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ABSTRACT Recent research in Future Wireless Networks (FWN)s have primarily focused on improving
spectral and energy efficiency, emphasizing less on reducing power consumption. Studies on current
Fifth-Generation (5G) system deployment have shown that they consume more power than their predeces-
sors, thus highlighting the need for significant efforts to minimize their carbon footprint. This work specifi-
cally focuses on the power consumption considerations, starting from the transceiver design and extending
to an entire network design that can accomplish future Net Zero (NZ) targets. It is envisioned that smart
grid-controlled renewable-powered systems, combined with artificial intelligence (AI) algorithms and Zero
Touch (ZT) solutions, will play a central role to achieve Net Zero - Zero Touch Future Wireless Networks
(NZ-ZT-FWNs). This work thoroughly investigates the recent research efforts, limitations of existing
approaches and identifies key research areas for realizing NZ-ZT-FWNs.

INDEX TERMS Wireless networks, massive MIMO, net zero, zero touch, energy efficient, power efficient,
renewable energy, mmWave communication, THz communication.

I. INTRODUCTION
Global warming has transitioned from being a mere topic
of discussion to a harsh reality with dire consequences
expected in the coming years [1]. Given the severity of this
issue, timely efforts from all industries are required [2].
The Information Communication Technology (ICT) industry
currently accounts for approximately 2% of global emissions,
which is projected to rise to an alarming 23% by 2030 [3].
Therefore, it is crucial for the ICT industry to take
significant measures to align with global Net Zero (NZ)
targets. However, current research on Fifth-Generation (5G)
is predominantly focused on improving Spectral Efficiency
(SE) and Energy Efficiency (EE) [4], [5], [6]. While 5G has
achieved higher SE and EE compared to its predecessors,
it has also resulted in increased power consumption and

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

higher carbon emissions [7]. It is noteworthy that further
expansion of antennas, bandwidth, and Base Stations (BS)s
will lead to an increase in the overall power consumption of
the wireless network, with projections of up to 20% of the
total power consumption of the ICT industry [13]. As a result,
it is imperative to proactively incorporate measures, in the
design of Future Wireless Networks (FWN)s to minimize the
carbon footprint associated with future ICT systems.

FWNs are expected to have even more stringent data
rate requirements to enable anticipated technologies such
as holographic communication and tele-immersive video
conferencing [8]. To achieve these requirements and reduce
the carbon footprint, it is envisioned that Cell-Free Networks
(CFNs) [9] powered by renewable energy sources and
smart grids, utilizing MicroWave (µW), millimeter Wave
(mmW) [5], [6], Tera-Hertz (THz) band [10], as well as mas-
sive Multiple Input Multiple Output (mMIMO) systems [11],
edge computing, and extreme densification will be an
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FIGURE 1. Taxonomy of NZ-ZT-FWNs along with the blocks illustrating the interconnection of research themes, forming a cohesive framework to
accomplish NZ-ZT-FWNs.

essential part of FWN. These technologies will be leveraged
with the potential benefits of Open Radio Access Network
(ORAN), to provide implementation flexibility and Artificial
Intelligence (AI)/ Machine Learning (ML) algorithms for
predicting and optimizing network performance [12]. AI/
ML-enabled Zero Touch (ZT) resource management, will
play a pivotal role in shaping FWNs towards NZ targets [5],
[6], [7], [8], [9]. From this standpoint, this paper aims to
identify key research areas that are essential for enabling Net
Zero - Zero Touch FutureWireless Networks (NZ-ZT-FWNs).
It is anticipated that achieving such networks would require
significant research in developing accurate analytical models,
orchestrating wireless network and smart grid resources, and
designing innovative AI/ ML algorithms that align with NZ
and ZT requirements.

Research efforts to achieve NZ and ZT objectives are
mainly focused on three key aspects:

1) Power Efficient Transceiver Design: Power Ampli-
fiers (PA)s and Analog-to-Digital Converters (ADC)s
are known to consume a significant portion of power
at both the transmitter and receiver ends. Trade-offs
between power consumption, EE, and SE have been
investigated in the context of mmW-MIMO receivers
with low-resolution ADCs to identify power-efficient
operating regimes [14]. Recently, it has been demon-
strated that the maximum linearity region of a PA
may not necessarily correspond to the maximum EE
of the system [15]. Apart from that power efficient
transceiver architectures have also been an active area of
research.

2) Power Efficient Wireless Network Design: This area
of research focuses on optimizing various aspects of
the network to minimize power consumption. Topics
such as network topology, cell size optimization, cell
zooming, traffic management, resource management,
BS cooperation, and smart grid resource management
have been an active area of research [16].

3) AI/ML-Enabled Wireless Networks: AI/ML algo-
rithms are expected to play a crucial role in harness-
ing intelligence in FWNs. Supervised, unsupervised,
reinforcement learning, and game theoretic approaches
have been employed in various scenarios, such as
energy sharing in smart grid-powered wireless net-
works [17], resource sharing among end devices, edge
and cloud [18], optimal resource management for
renewable energy-powered small cell BSs [19], and
game theoretic power management and cost optimiza-
tion for green base stations [20].

These research areas are actively being explored to develop
innovative solutions that can effectively reduce power
consumption in wireless networks. However, further inves-
tigation is required to contribute towards the development
of NZ-ZT-FWNs. This manuscript takes a significant step
in this direction by comprehensively covering the key tech-
nologies, including, CFN supporting heterogeneous radio
access technologies power by heterogeneous energy sources,
THz communication, and AI/ML-based ZT-networks and
highlighting the key limitations in the existing research and
the possible future research directions that will pave a path
towards the design of carbon neutral FWN.
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The details of the different topics covered in this paper has
been shown in Figure 1. Section I provides the introduction
and motivation and highlights the three main aspects, namely,
1) power efficient transceiver design, 2) power efficient
wireless network design and 3) AI enabled zero touch
network, of NZ-ZT-FWN. Section II will extensively covers
the related work and highlight the key contributions of this
work. Section III will provide the overview of the envisioned
NZ-ZT-FWN. Section IV is the core of this paper and will
thoroughly discuss the key research areas that come under
the umbrella of the three main aspects mentioned in Section I
(see Figure 1). Section V will present a discussion on the
open research areas. Finally, Section VI will provide the
conclusion.

II. RELATED WORK
The research community has made significant efforts in
developing various techniques and methods, leading to
notable progress in achieving power-efficient wireless net-
work design. The subsequent sections delve into specific
areas of prominent progress.

A. GREEN WIRELESS NETWORK (GWN) DESIGN, PRE-5G
In [21], authors presented a detailed overview of the
progress toward sustainable Fourth-Generation (4G) wireless
networks. EE was quantified by considering a simple power
consumption model focusing on BS powers for macro, micro,
pico, and femto deployment scenarios and the trade-off
between EE and other performance metrics, such as SE,
throughput, bandwidth, and delay for different protocol layers
was elaborated. Various approaches to improve EE of MIMO
and cooperative relaying systems, such as dynamically
changing the number of active antennas or Radio Frequency
(RF) chains, relay selection, and impact of hop count were
discussed in [22]. The EE management of cellular network
BSs and Wireless Local Area Network (WLAN) Access
Points (AP)s by exploiting dynamic resource management
techniques such as BS/AP on/off switching and sleep modes
was studied in [23]. These aforementioned research and
references were mainly focused on pre-5G networks and did
not address the issues related to the 5G and beyond wireless
network design.

B. GREEN WIRELESS NETWORK (GWN) DESIGN, 5G
Potential techniques for improving EE of 5G networks were
discussed in [24]. The authors highlighted the user-centric
approach, also known as ‘‘no more cells’’, which has evolved
into cell-free MIMO, as a means to improve the EE of
the network through flexible network control. Moreover, the
potential of mMIMO, full duplex communication, and cloud
RAN was also reviewed. Focusing on 5G New Radio (NR),
techniques to improve the power efficiency of 5G and beyond
wireless communications were presented in [27]. This work
mainly focused on power consumption reduction at the User
Equipment (UE) and the BS and discussed techniques, such
as sleep modes, bandwidth adaptation, and radio resource

control in active states. In [25], alternative approaches
for sustainable 5G communications that reduce carbon
emissions without sacrificing the Quality of Service (QoS)
are examined. These include utilizing energy harvesting
techniques and employing renewable energy sources in ultra-
dense sub-6 GHz, mmW, and mMIMO networks. The role
of AI and ML in improving the EE of the 5G networks
was highlighted in [26], where existing data-driven AI and
ML-based algorithms in core, access, and edge networkswere
discussed and future research directions were identified.

C. EE 5G RAN
A comprehensive survey on the EE of 5G RAN with an
elaborate discussion on RAN power consumption and EE
metrics was provided in [28]. The authors also highlighted the
performance of AI algorithms for current and future wireless
networks. A detailed review of EE power control schemes
for ultra-dense cell-free MIMO communication systems
along with key limitations and future research directions
with a particular focus on the power consumption model
and EE maximization techniques were discussed in [29].
The aforementioned works and references therein primarily
focused on designing EE 5G networks and did not discuss
the efficacy of AI-based ZT automation solutions to achieve
NZ FWNs.Moreover, the impact of recent technologies, such
as Intelligent Reflecting Surfaces (IRS) [30] and THz [31]
communication systems on energy consumption along with
the impact of renewable energy sources to reduce the carbon
footprint was not investigated.

D. RENEWABLE ENERGY POWERED FWNs
A detailed discussion on the renewably powered terrestrial
and non-terrestrial wireless networks, key components, and
notable topologies was provided in [16]. Solutions for
efficiently utilizing renewable energy sources integrated with
smart grids to power wireless networks, such as sleep modes
and passive cooling were demonstrated to be beneficial
for reducing the carbon footprint of FWNs [32]. Various
aspects of renewably powered 5G and beyond networks,
such as the feasibility of various renewable energy sources,
energy harvesting techniques, efficient utilization of excess
energy, and energy planning based on the pricing in smart
grid system were discussed in [33]. In another work,
authors surveyed renewable powered 5G networks [34]
covering several aspects, i.e., the cooperation, configuration
and dimensioning of the renewable energy sources, their
integration in the smart grid and powering the cellular
network. These aforementioned works did not focus in detail
on the power consumption issues of THz communication
systems and neither discussed the use of AI/ML for achieving
low carbon footprint FWNs.

E. ZT FOR FWN MANAGEMENT
There have been some recent research efforts to exploit the
potential AI/ML in improving the EE of wireless networks.
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TABLE 1. Comparison of related research works with this article.

Network slicing and statistical federated learning-based
approach to address the network management and orchestra-
tion challenges was proposed in [36]. The scheme achieved
a 10× improvement in the EE compared to the state of
the art. The authors in [37] have thoroughly investigated
the role of AI to develop a green FWN by optimizing the
energy management and radio resource management. In [38],
authors provided a detailed survey on ZT network and service
management while covering key architectures proposed by
the standardization bodies and the role of AI to enable the
ZT management. Authors in [39], presented a survey on end-
to-end ZT network and service management, covering key
aspects, including overview of ZT management architecture,
related security issues, how ZT automation works, end-to-
end service life cycle management, related standardization,
the role of AI and future research direction. Focusing on
the heterogeneous industrial network, the authors provided
a review on the role of ZT network design leveraged with
the potential of AI/ML [40]. In [41], challenges related to
network slicing and AI algorithms that demand immediate
attention have been highlighted. In a recent survey [42],
ZT-based network management from RAN to the core
network was investigated. However, the above works were
focused on the potential of AI for future wireless network
management without particularly addressing AI utilization
for reducing the carbon footprint of the network.

Table 1 provides the summary of the related works by
highlighting the key contributions and limitations, and that
how this work distance itself from the existing literature.
Although significant efforts have been put in to reduce power
consumption in wireless communication systems, this paper
highlights the substantial improvements required beyond
state-of-the-art for NZ-ZT-FWNs. The paper discusses the
key technologies and enablers including renewable power
sources, smart grids, CFNs,µW/mmW/THz communication,
ORAN, AI/ML and how these can be improved and
integrated to achieve a NZ-ZT-FWN. The key contribu-
tions of this work are listed in Table 1 and summarized
below:

• A NZ and ZT focused FWN design incorporating low
energy consumption CFNs supporting heterogeneous
technologies leveraged with mmW and THz communi-
cation, powered jointly with renewable and traditional
energy sources that are supported with smart grid,

and employing AI/ML-based network control has been
investigated.

• The power and energy consumption concerns of
NZ-ZT-FWNs are highlighted. Notably, a bottom-to-top
approach has been adopted and the discussion encom-
passes the power and energy consumption/efficiency
aspects across the entire spectrum, ranging from
the bottom-level transceiver efficiency to the broader
network-level perspective.

• The potential of AI/ML-based resource orchestration,
leveraging the flexible ORAN architecture, for achiev-
ing NZ-ZT-FWNs has been emphasized. Furthermore,
the crucial role of AI-based ZT automation in reducing
the carbon footprint to realize NZ-ZT-FWNs is high-
lighted, accompanied by the identification of specific
use case scenarios.

• Moreover, focusing on an up-to-date literature, network
topology, placement and integration of network equip-
ment with renewable energy sources to achieve NZ
targets along with limitations of the existing approaches
and potential future research directions have also been
identified.

III. NET ZERO—ZERO TOUCH FUTURE WIRELESS
NETWORK (NZ-ZT-FWN)
In this section, an outline of the envisioned design for

NZ-ZT-FWNs is presented. The steps for achieving a
power-efficient network are discussed along with the effec-
tiveness of AI/ML algorithms and ORAN architecture for
NZ-ZT-FWNs is examined.

A. NZ-ZT-FWN: A HOLISTIC VIEW
A holistic view of the envisioned NZ-ZT-FWNs is shown in
Figure 2. It is anticipated that NZ-ZT-FWNs will be capable
of supporting multiple radio access technologies including
traditional microwave, mmW, and THz communication,
and offer network access to multiple industry verticals,
including traditional mobile communication, vehicle to
everything (V2X) [43], [44], drone communication [45], and
internet of things (IoT) [46]. However, the salient aspect of
NZ-ZT-FWNs is that theywill be powered in a hybrid fashion,
i.e., with the traditional grid and renewable power sources
such as wind and/or solar.
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FIGURE 2. Envisioned NZ-ZT-FWN design, powered with renewable power sources and leveraging AI/ML-based optimization
algorithms.

A smart grid controller will be responsible for efficient
power distribution, while Distributed Units (DU), which may
be collocated with Radio Units (RU)s, will handle computa-
tionally expensive tasks of the physical layer,MediumAccess
Control (MAC) layer, Radio Link Control (RLC) layer, syn-
chronization, and radio resource management. Control Units
(CU)s will be responsible for coordinating and managing
multiple DUs and implementing higher-layer functionality
of the 3GPP stack such as connection management, traffic
flow management, encryption, and more. The CU will gather
requirement information and interface with the RAN Intel-
ligent Controllers (RICs) to intelligently optimize network
resources using AI/ML algorithms. In NZ-ZT-FWNs, the CU
will be responsible for an additional task i.e., exchanging
information with the smart grid to optimize power usage
within the network. Finally, it will also communicate with the
core network via the backhaul link.

Building upon this framework, to achieve NZ targets, the
design of NZ-ZT-FWNs should focus on, 1) power-efficient
transceivers and architectures, and 2) AI-enabled approaches
that can dynamically learn, predict, and adapt the network
resources to save power. This necessitates an interdisciplinary
effort encompassing power efficient circuit and component
design, new transceiver architectures, integration of smart
grids with renewable power sources, algorithms enabling
power efficient orchestration of the power sources and effi-
cient integration into the wireless network, and AI-based self-
organizing solutions to dynamically optimize the network
performance, as shown in Figure 3.

B. POWER EFFICIENT COMPONENTS AND
ARCHITECTURE
The overall research breakdown for a power-efficient
NZ-ZT-FWNs is shown in Figure 4. The goal will be to

FIGURE 3. Interdisciplinary research aspects to reduce the carbon
footprint of NZ-ZT-FWNs enables through intelligent network design.

FIGURE 4. Power efficient NZ-ZT-FWN design flow from component to
transceiver. Followed by a smart grid and renewable power sources FWN
design.

optimize the network architecture focusing on designing
optimal transceivers, placement of the power-efficient com-
municating nodes, resource allocation within the network,
and renewable energy sources. Power-efficient transceivers
are obviously an initial step towards NZ-aware wireless
network design. This requires devising power-efficient
mmW/THz components, precoding/combining algorithms,
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and transceiver architecture as shown in Figure 4. To further
enhance the power efficiency of the network, it is imperative
to strategically deploy the network nodes, enabling them
to be powered by renewable energy sources and efficiently
managed by smart grid controllers for power distribution.

C. POWER EFFICIENT INTELLIGENT NETWORK
MANAGEMENT
NZ-ZT-FWNs are expected to be self-organizing with
AI-based resourcemanagement being at the core of its design,
due to three main factors, 1) 80% of network downtime is due
to human errors, 2) manual configurations are prone to error
and introduce additional delays, and 3) traveling of the trained
personnel is not only expensive but also contribute to an
increase in carbon footprint [47]. Furthermore, NZ-ZT-FWNs
will comprise of multiple radio access technologies and
frequency bands, posing a significant challenge for operators
in terms of control and management. Therefore, AI-based
automation will be necessary to address these complexities
effectively.

Aswell as, the current RAN is comprised of vendor-specific
hardware and software components that operate as black
boxes which results in, a) restricted reconfigurability of the
deployed RAN that limits the fine-tuning to address diverse
traffic profiles and deployments, b) restricted coordination
among components from different vendors and limits the
joint optimization and c) vendor lock-in, that provides limited
support to deploy and interface RAN with multiple vendor
components [48]. ORAN addresses these issues by enabling
open interfaces and intelligent network control to connect
different components. Therefore, ORAN architecture enables
the opportunity to automate, control and optimize NZ-ZT-
FWNs through data-driven optimization [49], [50], [51].
Based on the above-mentioned advantages, it is foreseen

that NZ-ZT-FWNs will be, 1) based on ORAN architecture
with self-configuration, self-organizing and self-healing
capability and 2) designed to be power efficient to reduce
the carbon footprint, leading to NZ networks. However,
significant efforts are required from the research community
to make NZ-ZT-FWNs realizable. Now we will provide a
thorough discussion on key research themes for NZ-ZT-FWN
design.

IV. ROADMAP FOR NZ-ZT-FWN
Over the past few years, substantial research efforts have
been dedicated towards diverse multidisciplinary fields
such as power-efficient component design, accurate power
consumption modeling for wireless networks, optimization
of renewable-powered networks, AI-based intelligent algo-
rithms for FWNs, and ORAN-based network control and
design. Unfortunately, there has been a noticeable absence of
research that specifically addresses network designs aimed
at minimizing carbon emissions and promoting a low carbon
footprint. Threfore, we have identified critical research areas
that demand immediate attention to ensure the timely deploy-
ment of low-carbon footprint for NZ-ZT-FWNs. Figure 1

outlines the research themes and corresponding topics that
will have a crucial role in achieving a NZ-ZT-FWN.
The forthcoming discussion will delve into these areas in
detail.

Firstly, Section IV-A covers the power efficient transceivers
design aspects, and particularly, Section IV-A-I focuses
on power-efficient component design, which serves as the
cornerstone for developing a low-power Future Wireless
Network (FWN). In Section IV-A-II, various approaches
and techniques for power-efficient transceiver design will be
explored, considering the integration of the previously dis-
cussed power-efficient components. These discussions aim
to identify the most suitable methods for achieving energy
efficiency in transceiver implementations. Section IV-A-III
will focus on the development of an accurate power consump-
tion model, which plays a critical role in optimizing both the
transceiver and the wireless network for power efficiency.
The availability of such a model is essential for effectively
assessing and improving the energy efficiency and reducing
the carbon emission of the system. Secondly, building
upon the previous discussions of Section IV-A, Section IV-B
will discuss power efficiency from wireless network
design perspective. Particularly, Section IV-B-I will explore
power-efficient resource allocation in a network design that
incorporates heterogeneous power sources. This involves
optimizing the allocation of resources to achieve maximum
energy efficiency. In Section IV-B-II, the focus will shift
to clustering techniques in the context of a network design
that supports heterogeneous access technologies. Efficient
clustering methods will be examined to enhance energy
efficiency and performance in such networks. Based on the
availability of power consumption models, transceiver and
network design and knowledge about the traffic, a discussion
on the realistic model for the power demand and energy
pricing is provided in Section IV-B-III. Finally, AI enabled
ZT wireless network design is covered in Section IV-C.
considering the challenges and complexity associated with
the FWNs design, ORAN and AI/ML will play a vital role
to efficiently minimize power consumption. The role of
ORAN along with AI/ML techniques to realize the design
of NZ-ZT-FWNs will be discussed in Section IV-C-I. The
discussion on energy efficient AI techniques is provided
in Section IV-C-II. Overall, these sections contribute to
extending the initial idea of a power-efficient network design
to encompass heterogeneous power sources and diverse
access technologies.

A. POWER EFFICIENT TRANSCEIVER DESIGN
Following a bottom-top approach, power efficient transceiver
design will be a major building block for the NZ-ZT-FWN
design. To this end, three key areas have been identified,
namely, 1) power efficient component design, 2) power
efficient mmW/THz transceiver, and 3) accurate power
consumption model that will play a pivotal role in the design
of power efficient transceivers and will be discussed in detail.
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TABLE 2. Components with the performance metrics and limitation for mmW/THz Transceivers.

1) POWER EFFICIENT COMPONENT DESIGN
THz communication, carried out at a significantly higher
bandwidth compared to the current 5G mmW systems,
is considered a key technology for FWNs to enable
massive terabits per second data rate [10], [52]. Despite
the benefit of extremely high data rates, the power con-
sumption of communication systems typically increases as
we move towards a higher frequency spectrum. This is
primarily due to increased interconnect, ohmic losses, and
reduced device efficiency, therefore, designing low-power
THz transceivers is an exceedingly challenging task. The
key components of low-power mmW/THz transceivers and
their limitations are summarized in Table 2 and discussed
below.
Mixed-Signal Component Design: Mixed-signal compo-

nents i.e., Analog-to-Digital Converters (ADCs) and Digital-
to-Analog Converters (DACs) supporting gigabits per second
sampling rate exhibit a significantly high power consump-
tion [53]. The power consumption of an ADC is directly
proportional to the operating bandwidth and the design of
low power ADC, particularly, for the mmW and Thz receiver
that are expected to support GHz of bandwidth will be very
critical. Possible solutions are to incorporate low-resolution
ADCs in the receiver design [14] or design power-efficient
variable resolution ADCs [54].
Power Amplifiers: Power amplifier is an integral part

of a wireless transmitter and is the most power-hungry
device. Generally, the power-added efficiency (a figure of
merit) of the power amplifier increases with the operating
frequency. Recent research in PA design is mainly focused
on the sub-THz band with a Power Added Efficiency (PAE)
around 4% [55] which is lower than what has been achieved
for PAs operating at mmW band [56].
Low Noise Amplifier Design: At the receiver, the design

of a power-efficient Low Noise Amplifier (LNA) is of
critical importance. Generally, the noise figure and the power
consumption of LNA increase with the center frequency [57].
Therefore, for mmW/THz frequency, improved designs of
LNA having a low noise figure and power consumption while
supporting high bandwidth and gain require the focus of the
research community.
Insertion Loss: Insertion Loss (IL) of a phase shifter

degrades the performance which can be compensated by
increasing the gain of the LNA at a cost of increased

power consumption. To address this, there have been recent
advances to reduce the IL of the phase shifter [58].
Mixer Design: Mixer is another important component of

the RF chain. The design of a low-power mixer supporting
wideband signals with the improved capability of harmonic
rejection is also an active area of research [59], [60]. Apart
from the aforementioned mentioned components, research
on the power efficient design of other transceiver chain
components operating at high frequencies should also be
investigated.

2) DESIGN AND OPTIMIZATION OF POWER EFFICIENT
mmW/THz TRANSCEIVERS
Utilizing power efficient transceiver components, there
have been significant efforts to improve the efficiency of
mmW transceivers using techniques that include: antenna
selection [61], [62], [63], RF chain selection [64], [65],
[66], low-resolution ADCs/DACs [31], [67] and by proposing
power efficient multi-antenna transceiver architectures [68],
[69], [70], [71]. These approaches are elaborated below.
1) Antenna Selection [61], [62], [63]: The best subset of

antennas is selected (at the transmitter and/or receiver)
to reduce power consumption, without compromising
the SE of the system. Note that the traditional antenna
selection techniques may not be feasible for high
bandwidth FWNs.

2) RF Chain Selection [64], [65], [66]: The best subset
of RF chains is selected and the RF chains that are
not selected are switched off to save power. Although,
this scheme has a drawback in that turning off RF
chains significantly reduces the spatial multiplexing
gain. However, it can be useful in off-peak times,
where the traffic and data rate requirement is low, and
therefore, switching off RF chains will result in power
savings.

3) Low-Resolution ADCs/DACs [31], [67]: ADCs and
DACs are considered power-hungry devices while
operating at a very large bandwidth as in the case
of mmW and THz communications systems. It has
been shown that the low-resolution ADCs and DACs
can significantly reduce the power consumption of the
transceiver without any significant loss in the spectral
efficiency of the system. Figure 5 shows the comparison
of a digital and an analog receiver in terms of EE
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TABLE 3. Main transceiver architectures and techniques to provide efficient solutions for NZ-ZT-FWNs.

vs a number of ADC bits. The scenario and power
consumption model are the same as considered for
Figure 7 (See Section IV-A-III Simulation Comparison
for further details). It can be observed that there is
an optimal number of ADC bits that maximizes EE.
Therefore, it is possible to design an energy-efficient
receiver with fewer ADC bits that would result in a
significant power saving. Note that initially, the EE
increases because the achievable rate increases at a faster
rate with increasing bits, b, compared to the power
consumption. However, after an optimal number of
bits, EE decreases because now the power consumption
increases at a faster rate. Furthermore, maximum EE is
achieved by a digital receiver with a low-powered 5-bit
ADC. A further increase in bmainly increases the power
without significant improvement in the achievable rate.
For instance, with a bandwidth of 1 GHz (a typical
value for a millimeter wave communication system), the
power consumption of an ADC (with the figure of merit
set to 65 fJ/conv) for b = 5 and b = 8 is 2.1 mW
and 16.6 mW, respectively. This difference will increase
as we move towards the THz frequency band where the
operating bandwidth will be around 10 GHz. Therefore,
receiver design with low-resolution ADCs will be vital
for power-efficient FWNs.

4) Hybrid & Dynamic Architectures: Several architectures
such as fully/partially connected hybrid architectures
and dynamic sub-arrays have been recently investi-
gated [70], [71], [72], [73] to address the large power
consumption and high implementation cost of the large
antenna array systems. In a fully connected architecture,
each RF chain is connected to all available antennas, and
can generally achieve a spectral efficiency very close to
a fully digital architecture. Partially connected hybrid
architecture is a simplified form of a fully connected
architecture where each RF chain is connected only to
a subset of antennas. This results in power savings and
a low-complexity design at the cost of a reduction in
SE. In dynamic sub-arrays, RF chains are dynamically

FIGURE 5. Energy efficiency comparison of an analog and a fully digital
receiver with a low-powered and a high-powered ADC by varying
ADC bits.

connected to antennas and improve EE and SE at the cost
of an increase in system complexity.

The transceiver architectures and techniques that result in
reducing the power consumption have been summarised in
Table 3. In contrast to 5G mmW, future THz transceivers
are expected to leverage ultra Massive MIMO with very
large sub-arrays [74]. Recently, in [75], the authors pro-
vide a detailed power consumption model focusing on
key transceiver components. However, the work on the
power/energy consumption modeling for THz transceivers is
very limited. Therefore, a paradigm shift in THz transceiver
technologies motivates the researcher to rethink power and
energy-efficient techniques to optimize transceiver perfor-
mance.

3) ACCURATE POWER/ENERGY MODEL
An indispensable step towards achieving NZ-ZT-FWNs
is to formulate an accurate power and energy genera-
tion/consumption model. This can be divided into two main
aspects, i.e.,
(a) Modeling of energy harvesting sources and storage

devices that can deliver the required power to the FWN.
(b) Power consumption of every network element.
These aspects are further elaborated below.
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FIGURE 6. Key energy harvesting and storage devices and network elements.

a: ENERGY HARVESTING SOURCES AND STORAGE DEVICES
The two main candidates for renewable energy sources are
solar and wind as shown in Figure 6. Solar energy sources can
be placed close to the network whereas wind energy sources
are expected to be deployed at a reasonable distance from
the wireless communicating nodes due to their disadvantages,
such as shadowing from the wind turbine blade [76].
Improving Efficiency: Efficiency is a key metric to

measure the performance of wind and solar energy sources
and quantifies how much energy from solar or wind has
been converted into usable electrical energy. The efficiency
of commonly available solar panels is between 15% to
22% [77]. Typical factors that affect the efficiency of
solar panels include, 1) the type of the solar panel mate-
rial, 2) inclination, orientation, and wiring of the system,
3) environmental factors, and 4) inverter efficiency. The
energy generated by the solar cell array is given as [78]:

ESol = CSol × PSH × kSol × 365 days/year, (1)

where CSol , PSH and kSol represent the capacity of the solar
array (kW), peak solar hour, and derating factor of the solar
array, respectively. Particularly, PSH accounts for the location
specific solar irradiance corresponding to the maximum sun
shine value for a given number of hours while derating
encompasses the impact of dust, wire losses, temperature and
other factors that may lower the energy output of the solar
array. Recently, researchers at National Renewable Energy
Laboratory (NREL) built a solar cell that can achieve an
efficiency of 39% [79].
On the other hand, for wind energy, Blitz showed that the

theoretical limit for the achievable efficiency is nearly 59%.
Recently, systems can achieve efficiency in the range of 20%
to 50%, and thus, are close to the Blitz limit [80]. The average
energy generated by the wind can be given as [81]:

EWind =
1
2
γAc

∫ Ti

0
Swdt (2)

where γ represents the density of the wind as a fluid,
Ac corresponds to the cross sectional area through which the
wind is passing, Ti is the time interval for which the is passing
and Sw represents the speed of the wind.

While there is continuous improvement in the efficiency of
renewable energy sources, further efforts are required from
the scientific community to enhance this efficiency.
Energy Storage Devices: Energy storage devices are an

essential requirement for renewable energy-powered systems
as they store the surplus energy generated by renewable
energy sources. This stored energy is then utilized to power
the network. Energy storage devices can be categorized into
mechanical, electrical, and electrochemical storage systems.
The four key metrics of storage devices are storage capacity,
energy density, power density, and storage efficiency. The
study in [83] and [82], and references therein, discuss new
approaches to further improve the performance of storage
devices.

NZ-ZT-FWN will be a renewable energy system, com-
prising of and powered by renewable power sources and
storage devices. The design and specifications of renewable
power sources and storage devices are dependent on the
power consumption requirements of the network elements.
Hence, in addition to focusing on improving the performance
of renewable energy sources and energy storage devices,
deriving improved power consumption models is essential.

b: POWER CONSUMPTION MODEL FOR NETWORK
ELEMENTS
To evaluate the carbon footprint of the different deployment
strategies for NZ-ZT-FWNs, it is important to devise an
accurate and tractable power consumption model. The
current popular network deployment approaches are based on
distributed and Centralized RAN (CRAN) [84]. Therefore,
it is essential that the power consumption model is relevant
to the deployment approach. For instance, in the case of a
distributed RAN, the remote radio unit (RRU) and baseband
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unit (BBU) are placed at the same location whereas, in a
centralized RAN, RRU and BBU are located at different
locations, and connected via a fronthaul. Therefore, when
developing a power consumption model for centralized RAN,
it is necessary to account for the power consumed by the
fronthaul link as well.
Power Consumption Model for RAN: In general, the power

consumption of RAN, PRAN , can be calculated as [28]

PRAN =

I∑
i

PiBS +

J∑
j=1

PjF +

K∑
k=1

PkV , (3)

where PiBS , P
j
F , and P

k
V represent the power consumption of

the ith BS, jth fronthaul, and kth virtual BBU, respectively.
The last two terms of (3) are specific to the CRAN
architecture where the BBU is placed at a distance from
the BS. Moreover, in 5G deployment, BBU may further
be divided into DU and CU. Power consumption of the
BS considering massive MIMO deployment, which is an
indispensable component of NZ-ZT-FWNs, can be given
as [85]

PBS = PTx + NTRX
RF PRD + PNL , (4)

where PTx , NTRX
RF , and PRD represent the effective transmit

power that accounts for the efficiency of the PA, number
of RF chains, and the power consumption of the RF and
the digital processing corresponding to each antenna branch,
respectively. The number of RF chains, NRF , is dependent
on the type of beamforming architecture implemented
at the BS. In general, NAnalog

RF = 1 < NHybrid
RF < NDigital

RF ,
where NAnalog

RF , NHybrid
RF , and NDigital

RF are the number of RF
chains in an analog architecture, hybrid architecture, and
fully digital architecture, respectively. Hybrid architecture
is a combination of both analog and digital architectures.
Finally, PNL represents the power consumption of the circuit
that is not dependent on the load.
Power Consumption Model for Fronthaul Link: In a

CRAN architecture, the signal from the RRU to the BBU is
communicated using a fronthaul link composed of an optical
transport network. Power consumption of the fronthaul
depends on 1) the capacity requirements, 2) the number of
BS deployed, and 3) the type of transponder. Based on these,
the power consumption is calculated as [86]

PF =
C
RTr

NBS

(
2PTr +

Pport
NWav

)
, (5)

where C , RTr , NBS , and PTr represent the required transport
capacity, transmission rate supported by the transponder,
the number of base stations, and the power consumption of
the transponder, respectively. NWav represents the number of
wavelengths per fiber.
Power ConsumptionModel for VRAN: The performance of

the CRAN architecture can be improved further through the
Virtualization of RAN (VRAN), where the BBU resources
are split and allocated in a virtualized manner. VRAN

enables efficient resource allocation to tackle diverse user
requirements and traffic conditions. In VRAN, intensive
processing is shifted to the General Purpose Processors
(GPP) which improve the EE. According to [87], the power
consumption of a virtualized BBU, considering the GPP, the
cooling system, and the dispatcher system is given as

PV = PCo + PDS + PGPP, (6)

where PCo, PDS , and PGPP represent the power consumption
of the cooling system, dispatcher system, and general purpose
processors, respectively.
Power Consumption Model for Transceivers: The power

consumption of the transceiver plays a critical role in
identifying the renewable energy source and battery require-
ment. BS transceivers are power-hungry devices composed
of numerous intricately interconnected components and
hardware. Consequently, to mitigate the overall power
consumption, it is imperative to examine the power usage
at the component level and subsequently identify suitable
solutions to enhance the system’s power efficiency. The
power consumption of the transmitter and the receiver for a
MIMO communication system can be computed as [75]

PTotTx = N .PPA + NRFPUC + PLO
+ 2NRFPDAC + PTxBBP, (7)

PTotRx = N .PLNA + NRFPDC + PLO
+ 2NRFPADC + PRxBBP, (8)

where N , NRF , PUC /PDC , PLNA, PLO, PDAC/PADC , and
PTxBBP/P

Rx
BBP represent the number of antennas, number of RF

chains, power consumption of up/down converters, low noise
amplifier, local oscillator, DAC/ADC and digital baseband
processing unit at the transmitter/receiver, respectively.

More detailed models considering the power consumption
of phase shifters, combiners, and splitters have also been
investigated in other works [75], [86], [88]. One such
receiver model will be discussed later. The above discussion
provides a comprehensive framework to compute the power
consumption of a cellular network. In addition to the afore-
mentioned methodology, alternative models and approaches
have been employed to assess the power consumption of
cellular networks. For instance, in [88], a power consumption
model was proposed, considering the varying power usage of
macro, micro, and small cell BS deployments. Furthermore,
the influence of functional split on the power consumption of
the RAN architecture was examined in [86].
Simulation Comparison: Power consumption for a MIMO

receiver is shown in Figure 7. The performance is measured
with and without IL of the phase shifter and by varying the
power of the ADC. For generating this plot, the figure of
merit of the ADC is set to 65 fJ/conv and 494 fJ/conv for a
low-powered and high-powered ADC, respectively [14]. The
number of ADC bits are set to b = 8. IL is varied between
1 to 10 dB, and consequently, the gain of the LNA will be
varied from 1 to 10 dB [89]. The power consumption of an
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FIGURE 7. Power consumption comparison of an analog and a fully
digital receiver with a low- and a high-powered ADC, with and without
insertion loss (IL) of a phase shifter.

analog and a digital receiver is computed as:

PA = N (PLNA + PPS ) + PC + PRF + 2PADC , (9)

PD = N (PLNA + PRF + 2PADC ), (10)

where PA and PD represent the power consumed by an
analog and a digital receiver, respectively. N represents
the number of received antennas. PPS , PC , PRF and PADC
represent the power consumed by a phase shifter, combiner,
radio frequency chain, and ADC, respectively. The power
consumption of the LNA is computed as

PLNA =
G

F(NF − 1)
, (11)

where G represents the gain, F = 8.46mW−1 is the LNA
figure of merit and NF = 3.1 dB is the noise figure [90].
The power consumption for the rest of the components can
be found in [14].
In Figure 7, it should be noted that there is no impact of IL

on the power consumption of the digital receiver architecture
as it does not require phase shifters. Additionally, for
comparison purposes, the power consumption of the analog
architecture is plotted with and without IL. It can be observed
that IL significantly increases the power consumption of an
analog receiver. This is due to the fact that gain of the LNA
should be increased to compensate for IL which results in an
increase in power consumption. An analog receiver with no
IL may achieve a lower power consumption than a digital
architecture for both low-powered ADC and high-powered
ADC cases. However, an analog receiver with IL, which is
a more realistic model, consumes lower power than a digital
architecture only for a certain range of IL, i.e., IL < 6 dB.
Therefore depending on the IL operating point, a design
decision between an analog or a digital architecture can be
made.
Power Consumption of Remaining Network Components:

The preceding discussion highlights the importance of
focusing research efforts on developing a comprehensive

and realistic power consumption model that encompasses
not only transceivers but also other network elements of
NZ-ZT-FWNs, for example, IRSs as shown in Figure 6.
IRS is an emerging technology that enables the creation of
a programmable wireless channel adjusting the phase and
amplitude of the incident signals, thereby enhancing signal
quality and coverage by mitigating signal attenuation, multi-
path fading effects, and interference [30]. The network power
model must also take into account the power consumption
of IRS technology and its associated components, including
the IRS controller and the energy consumption impact of
additional core network processing. This developed model
can then be utilized to design and select suitable renewable
energy sources.

B. POWER EFFICIENT WIRELESS NETWORK DESIGN
Based on the availability of the power efficient transceivers
the next step is to integrate them into the network. The
goal would be to ensure that this integration would result
in a power efficient network design. Three main areas have
been identified, i.e., 1) power efficient resource allocation,
2) power centric clustering, and 3) realistic models for power
demand and energy prices, and will be discussed in detail.

1) POWER EFFICIENT RESOURCE ALLOCATION
The unprecedented increase in the data rate requirements
and in the number of communicating devices will result in a
highly complex network design [91]. Therefore, efficient uti-
lization of network resources in renewable energy-powered
networks will be a challenging task for NZ-ZT-FWNs.
Particularly, network resource management is divided into
two main tasks, 1) radio resource management [92], and
2) power resource management [93]. Resource management
in wireless networks powered by heterogeneous energy
sources is an active area of research [94]. However, a joint
radio resource and energy management remains an open
research area with significant potential for innovation [95].
Radio resource management mainly deals with power
control, user scheduling, and QoS requirements. On the other
hand, energy management emphasizes efficient resource
management in terms of power among the network nodes.
Several solutions for efficient power resource management
have been proposed, such as cell zooming [96], energy
trading [97], load control [93], energy cooperation [98] and
switching off/on of BSs [99].

AI has been revolutionizing applications in every industry
and vertical, including cellular networks and is envisioned
to become the backbone of FWNs. Considering the highly
complex nature of resource management, AI algorithms can
be a main driving force for resource optimization [91]. Par-
ticularly, deep neural networks and Reinforcement Learning
(RL)-based resourcemanagement solutions have beenwidely
investigated [92], [95], [100]. Despite these research efforts,
there are multiple aspects that require further investigation
and will be highlighted in Section V.
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FIGURE 8. Network and user-centric clustering.

Case Studies: Now, two practical case studies will be
discussed to emphasize the reduction in carbon footprint
achieved in the practical cellular network deployment with
renewable energy sources. A study on the solar powered
BS deployment in Kuwait has been presented in [78].
In this study, the required number of solar panels, batteries,
and converters are determined using HOMER software.
Several different scenarios, including BS solely powered by
diesel generator, solar, or by a combination of solar and
diesel generator have been investigated. It is shown that
the solar powered system resulted in zero carbon emission.
Furthermore, CO2 emission of a combined solar and diesel
powered is only 4, 713 kg/yr whereas with a diesel powered
system it reaches up to 80, 746 kg/yr. This highlights the
importance of renewable energy sources to reduce the CO2 of
a cellular network.

In another work, solar and wind powered BS deployment
in a rural area of Scotland has been investigated in [101]. The
system is powered through solar and wind energy sources
and the energy is stored in the battery bank. The battery
bank system is integrated in the system so that the system
operate without the availability of additional energy for MD
days while ensuring that the maximum capacity should not
drop below the maximum discharge depth DDep, where 0 <

DDep < 1. Then, the relationship between the battery bank
capacity BC in kWh and the energy demand ED in kWh is
expressed as

BC =
MDED
DDep

, (12)

while considering the total energy demand of 1.2 kWh,
number of days without energy source MD = 3 and that the
stored energy should not drop belowDDep = 50%, the battery
bank must store BC = 7.2 kWh. Let, ER represent the energy
required per day to recharge the battery bank in MR days,
then the total energy production required from the renewable
energy sources is ET = ED + ER. For MR = 5, the required
ER = 720 Wh, and therefore, the total energy production
required per day is ET = 1.92 kWh. It is shown that in winter

solely the wind power can provide this energy, whereas in
summer thewind energy generation reduces to 600Wh. Then,
the additional energy is supplied by the solar energy sources.
This study highlights that heterogeneous energy sources will
be essential to provide an uninterrupted energy throughout
the year.

2) POWER CENTRIC CLUSTERING
Clustering allows to the division of mobile networks into
distinct entities based on some criteria. Two popular schemes
are, 1) network-centric clustering and 2) user-centric cluster-
ing are shown in Figure 8 [102], [103]. Networking-centric
clustering has been adopted in 4G. The main disadvantage of
this scheme is that there is a lot of interference to the edge
users [104]. User-centric clustering has been proposed where
a user is connected to all APs that can communicate with
them with an SNR greater than a predefined threshold. User-
centric clustering leads to CFNs, where for each user, there
will be a region of APs that is overlapping with the region of
other users [105]. Other protocols for user-centric clustering
include limiting interference by creating service exclusion
zones in which BSs are activated opportunistically to serve
users [102], [103], [106]. Leveraging RL, it was shown that
the size of service zones can be adjusted intelligently and
dynamically to cater for service provision to diverse UE
requirements [107]. Furthermore,K mean clustering has been
proposed to minimize the effect of a strong interferer [108].
A graph partitioning-based approach has also been proposed
to reduce the signaling overhead and complexity [109] while
dynamic cooperation clustering has been considered in [110].
In contrast to the previous works, a promising area of research
will be to further investigate the potential of power-efficient
clustering in a mobile network.

3) REALISTIC MODELS FOR POWER DEMAND AND ENERGY
PRICES
An accurate power consumption model provides an estimate
of power consumed in a wireless network under normal oper-
ation. This model can be further enhanced by incorporating

83312 VOLUME 11, 2023



W. Bin Abbas et al.: Designing FWNs With NZ and ZT Perspective

the power consumption in a high-load scenario along with
varying energy pricing. The power consumed by a wireless
network correlates with the amount of wireless traffic
which varies with time and location [111]. Furthermore,
its relationship with peak and off-peak energy prices has
a direct impact on the capital expenditure and operating
expenses for the mobile network operator [112]. Therefore,
an optimization of the wireless network performance in terms
of power and/or EE should also incorporate the cost-related
constraints.

Predicting energy requirements based on the traffic load
profile and how they correlate with the energy pricing will be
important, not only to ensure efficient energy management
but to minimize expenditures. This can be achieved by
devising realistic power demand and energy pricing models.
Recent research that caters to the economic aspects of
wireless communications was mainly focused on enhanced
mobile broadband. The dependency of throughput on the
traffic demand in a large multi-cellular network was inves-
tigated in [113]. Particularly, stochastic geometry, queuing,
and information theory-based approaches have been studied
to predict and optimize network performance. Similarly,
the problem of demand-driven power allocation using deep
reinforcement learning has been recently addressed in [114].
In [115], authors proposed a game theoretic time-dependent
pricing scheme for bandwidth scheduling. This motivates
the users to free resources for delay-sensitive applications
by shifting their delay-tolerant traffic to other off-peak time
slots.

Extending the idea to renewable energy-powered networks,
authors in [116], studied the cost efficiency of GWNs
and showed that the GWNs can be at least two times
more cost-efficient than traditional networks. Focusing on a
network powered by heterogeneous energy sources, authors
in [94] propose a resource-on-demand-based energy schedul-
ing scheme for multiple cooperative RANs. Furthermore,
a dynamic adaptive algorithm was developed for the efficient
allocation of resources to reduce the power consumption cost
of the grid. In [20], a game theoretic approach has been
adopted to optimize the cost of 5G and beyond network
operation. The availability of heterogeneous powered sources
was considered where the BS reduced the energy cost through
efficient operation consuming less power and selecting the
supplier that had low generation cost. Author in [117]
addressed the high energy consumption of 5G networks
by utilizing solar energy sources. A mathematical model
for photovoltaic systems, BS load, and energy storage
systems was formulated to study and optimize the energy
consumption cost of the network. Despite this, an effort from
the scientific community is required to devise realistic models
for power demand and energy prices.

C. AI ENABLED ZERO TOUCH NETWORK
Dynamic adaption and control will be essential for
NZ-ZT-FWNs and traditional model-driven network

management solutions may not be able to adequately
address this aspect. To address this, AI enabled ZT network
optimization will be indispensable. This aspect will be
comprehensively covered in this section. Firstly, the need
of ORAN supported by AI algorithms will be investigated.
In addition, the key limitations will also be highlighted.
Secondly, a thorough discussion will be provided on AI
enabled power efficient network management along with the
energy efficiency concerns related to the implementation of
AI techniques.

1) ORAN COMPATIBLE AI ALGORITHMS FOR NZ-ZT-FWN
Network management encompasses several aspects, includ-
ing, radio resource management, power resource manage-
ment, low-energy radio resource scheduling, QoS optimiza-
tion, BS activation and user association. To effectively handle
these diverse tasks, the utilization of data-driven AI/ML
techniques will be crucial, necessitating comprehensive
end-to-end network management and control capabilities.
However, the existing RAN architecture, characterized by
its vendor-dependency and black box nature of network
components (from the operator’s perspective), lacks the
capability to achieve end-to-end control, which is essential
for attaining ZT automation for FWNs.

Moreover, the complexity of the network, diverse user
requirements, the need for multi-objective goals, and the
essentiality of end-to-end control for ZT automation all
call for a transformation in RAN technology. To address
this, an open-RAN (ORAN) architecture is envisioned
as the paradigm to facilitate future ZT-network design
[118], [119], [120].
In ORAN, the interfaces are open and standardized

supporting virtual software-based control of the compo-
nents, along with the flexibility of interoperability across
different vendors. These features of ORAN provide the
capability for end-to-end control, enabling implementation
and execution of intelligent AI-based data-driven solutions
to optimize the network performance and achieve ZT
automation [48], [121]. Furthermore, disaggregation and
virtualization of the network components provide flexibility
in terms of network optimization and control. However,
there are several open areas that need special attention to
ensure the practicality and feasibility of AI-based ZT-ORAN
deployment.

• Lack of Data for Novel Network Architectures: AI
algorithms require data for training, validation, and
testing. However, for any novel and new architecture,
the experimental dataset will not be available until
the deployment of the network. For instance, CFNs
have not been widely deployed and thus, data is
lacking for training AI models to optimize CFNs.
Therefore, researchers need to explore approaches
to generate representative synthetic data to augment
the limited experimental data for model training and
testing purposes. This can be achieved by simulat-
ing realistic network models that accurately capture
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FIGURE 9. NZ-ZT-FWNs - Key research areas, limitations, and energy-efficient AI techniques.

the complexities of the network without relying on
simplifying assumptions. Such simulations will require
high computational processing power, which can be
met by leveraging parallel processing GPUs. Another
direction to consider is leveraging the capabilities of data
augmentation algorithms and generative algorithms to
generate new data points from the limited available data,
thereby expanding the dataset and enhancing the training
and model learning [122], [123].

• Generalizable Models: AI algorithms will be the
backbone for network orchestration in FWNs and will
be required to function for varying network deploy-
ments [124]. Therefore, a key research direction would
be to devise AI-based solutions that generalize well
and are easily transferable to optimize performance for
different network deployments. Transfer learning (TL)
and meta-learning-based approaches will play a key role
to address this issue [125], [126].

• Model Monitoring and Updating: To ensure that the
AI model is working correctly and not deviating or
diverging, continuous monitoring and frequent updat-
ing will be crucial for future ZT deployments. This
will enable reliable & robust end-to-end control and
optimization of the network and prevent sub-optimal
network behavior. Therefore, it is necessary to develop
online learning algorithms that optimize the network
without compromising performance.

• Security and Privacy: Secure communication in ORAN
will be crucial, and federated learning-based techniques
will play a critical role to address this issue [127].

Figure 9 highlights the key areas where the ZT approach
will play a critical role along with key limitations in the
current research and energy issues have also been highlighted.
In summary, ZT solutions for ORAN-based architecture
will be an enabler of end-to-end performance optimization
by efficiently managing network resources and devising
power-efficient solutions to achieve future net-zero targets.
Below we present possible AI use cases to achieve NZ targets
followed by the role of hardware acceleration techniques to
improve the energy efficiency will be covered. Furthermore,

a discussion on an energy efficient AI based network design
will also be discussed.

a: DYNAMIC BS ACTIVATION/DEACTIVATION FOR POWER
SAVING
BSs consume power continuously as they are transmitting
control and data signals. Control plane signaling is broadcast
in nature and consumes constant electrical power. On the
contrary, data plane signals are transmitted on the shared
channel, and the power consumption is mainly dependent
on the traffic intensity. Moreover, continuous electric power
is also being consumed by control circuits. In addition,
operators are increasing the cell density by deploying more
BSs to support an increase in the required data rate. All these
factors contribute to the overall increase in network energy
consumption, including the recurring energy consumption
that is independent of the traffic load.

Consequently, during periods of low traffic loads, when
the data rate requirement falls below the peak and net-
work resources are underutilized, the BSs continues to
consume continuous power, making the network power
inefficient [128]. One possible solution to save power is to
shut down BS(s) or cells based on a pre-configured scheduler.
However, this approach has a drawback that it cannot dynam-
ically adapt to changing traffic and network requirements
and will significantly degrade network performance having
a negative impact on UE QoS. This can be addressed by
utilizing ML and RL-based adaptive ZT solutions which can
dynamically sense the traffic requirements, learn, reconfigure
and optimize the network, by activating/deactivating BSs to
save power without compromising the QoS requirements of
the user.

Recently, the problem of BS switching based on the traffic
load to save power have been investigated [129]. Based on
the historical data, dense neural network and recurrent neural
network have been utilized to predict future traffic and select
the BS sleep modes (on and off) accordingly. The proposed
method has shown to decrease energy consumption by 63%.
The concept of RL has also been employed to reduce energy
consumption by optimizing BS sleep while simultaneously
meeting QoS requirements [130].
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b: HARDWARE ACCELERATION
Virtualization of network functions will be an integral
part of the ORAN architecture. These network function
are deemed to be executed on general purpose computer
(GPU). Nevertheless, since these processing units are not
specifically optimized for efficient network operations, their
usage can result in higher energy consumption. Employing
dedicated hardware can alleviate this issue of increased
energy consumption. Furthermore, in contrast to software
acceleration, hardware acceleration methods provide an
energy efficient solution [131]. For instance, it is shown that
the in-memory based hardware acceleration for bulk bitwise
operation can result in a 35-fold reduction in the energy
consumption.

Central processing units (CPU) with a multi-core system
provide a possible option to implement network func-
tions. However, in comparison to a single-core, multi-core
systems consumes more power. To address this, power
saving techniques, such as putting cores to sleep with no
activity or reducing the voltage supplied to CPU, without
compromising the performance should be investigated [131],
[132]. Similarly, Field Programmable Gate Array (FPGA)
based network functions implementation may result in a
lower power consumption in comparison to a CPU based
implementation [133]. It is shown in the literature that
the FPGA based smart network interface card design is a
feasible choice in terms of latency, cost and power [134].
For a detailed discussion on the hardware acceleration
based energy reduction techniques references [131], [133],
and [134] and references therein can be delved into.

2) ENERGY EFFICIENT AI
AI algorithms rely extensively on the availability of large
datasets to train, validate, and test models. The process
of transferring a substantial amount of data to the cloud
leads to supplementary energy consumption [135]. Recent
advancements in AI techniques have shown significant
improvements in energy consumption. These enhancements
by AI/ML requires an increased demand for computa-
tional resources, availability of powerful computing infras-
tructure, and specialized hardware for deploying AI/ML
models [136]. However, this high-performance computing
hardware requires significant power to operate and as a result,
integration of AI/ML-based algorithms in the network will
lead to an overall increase in power consumption of the
developed system.

The potential of AI algorithms have been extensively
explored to optimize the performance of a cellular network
in terms of radio and energy resource management. In [137],
network planning is proposed in a two step process.
Firstly, Support Vector Machine (SVM) based regression
is performed to estimate the required Physical Resource
Blocks (PRB) per Mega Byte (MB). Then, focusing on
minimizing the PRB perMB an improved BS configuration is
obtained using genetic algorithm to facilitate cost and energy

savings. In [138], a joint cell activation and user association
scheme is solved using Q-learning approach to minimize
the power consumption and backhaul load balancing in
a dense heterogeneous network. The results showed a
substantial improvement in term of energy efficiency and
QoS. AI based approaches have also been investigated to
optimize the power control in a single cell and a multi-tier
heterogeneous networks where a global optimum is difficult
to achieve [139], [140]. In [139], a reduced complexity
branch and bound based scheme to maximize the energy
efficiency is proposed which is then used to train a neural
network. Authors in [140], highlighted the complexity in
acquiring the global CSI in heterogeneous network and
proposed a deep RL based approach where an AP can utilize
a local deep neural network to optimize the power control.
Focusing on a cloud RAN architecture, a joint cell sleeping
and cooperative beamforming design while minimizing the
power consumption in the network and satisfying the QoS
has been considered in [141]. A deep neural network
approach is proposed where the network trained to predict the
beamforming vectors and sleepingmode based on the channel
coefficients.

The energy management in a cellular network powered by
heterogeneous energy sources is a complicated task and AI
algorithms provide an efficient solution to address this issue.
In [142], authors considered a two tier cellular network that
was powered by the traditional grid and the solar energy. They
proposed a distributed RL small BS switching approach to
balance the energy consumption and network drop rate.

Although AI algorithms have been extensively explored
to improve the energy efficiency of the network, the energy
consumption associated with the training and deployment
phase of these algorithms is also of an immense concern.
Techniques, such as, federated learning, transfer learning,
early stopping, hardware acceleration, and general purpose
unit power capping, will play a vital role to limit the excessive
power usage.

V. FUTURE RESEARCH DIRECTIONS
FWNs involves the integration of multiple technologies
that corresponds to a highly complex design. Substantial
efforts are needed from the research communication in
multiple areas, i.e., right from the component to the complete
network design, to make the NZ-ZT-FWNs a reality. This
section comprehensively address that by highlighting the key
research directions.

A. POWER EFFICIENT TRANSCEIVERS
Future research in this aspect can be divided into three key
areas, i.e., 1) low power component design, 2) low power
transceiver design and 3) accurate power/energy consumption
model.

At the component level, PA and ADCs are the most power
hungry components in the transmitter and the receiver chain,
respectively. The design of a PA with a high PAE is of
immense significance. Therefore, efforts from the research
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community are needed to devise novel techniques to improve
the PAE. Possible low-power solutions and research direction
can be to incorporate low-resolution ADCs in the receiver
design or design power-efficient variable resolution ADCs
that allow dynamically selecting the optimal number of ADC
bits to ensure power savings without a significant decrease in
the performance.

At the transceiver level, the research themes can be
divided in to design techniques and architectures. Firstly,
popular power efficient techniques includes antenna selec-
tion, RF chain selection and low resolution ADCs. Note
that the traditional antenna selection techniques may not
be feasible for high bandwidth FWNs. For instance, THz
communication supporting 10s of GHz bandwidth will
experience a high-frequency selective fading channel and
a single antenna may not be sufficient to collect abundant
signal power for reliable signal decoding. Therefore, this
aspect requires attention from the researchers while devising
antenna selection solutions. Similarly, RF chain selection
depending on the channel characteristics and/or available
traffic is worth exploring. Novel design architectures with
low resolution ADCs or with variable resolution ADCs
considering THz communication should be investigated.
Secondly, analog and hybrid architectures are power efficient
alternatives to a fully digital massive MIMO transceiver.
Novel architectures that can result in further power sav-
ings should be explored. Thirdly, an integration of these
techniques and architectures in an RIS assisted communi-
cation in a traditional and a CFN is a potential research
area.
Accurate power/energy consumption model is of immense

importance not only from a network deployment perspective
but also to optimize the network performance with power
constraint. A unified figure of merit that can be used as a
benchmark to compare the power efficiency of various pro-
posed designs and techniques will play a vital role. A recent
effort in this direction can be found in [143]. However, the
proposed metric can be improved by incorporating the power
consumption associated with the baseband signal processing.

B. POWER EFFICIENT FWNs
From a network perspective, research efforts are needed in
power efficient resource allocation, network clustering and
realistic power/energy pricing models.
Resource allocation encompasses radio resource manage-

ment and network resource management. To reduce the
energy consumption of the network, there are key research
areas that requires further investigation, such as:

1) Cell-free networks with extremely dense deployment
supporting heterogeneous technologies.

2) Extremely high-frequency communication that would
suffer from greater electronic distortion and would have
different power consumption profiles.

3) High-complexity transceivers with an extremely large
number of antennas.

4) MIMO muting, i.e., depending on the channel charac-
teristics and traffic availability turning-off some of the
MIMO features, and BS sleeping modes.

5) ORAN based self organized network design.

Therefore, multi-objective optimization to allocate power
and bandwidth resources, perform user scheduling, ensure
QoS, and distribute energy resources using a smart grid
leveraged with AI-based algorithms will be worth exploring
for aforementioned areas, particularly, in the context of
NZ-ZT-FWNs. Moreover, most of the current research
has been focused on the availability of perfect channel
state information (CSI). Therefore, resource allocation with
imperfect CSI is also worth investigating.
Network clusteringwith goal to reduce the carbon footprint

is worth exploring. One key aspect would be to improve
the power efficiency of the wireless network by optimizing
the placement of RRUs and renewable power sources.
Furthermore, it can be combined with user-centric clustering
to study the trade-off and to identify a feasible hybrid solution
that can take advantage of both techniques. Another option
would be to form clusters with the goal to minimize the
power consumption of the CFN subject to maintaining user
QoS.

Finally, given the complex nature of FWN realistic
power/energy pricing model should be developed with a
particular focus on the technologies and use cases that are
deemed for the future networks with a goal to not only reduce
the power but to provide economic benefits as well.

C. POWER EFFICIENT AI SOLUTIONS
The research on reducing the energy consumption of AI
solutions is a relatively recent development. Federated
learning, which is a collaborative learning technique, can be
one possible approach to reduce energy consumption [144].
As mentioned above, transfer learning will also play a
vital role in reducing the energy consumption associated
with the training of the AI model. Another possible option
would be to terminate the training process as it approaches
the optimal solution by tailoring the early stopping
techniques [145].

There are several hardware based techniques have been
proposed to reduce the power consumption associated with
the AI/ML algorithms implementation. Hardware acceler-
ators are necessary to solve the matrix algebra involve in
the computations of NN training. The reliance on the high
end CPU and GPU generally results in a higher energy con-
sumption [146], [147]. Therefore, techniques such as, GPU
cooperation and reduction in frequent memory accessing
should be explored to ensure a power efficient implementa-
tion. In addition, research on smart network interface cards
should conducted to reduce the energy consumption of the
FWN [148]. GPU power capping method, which has been
considered recently, can be interesting for future research to
reduce the energy consumption associated with the training
of the AI algorithms [149].Approximate computing is another
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techniques to reduce the energy consumption but at the cost
of a slight degradation in the performance due to the error
introduced by the approximation [150]. This has been active
area of research to ensure an energy efficient implementation
of a neural network architecture [151]. However, the efficacy
of approximate computing based NN implementation for
scenarios where the reliability is of immense concern
is an open area of research. With AI-based techniques
serving as the foundation of future ZT wireless network
design, it is imperative for researchers to not only enhance
model accuracy but also focus on reducing computational
complexity and energy consumption.

VI. CONCLUSION
This manuscript comprehensively highlights the key aspects
of NZ-ZT-FWNs comprising joint renewable energy and
grid-powered network architecture with a low carbon foot-
print. A detailed discussion about the different components
of future networks from a power and energy consumption
perspective has been provided. Furthermore, the current
state of the art and future research directions have also
been highlighted. AI-based solutions that can dynamically
optimize the network to improve power efficiency and
empower NZ-ZT-FWNs have also been discussed. Finally,
future research directions are also highlighted.
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