation of pixel a.
Table 7 lists the performance indices for image encryp-

tion, with the optimal chaotic maps under uni-s, K -s, SE-s
and PE-s schemes, respectively. The information entropy
of the ciphertext image generated with these four opti-
mal chaotic maps is 7.9998, very close to the ideal value
of 8. The maximum correlation coefficient among all three
color channels and three directions is less than 4.7× 10−3,
indicating the ciphertext images have pretty random
pixels.
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Algorithm 3 Decryption Scheme
Input: ciphertext image Ic, initial values (x1[1], x2[1]), sys-

tem parameters {anm1m2} and hash values (b1, b2).
Output: deciphertext image Id

Algorithm:
1) perturb the initial condition

xn[1]← xn[1]+ 0.1× xn[1]× bn, n = 1, 2.
2) acquire row number Lr and column number Lc of

image.
3) Lm← ⌈

√
3LrLc/2⌉

4) generate x1[ℓ] and x2[ℓ] of length Lm, by using
chaotic map with system parameters {anm1m2} and
initial values (x1[1], x2[1]).

5) construct hybrid sequence xh[ℓ], 1 ≤ ℓ ≤ 3LrLc
with Algorithm 2.

6) create diffusion sequence xd [ℓ] as
xd [ℓ]← mod{⌊105xh[ℓ]⌋, 256}, n = 1, 2, 3.

7) vectorize Ic[ℓr , ℓc, ℓp] to Ic1[ℓ], 1 ≤ ℓ ≤ 3LrLc.
for ℓr = 1 : Lr
for ℓc = 1 : Lc
ℓ← Lc(ℓr − 1)+ ℓc
Ic1[ℓ]← Ic[ℓr , ℓc, 1]
Ic1[LrLc + ℓ]← Ic[ℓr , ℓc, 2]
Ic1[2LrLc + ℓ]← Ic[ℓr , ℓc, 3]

end
end

8) I ′d1[ℓ]← Ic1[ℓ]⊕ xd1[ℓ].
9) Id1[ℓ]← permute I ′d1[ℓ] with xh[ℓ].

10) generate deciphertext Id [ℓr , ℓc, ℓp].
for ℓr = 1 : Lr
for ℓc = 1 : Lc
k ← Lc(ℓr − 1)+ ℓc
Id [ℓr , ℓc, 1]← Id1[k]
Id [ℓr , ℓc, 2]← Id1[LrLc + k]
Id [ℓr , ℓc, 3]← Id1[2LrLc + k]
end
end

C. RESILIENCE TO ATTACKS
Large key space provides more degrees of freedom to defend
an encryption scheme against exhaustive attacks. The keys of
encryption scheme derived from the proposed chaotic maps
include 12 system parameters {anm1m2} and two initial values
x1[1], x2[1]. Each key is stored in a 64-bit word of IEEE754
standard [53], which is consisted of 1 sign bit, 11 exponent
bits and 52 significant bits, attaining precision of 2−53 ≃
1.11×10−16. The key space is thus estimated on the precision
of 10−15 as [4], [14], and [54] as log2 10

15×(12+2)
≃ 697 bits.

Differential attacks are used to explore an encryption
scheme for its system parameters and initial values, from the
ciphertext images of two slightly different plaintext images.
The encryption scheme is proven robust if the two ciphertext
images resemble two random images without correlations.

FIGURE 20. Histograms of plaintext images (a1, a2, a3) and ciphertext
images (b1, b2, b3), where 1, 2 and 3 denote red, green and blue,
respectively.

To be more specific, let the two slightly different plaintext
images be Ip[ℓr , ℓc, ℓp] and I ′p[ℓr , ℓc, ℓp], and their cipher-
text images be Ic[ℓr , ℓc, ℓp] and I ′c[ℓr , ℓc, ℓp], respectively.
The difference between the two ciphertext images is quanti-
fied in terms of a number-of-pixel change rate (NPCR) as [13]

NPCR =
1

3LrLc

Lr∑
ℓr=r

Lc∑
ℓc=1

3∑
ℓp=1

D(ℓr , ℓc, ℓp)

with

D(ℓr , ℓc, ℓp) =


1, Ic[ℓr , ℓc, ℓp] = I ′c[ℓr , ℓc, ℓp]

0, Ic[ℓr , ℓc, ℓp] ̸= I ′c[ℓr , ℓc, ℓp]

and a unified average changing intensity (UACI) as [13]

UACI =
1

3LrLc × 255

Lr∑
ℓr=r

Lc∑
ℓc=1

3∑
ℓp=1

|Ic[ℓr , ℓc, ℓp)− I ′c(ℓr , ℓc, ℓp)|

The NPCR gives the proportion of affected pixels in a
ciphertext image if one bit of the plaintext image is changed.
The probability for two 8-bit random numbers in [0, 255]
to be the same is 1/256 ≃ 0.39%, which implies the high-
est value of NPCR is ≃ 99.61%. The UACI measures the
change of pixel values. By picking two bytes from a uniform
distribution in [0, 255], the expectation value of the absolute
difference between these two bytes is 85.33, which implies
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TABLE 7. Performance indices for image encryption.

the highest value of UACI is 85.33/255 = 33.46%. In [54],
a statistical approach was used to derive the values of NPCR
and UACI as 99.57% and 33.28%, respectively, for an image
of size 512× 512× 3.

TABLE 8. NPCR and UACI between Ic and I′
c , R: image with random

pixels, P: plaintext image of Lenna.

Table 8 lists the values of NPCR and UACI between Ic and
I ′c, where R and P refer to plaintext images of random pixels
and Lenna, respectively, Ic is encrypted from image R and
I ′c is encrypted from image R or P. The NPCR between Ic
and I ′c sustains 99.61% with I ′c encrypted from R or P. The
UACI is 30.42 % if I ′c is encrypted from P, 33.46% if I ′c is
encrypted from R, because adjacent pixels in image P have
higher correlation than those in image R.

A robust chaotic-map encryption scheme should have high
key sensitivity [37], [55], [56], whichmeans a plaintext image
will not be recoverable even if an encryption key is slightly
perturbed. To test the key sensitivity of the proposed chaotic-
map encryption scheme, we first flip the least significant bit
of one key, among 12 system parameters anm1m2 ’s and two
initial values x1[1], x2[1], then compute the number-of-pixel
change rate (NPCRK ) and the unified average changing inten-
sity (UACIK ) between the plaintext image and the decrypted
image, similar to the number-of-bit change rate in [57]. The
subscriptK in NPCRK andUACIK indicates these two factors
are used specifically to evaluate the key sensitivity. If the

TABLE 9. NPCRK with least significant bit of key flipped.

TABLE 10. UACIK with least significant bit of key flipped.

decrypted image after flipping the least significant bit of a key
manifests random pixels, the key sensitivity is proven high.

Tables 9 and 10 list the NPCRK and UACIK , respectively,
by flipping the least significant bit of a key. Chaotic maps
under K -s, SE-s and PE-s weighting schemes manifest high
key sensitivity, with NPCRK and UACIK close to 99.61 %
and 30.42 %, respectively, indicating the decrypted images
appear random. The key sensitivity to the two initial values
x1[1], x2[1] of chaotic map under uni-s scheme is zero, when
the least significant bit is flipped.

Tables 11 and 12 list the NPCRK and UACIK , respectively,
with the third least significant bit of a key flipped. As the
variation of key is increased, all the values of NPCRK and
UACIK are close to 99.61 % and 30.42 %, respectively, with
chaotic maps under four different weighting schemes.

Figs.21(a), 21(b) and 21(c) show the decrypted images by
flipping the third least significant bit of key parameters x1[1],
a120 and a111, respectively, under uni-s weighting scheme.
All these three decrypted images manifest random pixels,
confirming high key sensitivity.

A structural similarity index measure (SSIM) has been
used to evaluate the similarity between two images I1 and
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FIGURE 21. Decrypted images by flipping the third least significant bit of
a key under uni-s weighting scheme, (a) x1[1], (b) a120, (c) a111.

TABLE 11. NPCRK with third least significant bit of key flipped.

I2 as [58]

SSIM(I1, I2) = Lu(I1, I2)C(I1, I2)S(I1, I2)

with

Lu(I1, I2) =
2µ1µ2 + c1

µ2
1 + µ2

2 + c1

C(I1, I2) =
2σ1σ2 + c2

σ 2
1 + σ 2

2 + c2

S(I1, I2) =
2σ12 + c2
2σ1σ2 + c2

where Lu, C and S delineate the similarity on luminance,
contrast and structure, respectively, µn and σn are the mean
and variance, respectively, of pixels in image In, σ12 is the
covariance of pixels between images I1 and I2, c1 = (0.01×
255)2 and c2 = (0.03× 255)2 are empirical coefficients tried
out in this work.

Fig.22 shows the resilience to occlusion attacks of the opti-
mal chaotic map under uni-s scheme. The ciphertext image is
blocked by 20%, 50% and 80%, respectively, in image area
or pixel number. It is observed that the decrypted image is
still discernible if the ciphertext image is blocked by less
than 80%.

Fig.23 shows that the SSIM between the plaintext image
and the decrypted image, with the optimal chaotic map under
uni-s scheme, drops almost linearly as the blocking percent-
age increases.

TABLE 12. UACIK with third least significant bit of key flipped.

FIGURE 22. Resilience to occlusion attacks of optimal chaotic map under
uni-s scheme, (a1) ciphertext blocked by 20 %, (b1) ciphertext blocked by
50 %, (c1) ciphertext blocked by 80 %, (a2) decrypted image from (a1),
(b2) decrypted image from (b1), (c2) decrypted image from (c1).

D. CPU TIME FOR SEQUENCE GENERATION AND
IMAGE ENCRYPTION
Fig.24 shows the CPU time for generating 2-sequences of
length L with the proposed method and various chaotic maps
in the literature. The CPU time is dominated by the num-
ber of multiplications and divisions used to implement the
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FIGURE 23. SSIM versus blocking percentage with optimal chaotic map
under uni-s scheme, • marks the cases shown in Fig.22.

FIGURE 24. CPU time for generating 2-sequences of length L.
———: hybrid of short 2-sequences from 2D chaotic map of order 2,
− − −: 2D chaotic map of order 2, ———: Henon map [10], ———: Zeraoulia
Sprott map [10], ———: Duffing map [10], ———: 2D non-invertible chaotic
economic map [14], ———: 2D-OPMAP [23], ———: memristor-coupled
logistic map [13], ———: 2D sine map [26], ———: 2D-SCMCI hyperchaotic
map [4], ———: 2D memristive map [2].

chaotic maps. The 2D-OPMAP [23] takes 12 multiplica-
tions and 2 mod functions to generate each element of the
2-sequences, with each mod function taking one division and
one multiplication. The 2D non-invertible chaotic economic
map [14] takes 8 multiplications to generate one element.
In this work, the CPU time to calculate x̄[ℓ] from x̄[ℓ− 1] as
in (2) is independent of ℓ, thus the total CPU time is a linear
function of L. The chaotic map in (5) and (6) takes 10 mul-
tiplications. Without using the hybrid sequence generation
method, the required sequence generation time will be longer
than that in [14].
The image encryption time is the sum of sequence gener-

ation time to create chaotic sequences and image confusion
time to transform a plaintext image to an encrypted image
by using the chaotic sequences. This work mainly focuses
on reducing the sequence generation time. By applying the
proposed hybrid sequence generation method in Algorithm 2,
the sequence generation time is reduced from 0.017 s to
0.0074 s with L = 512 × 512 × 3. The image encryption
time is reduced from 0.0574 s to 0.0478 s, as listed in Table 2,
along with other methods in the literature.

E. HIGHLIGHT OF NOVELTY AND CONTRIBUTIONS
The novelty and contributions of this work are summarized
as follows.

1) A genre of second-order chaotic maps is proposed for
high-security image encryption. Candidates of chaotic
map are screened with a weak condition and a strong
condition, respectively, in terms of six complexity
indices. The strong screening condition expedites the
preparation of candidates for optimization.

2) A particle swarm optimization (PSO) algorithm is
developed to fine-tune the chaotic maps through dif-
ferent weighting schemes on the complexity indices of
Np, DKY , CD, K , PE and SE. Eight different optimal
chaotic maps are acquired effectively and quickly, with
four under weak screening condition and four under
strong screening condition. These chaoticmaps achieve
K ≥ 0.9, SE ≥ 0.9, PE ≥ 0.7, better than most
counterparts in the literature.

3) The proposed image encryption method achieves a key
space of 697 bits, correlation coefficients of cipher-
text images below 4.7 × 10−3, information entropy of
7.9997, NPCR of 99.61% and UACI of 33.46%. The
proposed hybrid sequences generated with 2D chaotic
maps of order 2 can significantly reduce the CPU time
required for generating chaotic sequences.

Initially, a large number of chaotic-map candidates are
generated under the limited range and possible discontinuity
of system parameters. It takes about 1.5 CPU hours to collect
300 chaotic-map candidates under weak condition in (7) and
about 3 CPU hours under strong condition in (8). By simu-
lations, there are about 2 candidates out of 300 that generate
divergent chaotic sequences under (8). The optimal chaotic
map under the SE-s weighting scheme is more probable
to generate divergent chaotic sequences compared with the
other weighting schemes.

IV. CONCLUSION
Second-order chaotic maps with random coefficients have
been systematically analyzed in terms of six complexity
indices. Two screening conditions are proposed to estab-
lish initial population of candidate maps more effectively,
expedite the optimization of chaotic maps, and achieve the
highest possible complexity of the generated 2-sequences.
The system parameters thus acquired have continuous range
and much larger key space, making them suitable for image
encryption. Eight different optimal chaotic maps are gener-
ated from four sets of weighting coefficients in the objective
function and two sets of chaotic-map candidates. The chaotic
sequences generated with the optimal chaotic maps achieve
K ≥ 0.9, SE ≥ 0.9, PE ≥ 0.7, better than their counterparts
in the literature.

A hybrid sequence generation (HSG) method is pro-
posed to reduce the image encryption time from 0.0574 s
to 0.0478 s. The ciphertext images are close to random
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images, with information entropy IE > 7.99975 and cor-
relation coefficients < 4.7 × 10−3. The proposed image
encryption scheme is robust against differential attacks, with
NPCR ∼ 99.61% and UACI ∼ 33.46%. High key sensitivity
is proven by flipping the least significant bit of the 12 system
parameters and two initial values, respectively.
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