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ABSTRACT This paper investigates the feasibility of scattering mechanism identification from limited
synthetic aperture radar (SAR) data for civilian vehicles. Wide-angle 3D SAR imaging is considered with
limitations in both frequency/look-angle and polarization samples. Accordingly, the two main problems,
namely, sparse reconstruction of wide-angle data and identification of scattering mechanisms using two
polarization channels, are jointly addressed. A methodology involving compressed-sensing (CS) imaging,
processing of sub-aperture images, and application of H/ᾱ decomposition to the dual-circular polarization
(DCP) mode is proposed. The 2D and 3D maps of entropy (H ) and alpha-angle (ᾱ) parameters and H/ᾱ

classification results are evaluated by using simulation and the real GOTCHA dataset. The approach is
tested with a complementary situation that consists of back-projection (BP) imaging of complete data plus
decomposition of full-polarimetric (FP) data. A good correlation between full-available and most-limited
cases, i.e., BP-FP vs. CS-DCP, is observed especially for the ᾱ signatures. The results indicate a reasonably
accurate retrieval of canonical mechanisms from a very small subset, i.e., about 0.23% of the total samples
of each DCP channel.

INDEX TERMS Polarimetric SAR, compact polarimetry, compressed sensing, 3D circular SAR imaging,
eigenvector decomposition.

I. INTRODUCTION
High-resolution radar imaging of civilian vehicles has many
applications, such as traffic monitoring [1], [2], [3], [4], [5],
urban setting [6], and vehicle discrimination [7]. Synthetic
aperture radar (SAR) and inverse-SAR (ISAR) have been
widely used for this task. An important problem encountered
is that the image features often show strong fluctuations with
frequency, view angle, and polarization, thereby posing chal-
lenges in further target recognition steps. Various imaging
and signal processing techniques have been developed to
characterize this ambiguity.

It is well known that for a deterministic (coherent) and
electrically large target, the image is largely dominated
by some main components, i.e., scattering centers. Tradi-
tionally, a physics-based description of these hot points
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has been made from single-polarization two-dimensional
(2D) imagery. A great deal of recent works has also been
directed to wide-angle (wide azimuth) imaging because
of its several advantages, e.g., the capability in provid-
ing high resolution imaging, assessment of anisotropic sig-
natures and persistent staring to observe scene changes.
In [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], and [22], these and other aspects of
wide-angle imaging have been explored for circular SAR
(CSAR) and circular-ISAR (turntable-ISAR) modes. These
include: imaging strategies for multiple sub-aperture data,
resolution enhancement, and object classification based on
attributed scattering center models. Despite these advantages,
2D wide-angle imagery suffers significant layover distor-
tions resulting from the 2D mapping of three-dimensional
(3D) reflectivity. To avoid this, a couple of studies have
also addressed single-polarization 3D analysis of civilian
vehicles [23], [24], [25], [26].
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FIGURE 1. Flow diagram of the methodology used in this study.

The use of single-polarization, nevertheless, provides lim-
ited insight into the understanding of the links between image
features and target geometry. Progress has been made by
adding polarization diversity, but with a trade-off in data
acquisition complexity. Thanks to the recent advancements
in technology, a substantial number of polarimetric-SAR
(Pol-SAR) and polarimetric-ISAR (Pol-ISAR) systems and
methods has been emerged [27]. In particular, there have been
several attempts to study the target (or polarimetric scatter-
ing) decomposition theorems for Pol-SAR data of natural
and urban scenes. The validity of coherent and incoherent
decompositions in discriminating between simple (canonical)
scatteringmechanisms has been well proven owing to the vast
availability of airborne data [27], [28], [29].
On the other hand, vehicles such as cars largely contain odd

and dihedral scattering events, so a simple odd/even bounce
separation would be satisfactory for most purposes. However,
as structures become more complicated, a wider range of
discrimination is required due to the major contributions of
multiple and diffuse reflections. Consequently, there is also a
growing interest in applying target decompositions to vehicle
signatures. The effectiveness of the representative types of
coherent decomposition, i.e., Pauli, Krogager, Cameron and
Huynen-Euler, as well as Freeman incoherent decomposition
has been examined from 2D anechoic chamber real data of
scale model targets or numerical simulations of CAD models
and for various civilian road vehicles [30], [31], [32], [33],
[34] and other man-made targets [35], [36], [37], [38], [39],
[40], [41]. Such 2D analyses, however, do not give volumetric
information, which could be useful especially for scattering
diagnostics applications.

More recently, therefore, efforts have been directed
towards 3D visualization of mechanisms [42], [43], [44],
[45], [46], [47], [48]. 3D imaging can be achieved by
exploiting the diversity of elevation angles. However, col-
lecting high quality data with sufficiently sampled elevation

measurements is obviously impractical. As a result, data
is typically limited in elevation extent, yielding artifacts
when conventional Fourier-based reconstruction techniques
are applied. 3D focusing of sparse, wide-angle data is still
a progressing field, and the recommended solutions are
referred to as super-resolution techniques which can be cat-
egorized broadly into two; tomographic SAR/ISAR [42],
[43], [44], [45], [46], [47], [51], [52], [53], [54], [55], [56],
[57] and direct sparse reconstruction [48], [49], [50], [51],
[52]. The former allows the processing of a few numbers
of linear/circular pass elevation data and involves obtaining
a set of 2D images followed by height profile estimation.
Polarimetric coherence [42], [43], [44], [45], [53], [54] and
layover effects [45], [46], [53] can also help to refine the
height inversion results. The latter, on the other hand, applies
to general collection geometries and involves compressed
sensing (CS) methods to compute 3D reconstructions (or full
3D imaging) directly. CS-based imaging offers a significant
improvement in resolution, but the main disadvantage is the
high computational cost for large-scale problems. Apart from
these two categories, the CS concept can also be combined
with tomographic imaging, usually referred to as CS-based
tomoSAR [55], [56], [57]. In summary, there has been much
experience with 3D improved imaging from reduced data, but
little work has been done for the 3D investigation of polari-
metric information, though some preliminary results, mostly
for Pauli decomposition, have been demonstrated [42], [43],
[44], [45], [46], [47], [48].

It is here important to note that man-made targets have
been conveniently analyzed through coherent decomposi-
tions without averaging process. For narrow-angle, this pro-
vides the best representation at full resolution. However,
a kind of averaging procedure is obviously needed to assess
anisotropic scattering for wide-angle. It is then possible to
apply one of the most powerful incoherent decompositions,
namely, the H − ᾱ decomposition to deterministic targets as
well. This decomposition [58], [59] makes use of entropy
(H ) and alpha angle (ᾱ) parameters, respectively, and has
been widely used in narrow-angle SAR imaging of natural
scenes [27], [28], [29]. Its adaptations to wide-angle case
(e.g., CSAR) [60], [61] as well as to compact polarimetric
(CP) data have also been investigated in recent studies [62],
[63], [64]. CP systems have drawn considerable attention
due to their several advantages such as reduced complexity
and cost. In particular, the dual circular polarimetric (DCP)
mode is capable of maintaining the full-polarimetric (FP)
features [63], [64].

In this context, the two problems, i.e., 3D imaging of
sparse, wide-angle data and polarimetric analysis from dual-
channel data, have been studied separately thus far. Herein,
these are jointly addressed to test the feasibility of 3D scat-
tering mechanism identification from sparsely sampled as
well as limited polarization measurements. The proposed
method involves the followingmain steps; (i) direct CS-based
imaging of sub-aperture DCP data, (ii) angular averaging of
sub-aperture images in the power domain, (iii) application of
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FIGURE 2. 3D monostatic SAR/ISAR imaging geometry.

H − ᾱ decomposition to the resulted composite image. The
back-projection (BP) imaging results for the complete data
are used to assess the validity of the employed processing
methodology.

II. METHODOLOGY FOR POLARIMETRIC SCATTERING
ANALYSIS FROM LIMITED DATA
We investigate the question of how CS-based reconstruction,
sub-aperture processing, and scattering mechanism extrac-
tion from dual-polarimetric data can be combined to support
the analysis of complex man-made targets.

For this purpose, the methodology illustrated in Fig. 1
has been proposed. The procedure starts with the division
of complete wide-azimuth extent into a selected number of
sub- aperture (narrow angle) views. Then, two cases are con-
sidered for the imaging of sub-aperture data; (i) BP imaging
from full samples for comparison purposes and (ii) CS-based
imaging from a randomly selected reduced number of sam-
ples. Note that the sub-images should be reconstructed on the
same target aspect for combined processing.

Two types of polarimetric analysis can then be performed,
i.e., FP and DCP, which respectively uses three linear polar-
ization (LP) channels (SHH , SHV and SVV ) and two cir-
cular polarization (SLL and SRL) channels. A second-order
polarimetric descriptor, i.e., the coherency matrix for each
sub-image, is then formed for the selected polarimetric pro-
cessing. Next, an angularly averaged coherency matrix is
introduced to preserve the anisotropic scattering features
over the entire azimuth span. Here, angular averaging is
more appropriate than conventional spatial averaging (i.e.,
multi-look), since the returns from man-made objects are
often spatially inhomogeneous. Thus, for each image voxel,
a composite angularly averaged coherency matrix, ⟨[T3]⟩φ or
⟨[J2]⟩φ is constructed to which finally H − ᾱ decomposition
is applied.

The proposed scheme, therefore, utilizes narrow angle
imaging followed by incoherent angular averaging. At this
point, it is also worth remarking that since the main objec-
tive herein is the scattering mechanism description, spatial
averaging of image data can also be performed by trading off
image resolution. This type of resolution reduction might be
beneficial, especially for CS image data, for easier interpre-
tation of scattering maps of target regions.

For the validation of limited polarization, FP and DCP
results can be compared for each case of BP and CS imaging
by testing the similarity of the scattering properties. Next,
CS-DCP results can be compared with those of BP-FP to
determine whether or to what extent scattering mechanism
identification fromDCP aswell as sparse data is possible with
such kind of processing.

III. THEORY
In the following, the theory for the employed 3D imaging
algorithms and the H − ᾱ decomposition for FP and DCP
modes are given.

A. 3D SAR/ISAR IMAGING
Data collection geometry for monostatic 3D SAR/ISAR
imaging is shown in Fig. 2. The scene center is defined as
(x, y, z) = (0, 0, 0) in a right-hand Cartesian coordinate sys-
tem. A transceiver (TX/RX ) antenna at a distance R0 from the
origin illuminates the target area with a specific look-angle
(∅m, θm). ∅m is the azimuth angle to the antenna, measured
relative to the x-axis, and θm is the depression angle to the
antenna, measured from the xy-plane. The backscattering
response is measured, step by step, at different look-angles,
via either rotating the target or moving the antenna. Assuming
stepped-frequency continuous-wave operation, the received
signal at (∅m, θm) or corresponding Cartesian coordinate
(xm, ym, zm), and for a point scatter at (x0, y0, z0) can be
expressed as

E∅m,θm (kr ) = g (x0, y0, z0)
R20
R2m

exp (−jkr (Rm − R0)) (1)

where g (x0, y0, z0) is the reflectivity, Rm is the distance from
the antenna to the scatter, kr = 4π f

/
c is the two-way

radial wavenumber with f frequency and c speed of light.
In Eq. (1), note that the phase origin of the received signal
is referenced to the origin in the image center. Defining the
origin-referenced range as rm = Rm − R0 and integrating all
the responses of other scatters, the backscattered signal is

E∅m,θm (kr ) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

g (x, y, z)
R20
R2m

exp (−jkrrm) dxdydz

(2)

where

rm =

√
(xm − x)2 + (ym − y)2 + (zm − z)2

−

√
x2m + y2m + z2m (3)

The range profile e∅m,θm (r) of the scene can be obtained by
applying 1D inverse Fourier transform (IFT) to the frequency
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data given in Eq. (2)

e∅m,θm (r)
def
= IFT

{
E∅m,θm (kr )

}
=

∞∫
−∞

∞∫
−∞

∞∫
−∞

g (x, y, z)
R20
R2m

δ (rm − r) dxdydz

(4)

Eq. (4) is the so-called Radon transform and represents the
projection of 3D scene reflectivity into a 1D function for that
particular viewpoint. Obtaining an estimate of the reflectivity,
i.e., imaging can then be thought as a process of inverting this
transform.

1) BP ALGORITHM
The BP algorithm makes use of the projection-slice theo-
rem [65] to relate the scene’s FTG(kx , ky, kz) to the measured
data E∅m,θm (kr ). With this provision and using the data col-
lection coordinate system of (kr , ∅m, θm), the IFT expression
between g(x, y, z) and G(kx , ky, kz) can be formulated in
terms of E∅m,θm (kr ) as shown in Eq. (5), at the bottom of the
page. The inner integral in this equation can be regarded as the
1D IFT of a function Q∅m,θm (kr ) = E∅m,θm (kr ) k2r cos (θm)

evaluated at rm. Defining q∅m,θm (r) as IFT of this function,
Eq. (5) can be rewritten as shown in Eq. (6) which is the final
result of the 3D filtered BP algorithm.

g(x, y, z) =

∫ π/2

−π/2

∫ π

−π

R2m
R20

q∅m,θm (rm)d∅mdθm (6)

2) CS ALGORITHM
Let’s assume that data are collected for N frequency samples,
P azimuth samples and K elevation samples, each of which
obeys the Shannon/Nyquist criteria. Thus, a N × P× K size
matrix data of the echo signal [E] is produced which can be
arranged into a 2D N ×M matrix where M = P× K corre-
sponds to the total number of look-angle pairs ϕm= (∅m, θm).
By dividing the 3D image scene into Nx×N y × Nz voxels,
the received signal in Eq. (2) can be expressed, as shown in
Eq. (7), at the bottom of the page, where n = 1, 2, . . . ,N
and m = 1, 2, . . . ,M . Let’s define [A] ∈ CNM×NxNyNz as the
measurement matrix with elements

Anm,v1v2v3 =
R20,m

R2m,v1v2v3

exp
{
−jkr,nrm,v1v2v3 (ϕm)

}
(8)

[E] ∈ CN×M and [g] ∈ CNx×Ny×Nz can be converted to 1D
vectors by stacking their columns and leading to the following

representation of Eq. (7),

E⃗ = [A] g⃗+ n⃗ (9)

where n⃗ is the additive noise. The reflectivity g⃗ is assumed to
be a S-sparse vectormeaning that it has only S

(
S ≪ NxNyNz

)
number of entries that contain most of the information.
It can then be expressed in an orthonormal basis [9] ∈

CNxNyNz×NxNyNz as

g⃗ = [9] α⃗ (10)

where α⃗ is the coefficient sequence of g⃗ whose non-zero
entries correspond to the S strongest scattering centers. The
linear representation model in Eq. (9) then becomes

E⃗ = [A][9]α⃗ + n⃗ (11)

CS theory implies that it is possible to completely recon-
struct the sparse vector α⃗ with a very small number of samples
of E⃗ . For this purpose, J (S ≤ J ≪ NM) rows of the mea-
surement matrix [A] and the corresponding values of E⃗ are
randomly selected. The new measured signal model for CS
reconstruction can now be given by

E⃗p = [8] [A] [9] α⃗ + n⃗ = [2]α⃗ + n⃗ (12)

where [8] ∈RJ×NM is the orthonormal basis matrix fo’rmed
by random selection of the J rows of aNM×NM size identity
matrix and [2] is the final measurement matrix. With this
model, a sparse approximation of α⃗ can be obtained by solv-
ing the optimization problem fromwhich the desired complex
reflectivity function g⃗ can be retrieved.

B. H−ᾱ DECOMPOSITION FOR FP
Each voxel in a focused 3D radar image corresponds to
complex scattering coefficients Sij with i and j denoting the
polarization of the received and transmitted wave, respec-
tively. Consider the monostatic Pauli scattering vector in LP
basis, expressed by the vector notation V (·) of the scattering
matrix [S],

k⃗3P = V ([S]) =
1

√
2

 SHH + SVV
SHH − SVV

2SHV

 (13)

The coherency matrix [T3] is defined by the outer product of
k⃗3P with a further spatial averaging process to reduce speckle.
In this study, however, instead of spatial averaging, angular
averaging of the coherency matrix in the azimuth direction
has been adopted, as explained in Section II.

g (x, y, z) =

∫ π/2

−π/2

∫ π

−π

∫
∞

0

R2m
R20

E∅m,θm (kr ) exp (jkrrm) k2r cos (θm) dkrd∅mdθm (5)

E
(
kr,n, ϕm

)
=

Nx∑
v1=1

Ny∑
v2=1

Nz∑
v3=1

g (xv1v2v3, yv1v2v3, zv1v2v3)
R20,m

R2m,v1v2v3

exp
{
−jkr,nrm,v1v2v3 (ϕm)

}
(7)
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FIGURE 3. HFP − ᾱFP 2D plane.

As shown in Fig. 1,H/ᾱ decomposition for FP and adopted
for sub-aperture data is based on the diagonalization of the
⟨[T3]FP⟩φ

⟨[T3]FP⟩φ = [U3]

 λ1 0 0
0 λ2 0
0 0 λ3

 [U3]−1

=

3∑
i=1

λiuiu∗T
i

λ1 ≥ λ2 ≥ λ3 ≥ 0 (14)

where λi are eigenvalues and [U3] =
[
u⃗1, u⃗2, u⃗3

]
is the

unitary eigenvector matrix with columns corresponding to the
complex eigenvectors. Each eigenvector corresponds to one
out of the three independent scattering mechanisms denoted
by αi. To identify the underlying average scattering mecha-
nism, the mean alpha angle ᾱ is defined as

ᾱFP =

3∑
i=1

piαFPi (15)

where the scattering probabilities are

pi =
λi
3∑

k=1
λk

with
3∑

k=1

pi = 1 (16)

Based on the relative magnitudes of the eigenvalues, the
scattering entropy H is given by

HFP = −

3∑
i=1

pilog3 (pi) (17)

where higher values indicate the contribution of multi-
ple scattering mechanisms while lower values imply a
non-depolarizing single scattering mechanism, i.e., a deter-
ministic target.

Let us consider the scattering from a single canonical
target, i.e., λ1 ̸= 0, λ2 = 0, λ3 = 0. Under such a condi-
tion, normalized Pauli vector

(
k⃗3P/

∣∣∣k⃗3P∣∣∣) corresponds to the
eigenvector u⃗1. Based on this fact, we can relate ᾱFP to the
components of k⃗3P as

cos2 ᾱFP =
|SHH + SVV |

2

|SHH + SVV |
2
+ |SHH − SVV |

2
+ 4 |SHV |

2

(18)

FIGURE 4. HDCP − ᾱDCP 2D plane.

According to the relationship in Eq. (18)), ᾱFP of the
three basic scatterers, i.e., odd-bounce scattering (e.g., plate,
sphere, and trihedral), dipole scattering (e.g., wire target), and
even-bounce scattering (e.g., dihedral) is derived as

odd : ᾱFP = 0◦

dipole : ᾱFP = 45◦

even : ᾱFP = 90◦ (19)

The obtained pairs of HFP and ᾱFP values are then plotted
on theHFP−ᾱFP 2D planewith some boundaries to clarify the
polarimetric target response within the feasible region [57]
as shown in Fig. 3. This plane will help to classify the target
based on the scattering mechanism and randomness.

C. H−ᾱ DECOMPOSITION FOR DCP
The DCP mode transmits a single circular polarization
and receives two orthogonal circular polarizations, giving
SLL/SRL or SRR/SRL scattering coefficients, where L and R
represent left-handed and right-handed circular polarization,
respectively [66]. The scattering vector for the left-hand cir-
cular polarization transmit case is defined as

k⃗2,DCP =

[
SLL
SRL

]
=

1
2

[
SHH − SVV + 2jSHV

j(SHH + SVV )

]
(20)

With regard to the methodology given in Fig. 1, H/ᾱ

decomposition for DCP performs the diagonalization of the
angularly averaged 2 × 2 wave coherency matrix ⟨[J2]⟩φ
which is formed by the outer product of the scattering vector
in Eq. (20) [67], [68],

⟨[J2]⟩φ =

〈
k⃗2,DCP·k⃗

∗T
2,DCP

〉
φ

=

[
⟨SLLSLL∗⟩φ ⟨SLLSRL∗⟩φ

⟨SRLSLL∗⟩φ ⟨SRLSRL∗⟩φ

]
=

[
u⃗1 u⃗2

] [
λ1 0
0 λ2

] [
u⃗1 u⃗2

]∗T (21)

where u⃗i are the orthogonal eigenvectors of the unitary
matrix. The corresponding HDCP and ᾱDCP parameters are
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then derived as

HDCP =

2∑
i=1

Pi
(
− log2 Pi

)
(22)

ᾱDCP =

2∑
i=1

PiαDCPi (23)

where the scattering probabilities for dual-pol system are
defined as

Pi =
λi

λ1 + λ2
(i = 1, 2) (24)

Let us consider the scattering from a single canonical
target, i.e., λ1 ̸= 0 and λ2 = 0. Under such a condition, the
unit eigenvector u⃗1 can be related with a normalized single
target vector k⃗2,DCP, and the following equation similar to FP
mode can be obtained.

cos2 ᾱDCP =
|SHH + SVV |

2
+ 4 |SHV |

2

|SHH + SVV |
2
+ |SHH − SVV |

2
+ 4 |SHV |

2

(25)

Comparing this with Eq. (18), the following relationship
between ᾱDCP and ᾱFP can be found.

ᾱDCP = 90◦
− ᾱFP (26)

According to the above relationship, ᾱDCP of three basic
scatterers are straightforwardly derived as

odd : ᾱDCP = 90◦

dipole : ᾱDCP = 45◦

even : ᾱDCP = 0◦ (27)

The HDCP − ᾱDCP 2D plane for DCP mode is shown in
Fig. 4 with different feasible regions and boundaries from
that of FP mode shown in Fig. 3. The classification space
proposed by Zhang et al. [63] was employed in our study as
displayed in Fig. 4. Note that we will apply the condition in
Eq. (26) to compare the HDCP − ᾱDCP 2D plots with those
of FP where the descriptions of each zone are the same as in
Fig. 3. Note also that the relationship between FP and DCP
modes in Eq. (26) is valid only for the single canonical target,
i.e., dominant scatterers with H = 0 [69]. This fact indi-
cates the possibility of estimating the manmade target’s ᾱFP
parameter from the dual-polarimetric system when circular
polarization is employed on both transmission and reception.
On the other hand, in dual linear polarimetric modes, the
parameters derived from the wave coherency matrix [J2] are
not capable of discriminating three basic scattering mecha-
nisms, but only the received wave state can be estimated [70].

IV. SIMULATION DATA RESULTS
We utilized the ‘‘Backhoe Data Dome, Version 1.0,’’ dataset
which was released by the AFRL/SNA Sensor Data Man-
agement System under the part of the ‘‘GOTCHA Volu-
metric SAR Data Set Version 1.0’’ [72]. The dataset was
generated by XPATCH Visual-D electromagnetic simulation

FIGURE 5. 3D views of (a) the CAD model of the backhoe target, (b) BP (c)
CS imaging of SHH and SHV channels with coherent summation of
sub-aperture images.

software and consists of wideband (7.05−12.95 GHz), three
polarization (SHH , SVV and SHV ), complex backscatter data
from a backhoe vehicle in free space. An azimuthal span
of (66◦

− 114◦) and an elevation span of (18◦
− 42◦) were

considered in this study. There are 14 samples per degree in
both azimuth and elevation, one sample every 11.55 MHz in
frequency and full polarization. Thus, the whole data consists
of 686 azimuth samples and 350 elevation passes resulting in
686 × 350 = 240100 look-angle pairs (∅m, θm) for each of
which there are 512 frequency samples.

A. IMAGING
The image reconstruction of sub-aperture data is based on
the coherent integration of the target responses for the cor-
responding sub-aperture bandwidth. Since the angular band-
width determines the image resolution, a smaller number
of sub-divisions should be employed when resolution is
important. On the other hand, if the main objective is to
preserve nonstationary scattering features, a large number of
sub-apertures can be employed with the drawback of reduced
image resolution. Noting also that real targets mostly give rise
to large amplitude returns only over narrow angles, herein,
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FIGURE 6. Entropy (H) maps. (a) FP, (b) DCP results. Values are
discretized for visualization purpose.

FIGURE 7. Scatter plots of HFP vs. HDCP . Color represents the spatial
density of points.

the entire azimuth aperture was divided into 16 sub-apertures
with 3◦ extents. Each sub-aperture data was zero-padded
in frequency domain with a factor of two and the images
were reconstructed onto (Nx ,N y,Nz) = (96 × 96 × 72)
voxels. In the CS reconstruction, a widely known greedy
reconstruction algorithm, namely COSAMP [73] was used
and 18000 samples were randomly selected which corre-
sponds to 0.23% of the 3◦ sub-aperture data with a total
of 512 × 14700 = 7526400 frequency and angle samples.
The CS algorithm spends 250 minutes to reconstruct such a
number of samples on the chosen relatively large number of
image voxels, whereas the BP algorithm needs approximately
15 minutes. Obviously, the speed of the CS algorithm is
significantly higher than the BP algorithm. Still, it can be
reduced by trading off accuracy by decreasing the values of
random sample size (J ) and the sparsity index (S).

The CAD model of the target and the coherent summation
of the reconstructed BP and CS sub-aperture images are
shown in Fig. 5(a), (b), and (c) respectively. Note that this
corresponds to wide-azimuth imaging over the full-aperture
that yields the highest resolution. The amplitude signatures
seem to be consistent between the algorithms.

B. H−ᾱ DECOMPOSITION
This section presents the results of the H − ᾱ decomposition
for the FP and DCP modes. For ease of interpretation, the
continuous values of entropy (H ) and mean alpha-angle (ᾱ)
are plotted within discrete ranges.

The observed 3D entropy maps are shown in Fig. 6,
together with the color scale shown on the right. To illustrate
the relationship between FP and DCP in terms of H , the
scatter plots of HFP vs. HDCP are also derived as shown in
Fig. 7.

FIGURE 8. Alpha angle (ᾱ) maps. (a) FP, (b) DCP results. Values are
discretized for visualization purpose.

FIGURE 9. Scatter plots of ᾱFP vs. ᾱDCP . Color represents the spatial
density of points in (a) and the values of HFP−BP#1 in (b).

TABLE 1. R2 values of scatter plots of entropy and alpha angle.

The 3D variations in alpha-angle values are shown in Fig. 8
while the scatter plots of ᾱFP vs. ᾱDCP are displayed in Fig. 9.
Note that, the corresponding scatter plots colored by HFP
are also provided in Fig. 9 to investigate the dependency of
entropy on the relationship between ᾱFP and ᾱDCP. In all
results, ᾱDCP = 90◦

− ᾱFP condition is applied to relate DCP
with FP.

For a quantitative analysis, R2 values of theH and ᾱ scatter
plots in Fig. 7 and Fig. 9(a), are calculated as shown in
Table 1. The distributions of H and ᾱ values on 2D H − ᾱ

plane are then displayed as shown in Fig. 10 where the
partitioning and descriptions of the classification zones can
be seen from Fig. 3.

C. DISCUSSION
1) FP VS. DCP
The entropy maps in Fig. 6 represent the diversity of scat-
tering processes within the backhoe structures. The lower
entropy regions in the FP images (bluish tone) show almost
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FIGURE 10. Distribution of values in the H − ᾱ space. (a) FP, (b) DCP
results. See also Fig. 2 for the description of classification zones Z1 to Z9.

FIGURE 11. Comparison between BP-FP and CS-DCP results: (a) H/ᾱ

classification images. See also Fig. 3 for the description of classification
zones Z1 to Z9. (b) Scatter plots of HFP vs. HDCP (top), ᾱFP vs. ᾱDCP
(bottom).

the same characteristic in the DCP case. This implies that the
use of limited polarization has no effect on the entropy of
specular scattering events. However, moderately low entropy
values (0.2 < H < 0.5) of FP are displayed as higher values
in DCP. The scatter plots in Fig. 7 verify this by showing
a linear characteristic with a slope greater than one. The
2D H − ᾱ distributions in Fig. 10 also reveal this fact by
displaying more points in high entropy zones (Z1 to Z6) for
the DCP case. Therefore, the entropy of DCP is observed to
be higher than that of FP.

On the other hand, 3D alpha-angle maps in Fig. 8 as well
as the associated scatter plots in Fig. 9 show a very close
correspondence between FP and DCP as visualized for both
imaging cases. This apparent correspondence between the
alpha-angles of FP and DCP validates the relationship given
in Eq. (26).

Comparing the scatter plots of entropy in Fig. 7 and
alpha-angle in Fig. 9, a larger spreading out of points is
confirmed for entropy. As a result, R2 results in lower values
for entropy than those of alpha-angle for both experiments.
It can be concluded that DCP data of civilian vehicles provide
nearly identical scattering information to FP data, except for
a slight increase in entropy.

2) BP VS. CS
The similarity of polarimetric features between BP and CS
imaging is examined in this subsection. Fig. 6 and Fig. 7
indicate that the overall entropy of CS is lower than those of
BP. This can be especially observed for the backhoe’s loader
lift arm regions which show a transition from medium to low
entropy values. Note also that the scatter plot of CS has much
more points around very low values (H ≈ 0). However, since
the R2 value of entropy for BP is lower than that of CS (see
Table 1), CS shows a wider variation in entropy between FP
and DCP.

The alpha angle results in Fig. 8 and Fig. 9 are again
in good agreement, indicating the validity of CS imaging
in preserving the scattering type information. Some minor
differences can be noticed from 3D maps though; e.g. pink
colors in BP are mapped as red in CS.

These entropy and alpha-angle features can also be dis-
cerned from the 2D H − ᾱ plots of Fig. 10. Compared to BP,
the CS distribution has more points in the very low entropy
(H ≈ 0) regions and high alpha-angle zones of Z7 and Z4.
The lower entropy property observed in CS may be due to
the super-resolution characteristic of CS imaging. This char-
acteristic leads to less scattering diversity within one voxel for
CS imaging. In such a case, i.e., the dominant scatterer exists
within one voxel and the alpha-angle relationship between FP
and DCP in Eq. (26) can be valid. This fact may yield higher
R2 of alpha-angle for CS when compared to BP.

3) BP-FP VS. CS-DCP
Finally, a comparison between the BP-FP and CS-DCP
results can be made. For these two ends, i.e., full-
available and most-limited data, H/ᾱ classification images
are obtained as shown in Fig. 11(a). The majority of the
voxels fall into the Z9 and Z7 scattering classes, showing
a good correspondence between BP-FP and CS-DCP. This
similarity can also be evaluated from the scatter plotsHBP−FP
vs. HCS−DCP and ᾱBP−FP vs. ᾱCS−DCP shown in Fig. 11(b).
A linear characteristic is found in the alpha scatter plot, while
a clear relationship is difficult to be seen for entropy.

V. REAL DATA RESULTS
In this section, the results of the analysis will be given
for real circular SAR data. The dataset is referred to
as the ‘‘GOTCHA Volumetric SAR Data Set, Version
1.0’’ [72] which is a collection of airborne, full-polarimetric,
X-band (carrier frequency 9.6 GHz) data with 8 differ-
ent elevation passes and the full-azimuth coverage. The
640 MHz frequency bandwidth was sampled with around
424 points whereas each 1◦ of azimuth was sampled around
117 points. The scene contains a parking lot of civil-
ian vehicles and a field of calibration targets such as
a top-hat reflector and numerous dihedral/trihedral corner
reflectors.

Here, we demonstrate image reconstruction and polari-
metric analysis experiments for a part of the calibration site
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FIGURE 12. Description of the real imaging experiments on the 2D HH
polarization image of the GOTCHA scene. Top: Layout and types of the
calibration targets in Exp#1, Bottom: Photograph of the car used in Exp#2
(layout and photo by courtesy of The Sensor Data Management
System [26], [72]).

(Exp̸=1) and for a sedan car from the parking lot (Exp̸=2).
The layout and photograph of the sections covered by these
experiments are illustrated in Fig. 12 by means of a 2D
SAR image generated for a single-pass and 360◦ full aper-
ture. In both experiments, 45◦ azimuth span centered at 0◦

(positive x-axis) was selected and divided into 3◦ intervals
leading to 15 sub-aperture images. With 8 elevation points,
therefore, each image reconstruction for a single polarization
was performed by using 8× 3× 117 = 2808 different views.
In CS imaging, a down-sampling by a factor of 3 was applied
to these data and 15000 samples out of 424 × 8 × 117 =

396864 whole samples (3.78%) were used. (Nx ,N y,Nz) =

(101 × 73 × 7) and (Nx ,N y,Nz) = (27 × 54 × 7) voxels
were used in Exp#1 and Exp#2, respectively.

FIGURE 13. Amplitude images of the corner reflectors in Exp ̸=1.
Coherent sum of the 3◦ sub-aperture images reconstructed with (a) BP
(b) CS algorithms.

Considering that the trihedral (15TR3) and 45◦ oriented
dihedral (DR2) in Exp̸=1 are expected to give respectively
co-pol and cross-pol responses for the selected view, a sim-
ple calibration of SHH ∼ SVV channels and SHV ∼ SVH
were performed for each pulse j of look-angle pairs (∅m, θm).
As an example of co-pol calibration, the range profiles were
first calculated according to Eq. 4 and for an image dimen-
sion around the reflector. Then, the maximum values were
extracted and used in the calculation of the correction data cj
as

cj =
ejHH (r15TR3) e

j∗
VV (r15TR3)∣∣∣ejHH (r15TR3) e
j∗
VV (r15TR3)

∣∣∣ . (28)

Finally, ejVV ,cal = cje
j

VV ,uncal
correction was applied to VV

channel before image reconstruction to introduce a 0◦ phase
difference between co-pol channels. After this process,
the amplitude and phase imbalances between polarimetric
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FIGURE 14. Amplitude images of the sedan car in Exp ̸= 2. Coherent sum
of the 3◦ sub-aperture images reconstructed with (a) BP (b) CS
algorithms.

channels were found to be at a fairly low level, therefore a
full polarimetric calibration was not considered.

A. IMAGING
Imaging results for Exp̸=1 are shown in Fig. 13. Ideally,
15TR3 and DR3 should yield co-pol responses with odd and
double-bounce scatterings respectively, whereas 45◦ oriented
DR2 should give cross-pol responses with double- bounce
scattering. The BP images in Fig.13(a) demonstrate that all
three objects can be discriminated from each channel with
varying scattering levels. On the other hand, it is observed that
the isolation between the CS channel signatures is better than
BP, since the trihedral and DR2 are only mapped in the co-pol
and cross-pol channels, respectively. However, the algorithm
misses the dihedral DR3 due to the fact that di-planes give
persistent scattering only over narrow-angles, which degen-
erates their total responses in wide angle processing.

The amplitude images of the sedan car used in Exp̸=2 are
shown in Fig. 14. |SHH | backscattering levels are approxi-
mately 10 dB higher than those of |SVH | as expected for deter-
ministic targets. Note that these composite images obtained
by coherent summation of narrow-angle images, are pre-
sented here to check the validity of the CS algorithm, and
they are not employed in the polarimetric analyses.

B. H−ᾱ DECOMPOSITION
The results of the H − ᾱ decomposition for the calibration
targets in Exp ̸=1 are given in Fig. 15 to 17. The entropy
(H ) maps in Fig. 15 reveal that CS imaging yields lower

FIGURE 15. Entropy (H) maps of the calibration targets in Exp ̸= 1. a) FP,
(b) DCP results.

FIGURE 16. Alpha angle (ᾱ) maps of the calibration targets in Exp̸=1.
(a) FP, (b) DCP results.

FIGURE 17. H/ᾱ classification images of the calibration targets in Exp̸=1.
(a) FP, (b) DCP results. See also Fig. 3 for the description of classification
zones Z1 to Z9.

values than BP imaging. Alpha (ᾱ) images in Fig. 16 suggest
higher values (60◦

∼ 90◦) and lower values (15◦
∼ 45◦) at

voxels corresponding to locations of dihedral and trihedral,
respectively. Accordingly, the H − ᾱ classification results in
Fig. 17 show that most of the voxels of dihedral fall in Z7,
while those of trihedral fall into Z9, which is in agreement
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FIGURE 18. Entropy (H) maps of the sedan car in Exp̸=2. (a) FP, (b) DCP
results.

FIGURE 19. Alpha angle (ᾱ) maps of the sedan car in Exp̸=2. (a) FP,
(b) DCP results.

with general polarimetric theory and previous simulation
results [68]. Significant differences between BP and CS are
not observed from the alpha angle and classification images.

For the car in Exp ̸= 2, the results of the H − ᾱ decompo-
sition are presented in Fig. 18 to 21. From Fig. 18, an overall
higher entropy is observed compared to the canonical target
features in Exp ̸= 1, representing secondary scattering contri-
butions from a vehicle. BP images contain red colors for the
right front of the car facing the radar, indicating multiple ran-
dom scattering events. This can be attributed to interference
returns from the concrete paving stone blocks on the ground
(see the photo in Fig. 12). The CS images also contain these
double bounce returns but with an additional red outline as
evident from the x − y view of the car. Despite these higher
entropy regions, the center and outer parts appear darker blue
in CS maps and thus implying a more deterministic reflection
than the BP imaging. As for the alpha images in Fig. 19,
both BP and CS results are dominated by blue and orange

FIGURE 20. Comparison between BP-FP and CS-DCP results of Exp̸=2:
(a) Distribution of values in the H − ᾱ space. (b) Scatter plots of HFP vs.
HDCP (top), ᾱFP vs. ᾱDCP (bottom).

FIGURE 21. H/ᾱ classification images of the sedan car in Exp̸=2. (a) FP,
(b) DCP results. See also Fig. 3 for the description of the classification
zones Z1 to Z9.

tones that represent sphere-like (0◦
∼ 30◦) and dipole-like

(30◦
∼ 60◦) mechanisms, respectively. Besides, some pink

voxels (60◦
∼ 75◦) can also be discerned at the sides of the

car, indicating a reflection with an even number of bounces.
The relationship between the full data (BP-FP) and the most
limited data (CS-DCP) results can be deduced from Fig. 20,
which displays the self-distribution of the H − ᾱ values (e.g.,
HBP−FP − ᾱBP−FP) and the cross scatter plots of entropy and
alpha (e.g., HBP−FP vs. HCS−DCP). The distribution of points
in H − ᾱ space seen in Fig. 20(a) shows a spread of medium
alpha values (20◦

∼ 60◦) for each algorithm, with a similar
variation up to medium entropy values. CS-DCP, however,
comprises extra points in the extreme zones of very low and
very high entropy. This is also evident from the cross scatter
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plot in Fig. 20(b) wherein the majority of medium entropy
BP-FP points ranging from 0.2 to 0.4 are mapped either in
almost 0 or 1 entropy values. On the other hand, the scatter
plot of alpha in Fig. 20(b) shows an accumulation around
medium values with good correlation.

Finally, the BP and CS classification results in Fig. 21
show somewhat consistency by mapping most voxels into
Z7 (low entropy multiple scattering) and Z9 (low entropy
surface scattering) zones, with CS leading to an increase in
classification zone diversity compared to BP. Z9 values are
expected to belong to specular returns from the roofline of
the car, while Z7 signatures would be ground to side and vice
versa double-bounce reflections that appear with displaced
positions due to travel time delay.

C. DISCUSSION
The following conclusions can be made from the H − ᾱ

decomposition results on real data: (i) Due to its super-
resolution capability, CS exhibits more extreme entropy val-
ues than BP for regions associated with either high SNR with
single specular scattering or low SNRwith random scattering.
On the other hand, Alpha is not much affected by the imaging
type. (ii) DCP slightly increases entropy compared to FP,
whereas it gives nearly identical alpha angles with FP. (iii)
A good correlation can be achieved between the alpha values
of BP-FP and CS-DCP, whereas the corresponding entropy
results partially decorrelate, especially for regions with mul-
tiple scattering events. (iv) H-alpha classification features
for BP-FP and CS-DCP are closely connected for canonical
targets, while the common characteristics somewhat decrease
for complex target regions.

These experimental findings agree with the conclusions
from the simulation study. Therefore, our analysis experi-
mentally reveals the possibility of 3D scattering mechanism
identification from sparsely sampled and limited polarization
measurements under the adopted classification scheme.

VI. CONCLUSION
The presented work has investigated the feasibility of scat-
tering mechanism identification from sparsely sampled and
limited polarization 3D SAR measurements.

The proposed scheme starts with CS-based 3D image
reconstruction of sub-aperture DCP data with narrow azimuth
angular extent. Then, a second-order polarimetric descriptor,
i.e., coherency matrix, is formed based on the angular aver-
aging of the reconstructed sub-images, allowing the effect of
scattering anisotropic feature over the entire azimuth span in
the polarimetric analysis. The applicability of the proposed
CS-DCP results is compared with the FP data of the BP
imaging results derived by using complete data (BP-FP).
The H − ᾱ decomposition parameters are used to test the
similarity of polarimetric scattering features between BP-FP
and CS-DCP.

A case study has been carried out by applying the proposed
scheme to the full-polarimetric 3D backhoe data simulated by
XPATCH Visual-D electromagnetic simulation software and

real full-polarimetric GOTCHA data. From our analysis, the
following conclusions were obtained.

1) DCP data gives almost identical scattering information
to FP data with a slight increase in H . These conclu-
sions are observed in both BP and CS imaging results.

2) CS imaging shows a lower H value than BP imag-
ing which could be caused by less scattering diversity
within a voxel due to the super-resolution characteristic
of CS.

3) A reasonable relationship between BP-FP and CS-DCP
is observed, especially for ᾱ. Consequently, the H/ᾱ

classification of CS-DCP yields a good agreement with
that of BP-FP.

These observations imply a reasonable retrieval of the 3D
scattering mechanisms of a civilian vehicle from its few
samples of DCP data. This validation of the polarimetric
signatures of data with less samples and less polarization
diversity might lead to more practical and efficient 3D target
scanning strategies.

This study employed a fixed sub-aperture bandwidth of 3◦

over a fixed angular span of around 45◦. The main objective
was to assess the consistency between the full (BP-FP) and
the most limited (CS-DCP) data processing types rather than
to characterize the target scattering. As a further study, the
effects of the sub-division strategy can also be addressed to
investigate the performance of the processing scheme under
the variation of anisotropic scattering mechanisms.
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