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ABSTRACT With the increasingly competitive job market, the employment issue for college graduates has
received more and more attention. Predicting graduation development can help students understand their
suitable graduation development, thus easing the pressure of finding employment after graduation. However,
existing research must look into the issue of imbalance and long-tail distribution in student graduation
development. This paper proposes a novel hypergraph contrastive learning model based on imbalanced
sampling (IS-HGCL) that enables us to address this problem. First, construct a hypergraph using students’
school performance and social behavior. Then, our proposed imbalanced sampling strategy is applied to
optimize the hypergraph structure and alleviate the imbalance issue. A self-updating hypergraph neural
network is designed to optimize hyperedge representation and alleviate the long-tail distribution issue to
enhance the hypergraph representation further. Finally, the structural consistency between the two optimized
hypergraphs is maximized via node-level contrastive learning. Experiments on a real-world campus dataset
demonstrate the superiority of the IS-HGCL model.

INDEX TERMS Graduation development prediction, hypergraph neural network, data imbalance, long tail

distribution.

I. INTRODUCTION

As China attaches more importance to higher education,
colleges and universities continue to expand yearly, and the
number of graduates continues to increase. Data released
by the China Bureau of Statistics shows that the number of
general undergraduate graduates in China exceeded 9.67 mil-
lion in 2022, an increase of 17.02% year-on-year from the
previous year. In addition, with the outbreak of the COVID-
19, the employment situation has become more severe, and
the unemployment rate is rising yearly. In 2022, the national
unemployment rate for college students increased by 1.2 per-
centage points compared to the previous year, currently
standing at 6.7%. This surge in the unemployment rate has
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surpassed the levels recorded in recent years. Although the
country has introduced employment policies and universities
have launched employment counseling work for college stu-
dents, the employment situation of college students still needs
improvement.

Meanwhile, with the development of information tech-
nology, the campus information system in modern colleges
and universities records a large amount of students’ behav-
ioral data during school. These data can reflect students’
learning abilities, behavioral habits. Using data mining tech-
niques to analyze the big data of campus, we can predict
college students’ employability in advance and guide them to
employment in a targeted way. Therefore, the task of gradu-
ation development prediction by mining the information in
students’ school performance data to predict the employ-
ment intention and development direction of graduates after
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FIGURE 1. Hypergraph(left) and graph(right) representation of social
relationships. (Different color sides represent different social
relationships).

graduation is crucial to solving the difficult employment
situation of college students.

In recent years, many studies have been conducted on stu-
dent behavior. In the field of graduation development predic-
tion, Nie et al. [1] proposed a central clustering method based
on XGBOOST using behavioral data of more than 4000 stu-
dents to predict students’ career choices; Consedine et al. [2]
investigated the importance of disgust sensitivity (DS) in
medical career prediction by statistical methods; Khampi-
rat [3] investigated the direct and indirect links between
father’s education, self-esteem, resilience, future goals, and
college students’ career expectations, and used structural
equation modeling to develop and validate a model for
predicting career expectations; Gao et al. [4] proposed an
enhanced slime mold algorithm based on multiple cluster
strategies for predicting graduate students’ employment sta-
bility; Wang [5] examined the student-level and parental
level to evaluate vocational education evaluation indexes
and proposed a method for predicting vocational education
employment rate based on the big data model.

Unfortunately, the above studies predict students’ grad-
uation development only by a single factor, such as stu-
dents’ grades, credits, or regular performance, ignoring social
relationships that significantly impact students’ graduation
development choices [6]. Social relationships among students
are vital for graduation development choice. Yang et al. [7]
embedded social relationships based on students’ elective
and compulsory courses and balanced the weights of student
characteristics by Transformer to predict students’ graduation
development; Cheng et al. [8] collected data on academic
performance, English proficiency, and other activities to
predict college students’ employment outcomes using deep
neural networks, providing guidelines for college students’
career development.

However, the above studies represent complex social rela-
tionships through simple graphs, which may ignore some
higher-order social information. As in Figure 1, In a simple
graph, the edges only represent the connection between two
nodes, which can only reflect a single binary relationship. The
number of students’ social relationships in a complex social
relationship network is often substantial. Representing social
relationships with simple graphs may lead to an excessive
number of nodes and edges and overly complex graphs, which
could be more conducive to graph visualization and analysis.
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FIGURE 2. Graduation development distribution.

In contrast, hypergraphs are an extension of the simple
graph model, as in Figure 1, and the hyperedges in hyper-
graphs can connect any number of nodes. They can describe
the relationships between objects more comprehensively [9].
Therefore, using hypergraphs to represent social relationships
is crucial, which can provide a more comprehensive basis
and more accurate results for social network analysis and
prediction.

Although modeling complex social relationships by adopt-
ing hypergraphs has great potential, there are still the follow-
ing challenges:

1. Imbalanced distribution of graduation development data

Despite the annual increase in the enrollment of master’s
degree students in China, the graduation development of
college students still presents an imbalance [10]. This paper
utilizes the graduation development dataset [11] obtained
from a university in China, which spans from 2014 to 2017.
As depicted in Figure 2, the majority of students opted for
direct employment, with a much smaller number of students
pursuing non-employed paths such as studying abroad, post-
graduate, and unemployment. In addition, the graph-based
approach is susceptible to data sparsity [12], which may lead
to the model being biased to learning the data characteristics
of employed students and the prediction results being biased
to employed, reducing the model accuracy. Therefore, solving
data distribution imbalance is a crucial in graduation devel-
opment prediction research.

Among the existing studies on data imbalance, Ajinkya [13]
proposed an oversampling method to balance the number
of different classes by sampling minority class samples;
Zhao [14] used interpolation between minority class samples
and neighboring samples to generate new minority class
samples. The virtual minority class samples generated by the
sampling methods of the above studies may be of low quality,
leading to the model’s bias toward the lesser number of
non-employed students’ characteristics being poorly learned,
which leads to lower model accuracy. In contrast, existing
studies on graduation development prediction [7] preprocess
the dataset to alleviate the imbalance problem.
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FIGURE 3. Student elective courses distribution(x-axis denotes the different electives and y-axis denotes the number

of students who chose the electives).

2.The long-tail distribution of student social

With the development of higher education, there are more
and more kinds and numbers of elective courses. Due to
the lack of guidance, inspection, and incentives for teaching
in schools to select courses, students often choose courses
based on their interests or whether it is easy to get credits,
etc. As a result, many students take a few courses while few
take others. Zhao et al. [15] pointed out that social networks
in the real world tend to be imbalanced, with certain social
relationships being more intense than others.

As shown in Figure 3, more students take popular courses
and fewer take other courses, which results in a long-tail
distribution of students’ social associations (Figure 4). The
long-tail distribution causes the deep learning model to learn
mainly the characteristics of students with high social asso-
ciations, and the performance of students with fewer social
associations will be significantly reduced.

In order to solve the above problems, this paper pro-
poses a hypergraph contrastive learning model based on
an imbalanced sampling graduation development prediction
model (IS-HGCL). First, the fusion modeling of students’
required courses, elective courses, and social behaviors is
obtained by deeply mining the social relationships among
students to obtain the joint hypergraph embedding. This
paper proposes using an imbalanced sampling model based
on Generative Adversarial Networks (GAN) to mitigate the
issue of imbalanced data in the study of non-employed
students.
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Specifically, the proposed approach generates virtual
nodes through GAN, effectively connecting them to the joint
hypergraph to achieve a balanced network representation
of each graduation development class. Furthermore, feature
averaging is executed among the neighbors of virtual nodes
to acquire virtual node characteristics. This proposed method
attenuates the adverse implications of imbalanced data on
model outcomes. Moreover, a hypergraph structure learning
method is designed to learn the importance of hyperedges
as well as node features through a self-updating hypergraph
neural network, enhance the hypergraph by masking the
unimportant information, and finally use the obtained view
as a contrastive view and parameterize the balanced sam-
pled hypergraph as another view. The node-level contrastive
learning maximizes the structural consistency among differ-
ent views, mitigates the effect of long-tail distribution, and
improves the model’s effectiveness for graduation develop-
ment prediction.

Experiments on real campus datasets show that the method
proposed in this paper outperforms other graduation develop-
ment prediction models.

The main contributions in this paper are summarized as
follows:

1. This paper proposes a GAN-based hypergraph node gen-
eration strategy aimed at alleviating the imbalanced problem
in graduation development data. The generator is used to
produce a set of virtual nodes representing graduation devel-
opment of abroad, postgraduate, and unemployed, which
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FIGURE 4. Student social association distribution(x-axis represents the student with a social relationship, y-axis represents the number

of people with a social association with the student).

are added to the original network. As a result, a network
is obtained in which the number of nodes representing
each graduation development is balanced. Subsequently, the
hypergraph neural network discriminator is used for adver-
sarial training to enhance the reality of the generated virtual
nodes, thereby improving the accuracy of the graduation
development prediction task.

2. Using a node-based contrastive learning framework,
the redundant hyperedges are removed through structured
hypergraph learning, which enhances node representations
and produces an optimized hypergraph. Meanwhile, node-
level contrastive learning is performed between the hyper-
graph with balanced numbers of nodes and the optimized
hypergraph, to maximize the structural consistency between
different views adopting the contrastive loss. This strategy
effectively mitigates the social long-tail distribution prob-
lem caused by an excess of unimportant social relationships
among some students, and enhances the model’s perfor-
mance.

3. Empirical evidence demonstrates that graduation
development prediction studies conducted after hyper-
graph sampling are more effective, and our method
outperforms existing mainstream approaches on grad-
uation data sets from four different years of actual
campuses.
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Il. RELATED WORK

A. GRADUATION DEVELOPMENT PREDICTION

Research on predicting student graduation development
is primarily based on traditional machine learning and
deep learning methods. Nie et al. [1] proposed a data-driven
framework for predicting students’ career choices based on
the behaviors of over 4,000 students on and around campus.
Yu et al. [16] used the BP algorithm to construct a network
layer and six types of feature label values to predict the
employment and entrepreneurship development direction of
853 college students from 2010 to 2018. Kumar et al. [17]
used a hybrid method to evaluate the impact of demographic
characteristics on student employment arrangements and pre-
dicted students’ employment status using support vector
machines (SVM) and Random Forests (RF). Wang et al. [18]
used an improved support vector machine based on com-
munication and Gaussian simplification mechanisms with
the enhanced butterfly optimization algorithm (CBBOA) to
predict university students’ career decisions. Peker et al. [19]
developed an automated career guidance system based on
fuzzy logic web services that incorporates students’ previ-
ous academic achievements and teacher perspectives into
employment predictions for vocational school students. How-
ever, traditional machine learning methods have limited
learning capabilities when dealing with complex student data.
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PetekSter et al. [20] identified 31 predictive factors through
survey analysis and used an artificial neural network to pre-
dict whether students choose a career in family medicine.
Lietal. [21] adopted a statistical approach based on clus-
ter analysis technology models, and established a graduate
employment prediction model based on the Long-Short-Term
Memory (LSTM) recurrent neural network.

Previous studies were conducted based on the assumption
of an ideal distribution of student data and did not consider
the possible variance in the actual data distribution.

B. CONTRASTIVE LEARNING

Contrastive learning [22] is a type of self-supervised learning
that clusters positive samples together and pushes negative
samples apart. MVGRL [23] learns node representations
from two structural views and contrasts the encoding embed-
dings between the two graph views. Wang et al. [22] pro-
posed a new HGNN collaborative contrastive learning mech-
anism, HeCo, inspired by self-supervised HGNN, which
learns node embeddings from network motif views and
meta-path views and performs contrastive learning between
the two views.

Contrastive learning has achieved great success in com-
puter vision (CV) [24] and natural language processing
(NLP) [25]. Due to its powerful representation ability, it has
been introduced into graph data and developed into graph
contrastive learning [25]. In 2020, Khosla et al. [26] extended
self-supervised contrastive learning to supervised learning
and proposed supervised contrastive learning. Since then,
supervised contrastive learning has been applied to graph
classification and computer vision [27], [28]. However, the
above methods could perform better in cases of imbal-
anced data distribution. Zhang et al. [27] proposed a new
class-aware supervised contrastive learning framework for
imbalanced fault diagnosis, which optimizes feature dif-
ferences between any two classes using class information.
Li et al. [28] proposed targeted supervised contrastive learn-
ing to improve the long-tail distribution problem in data.
Xia et al. [29] proposed a graph contrastive learning frame-
work, SiImGRACE, which enhances graph data while pre-
serving the original semantic information. They use the
original graph as input, the GNN model and its perturba-
tion version as two encoders to obtain two related views
for contrast. Lee et al. [30] proposed a general framework,
TriCL, for contrastive learning on hypergraphs, that per-
forms three-way contrast between the same nodes, node
groups, and groups and nodes in different views, and captures
structural information of nodes and node groups in node
embeddings.

This paper proposes to enhance the structure of hyper-
graphs to alleviate the long-tail distribution problem. The
enhanced structure is compared with that of the original
hypergraphs across nodes, and the model performance is
improved by enhancing the structural consistency of different
views.
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C. DATA IMBALANCE

Data imbalance is common in real-world applications and
has been a traditional research topic in the field of machine
learning. Many tasks encounter this problem, such as traffic
recognition [31] or image classification [32]. The class with
more instances is usually called the majority class, while the
class with fewer instances is usually called the minority class.
Many methods now use oversampling or undersampling to
adjust the size of each class directly. The standard oversam-
pling method is to copy existing samples, which alleviates
the impact of data imbalance but may lead to overfitting as
no additional information is introduced.

SMOTE [33] is the most common oversampling method
that solves this problem by generating new samples and
performing interpolation between the minority class sam-
ples and their nearest neighbors. BOSME [34] generates
artificial instances for the minority class based on the prob-
ability distribution of Bayesian networks, which learn from
the original minority class through likelihood maximization.
Zhao et al. [14] extended previous research on imbalanced
learning to imbalanced node classification tasks on graphs,
constructing an embedding space to encode the similarity
between nodes to enhance the fidelity of generated nodes.

This paper utilizes GAN to sample hypergraphs and gener-
ate virtual nodes and improves the representational power of
balanced hypergraphs by enhancing the reliability of virtual
nodes through adversarial learning.

Il. IS-HGCL

This paper proposes a hypergraph contrastive learning net-
work based on imbalanced sampling to predict student grad-
uation development by exploiting social information and
academic performance data. The model consists of three main
modules: a hypergraph construction module, a hypergraph
imbalanced sampling module, and a hypergraph structure
contrastive learning module.

The specific steps are as follows: 1) a hypergraph is con-
structed using preprocessed student performance and social
data. 2) GAN is used to oversample the hypergraph to alle-
viate node imbalances and generate the joint hypergraph.
Based on this, the hypergraph structure is learned to enhance
hyperedge and node features and generate a contrastive view.
3) node-level contrastive learning is employed to maximize
the structural.

A. PROBLEM FORMULATION
The task of graduation development prediction is based on
various aspects, such as the students’ historical academic per-
formance and on-campus behavioral information. This study
focuses on exploiting social relationships and course grades
as the student features to output the graduation development
of the students.

Let Gi = [Ri,R3,...,Rr] be the compulsory course
grades of a student G; in a university, and R as the grades
of different compulsory courses, and 7 as the number of
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FIGURE 5. Overall model framework.

required courses. The compulsory course grade matrix for
all students is denoted as G = [Gy, Gy, ...,Gyl, and n
is the total number of students. In addition, following the
classification plan of Wang et al. [35], the graduation devel-
opment of students is classified into four categories: post-
graduate, abroad, employed, and unemployed, denoted as
destination = {a, b, c, d}.

Elective courses and dormitory data are used as social
relationships to construct a hypergraph. The elective course
grade matrix can be represented as S = [S1, S2,..., Sul,
where S; represents the elective course grade information
of student i, and dormitory data is denoted as Dor =
[Dory, Dors, ..., Dor,], where Dor; represents the dormi-
tory information of student i.

B. HYPERGRAPH CONSTRUCTION

Social relationships between students manifest as diverse
higher-order relationships, which simple graph modeling
cannot accurately represent. However, hyperedges in hyper-
graphs can associate with multiple nodes and thus better
represent these multidimensional higher-order relationships.
First, a hypergraph X is constructed based on the behavioral
characteristics. Let X = (V,E,A, F,C, W) be the hyper-
graph, where V represents the set of student nodes, node v €
V, E represents the set of hyperedges, and each hyperedge
e is a subset of V. ny,,; and nyy;, respectively represent the
number of majority and minority nodes in hypergraph X, and
the total number of nodes is 72 = nyqj~+nyuin, While the number
of hyperedges is n,. The adjacency matrix A € R™*" is the
matrix representation of the hypergraph:

I, ifvee

A, e) = (1)

0, otherwise
The feature matrix F represents the embedding of G’s
compulsory course grades, while C = {a, b, c,d} is the
node class matrix, with employed being the majority class
cmin = {a, b, d} and postgraduate, abroad, and unemployed
being minority classes c¢;qj = {c}. The hyperedge weight
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matrix is denoted by W as a unit matrix. Each student is
treated as a node, and adjacency matrix A is constructed
using dormitory data Dor and elective course grade data S to
determine whether a hyperedge e exists between two nodes.

C. GAN-BASED HYPERGRAPH IMBALANCED SAMPLING
In the task of graduation development prediction, the number
of students who choose direct employment is always much
more significant than those opting for postgraduate, abroad,
or unemployed. This situation is an inevitable economic and
societal development phenomenon, but it causes severe data
imbalance issues that significantly affect graduation devel-
opment prediction. The current imbalance issue is resolved
through simple oversampling, which generates node infor-
mation that needs more authenticity and provides limited
assistance in predicting graduation development.

This paper proposes a hypergraph data generator, Hyper-
graphGenerator, combined with HGNN to form a virtual
node strategy based on GAN. This strategy can generate a
minority class of student nodes to balance the number of
student nodes choosing different graduation development.
HypergraphGenerator can learn both the attribute distribution
and the topological structure of the network. Afterward, the
HGNN discriminator is trained to distinguish between actual
nodes and generated virtual nodes and update Hypergraph-
Generator to increase the authenticity of the generated nodes.
The GAN-based hypergraph imbalanced sampling module
consists of two parts: a generator and a discriminator.

1) GENERATOR(G)

HypergraphGenerator: Z — F’ x A’ is a fully connected
neural network, which takes in a d; dimensional noise space
to obtain the feature space F’, and the structure space A,
of the generator network. The number of generated virtual
nodes is ng = Nygj — Nymin. The number of input layer units
d; = nmin, and the number of output layer units d, =
ng X nmin represent the topological relationship between the
generated nodes and the original minority-class nodes. The
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Dormitory informantion

Building Dormitory Student Number
13 422 Gl, G2, G4, G5
Cc8 352 G27, G28, G29, G117
X2 433 G95, G98, G99, G111

Elective Course informantion

Elective Course Student Number
Course 1 Gl1, G2, Gl4, -, G1037
Course 2 Go66, G84, G104, -+, G10327
Course N G10, G33, G56, -, G5049

Compulsory Course informantion

Student Number Compulsory Course Grade
Gl 46 56 84 77 67 ... 90
G2 8668757475 ...88
GN 78 86 88 7996 ... 92

FIGURE 6. Hypergraph construction module.

hypergraph topological relationship is calculated as shown in
equation 2:

0j = ReLUMW,Z + b)), i=1,2,3,4 )

where W; and b; are weight matrices and bias vectors for layer
i, respectively. o; represents the output of layer i, and ReLU (-)
is the activation function.

The output vector 6 € R% is transformed into a matrix
form O € R"*min_and then the softmax (O;) function is
applied to normalize each row of O:

Qi

Each row of O;, represents the connection relation-
ship between the generated virtual nodes and the original
minority-class nodes. Additionally, each element A;j repre-
sents the normalized weight of the connection between the
virtual node v; € V' and the original minority node v; €
V, where V' is the set of generated minority nodes, and
A’ represents the network topological structure information
between the generated virtual minority nodes and the original
minority nodes.

In order to generate the node attribute feature F’ €
R/ of the virtual minority nodes, we aggregate the feature
attributes of each neighboring node of the virtual minority
nodes:

A} = softmax (0;) = i=1,....,ng (3

F' = A'Fpin “

where Fi, € R < F is the minority class node
feature matrix of the original hypergraph X. f is the number
of dimensions of the minority class node features of the
original hypergraph X. The minority nodes generated by
HypergraphGenerator are added to the original hypergraph
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Dormitory Matrix Dor

Elective Course Matrix S

Social relationship Matrix A

Hypergraph X

Compulsory Course Matrix S @ ®
46 | 56 | 84 | 77 | 67 | .. | 90 .
8 | 68 | 75 | 74 | 75 | .. | 88
78 | 8 | 8 | 79 | 96 | .. | 92

X to obtain a hypergraph Xpqy = (V/,E, A, F,C", W)
with a balanced number of each class. where V' is the new
node set consisting of the set of student nodes in X and the
set of virtual student nodes, E’ denotes the new hyperedge
set consisting of all hyperedges in X and virtual hyperedges,
A’ and F’ are the new adjacency matrix and feature matrix
associated with V', respectively, W’ is the expanded the
hyperedge weight unit matrix, C’ = {Cj, C>}, and each
node has Cy, C; two categories, C; is the new class matrix
consisting of the class matrix of X and the virtual node class,
which indicates the graduation development class of the node,
and C> = {real, fake} indicates whether the node is a virtual
node.

The loss function of HypergraphGenerator is as in
equation 5:

Lgen = Lpake + Le + @ ||O]13 )
ng ~ -
Liake = Zi:l —c;logPr (yi = real[fi) (6)

1 I’Lg Nmin || = -
e |ng | i=1 j=1 ﬁ ‘]3

Ligke is the confusion discriminator loss on the virtual
node, where ¢; € C, and y; € Y denote the real label
and discriminator output of the node, respectively, and f, is
the node embedding vector. L, is the distance between the
embedding vectors of the virtual and real nodes. « ||®|I% is
the regularization term, where ® is the set of Hypergraph-
Generator training weights with regularization coefficient «.

2
(N
2

2) DISCRIMINATOR(D)

In this paper, we use HGNN [36] as a discriminator, which
can distinguish whether a node is a virtual node generated by
a generator. Therefore, we use the balanced hypergraph Xpq
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as the input based on HGNN to obtain the classification result
of nodes Y. The calculation procedure of HGNN is shown in
equation 8.

1 1
Y =D, 2A'W'D,”'ATD, 2 F'® (8)
where © is the parameter to be learned during the train-
ing process, D, and D) are the hyperedge degree matrix
and vertex degree matrix of the hypergraph Xp, generated
through the adjacency matrix A’, respectively. The degree of
hyperedge e; and the degree of node v; are calculated as in

equation (9,10).

n
D' (e =D A (eiv)) ©)

Jj=1

ne
D'y (vj) =D A (eiv)) (10)

i=1
The loss function of the discriminator is as in equation 11:
Lais = Lay + B 1113 (1

Lig =) —[eilog (p) + (1 = cplog (1 = py)] (12)

where py = Pr (5), = fake|?c,-), Lgjr is the cross-entropy loss
of virtual and real nodes, 8 ||Q||% is the regularization term,
andn’ = g + Nmin ~+ Mg 18 the total number of nodes in the
hypergraph Xj,;, and €2 is the set of training weights for the
discriminator with regularization factor 8.

The adversarial objective functions of the generator and
discriminator are shown in equation 13:

minmax V (D, G)
G D

= Evpyuuto [lo2D @) + 81913
+ Eepo [log 1= DG @) + L+ O3] (13)

where x is the real data obeying the distribution pgu, and
z is the noise variable obeying the distribution p,. Finally,
the balanced hypergraph Xp,; generated by the adversarial is
obtained.

D. HYPERGRAPH STRUCTURE CONTRASTIVE LEARNING
MODULE

This paper proposes using of hypergraph representation
learning to address the adverse implications of long-tailed
student social relationships on model performance. Specifi-
cally, the proposed approach involves optimizing the hyper-
graph structure in an end-to-end manner, thereby enhancing
the model’s efficacy by learning the hypergraph structure of
the joint hypergraph Xj,;, subsequent to imbalanced sam-
pling. This strategy is achieved via node feature masking
and hypergraph structure optimization, which ameliorates
the negative effects of the long-tailed distribution of student
social relationships on the model. This module is divided into
two parts: hypergraph structure optimization and node-level
contrastive learning.
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1) HYPERGRAPH STRUCTURE OPTIMIZATION

In order to learn the hypergraph structure efficiently and
improve the model performance, in this paper, two data
enhancement schemes, node feature masking and hypergraph
structure optimization, are used to simplify the structure and
features of the hypergraph.

a: NODE FEATURE MASKING

A mask is used to mask the random node features to optimize
the student node features. The masking vector m") is first
sampled in the achievement feature matrix F’, where each
element is extracted from a Bernoulli distribution p(f,) with
probability. Then, the feature vector of each node is masked
with m¢".

F' = Cimask (F/)
’ 74 A T
:[f/l.m(f)7f/2'm(f)’,”7f/n.m(f):| (14)

where F” is the augmented score feature matrix, ['ygsr (F ’)
is the feature mask transformation, and fn’ is the transpose of
the nth row vector of F’.

b: HYPEREDGE SAMPLING

The balanced hypergraph Xp,; is first optimized for hyper-
graph structure to clip task-irrelevant hyperedges. A binary
mask vector m’ € {0, 1}|E,| is introduced to sample the
hyperedges, where m/, is indicates whether V' in a hyperedge
is clipped or not, and |N’|, |E’| are the number of nodes
and hyperedges in the hypergraph X, respectively. m; ,
is taken from a Bernoulli distribution with parameter ail,

m, ~ Bern (asj) a’ < 10, 11l is a vector of Bernoulli
distribution parameters for the hyperedges, describing the
importance of each hyperedge. The smaller the value of aij,
the more likely it is that v/ in a hyperedge is noise and can be
removed.

With the sampling mask m’, the association matrix A” of
the hypergraph structure after hyperedge sampling can be
expressed as:

A" =M QA M =Ty, (m) (15)

Thro @ RIE'T — RIV'IXIE'| denotes the broadcast operator
which repeats the mask vector m’ |N ! | times to construct a
binary mask matrix M¢ € RIN'I*IE'] for superside sampling.
©® denotes the Hadamard product.

2) NODE-LEVEL CONTRASTIVE LEARNING

This paper introduces a SimCLR [37] based contrastive
learning framework that will use the optimized association
matrix A” and achievement features F” to construct an
enhanced hypergraph X,,, and a balanced hypergraph Xpq;
for node-level contrastive learning to maximize the structural
consistency between hypergraphs. The framework consists of
the following components:
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a: ENCODER

In this paper, we use a two-layer HGNN as a hypergraph
encoder Encodery (-) to extract the node representations of
hypergraphs X,,; and Xp,;: )_(()pt = Encoderg(Xopt),)_(bal =
Encoderg(Xpar), where 0 is the encoder parameter and X,/
and X, are the node representation matrices of the enhanced
and balanced hypergraphs, respectively.

b: PROJECTION HEAD

The embedding vectors of both encoders are mapped to the
same space adopting a two-layer MLP as the projection head
proy (-): Popr = proy(Xopt), Poar = proy(Xpar), where n is
the parameter of the MLP and P, Ppq is the projection node
representation matrix of the augmented hypergraph and the
balanced hypergraph, respectively.

E. LOSS FUNCTION

After mapping the embedding vectors to the same space,
contrast loss is used to maximize the consistency between
the projections pop; v and ppey of the corresponding
nodes v between different views. The contrast loss is as in
equation 16

1 n

L =—
2N
N=1

[L (Popt.N» Prai.N) + L (Poai.N+ Popr.n)] (16)

where sim (-,-) is the cosine similarity function, 7 is
the temperature parameter, and L (popi,N.Prarn) and
L (pbal, N> Dopt, N) are the positive and negative losses of nodal
projections pgp, N and ppar N, TEspectively, calculated as in
equations (17,18):

es[m (Popt.N -Pbal.N) /T

L (opt,N+ Pbai.N) = log — {17
Z eSim(papt,vabal.k)/r
k=1
&S (Pbal N Popt.N) /7
L (phal,N»p()pt,N) = log n (18)
3> &5 (Pbal N -Popt k) [ T
k=1

IV. EXPERIMENT

In the experimental section, this paper’s research questions
and experimental dataset are first introduced, followed by
a description of the benchmark model, evaluation metrics,
and implementation details of the proposed method. To ver-
ify the effectiveness of the model in this paper in aca-
demic early warning studies, the research questions are as
follows:

Q1: Does IS-HGCL outperform existing mainstream grad-
uation development prediction models on four different-year
datasets?

Q2: How dose each of the three modules in IS-HGCL affect
the model performance?

Q3: How does hyperparameter settings affect IS-HGCL in
the experiment?

Q4: How does the convergence of IS-HGCL?
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TABLE 1. Student information.

Year Couse  Course  Student Class Student’s  Course
Number  Type  Number College  Grade
2014 18505 88 20781 172 25 102
2015 19834 91 20818 198 27 102
2016 23221 119 20870 188 14 102
2017 17809 93 21845 176 19 103
TABLE 2. Student dormitory information.
Building Dormitory Student
Year Number Number Number College
2014 45 5280 20637 25
2015 45 5361 20722 27
2016 45 5276 20820 14
2017 45 5563 20751 17

TABLE 3. Student graduation development information.

Year  College  Student Number  Graduation Development
2014 25 20428 20428
2015 27 20355 20355
2016 14 20629 20629
2017 19 21423 21423

TABLE 4. The processed student graduation development information.

Year a b c d

2014 847 214 4567 502

2015 822 270 4320 475

2016 904 213 4670 4388

2017 1099 225 4379 376
A. DATASET

In this paper, the original dataset is sourced from a university
in China [10], which contains the students’ grades dataset,
dormitory dataset and graduation development dataset from
2014-2017 in school, etc.

The fields of the student grade dataset include TASK_NO,
CUR_NAME, CUR_TYPE, CUR_DEP, CUR_CREDITH,
STU_ID, STU_NAME, STU_SEX, STU_CLASS, STU_DEP,
GRADE, which represent course number, course name,
course type, course affiliation College, student number, name,
gender, class, student’s college, and course grade. The fields
mainly used in this paper include course number, course type,
student number, class, student’s college, and course grade,
and their number distribution is shown in Table 1.

The student dormitory data set includes the student num-
ber, name, gender, academic status, nature of enrollment,
college, grade, academic system, building number, dormitory
number, and dormitory fee rate. The fields mainly used in this
paper include student number, college, building number, and
dormitory number, and their number distribution is shown in
Table 2.
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The graduation development dataset includes detailed
information on students, such as their college, student num-
ber, name, graduation development, type of report card
issuance, unit to which the report card is signed, unit code,
unit affiliation, location of the signed unit, nature of the
unit, industry of the unit, employment status, actual location,
organization code (business registration number) of the unit,
gender, education, major, academic system, class of difficulty
levels, cultivation mode, ethnicity, political affiliation, birth
date, birth region, and class. For this study, our analysis pri-
marily focuses on the fields of college, student number, and
graduation development. The number distribution is shown in
Table 3.

B. DATA PROCESSING

Firstly, preliminary processing of the data set data is carried
out, and the main processing steps are the following five
steps:

1. Extracting necessary fields: The original dataset consists
of many unused fields, such as gender, academic system,
dormitory fees, etc. Therefore, all irrelevant data is cleared,
and only the fields used to predict the graduates’ future are
preserved.

2. Handling missing data: Student data with missing essen-
tial fields, such as student number, dormitory, and future
employment status, are removed. If other missing fields exist,
their missing values will be replaced with the median.

3. Merging duplicate data: Duplicate data caused by make-
up exams, retakes, and the like is merged by calculating their
means.

4. Correcting erroneous data: Values with scores lower than
0 will be modified to 0, and values exceeding 100 will be
modified to 100.

5. Feature extraction: The information gained from each
feature is calculated to assess their impact on the entire
sample, thereby selecting the most influential features.

The distribution of the number of students after the data
cleaning is completed is shown in Table 4.

From the student grade dataset, we get the compulsory
course grade matrix G and the elective course dataset S.
Then, from S and the dormitory dataset, we get the social
relationship adjacency matrix A. Then, with the student as
the vertex V, we get the edge E with the social relation-
ship adjacency matrix A and initialize the hyperedge weight
matrix W. Form the hypergraph X = (V,E,A,F,C,W).
Then, we generate nodes by imbalanced sampling to get the
balanced hypergraph Xj,;. Finally, input the hypergraph into
the model to get the prediction results. Where a, b, c, and d
stand for postgraduate, unemployed, employed, and abroad
respectively.

C. EXPERIMENT SETTING

In this paper, we use 70% of the dataset as the training set and
30% as the testing set, exploiting Precision and Recall as eval-
uation metrics. All experiments are conducted on the PyTorch
platform, which uses NVIDIA 3060 GPUs for training. The
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optimal parameters in the four datasets of this paper are set
as follows: Hidder of 3, Learning Rate of 0.005, Loss Rate of
0.4, and Epoch of 1800.

Firstly, in order to verify the effectiveness of the model in
this paper, the following sets of existing mainstream grad-
uation development prediction models were designed and
analyzed in contrastive with IS-HGCL:

1. GCN [38]: The Graph Convolutional Network (GCN)
is the most usual and well-known method for generating
balanced network embedding. This method obtains node
embedding by aggregating the features of adjacent nodes.

2. GCN-Smote [14]: This method improves the perfor-
mance of the GCN on imbalanced network embedding issues
by incorporating SMOTE technology.

3. GAT [39]: This model leverages multi-head attention
mechanisms to dynamically generate aggregation weights for
adjacent nodes.

4. SimGRACE [29]: This Graph Contrastive Learning
(GCL) model generates graph views by perturbing the model
parameters.

5. HGNN [36]: This graph representation learning model
employs truncated Chebyshev polynomials to generalize and
approximate convolutional operations, thus enhancing repre-
sentation learning.

6. HGCN [40]: This semi-supervised learning framework
is based on spectral theory.

7. HNHN [41]: This HGCN model employs nonlinear
activation functions, and includes a normalization model that
flexibly adjusts the importance of hyper-edges and nodes.

8. HyperSAGE [42]: This graph representation learning
framework learns hypergraph embedding by aggregating
messages in a two-stage process.

9. AST [43]: This advanced supervised hypergraph model
employs the set functions learned through Deep Sets [44] and
Set Transformer [45] for information propagation.

10. TriCL [30]: This advanced unsupervised contrast
hypergraph learning model maximizes the mutual informa-
tion between nodes, hyperedges, and node groups.

In this paper, the following models are designed for con-
trastive:

1) IS-HGCL: A complete model containing a hypergraph
construction module, a hypergraph imbalance sampling mod-
ule, and a hypergraph structure contrastive learning module.

2) No GO: It does not contain the hypergraph imbalanced
sampling module, only the hypergraph construction module
and the hypergraph structure contrastive learning module.
It takes the hypergraph constructed from the original data as
input, without balancing the hypergraph by node sampling.

3) No GS:It does not contain the hypergraph construction
module, only the hypergraph imbalanced sampling module,
hypergraph structure contrastive learning module, using the
unit matrix of student nodes to get the adjacency matrix to
construct the hypergraph for input.

4) No CL: No hypergraph structure contrastive learning
module is included, only hypergraph construction module,
hypergraph imbalanced sampling module is included, and the
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TABLE 5. Comparing experimental results.

Dataset graph representiom Method A b ¢ d
Precision Recall Precision Recall Precision Recall Precision Recall
GCN 21.15 52.38 35.13 16.67 82.89 23.16 35.80 25.81
Graph GCN-SMOTE 61.52 78.81 65.88 71.54 78.74 83.17 60.55 72.27
GAT 20.35 54.76 33.70 18.76 80.77 22.66 36.25 22.58
SimGRACE 63.64 53.95 76.43 58.79 50.98 90.10 46.72 60.80
HGNN 35.49 66.97 34.83 40.07 73.29 34.20 49.09 50.17
2014 HGCN 45.47 59.49 44.44 36.03 73.20 43.41 59.08 59.95
HNHN 45.39 65.51 34.63 35.29 74.44 46.25 52.40 52.57
Hypergraph HyperSAGE 55.85 51.28 44.37 34.19 74.71 42.37 58.63 61.78
AST 66.26 76.90 74.39 61.99 73.13 71.83 68.46 69.50
TriCL 76.25 81.68 79.34 78.62 85.18 78.15 78.34 82.67
IS-HGCL 82.20 84.08 84.32 81.25 87.7 82.01 83.28 84.67
GCN 33.46 42.64 20.41 26.18 89.46 25.15 16.49 12.45
Graph GCN-SMOTE 64.15 76.23 61.21 81.21 85.21 84.25 66.23 65.12
GAT 26.24 45.54 41.36 16.23 82.67 23.48 26.22 26.21
SimGRACE 64.14 43.36 77.35 62.23 62.58 81.65 53.34 62.59
HGNN 43.58 64.21 38.65 45.66 76.25 42.12 51.56 56.65
2015 HGCN 48.52 62.22 45.65 34.26 75.24 48.69 63.21 66.45
HNHN 48.36 62.13 36.47 38.16 77.89 54.45 59.95 59.46
Hypergraph HyperSAGE 59.74 58.26 48.98 39.46 76.45 48.53 64.55 65.45
AST 69.86 75.16 76.54 68.41 81.36 76.45 68.16 71.31
TriCL 83.54 79.21 79.45 80.35 83.84 84.32 83.45 82.32
IS-HGCL 86.43 84.61 83.28 84.51 86.46 87.44 85.62 86.82
GCN 28.49 43.54 34.86 29.84 81.43 26.46 34.35 20.54
Graph GCN-SMOTE 56.44 64.68 64.31 64.86 73.54 76.15 64.56 66.43
GAT 26.84 48.46 34.14 25.45 74.53 42.65 4343 20.84
SimGRACE 64.81 53.51 74.80 56.64 54.68 81.34 56.46 66.79
HGNN 4343 59.13 34.68 44.61 79.46 34.32 55.62 48.16
2016 HGCN 44.89 64.65 44.63 34.86 68.43 41.68 61.65 56.86
HNHN 44.81 64.68 38.46 34.65 71.23 48.46 58.34 4342
Hypergraph HyperSAGE 59.61 58.45 48.61 34.68 73.18 48.61 64.62 61.48
AST 69.23 71.35 76.42 54.63 78.46 73.16 70.86 76.13
TriCL 80.65 84.61 78.48 76.48 86.42 76.48 79.45 81.61
IS-HGCL 86.68 85.84 82.64 80.81 88.46 81.54 81.78 84.84
GCN 24.34 51.31 34.51 13.54 83.38 21.35 34.46 26.45
Graph GCN-SMOTE 64.83 76.15 61.68 68.43 76.48 76.15 61.84 73.15
GAT 26.84 51.31 31.35 14.64 81.34 26.45 34.98 16.81
SimGRACE 64.35 56.45 76.14 54.89 48.64 86.48 48.61 59.46
HGNN 34.82 64.84 30.64 38.45 69.84 34.56 51.86 52.64
2017 HGCN 44.13 61.85 49.16 40.56 72.15 42.18 61.65 64.82
HNHN 46.85 68.46 38.46 34.86 76.48 53.10 50.16 56.42
Hypergraph HyperSAGE 58.64 54.61 46.13 38.94 76.81 43.81 66.14 63.45
AST 72.10 76.42 73.42 64.82 74.64 73.51 71.16 73.14
TriCL 79.15 82.53 75.13 79.48 84.61 80.31 79.41 82.31
VOLUME 11, 2023 IS-HGCL 85.45 86.48 83.54 824 86.96 82.46 82.16 8365
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discriminator HGNN of the imbalanced module is used as a
multi-classifier to output the classification results.

Finally, it is discussed that there is a certain degree of
influence of the variation of different hyperparameters on
the experimental results, which is compared and analyzed,
and the influence of the Hidder of the model, the model
learning rate, the Epoch count and the loss rate on the model
performance.

D. EXPERIMENTAL RESULTS

1) COMPARISON EXPERIMENT (QT1)

To verify the validity of this paper’s model in the graduation
development prediction study, the IS-HGCL was compared
with the four graduation development [35] predicted by the
benchmark models mentioned above for the four years of
2014, 2015, 2016, and 2017 on the datasets of postgraduate,
unemployed, employed and abroad. The benchmark models
are broadly classified into graph-based and hypergraph-based
neural network models.

The results of the model comparison analysis experiments
are shown in Table 5, where the IS-HGCL model performed
better overall than the other models. Among the other models,
the GCN and GAT models are affected by imbalanced data,
and only the prediction of employed direction students has a
higher accuracy rate. The GCN-SMOTE model has a more
balanced prediction accuracy rate and significantly improved
performance because the SMOTE component oversampled
and balanced the data set. The SimGRACE model uses graph
contrastive and better learns the data features of long-tailed
distribution, improving performance. The HGNN, HGCN,
and HNHN models use hypergraphs to dig deeper into the
higher-order relationships among students, and their effects
are significantly more potent than those of GCN and GAT.
TriCL uses contrastive learning on hypergraph-based repre-
sentations, and its effects are significantly more potent than
those of other models except the IS-HGCL model. Moreover,
the prediction accuracy of specific targets of the IS-HGCL
model is generally higher than that of other models, among
which the accuracy of predicting the targets of a (postgradu-
ate), b (unemployed) and d (abroad) is slightly lower than the
total accuracy; the prediction result of ¢ (employed) target is
the best.

Our IS-HGCL model uses a hypergraph to represent the
social relationships among students, which effectively makes
up for the shortage of adopting graphs to learn students’
graduation development in the past. Implicit relationships
among students and the final prediction results obtained are
significantly higher than those of other models, thus verifying
the model’s superiority in this paper.

2) COMPONENT ANALYSIS (Q2)

In order to further verify the effectiveness of the method
proposed in this paper, IS-HGCL component analysis experi-
ments were conducted on four types of prediction results, and
the experimental results are shown in Figure 7:
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The data from the component analysis of the model showed
that the complete model with graph construction module,
graph optimization module, and node-contrast learning mod-
ule had the best prediction results. The No GL model, which
did not use node-level comparative learning, or the No GO
model, which did not use the node generator to balance the
hypergraph data was clearly less effective than the IS-HGCL
model. The No GS model without the graph construction
module did not use the students’ social relationships for
prediction and could have been better. When the graph con-
struction module is not included, the model only considers
student performance characteristics and cannot thoroughly
learn the social attributes of students. At this time, students
only exist in association with themselves, which will lead to a
decrease in the accuracy of model detection. When the graph
optimization module is not included, virtual nodes cannot
be generated to optimize the joint graph, and the model is
affected by data imbalance, resulting in lower model accu-
racy. When the contrastive learning module is not included,
the node representation cannot be learned through node-level
contrastive learning, the implicit relationship between stu-
dents cannot be deeply explored, and the model suffers from
long-tail distribution interference, leading to lower model
performance. The importance of using social relationships
and student grades as factors affecting students’ graduation
development is finally demonstrated. Using a node generator
to generate virtual nodes to balance the dataset and node-level
contrastive learning to mine implicit relationships among
students provides relatively significant enhancements to the
model.

3) PARAMETERS SENSITIVITY ANALYSIS(Q3)

Variations of different hyperparameters can influence the
experimental results. This paper conducted a comparative
analysis of the 2014 dataset to observe the effects of Hidder,
model learning rate, Epoch count, and loss rate on the model
performance.

The Hidder in Figure 8(a) indicates the number of hid-
den layers of the hypergraph neural network used in the
experiments, set between 1 and 5 with a step size of 1. The
model works best when the Hidder is 3, and when the Hidder
is too much, the model may be over-smoothed leading to
performance degradation.

The learning rate in Figure 8(b) indicates the magnitude of
each parameter update in the experiment, and the values are
0.0003, 0.0005, 0.0007, 0.003, 0.005, 0.007, 0.01, 0.03, and
0.05. The model works best when the learning rate is 0.005,
and the learning rate is too large to cause the model to fail to
converge, which may lead to overfitting.

The loss rate in Figure 8(c) represents the probability of
setting neurons to zero in the network, which is used to
prevent the network from overfitting, and is set in the range
of 0.1 to 0.7 with a step size of 1. The best result is achieved
when the loss rate is 0.4. Setting the loss rate too low does
not effectively prevent overfitting, and setting it too high will
lead to a decrease in test accuracy.
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FIGURE 8. Parameter analysis.

In Figure 8(d), Epoch is the training number of the model, the model cannot thoroughly learn the data features when the
which is set from 400 to 2200 with a step size of 200. The Epoch number is too small and may cause overfitting when
model performs best when the Epoch number is 1800, but the Epoch number is too large.
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FIGURE 9. Convergence analysis.

We can get the best performance from the experimental
results when the Hidder is 3, the model learning rate is 0.005,
the Epoch number is 1800, and the loss rate is 0.4.

4) CONVERGENCE ANALYSIS(Q4)

To verify the convergence of the model, we plotted the loss
function curves for four data sets. As shown in Figure 9, the
loss functions of three data sets converged at 1600 epochs,
while the 2014 dataset converged at 1800 epochs. It can
be observed that the objective values of our algorithm con-
sistently decreased with each iteration, ultimately reaching
convergence. These results validate the convergence of the
algorithm.

V. CONCLUSION

Facing the increasingly severe employment problem of grad-
uates, the prediction of students’ graduation development
is crucial. Since the current work cannot well explore the
social relationships among students, this paper characterizes
the social relationships among students by hypergraph and
proposes a hypergraph contrastive learning graduation devel-
opment prediction model (IS-HGCL) based on imbalanced
sampling. This model generates a few classes of nodes to bal-
ance the network by generating an adversarial network, and
feature fusion and prediction are performed by comparing
and converging students’ implicit relationships among nodes.
Through experiments on public datasets, it is proved that the
IS-HGCL model proposed in this paper is superior to other
models in terms of accuracy and can provide more powerful
help for graduates’ career guidance. However, there are still a
small number of students with fewer social activities. Only
some of their social relationships can be obtained, which
makes it difficult to predict the development of such students,
and finding the influence of more social relationships on stu-
dents’ graduation development is a future research direction.
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