
Received 1 June 2023, accepted 29 July 2023, date of publication 3 August 2023, date of current version 10 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3301727

MeROS: SysML-Based Metamodel for
ROS-Based Systems
TOMASZ WINIARSKI , (Member, IEEE)
Warsaw University of Technology, Institute of Control and Computation Engineering, 00-665 Warsaw, Poland

e-mail: tomasz.winiarski@pw.edu.pl

This work was supported by the Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of
Technology within the Excellence Initiative: Research University (IDUB) Programme.

ABSTRACT The complexity of today’s robot control systems implies difficulty in developing them
efficiently and reliably. Systems engineering (SE) and frameworks come to help. The frameworkmetamodels
are needed to support the standardisation and correctness of the created application models. Although the
use of frameworks is widespread nowadays, for the most popular of them, Robot Operating System (ROS),
a contemporary metamodel has been missing so far. This article proposes a new metamodel for ROS called
MeROS, which addresses the running system and developer workspace. The ROS comes in two versions:
ROS 1 and ROS 2. The metamodel includes both versions. In particular, the latest ROS 1 concepts are
considered, such as nodelet, action, and metapackage. An essential addition to the original ROS concepts is
the grouping of these concepts, which provides an opportunity to illustrate the system’s decomposition and
varying degrees of detail in its presentation. The metamodel is derived from the requirements and verified
on the practical example of Rico assistive robot. The matter is described in a standardised way in SysML
(Systems Modeling Language). Hence, common development tools that support SysML can help develop
robot controllers in the spirit of SE.

INDEX TERMS Systems engineering, robot operating system ROS, ROS 1, ROS 2, robotic framework,
SysML, platform specific model PSM.

I. INTRODUCTION
The development of civilisation has led to an increase in
the importance of robotics. Many modern robotic systems
are complex. To create them as effectively and reliably as
possible, it is necessary to follow systems engineering (SE),
where metamodels play an essential role [1], [2], [3]. Robots,
especially complex ones, are mostly controlled with usage of
software. Hence, in robotics, SE is inextricably linked with
software engineering, where frameworks have been crucial
for many years [4], [5]. Diverse robotics frameworks have
been developed so far [6], [7], [8]. Some steps towards stan-
dardisation have been made in recent years, and ROS (Robot
Operating System) has come to the fore. Stand-alone ROS 1
(ROS version 1) [9] is unsuitable for hard RT (Real Time)
systems, so one of the solutions in practical applications

The associate editor coordinating the review of this manuscript and

approving it for publication was Yingxiang Liu .

(e.g., [10], [11], [12], [13], [14], [15]), is to integrate ROS 1
with Orocos [16], [17]. Over time, ROS 1 has evolved to,
among other things, improve its performance. Known and
crucial problems in the face of some contemporary applica-
tions (e.g. cybersecurity, RT performance) led to the develop-
ment of a new version of the framework, ROS 2 [18], [19].

ROS 1 has evolved considerably from the initial distribu-
tions. Its metamodels created so far are now incomplete and
outdated (sec. V). According to ROS metrics,1 new ROS 1
distributions have practically replaced older ones in terms of
distro downloads stats. Above indications point to the need
to formulate an up-to-date, recent metamodel for the latest
versions of ROS 1 and ROS 2, which this article undertakes
by presenting the new metamodel for ROS – MeROS.

The robotic models can be subdivided [20] into Platform
Independent Models (PIM), e.g., [21], [22], [23], [24], and

1https://discourse.ros.org/t/2022-ros-metrics-report/29594

82802 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9316-3284
https://orcid.org/0000-0001-5684-9159


T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

Platform Specific Models (PSM). The metamodels of ROS,
including MeROS, belong to PSM and should answer to the
component nature of ROS [25], [26].

MeROS is founded on SysML (Systems Modeling Lan-
guage) [27], [28], a profile of UML (Unified Modeling
Language). Modelling in languages from the UML family
addresses a number of important aspects of systems engineer-
ing [29]. These include the use cases [UCX]:

• [UC1] Systems’ documentation and presentation,
• [UC2] Effective analysis of systems, especially in inter-
disciplinary teams (graphical language is more under-
standable for non-specialists in the field),

• [UC3] Defects detection,
• [UC4] Integration of new collaborators into the develop-
ment team,

• [UC5] Resuming work after a break,
• [UC6] Extension and modification of existing systems,
• [UC7] Support the implementation of new systems,
• [UC8] Migration of systems.

In practice, documentation is created both prior to imple-
mentation and, in many cases, through a process of reverse
engineering [30] for existing systems. Agile-type strategies
involve modifying the documentation as the project devel-
ops [31].

The following presentation starts with formulating the
requirements (sec. II) for the MeROS metamodel. These
requirements are allocated to the metamodel that is described
in sec. III. Theway to present amodel of a specific application
based on MeROS is presented on a practical example in
sec. IV. A comparison of the MeROS with similar meta-
models is presented in sec. V. The paper is finalised with
conclusions (sec. VI).

II. METAMODEL REQUIREMENTS
The requirements [RX] formulation process for MeROS
metamodel is multi-stage and iterative. In the beginning,
the initial requirements were formulated based on: (i) lit-
erature review (both scientific and ROS wiki/community
sources), (ii) author experience from supervising and support-
ing ROS-based projects, and finally, (iii) author experience
from EARL (Embodied Agent-based cybeR-physical control
systems modelling Language) [24] PIM development and its
applications (e.g. [23], [32], [33]). Verification of draft ver-
sions ofMeROS by its practical applications led to an iterative
reformulation of requirements and MeROS itself. The article
presents the final version of both MeROS metamodel and the
requirements it originates from.

MeROS requirements are depicted on a number of dedi-
cated SysML diagrams. The requirements are organised in
a tree-like nesting structure, with additional internal relations,
and labelled following this structure. The general require-
ments are presented in Fig. 1. Here, and in the following
diagrams, the elements (components, relations) specific for a
particular version of ROS (ROS 1 or ROS 2) are labelled with
an,,rv’’ tag with the ROS version that the element is specific

FIGURE 1. General requirements.

FIGURE 2. Structural aspects requirements.

for. The lack of a tag means the element is general for both
ROS versions.

The SysML models have two main parts: behavioural
[R1] and structural [R2]. MeROS aims to cover ROS con-
cepts [R3] and not change their labels as long as possible,
to maintain conformity and intuitiveness. The ROS system is
two-faced.While it is executed [R4], it has a specific structure
and behaviour, but from the developers’ point of view, the
workspace [R5] is the exposed aspect. The model should be
compact and straightforward [R6] rather than unnecessarily
elaborate and complicated. One of the assumptions that stand
out MeROS from other ROS metamodels is conformity with
the final ROS 1 release [R7] (Noetic Ninjemys). Although the
SysML-based MeROS is classified into PSM [R8], it should
be compatible withNon-ROS elements [R9]. Finally,MeROS
metamodel should be valid both for ROS 1 and ROS 2.

The system’s structural aspects requirements are presented
in Fig. 2.

A vital addition to the original ROS concepts is the
abstract grouping of: (i) communicating methods [R2.1] and
(ii) communicating components [R2.2]. The motivation for
the introduction of these aggregates is presented further on.

VOLUME 11, 2023 82803



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 3. ROS concepts requirements.

It should be noted that several ROS concepts group other
concepts in a particular way, especially to deploy the system.
Action aggregates Topics and Services (in ROS 2), ROS 1
Node aggregates Nodelets, and ROS 2 Component Container
aggregates Nodes. TheROS concepts thatMeROSmodels are
organised into four major classes (Fig. 3): (i) Communicating
components [R3.1], (ii) Communication methods [R3.2], (iii)
Workspace [R3.3], and (iv) Other [R3.4].

Communicating components [R3.1] are: (i) ROS Node,
(ii) ROS Nodelet, (iii) ROS plugin, and (iv) ROS library.
Both plugin and library let to share the same code between
various Nodes or ROS 1 specific Nodelets. Two ROS nodes
are mandatory to execute the ROS 1 system: (i) ROS Master
and (ii) rosout. Three methods of communication are consid-
ered [R3.2] with their inter-component connections and data
structures: (i) ROS Topic, its Message and connection, (ii)
ROS Service comprising data structure and connection, and
finally (iii) ROS Action including data structure and connec-
tion. Workspace concept [R3.3] comprises: (i) ROS Package
[R3.3.1] and (ii) Metapackage [R3.3.2] introduced in the
latest releases of ROS 1. Other concepts [R3.4] include four
elements: (i) ROS Parameter Servermanages (ii) ROS Param-
eters, (iii) roscore forms a collection of programs and nodes
that are pre-requisites of a ROS 1-based system. Finally,
(iv) ROS Namespace reflects the ROS concept to organise
nodes and communication connections. Both ROS Master
and rosout are executed with roscore. ROS Parameter Server
is a part of ROS Master.

To achieve intuitiveness, MeROS presents a Running
system structure (Fig. 4) following ROS rqt_graph pattern
[R4.1]. In particular, there are two ways to visualise commu-
nication, including [R4.1.1] and without [R4.1.2] dedicated
communication components. The dedicated components are
especially useful in the presentation when many communi-
cation components use the same topic both on the publisher
and the subscriber side. In opposition, the expression of topic
names on arrows connecting communicating components,
i.e., without dedicated communication components, let to
reduce the number of components needed to depict commu-
nication for many topics and a low number of communicating
components. The other advantage of using dedicated commu-
nication components is that the particular connection can be

FIGURE 4. Running system requirements.

FIGURE 5. Compactness and simplicity requirements.

split into several diagrams (e.g. ibd (internal block diagram)
or sd (sequence diagram)), where the same object represents
this connection in every associated diagram. Services [R4.2]
and actions [R4.3] should be depicted as an addition to
the presentation of the particular topics. It should be noted
that rqt_graph represents actions as a number of topics and
services. In MeROS, the topics and services being part of
an action can be aggregated, which reduces the number of
depicted connections.

The compactness and simplicity [R6] and its nesting
requirements are presented in Fig. 5.

A SysML project to develop and represent MeROS meta-
model should consist of a small number of packages [R6.1],
but still, the packages should distinguish the major aspects
of development process: (i) metamodel requirements for-
mulation, (ii) metamodel itself, and (iii) metamodel realiza-
tions/applications. Dedicated SysML stereotypes [R6.2] are
introduced to MeROS to replace the direct block specializa-
tion representation on diagrams and improve the legibility
and compactness of diagrams. The grouping of concepts
[R6.3] has diverse aims. It enables the presentation of the
system part in a general, PIM-like abstract way, on the logical
level rather than a detailed, PSM-like implementation one.

82804 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 6. Final ROS 1 release requirements.

FIGURE 7. MeROS project SysML packages, where rico controller is an
exemplary realisation of MeROS metamodel.

The aggregation reduces the number of objects represented on
the diagram to highlight the essential aspects and stay com-
pact and consistent in presentation. The number of SysML
blocks should be reduced to a reasonable level [R6.4]. Both
[R6.1] and [R6.4] help in the Avoidance of unnecessary
mapping of SysML blocks [R6.5].

There are three elements in the requirements set that
satisfy the evolution of the ROS 1 finalised with its ulti-
mate release – Noetic Ninjemys – (Fig. 6): (i) ROS Nodelet
(introduced primarily to increase the efficiency of ROS
components switching), (ii) ROS Action, and (iii) ROS
Metapackage.

III. MeROS METAMODEL
MeROS metamodel is formulated according to the require-
ments discussed in the previous section. Sec. III-A presents
MeROS blocks’ structural composition, and sec. III-B
describes inter-component communication. From the meta-
model perspective, the structural aspects [R2] are formulated
in both sections, while behavioural [R1] is in the latter. The
diagrams comprise selected requirements being allocated to
expose the MeROS metamodel development process.

The MeROS diagrams were created in the Enterprise
Architect development tool within the SysML project [R8]
and organised in three packages [R6.1] (Fig. 7): (i) Require-
mentModel related to requirements formulation and analysis,
(ii) MeROS – the metamodel itself, (iii) Rico Controller –
the exemplary ROS 1 application of MeROS described in
sec. IV-B. The stereotypes are introduced in MeROS meta-
model with the dedicated MeROS profile [R6.2].

FIGURE 8. ROS system general composition – bdd.

FIGURE 9. Communicating component and specialised blocks – bdd.

A. METAMODEL COMPOSITION
The degree of specificity of a metamodel is a compromise
between its comprehensiveness (and, therefore, more gen-
eral formulation) and a more accurate representation of a
particular subclass of specific implementations. The meta-
model contains compositions of elements and other primary
relationships. Attributes and operations range widely, in par-
ticular between ROS 1 and ROS 2. Hence, their inclusion
would lead to overgrowth and complication of the metamodel
[R6]. Models derived from the metamodel can define their
operations and new relations specific to a particular system.

The SysML blocks reflect ROS concepts [R3], and their
composition is depicted in bdd (block definition diagrams).
The metamodel is formulated in a single SysML package.
Hence, Workspaces and Intrasystems are composed into ROS
System (Fig. 8).

Consequently, some concepts (e.g., Node) occur in
Workspaces and Intrasystems. It reduces the number of
SysML blocks in the metamodel [R6.4] and eliminates the
need for unnecessary mapping of SysML blocks [R6.5].

In MeROS, a Communicating Component (Fig. 9) is a cru-
cial abstraction of a number of ROS concepts to represent
their standardised role regarding communication.

It should be noted that behavioural aspects of a particular
model specified in MeROS can be formulated by operation

VOLUME 11, 2023 82805



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 10. Communicating component relations – topics – bdd.

FIGURE 11. Communicating component relations – services – bdd.

specification as an act (activity), sd (sequence), or stm (state
machine) diagrams. The Intrasystem is one of the aggregates
added to the base ROS concepts in MeROS. For clarity, rela-
tions of Communicating Components are depicted in several
diagrams. Fig. 10 considers Topics and their Data Structures.
Here, the Communicating Component can act as a publisher
or a subscriber.

Fig. 11 depicts Services and their Data Structures. In this
case, the Communicating Component can act as a server or a
client.

In ROS 2, an Action bases on Topics and Services while in
ROS 1 only on Topics. From functional point of view, ROS
1 specific Topics included in Action have their equivalents
in ROS 2 specific Services. The Actions are depicted in two
diagrams – Fig. 12 and Fig. 13. Similarly to Services, the
Communicating Component can act as a server or a client.

Fig. 14 describes how Non-ROS elements are taken into
account in relation to communication. Additionally, the figure
presents Communication Channel relation to ROS Commu-
nicating Component.

Besides standard ROS communication methods, the Non-
ROS are also included (e.g., http request) to achieve inter-
faces with Non-ROS parts of the general system. An Action
Data Structure comprises data used by three of five Topics
composed in Action, i.e., goal, feedback and result. Two
remaining Topics, i.e., cancel and status are standardised.

FIGURE 12. Communicating component relations – actions – bdd.

FIGURE 13. Action – bdd.

FIGURE 14. Communicating component relations – aggregates, Non-ROS
elements – bdd.

The Communication Channel [34] concept depicted in
Fig. 15 is introduced to aggregate specializations of ROS con-
nection (Topic connections, Service connections, and Action
connections) as well as Non-ROS Connections.

The Node (Fig. 16) composes Parameters and Nodelets
(the latter in ROS 1). Two specificNodes are considered in the
metamodel: ROS Master and rosout. In ROS 2, Component
Container aggregates Nodes executed in a single process.

82806 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 15. Communication channel – bdd.

FIGURE 16. Node – bdd.

FIGURE 17. Intrasystem compositions – bdd.

The Intrasystem (Fig. 17) composes ROS and Non-ROS
Communicating Component specializations as well as Con-
nections between them. A Parameter block is introduced also
for ROS 1. In ROS 2, due to safety reasons, Parameter is
composed only into Nodes. Optionally Intrasystem composes
the other Intrasystems.

FIGURE 18. Running system compositions – bdd.

FIGURE 19. Running system communication – bdd.

The Running System (Fig. 18) is a specialisation of the
Intrasystem that can be executed. Hence, two Nodes are
needed for ROS 1: rosout and ROS master. It should be noted
that although MeROS could be classified as PSM, the initial,
general system description with Communications Channels
and Intrasystems corresponds to PIM specification. Then, the
detailing of these aggregates corresponds to the transition
from PIM to PSM.

The way Communicating Components use various types of
connections is presented in Fig. 19. Both ROS and Non-ROS
Communicating Components can communicate via Non-
ROS Connections, but only ROS Communicating Compo-
nents use ROS Connections.

The Namespace (Fig. 20) aggregates elements of the
Intrasystem, but only ROS related. In opposition to the
Intrasystem, the Namespace does not specialise Communi-
cating Component. Hence, it can not act as Communicating
Component.

The Workspace (Fig. 21) contains of Packages that com-
pose the files related to general ROS concepts such as Node
source codes, communication structures definitions, etc.

It should be noted that in case of Actions, specific com-
munication structures definitions are stored in Action Data
Structures. The Misc ≪block≫ relates to other ROS and
Non-ROS files, e.g., roslaunch configuration, obligatory
package.xml, CMakeLists.txt. The Metapackage is intro-
duced for conformity with the latest ROS 1 releases [R7] as
well as ROS 2.

B. COMMUNICATION
This section depicts the behavioural and structural aspects of
communication in the system. The previous section considers
block definition diagrams (bdd). In the following part, the

VOLUME 11, 2023 82807



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 20. Namespace composition – bdd.

FIGURE 21. ROS workspace composition – bdd.

internal block diagrams (ibd) and behavioural diagrams are
discussed. The goal is to present three modes of communica-
tion: Topic [R4.1] (sec. III-B1), Service [R4.2] (sec. III-B2)
and Action [R4.3] (sec. III-B3). It should be noted that the
concept of presentation of communication with and without
a dedicated communication component is illustrated on com-
munication with Topics but can also be applied to Services,
Actions and Communication Channels.

1) TOPIC
Fig. 22 presents the ibd diagram of publishers’ and sub-
scribers’ communication via topics. This diagram uses a ded-
icated communication component for each Topic [R4.1.1].
There are no general limits to the number of publishers,
subscribers and Topics they communicate with.

Thanks to a dedicated component to represent communica-
tion, the diagram in Fig. 22 can be split into two considering
publisher (Fig. 23) and subscriber (Fig. 24) separately, with-
out losing information. It is especially useful when system

FIGURE 22. Topics with dedicated communication components – all
components – ibd.

FIGURE 23. Topics with dedicated communication components –
publisher – ibd.

FIGURE 24. Topics with dedicated communication components –
subscriber – ibd.

FIGURE 25. Topics with dedicated communication components – sd.

fragments are presented after its decomposition that subdi-
vides communication channels.

Fig. 25 depicts the corresponding sequence diagram. Pub-
lishers send a message through Topics to the subscribers.
The incoming message cause the subscriber to execute the
callback function. Fig. 26 and Fig. 27 present an alternative
approach to depict the system communicating via topics.
In this case, no dedicated communication components are
used [R4.1.2].

2) SERVICE
For each ROS Service, there is at most one server and a num-
ber of clients (Fig. 28 and Fig. 29). Service-type communica-
tion is bidirectional and realises RPC (remote procedure call).

82808 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 26. Topics without dedicated communication components – ibd.

FIGURE 27. Topics without dedicated communication components – sd.

FIGURE 28. Service-based communication – ibd.

FIGURE 29. Service-based communication – sd.

FIGURE 30. Action-based communication – compact representation – ibd.

3) ACTION
ROS Action communication’s general, simplified structure
(Fig. 30) is analogous to ROS Service. These type of presen-
tation is universal for ROS 1 and ROS 2.

An Action (Fig. 31) is based on several Topics in ROS 1,
while on Topics and Services in ROS 2.

FIGURE 31. Action-based communication – detailed – ibd.

FIGURE 32. Action-based communication sequence – compact
presentation – sd.

In practice, to present an action-related communication
compactly on sd diagram (Fig. 32) particular Topics and Ser-
vices can be generalised as a request (for /goal and /cancel)
and a response (for /status, /feedback and /result). It should be
noted that this diagram presents the Action communication
sequence in a simplified way.

The detailed behaviour of the Action server and Action
client in ROS 1 is specified by state machines.2 ROS 2Action
server and Action client behaviour is analogous. Here, these
two state machines are depicted in stm diagrams. In the
description, in addition to the original ROSwiki presentation,
the Topics are directly mentioned both in transitions and
states actions. Fig. 33 depicts the ROS 1 Action server state
machine. Its transitions depend on the new messages sent by
the Action client or internal predicates.

The ROS 1 Action client state machine (Fig. 34) depends
on the server state provided by the Action server in /status
Topic and internal predicates.

2http://wiki.ros.org/actionlib/DetailedDescription

VOLUME 11, 2023 82809



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 33. ROS 1 Action server – stm.

FIGURE 34. ROS 1 Action client – stm.

IV. MeROS APPLICATION
A. APPLICATION HINTS
MeROS metamodel can be employed in various ways in
broad context of SE. Although, it is difficult to speak of
an indication of the best procedure for its application, it is
possible to formulate some practical guidelines for building
a particular system model based on MeROS.

• Before defining a SysML Object, one must define the
Block of which it is an instance. It is best to place Block
definitions on the bdd diagrams as well. Afterwards, the
definition of Objects and the formulation of the other
diagrams can follow.

• The Object is an instance of the Block, and the Object’s
classifier corresponds to the Block’s name. The Object’s
name specifies the name of the Block instance. The
stereotypes for Block and Object are the same.

FIGURE 35. Transportation attendance by Rico robot
https://vimeo.com/670252925.

FIGURE 36. Concept scenario – sd.

• The same Blocks and the same Objects should not be
duplicated. A Block or Object is defined once and used
in different diagrams (in particular, the same Blocks in
both the Running System and Workspace diagrams or
Objects in the ibd and sd diagrams).

• In practice, as long as automatic validation of models
formulated in MeROS is not planned, there is no need to
formulate a complete model in a SysML project.

To help develop user projects, the MeROS UML pro-
file and other materials are accessible from MeROS project
page.3

B. EXEMPLARY SYSTEM
This section presents key aspects of an exemplary system
development process incorporating MeROS. The exemplary
system was created within the AAL INCARE project to
control the Rico assistive robot (modified TIAGo platform
with controller based on ROS 1) to execute transportation
attendance tasks (Fig. 35).

The purpose of the following description is not to docu-
ment the entire system but to illustrate, by example, repre-
sentative aspects of the MeROS application. The part of the
application scenario is conceptually presented in Fig. 36.

Here, the system (≪RunningSystem≫ :Rico) and its
behaviour are formulated in a general way. An actor

3http://github.com/twiniars/meros

82810 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 37. Rico ≪RunningSystem≫ composition – bdd.

FIGURE 38. Structure of ≪RunningSystem≫ :Rico – ibd.

(e.g. an elderly person) asks the robot to move. Then, the
system recognises the voice command and vocally confirms
the command’s acceptance. Finally, the robot executes the
motion and vocally informs that the motion is finished. In the
following part of the description, the ≪RunningSystem≫

:Rico and sequence diagram framemotion execution
from Fig. 36 are presented in a explicit way. The block
definition diagram in Fig. 37 depicts the composition of
≪RunningSystem≫ :Rico.

The ≪RunningSystem≫ :Rico structure is depicted in
Fig. 38. Here, and in the following diagrams, the rosout
and ROS master ≪Node≫s were omitted to make the
diagrams more compact. The specific label is needed
for ≪CommChannel≫, e.g., ≪CommChannel≫ :Move
To to Robot Core, because this ≪CommChannel≫ is
described later on.

The system is based on TaskER framework [23] devel-
oped from the RAPP approach to construct systems

FIGURE 39. Selected elements of ≪Intrasystem≫ :Robot Core – ibd.

FIGURE 40. Example of ≪CommChannel≫ – ibd.

with variable structure [21]. The role of the TaskER
is to schedule a robot’s tasks. It consists of (i) Task
Requesters ≪Node≫s to submit new tasks, (ii) Task
Harmoniser ≪Node≫ to schedule tasks execution, (iii)
dynamic ≪Node≫s (here, ≪Node≫ :Move To) to exe-
cute a particular task on the robot hardware and (iv) cloud
part, here ≪NonRosCompon≫ :Voice Recognition
and Synthesis Platform. The common part of
the controller is located in ≪Intrasystem≫ :Rico.
Fig. 39 illustrates how various instances of the same
block are depicted in the model. Two ≪Parameter≫
Objects of the same classifier :Double are composed into
≪Node≫ :MoveBase.

≪CommChannel≫ :Move To to Robot Core is
depicted in Fig. 40. It comprises three actions.

The part of the scenario generally described in Fig. 36 is
depicted in detail in Fig. 41. The presentation remains con-
ceptual from the behavioural point of view, but it considers
the particular parts of the ≪RunningSystem≫ :Rico.
Finally, the particular communication methods are speci-

fied on the most detailed, ROS-specific level (Fig. 42). The
command_motion operation includes the sequence of four
steps of communication. Three Actions realise the communi-
cation, one utilised twice. The diagram comprises extra notes
that make it easier to interpret.

VOLUME 11, 2023 82811



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 41. Motion execution operation – sd.

FIGURE 42. Command motion operation with detailed Communication
methods presentation – sd.

The part of the≪Workspace≫ :Rico that includes previ-
ously mentioned elements is presented in Fig. 43 and Fig. 44.

V. RELATED WORK
Papers in the scope of the literature review are chosen based
on an intensive study of the previous scientificwork in robotic
systems modelling. In particular, the survey [20] is deeply
analysed. As the qualification criterion for this review, the
ROS metamodel was chosen that must be described using
UML language or SysML language. Six papers describing

FIGURE 43. Rico ≪Workspace≫ composition – Packages with Nodes –
bdd.

FIGURE 44. Rico ≪Workspace≫ composition – Packages with Msgs –
bdd.

TABLE 1. MeROS requirements satisfaction in ROS specific metamodels.

five metamodels met this criterion, and all used UML to
describe ROS 1. The metamodels are contrasted with the
representative requirements to which MeROS is subjected
(Tab. 1) and that clearly differentiate compared metamodels.
For clarification, the table refers to aspects of themetamodels,
which are visualised in the analysed papers’ diagrams.

82812 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

The authors of [26] present Ecore – the ROS 1 metamodel
as the central part of the ReApp workbench created to support
the efficiency of software creation for robotic systems. The
metamodel is specified in a single, extensive structural dia-
gram, with the ROS node being its central part. The diagram
describes the aspects of the running system and comprises all
ROS communication methods. The nodes are integrated into
an AppNetwork concept [R6.3].

In the paper [35], the authors propose two methods based
on the created RosSystem metamodel. It aims at the auto-
mated generation of models from manually written artefacts
through static code analysis and monitoring the execution of
the running system. A large part of the work is concentrated
on the toolchain. This ROS metamodel is structurally spec-
ified in a UML class diagram, emphasising communication
methods.

HyperFlex toolchain [36], [37] includes extensive and
comprehensive metamodel addressing ROS 1 and comple-
mentary Orocos. Formerly, these two frameworks were used
together to take from the RT properties of Orocos and the
elasticity of ROS. The presentation of HyperFlex is com-
plex [36], [37], and both the running system and workspace
are considered. Concepts such as nodelet or metapackage are
missing due to the HyperFlex period of its foundation.

RoBMEX [38] was created as a top-down methodology
based on a set of domain-specific languages that enhance the
autonomy of ROS-based systems by allowing the creation of
missions graphically and then generating automatically exe-
cutable source codes conforming to the designed missions.
Hence, the ROS metamodel was extended by the upper layer
with mission/task specification. The metamodel is complex
and inspiring and consists of running and workspace parts.
Regarding the workspace, the grouping concepts are intro-
duced as subpackages, classified in Tab. 1 as metapackage
for generality.

ROSMOD [39] is the Robot Operating System Model-
driven development tool suite, an integrated development
environment for rapid prototyping component-based soft-
ware for ROS. Its internal metamodel is complex and com-
prises a number of standard ROS concepts and additional
grouping concepts. Although the description is extensive, the
ROSMODwas created in 2016, hence some current concepts
are missing, like ROS actions or nodelets.

VI. CONCLUSION AND DISCUSSION
Diagrams are an integral part of the description of
component-based robot control systems. ROS comprises
rqt_graph tool that generates diagrams with the structure of
the running system. This capability is readily used by soft-
ware developers (e.g., [40], [41]) due to its ease of use. Unfor-
tunately, this tool has many limitations despite its numerous
advantages and configurability. Hence, in parallel to auto-
matically generated diagrams, others are needed, some of
which are based on UML/SysML. The most comprehensive
modelling solutions include explicitly defined metamodels.
As a novelty regarding previous works, this paper proposes

an up-to-date metamodel for finale release of ROS 1 and ROS
2 supported by profile to support the metamodel application
in ROS applications models. In MeROS, the metamodel of
original ROS concepts is extended by the abstract grouping
concepts. It lets to present part of the system in a PIM-like
style instead of a platform specific – PSM.

Although the adoption of UML/SysML-based domain
metamodels has many positive implications, it also has its
problems and limitations. Although the diagrams can be
drawn in general-purpose graphics programs, this is not
advisable, especially for complex systems. Modelling soft-
ware such as Enterprise Architect or Visual Paradigm is
highly recommended when creating UML/SysML projects.
In particular, creating a set of diagrams outside a SysML
project is more time-consuming, and it is easier to introduce
errors. In practice, the cost of modelling software is not a
major obstacle, and its popularity makes it easier to imple-
ment its employment. A problem with SysML development
environments is that they are not standardised inmany aspects
and vary considerably in functionality. This problem makes
it difficult to use advanced features such as automatic model
analysis, e.g. to check for metamodel compatibility.

There are many methodologies for conducting and docu-
menting projects, and not all are based on languages from
the UML family. In some simplification, one could say that
some project teams use UML extensively while others do
not at all.4 In the case of academic robotics projects, the
lack of widespread UML use in earlier years may have been
partly due to their typically relatively small scope. When
projects are extensive and multi-asset, and the consequences
of failure are high, the use of UML allows for greater effi-
ciency of operation and reduced risk of project failure. Hence,
contemporary complex robotics projects should benefit from
appropriate tools to support their guidance and documenta-
tion, as has been the case for many large-scale projects, e.g.,
from the space industry (e.g., [42]) or the medical industry
(e.g., [43]).

Many skilful and experienced programmers have not used
UML.5 This is due to the lack of absolute necessity to use
such tools both for the programming and the development
of small projects. Hence, the first use of UML in a develop-
ers’ team can consume a disproportionate amount of time.
Another problem is the synchronisation of diagrams with
source code. Here, the answer is, among other things, the
appropriate level of generality of the diagrams so that unnec-
essary details are not mapped there. The automatic generation
of code from the diagrams or the automatic generation of
selected diagrams based on code can also be helpful. Finally,
it is worth mentioning that UML diagrams do not constitute
a complete system description. In particular, the description
by diagrams can be complemented by mathematical expres-
sions. A way of combining these two ways of description

4https://creately.com/guides/advantages-and-disadvantages-of-uml/
5https://www.techwalla.com/articles/the-disadvantages-of-uml

VOLUME 11, 2023 82813



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

FIGURE 45. Robotic platforms specified with MeROS.

is presented in, e.g. [24]. SysML parametric diagrams also
respond to this problem.

System development involves the use of a number of
tools organised in toolchains. The degree of tools interaction
varies. In software engineering, the aim is to create clear
procedures for system development, indicating the depen-
dencies between the successive stages of the development
process. In robotics, there have been many works dedicated
to toolchains (SmartMDSD [44], RobotML [45], [46]), nowa-
days the ROS is commonmiddleware (e.g. [47], BRIDE [48],
HyperFlex [36]). MeROS is part of the toolchain used in
the Robot Programming and Machine Perception Team at
Warsaw University of Technology (WUT). Currently, on the
base ofMeROS, the controllers are specified for the following
robotic platforms:

• Velma service robot [25], [33]6 (Fig. 45(a)) (Custom
controller based on ROS 1 and Orocos for hardware
control and simulation in Gazebo),

• assistive robot Rico [23], [32]7 (Fig.45(b)) (Extended
PAL controller based on ROS 1 and Orocos, recent
works with ROS 2 in simulation),

• MiniRyś – mobile robot with various modes of locomo-
tion8 (Custom controller based on ROS 2 for hardware
control and simulation in Gazebo),

• Dobot Magician – portable, 4-DOF robotic manipu-
lato9 (Custom controller based on ROS 2 for hardware
control).

At the forefront of the toolchain stays the modelling of the
system with PIM using the EARL-based [24] SPSysML [49].
EARL is derived from agent theory [14], [21], [22]. Nowa-
days, in the intermediate stage, MeROS plays the major role
as a PSM. Finally, FABRIC [13], as well as alternative
approaches [50], [51] are used to support code generation.
Current work concerns deepening the integration of MeROS
with the rest of the toolchain.

6https://www.robotyka.ia.pw.edu.pl/robots/velma
7https://www.robotyka.ia.pw.edu.pl/robots/rico
8https://www.robotyka.ia.pw.edu.pl/robots/minirys
9https://www.robotyka.ia.pw.edu.pl/robots/magician

REFERENCES
[1] J. Bézivin, ‘‘In search of a basic principle for model driven engineering,’’

Novatica J., Special Issue, vol. 5, no. 2, pp. 21–24, 2004.
[2] D. C. Schmidt, ‘‘Model-driven engineering,’’ Computer, vol. 39, no. 2,

p. 25, 2006.
[3] S. Kent, ‘‘Model driven engineering,’’ in Proc. Int. Conf. Integr. Formal

Methods. Berlin, Germany: Springer, 2002, pp. 286–298.
[4] E. Mnkandla, ‘‘About software engineering frameworks and methodolo-

gies,’’ in Proc. AFRICON, 2009, pp. 1–5.
[5] O. Shehory and A. Sturm, Agent-Oriented Software Engineering: Reflec-

tions on Architectures, Methodologies, Languages, and Frameworks.
Berlin, Germany: Springer, 2014.

[6] P. Iñigo-Blasco, F. Diaz-del-Rio, M. C. Romero-Ternero,
D. Cagigas-Muñiz, and S. Vicente-Diaz, ‘‘Robotics software frameworks
for multi-agent robotic systems development,’’ Robot. Auton. Syst.,
vol. 60, no. 6, pp. 803–821, Jun. 2012.

[7] E. Tsardoulias and P. Mitkas, ‘‘Robotic frameworks, architectures and
middleware comparison,’’ 2017, arXiv:1711.06842.

[8] A. Hentout, A. Maoudj, and B. Bouzouia, ‘‘A survey of development
frameworks for robotics,’’ in Proc. 8th Int. Conf. Modelling, Identificat.
Control (ICMIC), Nov. 2016, pp. 67–72.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., vol. 3, no. 3.2, p. 5, 2009.

[10] W. F. Lages, D. Ioris, and D. C. Santini, ‘‘An architecture for controlling
the Barrett WAM robot using ROS and OROCOS,’’ in Proc. 41st Int. Symp.
Robot. (ISR/Robotik), Jun. 2014, pp. 1–8.

[11] K. Buys, S. Bellens, N. Vanthienen, W. Decre, M. Klotzbücher, T. De Laet,
R. Smits, H. Bruyninckx, and J. De Schutter, ‘‘Haptic coupling with
the PR2 as a demo of the OROCOS-ROS-Blender integration,’’ in
Proc. IROS PR2 Workshop, San Francisco, CA, USA, vol. 25, 2011,
p. 30.

[12] J. Pages, L. Marchionni, and F. Ferro, ‘‘TIAGo: The modular robot that
adapts to different research needs,’’ in Proc. Int. Workshop Robot Modu-
larity, IROS, vol. 290, 2016.

[13] D. Seredyski, T. Winiarski, and C. Zieliski, ‘‘FABRIC: Framework for
agent-based robot control systems,’’ in Proc. 12th Int. Workshop Robot
Motion Control (RoMoCo), K. Kozowski, Ed., 2019, pp. 215–222.

[14] T. Kornuta, C. Zieliski, and T.Winiarski, ‘‘A universal architectural pattern
and specification method for robot control system design,’’ Bull. Polish
Acad. Sci., Tech. Sci., vol. 68, no. 1, pp. 3–29, Feb. 2020.

[15] M. Cholewinski, M. Janiak, and L. Juszkiewicz, ‘‘Software platform for
practical verification of control algorithms developed for rescue and explo-
ration mobile platform,’’ in Proc. 20th Int. Conf. Methods Models Autom.
Robot. (MMAR), Aug. 2015, pp. 388–393.

[16] H. Bruyninckx, ‘‘Open robot control software: The OROCOS project,’’ in
Proc. Int. Conf. Robot. Autom. (ICRA), vol. 3, 2001, pp. 2523–2528.

[17] H. Bruyninckx, ‘‘OROCOS: Design and implementation of a robot control
software framework,’’ inProc. IEEE Int. Conf. Robot. Automat., Apr. 2002.

[18] Y. Maruyama, S. Kato, and T. Azumi, ‘‘Exploring the performance of
ROS2,’’ in Proc. Int. Conf. Embedded Softw. (EMSOFT), Oct. 2016,
pp. 1–10.

[19] J. Park, R. Delgado, and B. W. Choi, ‘‘Real-time characteristics of ROS
2.0 in multiagent robot systems: An empirical study,’’ IEEE Access, vol. 8,
pp. 154637–154651, 2020.

[20] E. de Araújo Silva, E. Valentin, J. R. H. Carvalho, and R. da Silva Barreto,
‘‘A survey of model driven engineering in robotics,’’ J. Comput. Lang.,
vol. 62, Feb. 2021, Art. no. 101021.

[21] C. Zieliki et al., ‘‘Variable structure robot control systems: The RAPP
approach,’’ Robot. Auton. Syst., vol. 94, pp. 226–244, Aug. 2017.

[22] C. Zieliñski and T. Winiarski, ‘‘Motion generation in the MRROC++

robot programming framework,’’ Int. J. Robot. Res., vol. 29, no. 4,
pp. 386–413, Apr. 2010.

[23] W.Dudek and T.Winiarski, ‘‘Scheduling of a robot’s taskswith the TaskER
framework,’’ IEEE Access, vol. 8, pp. 161449–161471, 2020.

[24] T. Winiarski, M. Węgierek, D. Seredyński, W. Dudek, K. Banachowicz,
and C. Zieliński, ‘‘EARL—Embodied agent-based robot control systems
modelling language,’’ Electronics, vol. 9, no. 2, p. 379, Feb. 2020.

[25] M. Figat and C. Zieliński, ‘‘Parameterised robotic system meta-model
expressed by hierarchical Petri nets,’’ Robot. Auton. Syst., vol. 150,
Apr. 2022, Art. no. 103987.

82814 VOLUME 11, 2023



T. Winiarski: MeROS: SysML-Based Metamodel for ROS-Based Systems

[26] M. Wenger, W. Eisenmenger, G. Neugschwandtner, B. Schneider, and
A. Zoitl, ‘‘A model based engineering tool for ROS component composi-
tioning, configuration and generation of deployment information,’’ inProc.
IEEE 21st Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2016,
pp. 1–8.

[27] OMG Systems Modeling Language—Version 1.6, Open Manag. Group,
Milford, MA, USA, Dec. 2019. Accessed: Feb. 20, 2020. [Online]. Avail-
able: https://www.omg.org/spec/SysML/1.6/PDF

[28] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language, 3rd ed. Amsterdam, The Netherlands:
Elsevier, 2015.

[29] M. R. V. Chaudron, W. Heijstek, and A. Nugroho, ‘‘How effective is UML
modeling: An empirical perspective on costs and benefits,’’ Softw. Syst.
Model., vol. 11, no. 4, pp. 571–580, Oct. 2012.

[30] G. Canfora and M. Di Penta, ‘‘New frontiers of reverse engineering,’’ in
Proc. Future Softw. Eng. (FOSE), May 2007, pp. 326–341.

[31] B. Habib and R. Romli, ‘‘A systematic mapping study on issues and
importance of documentation in agile,’’ inProc. IEEE 12th Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Aug. 2021, pp. 198–202.

[32] J. Karwowski, W. Dudek, M. Węgierek, and T. Winiarski, ‘‘HuBeRo—
A framework to simulate human behaviour in robot research,’’ J. Autom.,
Mobile Robot. Intell. Syst., vol. 15, no. 1, pp. 31–38, Jul. 2021.

[33] T. Winiarski, S. Jarocki, and D. Seredyński, ‘‘Grasped object weight com-
pensation in reference to impedance controlled robots,’’ Energies, vol. 14,
no. 20, p. 6693, Oct. 2021.

[34] P. Pałka, C. Zieliński, W. Dudek, D. Seredyński, and W. Szynkiewicz,
‘‘Communication-focused top-down design of robotic systems based on
binary decomposition,’’ Energies, vol. 15, no. 21, p. 7983, Oct. 2022.

[35] N. H. Garcia, L. Deval, M. Lüdtke, A. Santos, B. Kahl, and M. Bordignon,
‘‘Bootstrapping MDE development from ROS manual code—Part 2:
Model generation,’’ inProc. ACM/IEEE 22nd Int. Conf.Model Driven Eng.
Lang. Syst. (MODELS), Sep. 2019, pp. 95–105.

[36] D. Brugali and L. Gherardi, ‘‘HyperFlex: A model driven toolchain
for designing and configuring software control systems for autonomous
robots,’’ in Robot Operating System (ROS). Cham, Switzerland: Springer,
2016, pp. 509–534.

[37] L. Gherardi, ‘‘Variability modeling and resolution in component-based
robotics systems,’’ Ph.D. dissertation, Dept. Eng., Univ. Bergamo,
Bergamo, Italy, 2013.

[38] M. Ladeira, Y. Ouhammou, and E. Grolleau, ‘‘RoBMEX: ROS-based
modelling framework for end-users and experts,’’ J. Syst. Archit., vol. 117,
Aug. 2021, Art. no. 102089.

[39] P. Kumar, W. Emfinger, G. Karsai, D. Watkins, B. Gasser, and
A. Anilkumar, ‘‘ROSMOD: A toolsuite for modeling, generating, deploy-
ing, and managing distributed real-time component-based software using
ROS,’’ Electronics, vol. 5, no. 4, p. 53, Sep. 2016.

[40] S. P. Thale, M.M. Prabhu, P. V. Thakur, and P. Kadam, ‘‘ROS based SLAM
implementation for autonomous navigation using turtlebot,’’ in Proc. ITM
Web Conf., vol. 32, 2020, p. 01011.

[41] S. Bisi, L. De Luca, B. Shrestha, Z. Yang, and V. Gandhi, ‘‘Development of
an EMG-controlled mobile robot,’’ Robotics, vol. 7, no. 3, p. 36, Jul. 2018.

[42] S. Friedenthal and C. Oster, Architecting Spacecraft With SysML: A
Model-Based Systems Engineering Approach. Scotts Valley, CA, USA:
CreateSpace Independent Publishing Platform, 2017.

[43] Biomedical-Healthcare—Web Page. Accessed: Aug. 4, 2023. [Online].
Available: https://www.omgwiki.org/MBSE/doku.php?id=mbse: drugde-
livery

[44] S. Dennis, L. Alex, L. Matthias, and S. Christian, ‘‘The SmartMDSD
toolchain: An integrated MDSD workflow and integrated development
environment (IDE) for robotics softwaree,’’ J. Softw. Eng. Robot., vol. 7,
no. 1, pp. 3–19, 2016.

[45] S. Kchir, S. Dhouib, J. Tatibouet, B. Gradoussoff, and M. Da Silva Simoes,
‘‘RobotML for industrial robots: Design and simulation of manipulation
scenarios,’’ in Proc. IEEE 21st Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2016, pp. 1–8.

[46] S. Dal Zilio, P.-E. Hladik, F. Ingrand, and A. Mallet, ‘‘A formal toolchain
for offline and run-time verification of robotic systems,’’ Robot. Auton.
Syst., vol. 159, Jan. 2023, Art. no. 104301.

[47] J. Wienke, A. Nordmann, and S. Wrede, ‘‘A meta-model and toolchain for
improved interoperability of robotic frameworks,’’ in Proc. Int. Conf. Sim-
ulation, Modeling, Program. Auton. Robots. Berlin, Germany: Springer,
2012, pp. 323–334.

[48] A. Bubeck, F. Weisshardt, and A. Verl, ‘‘BRIDE—A toolchain for
framework-independent development of industrial service robot applica-
tions,’’ in Proc. 41st Int. Symp. Robot. (ISR/Robotik), Jun. 2014, pp. 1–6.

[49] W. Dudek, N. Miguel, and T. Winiarski, ‘‘SPSysML: A meta-model
for quantitative evaluation of simulation-physical systems,’’ 2023,
arXiv:2303.09565.

[50] T. Winiarski and K. Banachowicz, ‘‘Automated generation of component
system for the calibration of the service robot kinematic parameters,’’ in
Proc. 20th Int. Conf. Methods Models Autom. Robot. (MMAR), Aug. 2015,
pp. 1098–1103.

[51] M. Figat and C. Zieliński, ‘‘Robotic system specification methodology
based on hierarchical Petri nets,’’ IEEE Access, vol. 8, pp. 71617–71627,
2020.

TOMASZ WINIARSKI (Member, IEEE) received
the M.Sc./Eng. and Ph.D. degrees in control and
robotics from the Warsaw University of Tech-
nology (WUT), in 2002 and 2009, respectively.
He was the Head of the WUT Group with the
AAL–INCARE Project ‘‘Integrated Solution for
Innovative Elderly Care.’’ He is an Assistant Pro-
fessor with WUT. He is a member of the Robotics
Group as the Head of the Robotics Laboratory with
the Institute of Control and Computation Engi-

neering (ICCE), Faculty of Electronics and Information Technology (FEIT).
He is working on the modeling and design of robots and programming
methods of robot control systems. The research targets service and social
robots as well as didactic robotic platforms. His personal experience con-
cerns the development and modeling of robotic frameworks, manipulator
position–force and impedance control, and safety in robotic research. He is
an INCOSE member.

VOLUME 11, 2023 82815


