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ABSTRACT This paper focuses on the computational optimization of RANSAC. We describe the Parallel
Efficient Sample Consensus (PESAC) framework that allows efficient utilization of SIMD extensions and
provides memory locality due to a special way of storing the input sequence of correspondences and
generating a batch of samples per one main loop iteration. It is inspired by the USAC framework and
has a block structure capable of implementing most modern RANSAC-based methods. We enhance it with
individual blocks of sample and model restrictors that are aimed at the rejection of ‘‘bad’’ samples and model
hypothesis before time-consuming model computation and verification blocks. We also provide a detailed
description implementing 2D homography estimation problem in PESAC and benchmark the running time
on the MIDV-2020 dataset of identity documents. Comparing to naive implementation, we accelerated our
framework by 122 times for the document classification task (with a 6% increase in accuracy) and by 18 times
for document tracking (with a 46% decrease in tracking failure rate) by using both restrictors and vector
processing. This version also outperformed a number of USAC implementations from OpenCV-4.6.0 in
runtime and accuracy of estimation (3 times faster, 6% greater accuracy for the classification task, and 2 times
faster, 33% lower failure rate for tracking if comparing with USAC_MAGSAC).

INDEX TERMS Homography estimation, identity document, image matching, localization, RANSAC,
restrictors, SIMD, tracking, USAC, vectorization.

I. INTRODUCTION
THE problem of model estimation based on data con-
taminated by noise and outliers often occurs in computer
vision. In 1981 Fischler and Bolles proposed a method [1]
called RANdom SAmple Consensus (RANSAC), which
became one of the most popular techniques for such kind
of problems at present time due to its noise tolerance. It is
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a non-deterministic iterative method intended for estimating
with given confidence the parameters of a mathematical
model. Algorithms based on RANSAC have been success-
fully applied to a wide range of computer vision tasks:
scene reconstruction from a stereo pair [2], [3], motion
detection, and tracking [4], [5], [6], object detection [7],
classification [8], segmentation [9], [10], [11], etc.

RANSAC proceeds in the manner of models hypothesizing
and verifying. The working principle is as follows: a
sample, i.e. a subset of input data with the minimum size
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required for a model computation, is randomly selected, the
model parameters are computed from the sample and the
model hypothesis is evaluated over the entire input data for
computing the support, i.e. a subset of input data consistent
with the model. These steps are repeated until the confidence
in finding the model with larger support falls below a given
threshold. The model with the largest support is returned as
the answer. The advantage of RANSAC is the ability to build
the correct model, even for data with a high outlier ratio [1].
At the same time, it requires the number of sampling trials
polynomially increasing with the outlier ratio, which leads to
high computational costs.

Since the publication of the original RANSAC, researchers
have suggested various modifications aimed at improving the
accuracy [12], [13], [14], [15], [16], [17], speed [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], and
robustness [30], [31], [32] of the algorithm.
Since various modifications are of interest for individual

practical problems, we consider all of them as a family of
RANSAC-based methods.

RANSAC-based methods can be used on various com-
puting platforms. Despite the fact that RANSAC is most
often fast enough, in some tasks there is a need to provide
a large number of model estimations in a minimum time.
The requirement for real-time processing in conditions of low
computational capacity arises on the unmanned ground or
aerial vehicles (UGVs, UAVs) [34], [35], [36]. For ground
robots widely used in farming industry, navigation with
Global Positioning System (GPS) can be unreliable because
GPS signals alone are weak and unusable in complicated
environments like urban canyons [37], so fast visual navi-
gation is required. Air robots are always in motion, so they
also need real-time scene analysing. As one more example,
video stabilization tasks striving for computationally efficient
solutions require RANSAC as the most widely used frame-
to-frame analysis method for outlier removal [38]. Moreover,
recognition of private and personal data tends to be imple-
mented on edge devices for security reasons and also needs
for fast model estimation. For instance, RANSAC is used
when choosing the correct document type while extracting
data from identification documents [33].
An important platform for such tasks is the Central

Processing Units (CPUs) with Single Instruction, Multiple
Data (SIMD) architecture. It can process multiple data items
in the same way simultaneously using SIMD extensions.
Data are placed in vectors of 128-, 256- or 512-bits wide
and processed by specialized commands called intrinsics
(x86 SSE, ARM NEON, etc.), which makes it possible to
accelerate the computations several times. The majority of
modern processors have capabilities for vector processing.
Another important feature of CPUs is the design of the
memory subsystem. Accessing and loading data from RAM
can take hundreds of cycles, whereas arithmetic operations
are performed tens and hundreds of times faster. To solve
this problem, a hierarchical caching system is used. Small
data blocks are loaded into caches, which are much faster

to access. Therefore, to increase the algorithm efficiency,
memory locality should be taken into account. However,
RANSAC-based methods do not allow efficient utilization of
SIMD extensions generally and do not provide data locality,
because of performing rather complex, data-dependent pro-
cessing of each sample sequentially.

In this paper, we propose the generalized framework
for the family of RANSAC-based methods that is suitable
for SIMD CPUs and preserves memory locality with no
limitations to a specific method. Our Parallel Efficient
Sample Consensus (PESAC) framework has a block structure
based on the Universal RANSAC (USAC) presented in [39]
as the universal modular framework being a synthesis of
various RANSAC techniques. USAC accommodates a num-
ber of important practical and computational considerations,
nonetheless, it does not exploit SIMD vectorization and
provides only limited memory locality. We also enhance the
PESAC framework with restrictor blocks, which significantly
reduce the number of samples passed for model computation
and model hypotheses to be verified thus considerably
accelerating the runtime. Some checks for samples and
models are included in the USAC framework inside modules
of sampling minimal subset (Stage 1b) and model generation
(Stage 2b) as well. However, we consider such checks to
be an important tool for improving algorithm accuracy and
time, so include them in PESAC as individual blocks and
demonstrate their profit experimentally.

The paper is organized as follows. Section II is an overview
of some previous works on improving the computational
efficiency of RANSAC. Section III briefly describes the
original RANSAC approach. The proposed PESAC frame-
work is discussed in Section IV and Section V is the
example-description of how one can use this framework
in a 2D homography estimation problem. The results of
computational experiments are presented in Section VI. The
paper is concluded in Section VII.

II. RELATED WORK
The computational efficiency of RANSAC had been a key
topic in many published papers. With the progress in the
scientific field and the development of hardware capabilities,
the algorithm has acquired an extensive arsenal of optimized
variants.

A great number of works had ideas related to high-level
algorithm analysis. To improve computational performance
researchers have suggested various modifications aimed
to optimize single components of RANSAC. The idea
of adaptive early termination of sample generation was
mentioned in [20] and is regarded as a standard stopping
criterion nowadays. Different ideas were proposed with
efficient sampling strategies [21], [22], [25], [27], [28],
[29] for building more favorable model hypotheses earlier
so reducing the number of sample selections and saving
the runtime. Optimizations of the model verification, the
most time-consuming step of RANSAC, were discussed
in [19], [23], [24], and [26]. Their idea was to first perform
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verification on a small portion of the data and continue
only if some condition was met [23], [24], [26], or to early
reject correspondences that are guaranteed to be outliers of
the model being considered [19]. Other papers suggested
speeding up RANSAC by reducing the number of models
to be estimated or verified by holding preliminary tests
that check the minimum samples [40], [41], [42], [43],
models [44], [45], [46], or both [47], [48], [49] for predefined
properties. These methods will be mentioned further in
relation to the blocks of the generalized algorithm scheme
where they can be implemented.

The integration of the optimized individual components of
RANSAC into a unified efficient architecture was presented
by Raguram et al. [39] as the USAC framework. It consists of
5 modules: prefiltering; sampling minimal subset; generating
minimal sample model(s); model verification, including
for nondegeneracy; generating non-minimal sample model.
The sampling and minimal sample model generation are
strengthened with checks for samples and models by simple
tests. Modules can be configured with various approaches
proposed in the literature over the years to best address the
specific task.

A rather common method for accelerating algorithms is
parallelization. Parallel implementations of RANSAC were
proposed in [50], [51], [52], [53], [54], and [55]. A compar-
ative review [54] of OpenMP, POSIX Threads, and CUDA
variants for fitting a plane in a 3D point cloud established
that GPU implementation won in terms of acceleration and
acceptable accuracy. A parallel implementation using CUDA
for point cloud registration was described in [55]. As a result,
the running time was reduced by about 30 times. If there is
no GPU, one should alternately use POSIX Threads.

Instruction level optimization is noticeably less common
in the literature, nevertheless, it was presented for some
image processing tasks. Processor SIMD extensions were
used to vectorize the Canny operator [56], homography
computation [57] or morphological operations [58]. For
RANSAC, some papers combined parallel implementations
at level of model generation and evaluation with vectorization
of sequential scalar operations [51], [52]. In [51], authors
were able to increase the overall performance by a factor of
almost 3 on the Cell processor.

A fairly large number of papers considered RANSAC
implementations for Field Programmable Gate Arrays
(FPGAs), e.g. [3], [4], [5], [59], [60], [61], [62]. In [4]
and [5], authors presented UAVs hardware/software co-
design implementations to estimate affine transformation for
tracking. They notice that most noise introduced into image
processing occurs during transmission to the ground station
computer, so implementing the onboard solution for micro
UAV applications is obviously important [4]. In [5], the hard-
ware implementation was described for model verification,
the most time-consuming step. The proposed architecture
was capable of processing a video stream at 30 frames per
second. The FPGA implementation of RANSAC had been
also used for real-time ellipse estimation for circular road sign

detection [59] and eye tracking [60]. In [3], a multiprocessor
system based on Microblaze microprocessors was proposed
using 8-point and 5-point algorithms for the essential matrix
computation.

Other papers described the hardware implementation of
RANSAC for estimation models of affine and projective
transformations [63], [64]. In [64], the authors showed
that a projective transformation can be decomposed into
four others: two shifts, an affine transformation, and a
computationally simpler projective one. Such an approach
enables hardware implementation and greatly reduces the
required number of bits for fixed-point representation of the
transformation coefficients and intermediate variables.

Thus, in a large number of problems reduced to image
processing, the use of RANSAC emerges at some point,
which indicates its relevance and justifies the need for further
optimization.

III. ORIGINAL RANSAC
RANSAC was originally proposed as a robust method for
fitting a model that satisfies the original data in the presence
of outliers. There are no limitations on the model kind. The
method is performed by iterative examining the space of
model parameters to maximize (or minimize) some score
functional.

Data items can be considered as correspondences between
reference and query points. Each iteration starts with the gen-
eration a sample, i.e. data random subset with the minimum
size required for a model computation. After the sample is
generated, the model parameters θ are computed from it.
To answer the question ‘‘Is the model consistent with the
rest of the input data?’’, the model hypothesis is verified
against the remaining subset. For i-th correspondence, the
consistency with the given model is checked using an error
functional ρ and some threshold T :

ρ
(
e2i (θ )

)
=

{
1, if e2i (θ ) ≤ T

2, (inlier)
0, otherwise, (outlier)

(1)

where ei(θ ) is the i-th correspondence error for themodel with
parameters θ . The value of functional C, or score, is obtained
by summarizing the values of the error functional:

C(θ ) =
∑
i

ρ
(
e2i (θ )

)
. (2)

These three ‘‘generate, compute, and verify’’ steps form the
main loop of RANSAC. After the main loop has iterated,
the model hypothesis with the largest C(θ ) is returned as a
solution. Within the above ρ definition from Eq. (1), score
C(θ ) corresponds to the number of inliers for a given model
with parameters θ .

To complete the description of the original formulation,
it remains to determine the number of main loop iterations.
Let P be the probability of drawing an outlier-free sample.
Denoting by ε the probability of selecting an inlier from the
input data and by M the minimum sample size, with no
limitations on the sample and assuming it can be degenerate,

VOLUME 11, 2023 82153



E. O. Rybakova et al.: PESAC, the Generalized Framework for RANSAC-Based Methods

we obtain the probability of independently selecting all-
inlier sample, εM. The probability of selecting no samples
clear from outliers in I iterations is (1 − εM)I , or 1 − P .
This yields a theoretical lower estimate for the number I of
iterations required to construct with a probability P the all-
inlier sample:

I∗ ≥
log (1− P)

log
(
1− εM

) . (3)

For numerous applications, a real-time implementation of
RANSAC is desirable. However, the algorithm’s computa-
tional complexity depending on the number of iterations
required is an obstacle to achieving such performance.

IV. A PARALLEL EFFICIENT SAMPLE CONSENSUS
FRAMEWORK
This section provides a detailed discussion of the proposed
framework for the family of RANSAC-based methods. The
PESAC framework has a block structure and consists of
Sampling and Sample Restrictor blocks,Model Computation
and Model Restrictor blocks, blocks of Model Verification,
Early Termination, and Model Refinement. The flowchart
of the framework is shown in Fig. 1. Blocks highlighted
with light-blue background are optional and not included
in the original RANSAC approach, as could be seen from
Section III. Below, we discuss each component in detail.
A feature of the PESAC is a special way of storing the input

data, which is suitable for convenient SIMD vectorization.
To maintain memory locality, we process K ≫ 1 samples
per one main loop iteration. We should note that it can be
a disadvantage in the case when the theoretically required
number I of iterations determined by Eq. (3) is comparable
to K and is not a multiple of K. In this case, we can process
more samples and hold extra iterations. However, in practice,
since the inliers are noisy, processing large enough amount of
samples is required in fact.

A. INPUT AND OUTPUT
1) INPUT
In general, RANSAC-based methods take as input a sequence
S of correspondences from reference and query sets of
points and some numerical values characterizing these
correspondences. Such values can be the probabilities of
selecting a given correspondence in a sample [21], [25], [32],
[65], [66], or spatial characteristics [27], [67].
The sequence S can be stored in the memory in different

ways. Here, we propose a method that provides locality in
memory and the possibility of kindly vector data processing:

S = {R, Q, SP, EW} , (4)

where R = {r1, . . . , rN }, Q = {q1, . . . , qN }, N is the
sequence length and points from the pair (ri, qi) must be
transformed into each other and form an edge in the matches
graph. Arrays SP and EW of size N store probabilities and
spatial characteristics of the correspondences. Its usage is
optional.

FIGURE 1. Flowchart of the PESAC framework for the family of
RANSAC-based methods. Optional blocks not included in the original
method formulation (Section III) are colored. In the shaded blocks we use
vectorization.

Note that this storage method allows for the points in R
and Q to be repeated. In addition, points can be of different
types (e.g., for the task of camera pose estimation from
2D–3D point correspondences).
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2) OUTPUT
The output of RANSAC-based methods is one or more
models and their characteristics that can be useful for further
applications. Most frequently, these will be the model H
coefficients and score C, but there may also be an inlier mask,
points indices used to build the model, etc.

B. SAMPLING BLOCK
The block of Sampling takes the sequence S of corre-
spondences as input and is intended for generating random
minimal subsets of matches that will be used for model
computation further.

In our notation, the sample is a finite set {i1, . . . , iM}, ij ∈
1,N , j ∈ 1,M, of indices from the sequence S, whereM
is the minimum number of matches required for computing
the model hypothesis. Sampling can be of different kinds:
• Exhaustive, when a complete enumeration of all the
minimum subsets of matches in a predetermined order
is performed; this kind is relevant for a small number of
correspondences when one can iterate over all subsets;

• Uniform, when the matches in the sample are obtained
by a uniform generating of M random numbers, i.e.
indices of correspondences, from 1 to N ; this kind
is used when no additional information about the
correspondences is available and was also used in the
original RANSAC approach [1];

• Non-uniform, when additional characteristics of corre-
spondences are considered for the matches selection to
generate more preferred samples earlier; it is the most
modern sampling strategy followed by modifications
of NAPSAC [22], PROSAC [25], DL-RANSAC [28],
P-NAPSAC [29], and other [21], [27].

We notice that the block generatesK samples per one main
loop iteration. Using K ≫ 1 allows vectorizing random
number generation directly in this block and involving SIMD
extensions further.

C. SAMPLE RESTRICTOR BLOCK
Sometimes the model estimating can be a costly computation.
If the minimum sample is unlikely to be meaningful in the
context of the problem being solved, it will hardly produce
an accurate model. We can avoid the unnecessary calculation
of model parameters by adding some preliminary tests for
samples. In order to do this, we include Sample Restrictor
block in the framework.

The collection of sample restrictors is aimed at rejecting
‘‘bad’’ samples with a minimal computational effort from
K given ones, returning K1 < K valid samples. The
effective test must examine the relatively simple criterion
compared to the model computation and further local/global
optimization if used. In the literature, there have been
proposed geometrical restrictions imposed on
• Relative order (orientation) of points in a sample; it
was discussed for the affine transformation [40], 2D
homography [41], [42], and epipolar geometry [47]
estimation;

• Area of the shapes formed by the points in a sample:
triangles in affine transformation [68], quadrilaterals in
2D homography [43] estimation;

• Distances between points in a sample: abscissa dif-
ference in the problem of line fitting [69], Euclidean
distances in 2D homography estimation [48], [49];
etc.

D. MODEL COMPUTATION BLOCK
Given a set of K1 samples, this block builds a set of
K2 models. We notice that K2 may not be equal to K1,
if some samples did not originate models or, on the contrary,
generated more than one (e.g., in a task of computation
the fundamental or essential matrices by 7-point or 5-point
algorithms [70], [71]). For K1 ≥ 1, we can use SIMD
vectorization for the given algorithm of calculation model
parameters. The ease of using SIMD is highly dependent
on the particular transformation. For example, in Section V
we focus on the case of 2D homography since it represents
the widest class of linear 2D transformations and is quite
computationally intensive. Due to coinciding indexing in
R and Q, it is possible to process t elements of these
sequences simultaneously. The value t is the number
of values stored in a SIMD register depending on the
register size and the type of data used and usually varies
from 2 to 16.

E. MODEL RESTRICTOR BLOCK
Model Restrictor allows skipping the costly verification
completely for some physically non-meaningful transforma-
tions. This block rejects ‘‘bad’’, in terms of the task being
solved, models fromK2 transformations obtained after model
computation and retain K3 ‘‘good’’ ones before the model
verification step.

Geometric constraints depend on the specific task. Restric-
tions have been introduced for the following models:

• Epipolar geometry: oriented version of the epipolar
constraint [44], [45], consistency of orientations and
distances from epipole to sample points in image
pair [47];

• 2D homography: convexity preservation by checking
that the intersection point of the diagonals of the unit
square is inside the resulting quadrilateral [48], [49] or
by checking that an ellipse inside a convex quadrilateral
is still an ellipse under a homography [72], cheiral
inequality [73]; etc.

In [46], authors proposed Latent RANSAC, where after
a hypothesis is generated it is mapped to a latent space as
λ-dimensional vector, undergoes a hash procedure, and is
only verified if it is similar to any of the previously stored —
that might also be regarded as a model check. The paper sug-
gested parameterizations for the space of 2D homographies
and 3D rigid motions. The method is particularly interesting
because of the ability to evaluate hypotheses in constant
time.
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Pseudocode 1 VectorizedModel Verification
1: Input: sequenceR = {r1, . . . , rN }
2: of reference points from Eq. (4);
3: sequence Q = {q1, . . . , qN }
4: of query points from Eq. (4);
5: matrices of transformations
6: {H1,H2, . . . ,HK3}, whereHj

: Rj
4→ Qj

4;
7: integer value t – the amount of correspondences
8: processed simultaneously.
9: Output: score values C1, C2, . . . , CK3 ,

10: where Cj = C(Hj).
11: for k from 1 to K3 do
12: Ck ← 0
13: N ′← ⌊N / t⌋ · t;
14: for n from 1 to N ′ with the step t do
15: e2n+0← ∥H

k (rn+0)− qn+0∥2;

16:
...

17: e2n+t−1← ∥H
k (rn+t−1)− qn+t−1∥2;

18: Ck ← Ck + ρ(e2n+0)+ . . .+ ρ(e2n+t−1);
19: end for
20: for n from N ′ + 1 to N with step 1 do
21: e2n← ∥Hk (rn)− qn∥2;
22: Ck ← Ck + ρ(e2n);
23: end for
24: end for

F. MODEL VERIFICATION BLOCK
After we have received K3 models from the model restrictor,
we need to compute the scores and other statistics for them.
For each transformation, the block computes a sequence
of N residuals, the model score C(θ ), and an inlier mask
vector, if needed. The score and residuals computation also
allow vectorization with the proposed way of organizing the
sequencesR and Q.
In the original RANSAC formulation, error functional ρ is

taken as in Eq. (1). Different variations of ρ were proposed
to increase the contribution of a single correspondence to
the overall score (MSAC [12]); probabilistic approaches
(MLESAC [12], AMLESAC [30], MAPSAC [13]), modeling
the distribution of the error probability over inliers and
outliers to evaluate the model hypothesis, and methods
of maximum likelihood or estimation using a posteriori
maximum are applied; to eliminate the need for user-defined
an inlier-outlier threshold from Eq. (1) (MAGSAC [17]); etc.
Since the amount of input data can be quite large, and the

evaluation must be performed for each transformation,Model
Verification is usually a more expensive and time-consuming
block than Sampling and Model Computation. Therefore,
the use of SIMD extensions at the verification stage is
especially advantageous. In the global case, the model
score C is accumulated from values of some functional in
each correspondence (e.g. error functional ρ from Eq. (1)
and score from Eq. (2)). Using SIMD parallelism due
to coinciding indexing in R and Q, it is possible to

process t correspondences and update the score by t values
simultaneously. This idea is outlined in Pseudocode 1.

The model verification can be optimized using techniques
aimed at the early rejection of the supposedly ‘‘bad’’
model hypotheses (retaining K4 ≤ K3 ones) and, when
verifying a certain model, discarding correspondences that
are guaranteed to be inconsistent with it. In the literature, the
following approaches were described:

• Td,d test [23], where each model is first verified by d ≪
N randomly selected correspondences, and if all of them
are inliers, then the remaining N − d correspondences
are tested against the model, otherwise, the model is
rejected;

• Sequential Probability Ratio Test (SPRT) test [24],
where authors adapted A. Wald’s sequential probability
ratio test for the model verification strategy: for each
correspondence, the likelihood ratio is calculated, and if
it becomes larger than a certain threshold (the optimal
value of which can be calculated), then the model is
rejected;

• Bail-Out test [26], where the model is verified against a
set of d < N randomly selected correspondences, and
the model is rejected if the support for this set does not
exceed so-far-the-largest number of inliers got from the
entire sequence of correspondences;

• Space-Partitioning RANSAC [19], based on partitioning
the joint correspondence space into a pair of regular
grids. The grid cells are mapped by the verifying
model, and for a certain cell on reference image the
correspondences with query points falling outside the
cell image under transformation are rejected; etc.

G. EARLY TERMINATION BLOCK
Typically, the number of RANSAC iterations is determined
experimentally and supplemented by early termination tech-
niques. Knowledge of the outlier ratio in the input data is
necessary for an accurate estimation of the iterations number,
but, in practice, it is rarely known reliably. Hence, a large
enough number of iterations is specified with the early
termination criterion in the main loop, which allows faster
completion of the sample generation. The stopping condition
depends on the used RANSAC modification and may be

• The adaptive number of iterations [20], where the
number I of iterations is re-estimated using the Eq.(3)
with the inlier ratio ϵ in so-far-the-best model;

• Criterion corresponding to Td,d [23] or SPRT [24] tests
performed inModel Verification block;

• Criterion from PROSAC [25], MAGSAC [17], Latent
RANSAC [46], other modifications with custom termi-
nation criterion; etc.

To implement the early termination, we suggest collecting
some statistics that the early termination criterion operates
with (e.g., the number of samples totally generated and
rejected by the sample restrictor, the score of so-far-the-best
model, its support, etc.) while running the main loop.
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H. MODEL REFINEMENT BLOCK
As a result of the RANSAC main loop, a sequence of
candidate models has been collected. This block is intended
to refine them. We select a certain number of ‘‘best’’ models
in terms of score and apply a non-minimal optimizer to them.
Thus, we optimize the model from a larger subset of input
data than a minimum sample and reduce the influence of
random noise on the final hypothesis. Various strategies may
be employed here. If refining is performed after the main
loop, we may use, for example:

• Linearization of the least squares method following
by singular value decomposition (SVD) solution; if
approximations are required for linearization (e.g., in the
case of a plane homography), then the answer will be
inaccurate;

• Strategies for multidimensional nonlinear minimiza-
tion, e.g. Gauss-Newton or Levenberg-Marquardt meth-
ods [74];

• Principal component analysis (PCA) for non-minimal
estimation.

Alternatively, we may perform refinement during the
main loop. This strategy is followed by some RANSAC
modifications:

• Locally Optimized RANSAC (LO-RANSAC) [14],
[15], where the optimization is performed not after the
main loop, but during it: the main loop is supplemented
by a local optimization step with the least squares on
inliers performed after model verification when so-far-
the-best model was updated;

• Graph-Cut RANSAC [16], that is similar to LO-RANSAC.
The local optimization step uses the graph-cut algorithm
and constructs new models until the support remains
larger than its initial value. The result of the graph-cut
algorithm is an optimal 1-0 (inlier-outlier) labeling for
the correspondences, considering their spatial coherence
and residuals; the resulting model is derived from
7M [15] correspondences selected among ones with
label 1; etc.

V. IMPLEMENTING PESAC FOR 2D HOMOGRAPHY
ESTIMATION
This section provides a detailed description of how the
PESAC framework can be configured for 2D homography
estimation. In particular, we demonstrate possible restrictors
for such a problem and theway of computing the homography
matrix. Here we do not use the EW array in the input.

In Sampling block, we hold the sampling based on
the probabilities specified in the SP array and employ
techniques for generating numbers from an arbitrary discrete
distribution. We use the Vose alias method [75] because of
its low generation complexity, O(1). That is a significant
advantage since we need to generate quite a high amount
of random numbers. Commonly, pseudo-random numbers
are used in RANSAC, because of no need for reliable (and
usually slow) algorithms for random numbers generating.

FIGURE 2. Example of samples that would be rejected by criterion with a
specified index in Sample Restrictor block. Corresponding points from
the sample are connected with segments.

We use the xoshiro128+ pseudo-random numbers generator
for its speed [76] and giving easily vectorization.

For Sample Restrictor block, let us consider the sample
restrictors proposed in [49] by Skoryukina et al. Introducing
the notation dmin,Dmax for distance threshold values and
calculating pair-wise distances

d rij = |ri − rj|, d qij = |qi − qj|, i, j = 1,M (5)

between points from R and Q respectively, we decide a
sample is valid if it satisfies the following criteria:
(i) Distances between points from R and Q in the sample

are large enough:

d rij > dmin, d qij > dmin, i, j = 1,M. (6)

(ii) Scale factor is similar among correspondences from
the sample. Scale factor sij is determined for a pair of
correspondences and is equal to the ratio of distances
between two query points and two reference points:

sij =
d qij
d rij

, i, j = 1,M. (7)

For each pair of correspondences, scale factor sij must
not differ much from average value s of scale factor:∣∣∣ sij

s
− 1

∣∣∣ < smax, i, j = 1,M, (8)

where s =
(M
2

)−1 ∑
sij.

Criterion (ii) might be used in tasks with the sample size
M > 2 only. For the case of 2D homography, we have
M = 4. Illustrations for the effect of these sample restrictors
are given in Fig. 2. For each restrictor, there is a set of empty
reference points on the left and a set of empty query points
on the right. Points included in the sample are filled, and
correspondences are connected with segments.

In Model Computation block, we implement the calcu-
lation of homography matrix coefficients by M = 4
correspondences according to the method described in [77].
The idea of the method is as follows. Let us set the Cartesian
coordinate system (x, y) on plane and consider some sample
{i1, . . . , i4}. We denote the subsets of reference and query
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points conforming this sample by R4 = {ri1 , . . . , ri4} and
Q4 = {qi1 , . . . , qi4}. Consider transformations HR : U →
R4, HQ : U → Q4, where U is the unit square with
its vertices at points (0, 0), (1, 0), (1, 1), (0, 1) in Cartesian
coordinates. Transformation H : R4 → Q4 can be found as
a compositionH = HQ×H−1R . This is shown schematically
in the commutative diagram:

(9)

Introducing the notation

α := (ri3 − ri2 )×(ri3 − ri4 ),

β := (ri3 − ri2 )×(ri3 − ri1 ),

γ := (ri3 − ri1 )×(ri3 − ri4 ), (10)

where u×v = ux vy−uy vx , one can obtain analytical expres-
sions for the coefficients of matrix (hij)R of transformation
HR in affine coordinates:

(hij)R =


rxi2

γ
α
− rxi1 r

x
i4

β
α
− rxi1 r

x
i1

ryi2
γ
α
− ryi1 r

y
i4

β
α
− ryi1 r

y
i1

γ
α
− 1 β

α
− 1 1

 . (11)

Replacing rij with qij , the corresponding expressions are
obtained for calculating the matrix (hij)Q with coefficients
of transformationHQ. To obtain the elements of matrix (hij)
of transformation H we are interested in, it remains to invert
matrix (hij)R and multiply matrix (hij)Q by the result:

(hij) = (hij)Q · (hij)
−1
R . (12)

Pseudocode 2 demonstrates the vectorization of the homog-
raphy computation algorithm according to the method
described above, for the general case of storing t variables
in the register.

In block ofModel Restrictor, we impose the following four
criteria on the homographyH with matrix (hij):
(i) Convex quadrilateral must remain convex after transfor-

mation.
(ii) Transformation must be reasonably projective: ratio of

the matrix (hij) last row elements is not too large:

|h31| + |h32|
|h33|

< τproj. (13)

(iii) Area of the transformed quadrilateral must be larger than
the threshold τarea.

(iv) Aspect ratios of reference quadrilateral and its image
after transformation, q(r) and q(tr) respectively, must be
similar: ∣∣∣∣ aspect ratio (q(tr))aspect ratio (q(r))

− 1

∣∣∣∣ < τasp. (14)

The effect of these restrictors is shown in Fig. 3. The
original rectangles are painted in gray, and their red-colored

Pseudocode 2 Vectorized Model Computation for 2D
Homography [77]

1: Input: samples {i11, . . . , i
1
4, i

2
1, . . . , i

2
4, . . . , i

K1
1 , . . . , iK1

4 };
2: reference points {R1

4,R
2
4, . . . ,R

K1
4 },

3: whereRj
4 = {rij1

, . . . , rij4
};

4: query points {Q1
4,Q

2
4, . . . ,Q

K1
4 },

5: where Qj
4 = {qij1

, . . . , qij4
};

6: integer value t – the amount of samples
7: processed simultaneously.
8: Output: matrices of homographies {H1, . . . ,HK1},
9: whereHj

: Rj
4→ Qj

4.
10: K′← ⌊K1 / t⌋ · t
11: for k from 1 to K′ with step t do
12: compute transformations
13: {Hk+0

R , . . . ,Hk+t−1
R } coefficients by Eq. (11);

14: compute inverse transformations

15: {

(
Hk+0
R

)−1
, . . . ,

(
Hk+t−1
R

)−1
};

16: compute transformations
17: {Hk+0

Q , . . . ,Hk+t−1
Q } coefficients by Eq. (11);

18: compute compositions

19: {Hk+0
Q ×

(
Hk+0
R

)−1
, . . . ,Hk+t−1

Q ×

(
Hk+t−1
R

)−1
};

20: end for
21: for k from K′ + 1 to K1 with step 1 do
22: compute transformationHk

R coefficients by Eq. (11);

23: compute inverse transformation
(
Hk
R

)−1
;

24: compute transformationHk
Q coefficients by Eq. (11);

25: compute compositionHk
Q×

(
Hk
R

)−1
;

26: end for

FIGURE 3. Examples of the rectangle and its image (densely dotted gray
and solid red respectively) after some ‘‘bad’’ homography that would be
rejected by criterion with specified index in Model Restrictor block.

images are after some ‘‘bad’’ homography.Models producing
illustrated results would be rejected byModel Restrictor with
the corresponding index.

Finally, in Model Verification block we implement the
algorithm outlined in Pseudocode 1 with MSAC score

ρ
(
e2i (θ )

)
=

{
e2i (θ ), if e2i (θ ) ≤ T

2, (inlier)
T 2, otherwise, (outlier)

(15)
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and use the criterion of adaptive number of iterations in
Early Termination block. Model Refinement is executed
after the main loop, and this block implements PCA with a
non-minimal solver.

VI. COMPUTATIONAL EXPERIMENTS
The rising number of mobile applications based on image
registration and recognition (e.g. augmented reality, com-
puted tomography, autonomous navigation on UAVs, facial
recognition systems) leads to the development of image
registration techniques. A common approach for image
registration consists of steps shown schematically in Fig. 4.
The first step is to compute so-called keypoints in the image
and a description of the neighborhood of each keypoint,
which is invariant to certain transformations. As a result, for
image I we get a feature set{

(pi, fi), i = 1,N (I )
}
, (16)

where pi = (xi, yi) are coordinates of i-th keypoint, fi is
the descriptor of i-th keypoint neighborhood, N (I ) is the
total amount of keypoints on image I . Once the features
have been extracted, they need to be matched: descriptors
from the reference image are then compared to descriptors
extracted from the query image to build a sequence S
of reference-query points correspondences. Then one can
employ RANSAC to estimate the underlying geometric
transformation between images.

In our experiments, we used RANSAC for tasks that arise
in the document processing field: classification, localization,
and tracking. A document is a 2D object, so we can describe
the change in its location between a pair of images with a 2D
homography.

All tested variants of the PESAC frameworkwere specified
by the components described in Section V. In addition,
we experimented with disabling optional blocks of Sample
Restrictor and Model Restrictor and SIMD vectorization
in algorithms outlined in Pseudocodes 1, 2. Per one
iteration of the main loop, 200 samples were generated.
In Sample Restrictor block, dmin and smax were taken equal
to 50 and 0.5 respectively, and in Model Restrictor block,
τproj, τarea, τasp were set to 5, 0.05, 0.5 respectively.
We compared PESAC with the classical version of

RANSAC, five variations of USAC from the OpenCV-4.6.0
library, Latent RANSAC, and Space-Partitioning RANSAC.
Classical OpenCV RANSAC implements score given by
Eq. (1) and early termination by an adaptive number of
iterations. As it is mentioned in OpenCV documentation [78],
methods USAC_DEFAULT, USAC_FAST involve local
optimization from LO-RANSAC [14] for model refinement,
but USAC_FAST uses fewer iterations. Latent RANSAC
implementation also had LO-RANSAC [14] for model
refinement, and Space-Partitioning RANSAC had least
squares fitting after the main loop. USAC_MAGSAC is
the implementation of MAGSAC++ [18]. USAC_PROSAC
had PROSAC [25] sampling, and other four variations of
USAC used uniform sampling to generate samples. Latent

RANSAC implementation included PROSAC [25] sampling,
and the implementation of Space-Partitioning RANSAC –
P-NAPSAC [29] sampling. All but USAC_MAGSAC com-
pute MSAC score, while USAC_MAGSAC uses its own
score type. All OpenCV USAC implementations and
Space-Partitioning RANSAC execute SPRT in model veri-
fication and use early termination criterion associated with
SPRT. As a sample check, in the module of sampling minimal
subset all these implementations check if no 3 points lie on
the same line and hold the orientation test [41], [42]. With
Latent RANSAC we set maximum number of collisions to
2000 for document classification and 200 for tracking.

For all compared methods, common input parameters
were taken to be identical. For document classification and
localization task, inlier-outlier threshold T from Eq. (1) was
taken equal to 10, maximum number I of iterations was 106,
confidence P in solution was 0.9999. For document tracking
task, these values were set to 5, 104, and 0.99 correspond-
ingly.

We ran the experiments on AMD FX-8350 (with x86_64
architecture) and ARM Cortex-A73 (with ARMv8 architec-
ture) CPUs in single-threaded mode. SIMD vectorization was
carried out using SSE intrinsics for x86_64, NEON intrinsics
for ARMv8, and 128-bit registers, storing 4 single-precision
or 2 double-precision floating-point values.

A. DATASET
We experimented on images from the open dataset
MIDV-2020 [79] containing identity documents of 10 types.
The following subsets of this dataset were used:

• MIDV-2020 / templates
For each of 10 document types, this subset contains
100 ideal images, i.e. templates with different personal
data. Rectangle bounding the template is considered
having vertices (0, 0), (w, 0), (w, h), (0, h),where w and
h are template linear dimensions.

• MIDV-2020 / photo
For each of 10 document types, this subset contains
100 photos with a resolution of 2268 × 4032 pixels.
The subset contains pictures taken at different levels of
illumination, with challenging background variations,
with strong projective distortions, etc. For each photo,
there is a JSON annotation, that contains the correct
coordinates of the document quadrilateral presented on
a certain picture.

• MIDV-2020 / clips
The subset contains 100 video clips for each of
10 document types. The smallest clip has 38 frames,
whereas the largest one has 129 frames. The total
number of frames in 100 clips is 68409. Frames have a
resolution of 2160×3840 pixels. In clip annotation, one
can find the correct document quadrilateral coordinates
for each frame of that clip.

All images in these subsets are stored in JPEG format. For
the task of document classification and localization, we used
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FIGURE 4. Flowchart of the common approach for geometric transformation estimation between two images using RANSAC.

subsets of photos and templates. Clips subset was used for
the document tracking. Pictures in the dataset have complex
background resulting in the detection of a great number of
keypoints, and that is another reason why we specified such
a huge number of RANSAC iterations.

B. FORMATION OF RANSAC INPUT
Before feature extraction each RGB image was preprocessed
by scaling from (w, h) linear size to (1000w/h, 1000) and
converting to gray-scale. Then an image pyramidwith 3 levels
of (1, 2/3, 1/2) resolutionwasmade for computingmulti-scale
image features, and the algorithm for keypoints extraction
was run on each pyramid level with a maximum limit of
5 · 104 points. We used YAPE [80], [81] keypoint detector
with a radius of 4 due to its computation performance. From
the keypoint neighborhood of size 32 × 32, RFDoc [82]
descriptors were computed with a 128-bit feature vector.

Feature matching was implemented by comparing the
Hamming distance dH between descriptors. Keypoint pair
with dH < τH was considered as the correspondence with
sampling probability of max{0; (τH − dH )/τH }, where τH
was taken equal to 32. As a prefiltering, a fixed number of
‘‘best’’ correspondences in terms of sampling probability was
inserted in sequence S. It was 103 for document identification
problem and 5 · 102 for document tracking.

C. DOCUMENT CLASSIFICATION AND LOCALIZATION
Identity documents can be considered semi-structured objects
because they contain static elements of the document
template and variable elements – personal data. For a
document template of a certain type, an approximate location
of personal data information is known. Given a predefined
set of templates, the identification problem is to classify
the document image as one of the classes represented by
document templates of different types, or as a null class
that corresponds to the absence of a known document type.
Current approaches for solving such a problem are based
on the matching of features such as singular points and
descriptors, but the feature space can be extended with line
segments, quadrilaterals, etc. [8].

Given image I and document templates {t (j)} of different
types, the task is to identify the type t (i) of the document
on image I and to determine its quadrilateral coordinates.
Here, we do not follow the approach proposed in [8] for
localization problem with preliminary extraction of lines
and quadrilaterals in the input image and filtering features

FIGURE 5. Example of correctly identified document type for
MIDV-2020 / photo grc_passport/28: matching with a) correct document
type (grc_passport) and b) incorrect document type (fin_id). Inliers drawn.
Localization result is illustrated by green quadrilateral
(D = 24.52, IoU = 0.98). For clarity, in case of incorrect document type
here we also presented quadrilateral obtained by corresponding
homography (D = 1762.84, IoU = 0.32).

on template images before matching, since the purpose is
to test RANSAC itself. The following approach was used
as a solution. Each of the 10 templates was matched with
the input image. For the template, keypoints were extracted
and their descriptors were computed only inside pre-selected
regions containing static information, i.e. appearing on any
instance of the certain document type. After RANSAC, a set
of ≤ 10 homographies was obtained (for some templates,
transformation may not be found). We selected the document
type corresponding to the homography with the largest inlier
ratio as the answer.

We have denoted the ratio of images with correctly
identified document type among MIDV-2020 / photo via
Accuracy. Given the correctly identified type for a certain
image, we were to determine whether the corresponding
homography had localized the document quadrilateral. Intro-
ducing the notation H for estimated homography transform-
ing template quadrilateral qt with vertices {qti }

4
i=1 into image
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FIGURE 6. Plots of the average runtime and IoU∗ criterion by document types in classification and localization task for MIDV-2020 / photo.

TABLE 1. Average runtime and metric values of the PESAC framework implementations in document classification and localization task for
MIDV-2020 / photo.

TABLE 2. Average runtime and metric values of existing methods’ implementations in document classification and localization task for
MIDV-2020 / photo.

I , qwith vertices {qi}4i=1 for document quadrilateral localized
on image I (so that H qti = qi), m with vertices {mi}4i=1 for
quadrilateral with correct coordinates on image I , we defined
metric D called corner residual in the following way:

D(q,m) = max
i

∥mi − qi∥2
perimeter (m)

. (17)

Additionally, we calculated the region overlap criterion
Intersection over Union (IoU) given by formula

IoU(q,m) =
area (q ∩ m)
area (q ∪ m)

. (18)

See that D ∈ [0;+∞) and IoU ∈ [0; 1], so smaller D
and higher IoU values mean more similar coordinates of
quadrilaterals q and m. Below there are given values of ratios
of photos with D < 0.02 and with IoU > 0.9, defined by D∗

and IoU∗ correspondingly.
An example document type identification is shown in

Fig. 5 with templates of a Greek passport and Finland
ID card and a region of the Greek passport as an input
image. Fig. 5a) demonstrates correctly identified type and
localized document quadrilateral, and Fig. 5b) demonstrates

transformation for the wrong document type. Connected
points are inliers of the given homography.

Computational results are presented in Tables 1–3. Average
time in Tables 1, 2 stands for one non-degenerate RANSAC
run, when it managed to return some homography estimation
(each implementation had more than 99.6% non-degenerate
runs). Tables 1, 2 also review metric values for PESAC
and OpenCV implementations correspondingly. In PESAC,
metric values for 32-bit floating points have not changed
significantly from using 64-bit data type, and Table 1 gives
values for 32-bit type only. Statistics about the average
number of generated samples (K), non-rejected samples (K1),
computed models (K2), and non-rejected models (K3) is
presented in Table 3.

The average runtime demonstrated up to 83 (122) times
speedup with 64-bit (32-bit) floating point data type between
‘‘no restrictors, without SIMD’’ and ‘‘both restrictors, with
SIMD’’ PESAC versions on x86_64 CPU (and up to 83
(101) times on ARMv8 CPU). Sample and model restrictors
rejected a huge part of the samples and models: values of
K1 and K3 in Table 3 are much smaller than K and K2,
respectively, if using corresponding restrictor. The use of
SIMD extensions itself gives up to 16% speedup with SSE
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TABLE 3. Statistics on restrictor blocks of the PESAC framework
implementations in document classification and localization task for
MIDV-2020 / photo. For 32-bit floating point data type.

intrinsics, and up to 2.5% with NEON intrinsics in fastest
version ‘‘both restrictors’’. Operating with 128-bit SIMD
registers storing 4 (2) single (double)-precision floating-point
values, the maximum possible acceleration for vectorized
parts of framework could be 75% (50%). So, depending on
the runtime of ‘‘no restrictors’’ version we can conclude
that speedup with SIMD in Model Verification and Model
Computation blocks is quite good, and using vectorization in
them is very relevant.

Among other implementations, Latent RANSAC and
Space-Partitioning RANSAC were the best in terms of time
but gave the lowest values of Accuracy and localization
metrics. PESAC version with ‘‘both restrictors’’ ran up
to 1.5 times slower than Space-Partitioning RANSAC but
with 11.2% better Accuracy and more than 20% better
localization metrics. Fig. 6 illustrates that for most document
types versions of proposed framework showed higher values
for criterion IoU∗. At the same time, one can see that
‘‘both restrictors’’ and ‘‘sample restrictor’’ versions were
much faster than others. It reveals the success of using the
restrictors. Note also that ‘‘no restrictors’’ version was much
faster than OpenCV RANSAC, which is due in part to good
memory locality.

D. DOCUMENT TRACKING
Tracking is a superposition of coordinate systems of one
object on different frames of a video stream. In our
experiment, the object is a document. Document tracking
finds application in many practical usages. It is performed
for the alignment of coordinate systems in the task of
assessing the presence or absence of optically variable
devices (OVDs) (e.g. holograms) changing in the video
stream on the document. If the analyzed OVDs are small-
sized, a high alignment accuracy of two adjacent frames is
required. In addition, tracking accuracy directly affects the
determining of document rotation angle relative to the camera
coordinate system – rotation is needed to assess whether the
document had moved within the frame.

Formally, the input data of tracking are sequence {In} of
frames, each containing the same document instance. The
frame-to-frame document movement must be followed by a
sequential matching of neighboring frames. When matching
frames Ij, Ij+1, for the frame Ij keypoints filtering is per-
formed: only points located inside the document quadrilateral
are used. For the first clip frame, the quadrilateral coordinates

FIGURE 7. Example of tracked frames from MIDV-2020 / clips:
a) correctly tracked (clip est_id/87, frames 000445, 000451), inlier ratio =
0.402, and b) incorrectly tracked (clip esp_id/90, frames 000115, 000121),
inlier ratio = 0.079. Inliers drawn. quadrilaterals illustrate tracking result:
right quadrilateral for current pair of frames and left for previous.

were considered known a priori and extracted from the clip
annotation.

Among other things, document tracking is caused by
the fact that it can be difficult to obtain high accuracy
with frame-by-frame localization, as such methods analyze
only areas with static information. Tracking uses keypoints
from the whole document. In particular, personal data is
often more resolvable when captured with a mobile phone
camera than areas with static information under the same
conditions.

To evaluate tracking quality, we calculated region overlap,
tracking length, and failure rate metrics [83]. The overlap
criterion IoU was given by Eq. (18). The corresponding
binary criterion was obtained by thresholding: if we had
IoU(q(j),m(j)) < τ for some fixed τ , the quadrilateral
q(j) on frame Ij was considered incorrectly localized and
a decision about tracker failure was issued; otherwise, the
quadrilateral was considered correct and the tracking process
continued. Hereinafter, we took τ equal to 0.5. An example
of correctly and incorrectly tracked frames is shown in
Fig. 7, where the ‘‘bad’’ tracking result was caused by
glares.

If tracker failure was obtained as the result of matching
frames Ij−1, Ij, we re-initialized the tracker: for the frame
Ij, the coordinates of document quadrilateral were extracted
from the clip annotation, and the next pair Ij, Ij+1 was
matched, and so on, until either another tracker failure or
the end of the clip. Therefore, to assess the tracking quality,
we used two more metrics based on IoU. The Pτ criterion
corresponded to the number of successfully tracked frames
from the initial frame to the first tracking failure:

Pτ = min
{
j : IoU

(
q(j),m(j))

≥ τ,

IoU
(
q(j+1),m(j+1)) < τ

}
. (19)
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TABLE 4. Average runtime and metric values of the PESAC framework implementations in document tracking task for MIDV-2020 / clips.

TABLE 5. Average runtime and metric values of existing methods’ implementations in document tracking task for MIDV-2020 / clips.

FIGURE 8. Average runtime, average tracking length P 0.5, and average failure rate λ0.5 by document types in tracking task for MIDV-2020 / clips.

For the whole dataset the average tracking length Pτ was
considered:

Pτ =
1

| clips|

∑
clips

Pτ

clip length− 1
. (20)

Yet another criterion we calculated is λτ , which is associated
with tracking failure rate, and its average value λτ :

λτ =

∣∣∣{j : IoU (
q(j),m(j)) < τ

}∣∣∣ , (21)

λτ =
1

| clips|

∑
clips

λτ

clip length− 1
. (22)

So we have Pτ = 1, λτ = 0 for an ideal tracker, and Pτ =

0, λτ = 1 for a totally unusable tracker.
The average runtime of the considered PESAC and

OpenCV implementations is given in Tables 4 and 5 corre-
spondingly. Values here again stand for one non-degenerate
RANSAC run. All implementations had more than 95%
non-degenerate runs. Metric values when using the PESAC
framework (for both cases with 32-bit and 64-bit floating
points) are presented in Table 4, and Table 5 contains the
metric values of OpenCV implementations. The average
numbers of generated and non-rejected samples (K and K1),

TABLE 6. Statistics on restrictors of the PESAC framework
implementations in document tracking task for MIDV-2020 / clips. For
32-bit floating point data type.

computed and non-rejected models (K2 andK3) are shown in
Table 6.

Acceleration between ‘‘no restrictors, without SIMD’’
and ‘‘both restrictors, with SIMD’’ PESAC versions was
14.6 times on both x86_64 and ARMv8 CPUs when using
64-bit data type; 17.3 times on x86_64 and 18.4 times on
ARMv8CPUswhen using 32-bit data type.We see that ‘‘both
restrictors’’ had the lowest average runtime among versions
of the PESAC framework and produced the most accurate
models demonstrating the highest average tracking length
and lowest failure rate (Table 4). Using the 32-bit floating
point data type instead of the 64-bit type resulted in improved
metric values and a little longer runtime. Note that in tracking,
the current estimation is based on the result of the previous
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one, which is not the case in localization task, so changing the
data type affects the computations more significantly. The use
of SIMD extensions in ‘‘both restrictors’’ version accelerated
the method by 23.61% on x86_64 and by 15.25% on ARMv8
when using 32-bit data type (22.68% on x86_64, 2.71% on
ARMv8 when using 64-bit data type).

Among other methods, USAC_PROSAC and Latent
RANSAC had the fastest average runtime and were slightly
faster than our version with ‘‘both restrictors’’ in this
experiment (on average over all clips). At the same time,
PESAC resulted in better metric values (see Table 5,
Fig. 8). This effect can be reasoned by the fact that unlike
document localization, where PROSAC sampling was not
faster, in tracking the whole region inside the reference frame
quadrilateral is analyzed, which leads to a greater number of
correct matches among the top-ranked ones after prefiltering.

VII. CONCLUSION
In this paper, we presented PESAC, the Parallel Effi-
cient Sample Consensus framework for the family of
RANSAC-based methods that is adapted for SIMD CPUs
and possesses memory locality. The PESAC consists of the
following blocks: Sampling and Sample Restrictor, Model
Computation andModel Restrictor,Model Verification,Early
Termination, and Model Refinement. Since Model Computa-
tion and Model Verification are the most time-consuming,
we aimed the framework to reduce the time taken for
their execution by the preliminary rejection ‘‘bad’’ samples
and model hypothesis from consideration. Within Sample
Restrictor and Model Restrictor blocks, the collection of
sample and model validity criteria is listed.

The PESAC framework uses a special way of storing data
in the memory that is suitable for vectorization. Generating
K ≫ 1 samples per one iteration of the main loop allows
efficient vectorization of pseudo-random numbers generation
in Sampling block, ensures memory locality, and provides
a field for using vectorization within the following blocks.
Model Computation and Model Verification blocks were
speeded up by using SIMD extensions. We demonstrate such
vectorized algorithms for 2D homography computation and
model verification. A complete example of configuring the
framework for a 2D homography estimation problem is also
presented.

Experiments included the comparison of the PESAC
framework with several USAC implementations from
OpenCV-4.6.0, Latent RANSAC and RANSAC with space
partitioning. Homography estimation in tasks of document
classification and tracking on the MIDV-2020 dataset
demonstrated that all optimizations resulted in significant
speedup on x86_64 and ARMv8 CPUs with a concomitant
increase in accuracy.

Limitations of the study: The first limitation grows
from the reasons that generally limit the benefits of SIMD
vectorization. If particular method has a lot of dependencies
on previous calculations and conditional branching, vector-
izationmay not be useful. The second one is related to the fact

that we only focused on the case of homography estimation
in the field of identity document recognition. The work can
be extended to address other applications and more datasets
can be investigated. Also our study does not include testing
the proposed framework in computer vision tasks such as PnP
or epipolar geometry estimation, etc.

Future work: The direction of the future work is to probe
the PESAC implementation for homography estimation
problem on other datasets. Moreover, the PESAC framework
might be implemented and tested in other problems, such as
estimation of fundamental or essential matrices that involve
a significant amount of matrix and vector operations, which
are well suited for SIMD vectorization.
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