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ABSTRACT Early detection of Diabetic Retinopathy (DR) is crucial as it may cause blindness. Manual
diagnosis of DR severity by ophthalmologists is challenging and time consuming. Therefore, there has
been a significant focus on developing an automated system for identifying DR using retinal fundus
images. Recent research has revealed that utilizing pre-trained deep learning networks for diverse image
classification tasks provides notable benefits in this context. In this paper, a Transfer Learning (TL) approach
with optimized feature weights and parameters is proposed for DR detection and grading tasks. To obtain
better generalization during training and to optimize classification, features are extracted from the average
pooling layers and fed to an Error Correction Output Code (ECOC) ensemble configuration. Two pre-trained
networks (ShuffleNet and ResNet-18) are considered as each pre-trained network offers a different “point of
view” of the fundus images, thereby providing more opportunities for accurate ““grade-wise’” discrimination.
A simultaneous feature selection and parameter tuning of the ensemble is applied to further enhance the
overall DR detection and grading. Adaptive Differential Evolution (ADE) is chosen for this purpose because
it automatically configures the parameters, eliminating the need for manual parameter selection. In this paper,
we evaluate two public domain datasets: 1) APTOS and 2) combination of EyePac + Messidor-2. Simulation
results show that our proposed method performs better that the conventional deep learning models and are on
a par with the existing research work. In particular, the optimal configuration for APTOS 5-class DR grading
achieves an accuracy rate of 82%, while for APTOS 2-class grading, it achieves a higher accuracy rate of
96%. Finally, the best configuration for EyePac + Messidor-2 3-class grading results in 75% accuracy.

INDEX TERMS Diabetic retinopathy, stochastic optimization, differential evolution, ECOC optimization.

I. INTRODUCTION

Diabetes is a metabolic condition indicated by high level of
blood sugar in the body. In particular, not enough insulin
is produced by the body to transport glucose into the cells.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar

Diabetes may be caused by the increase of standard of living
in recent years due to advances in science and technology and
economic growth, which has resulted in a decrease in regular
exercise and an increase in the aging rate [1]. According
to statistics, there are currently about 347 million diabetes
patients in the world and it is estimated that global diabetes
patients will reach 4.4% of the world’s population in 2030 [2].
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The condition known as Diabetic Retinopathy (DR),
which is a damage to the retina, can occur as a diabetes
complication. Severe DR may cause blindness if not well
treated [3]. When a person has had diabetes for at least ten
years, DR symptoms may start to manifest. Since there are not
any apparent indications or symptoms of diabetes in its early
stages, detecting the DR symptoms is a challenging task [4].
Therefore, early detection of retinopathy is very important.
It can prevent retinopathy at an early stage. Even if it happens,
it can be treated as early as possible, which is helpful in
inhibiting retinopathy from worsening [5].

With the increasing number of diabetes patients, ophthal-
mologists are burdened with the task of diagnosing patients
with DR. It is noteworthy that this task is tedious. The
manual diagnosis of DR by ophthalmologists can now be
aided by using automated system, thanks to the advance-
ments in signal processing, machine learning algorithms,
and computer vision technology. Although detecting and
classifying DR are not easy, researchers have paid close
attention to it because of the enormous implications for
retinal health monitoring. Researchers commonly use retinal
fundus images, optical coherence tomography (OCT), and
OCT angiography (OCTA) to diagnose DR [6]. However,
in this paper, we focus on the use of fundus images.

Currently, deep learning (DL) has been commonly used for
image classification in computer vision field. In particular,
the most effective model in the field of computer vision is
the Convolutional Neural Network (CNN) through Transfer
Learning (TL). A CNN is a multi-layered cognition inspired
by a biological neural network. Typically, a simple CNN
consists of a convolutional layer, a pooling layer, and a full
connection layer [7]. When designing the convolution layer,
we need to consider parameters such as multiple filters, the
size of the convolution kernel, and the step of the sliding
window. To minimize the network parameters, a pooling
layer is added between the convolution layers to simplify the
model. Finally, the full connection layer acts as a classifier in
the overall CNN. The feature space receives the original data
from the convolution layer and the pooling layer and transfers
the learned features through full connection layers into the
label space of the sample [8]. Subsequently, the features are
used for specific image processing tasks such as detection [9],
segmentation [10] and recognition [11].

On the other hand, the success of Extreme Learning
Machine (ELM) has somewhat shown that rank-independent
random weights at convolution layers can work for certain
cases [12], [13]. As a result, the classification layer seems
to play an important role in the case of TL. Moreover,
ensemble learning may further increase optimization to the
entire classification in in comparison to implementation of a
single multi-class shallow classifiers.

With the apparent success of DL in general and TL
in particular, the following research questions are raised
and answered in this paper: Can combining pre-trained
features from more than one DL model contribute to better
classification in the context of DR? How can the classification
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be further optimized? Can weighted features or parameter
tuning be considered?

The rest of this paper is organized as follows. In Section II,
relevant research work and contributions of this paper
are elaborated. In Section III, the methodology of the
experiments is presented. The results will subsequently be
discussed in Section IV. Lastly, we conclude this paper with
some remarks and future directions.

II. LITERATURE REVIEW AND CONTRIBUTIONS

A. RELATED WORK

In recent years, more and more researchers have used
DL to classify DR [14], [15], [16]. However, medical
datasets are expensive and, unfortunately, DL training needs
a lot of labeled data samples. Note that this is because
most lesion sites in medical diagnosis have distinguishable
characteristics. Therefore, TL is effective to solve the lack of
labeled data for neural networks. It should be noted that TL
is a technique for training deep neural networks utilizing a lot
of data samples, then changing the trained network to use it
for classification task.

In [17], DR occurrence was classified using fundus
images with Googl.eNet and ResNet. The testing accuracy
for the two-class classification task for GoogleNet and
ResNet, respectively, was 97.3% and 96.2%. In addition, the
same researchers showed that color constancy preprocessing
technique could improve the accuracy of the classification.
Researchers in [18] applied Inception-V3 to classify DR into
five levels. They applied Kaggle dataset which contained
4000 fundus retina images. The images were resized to
500 pixels to fit into existing pre-trained network architecture
input. They obtained an accuracy of 48.8%. Authors in [19]
compared the performance of two common CNN models,
i.e., Inception-V3 and Xception to detect DR. The dataset
contained 35,126 images. They reported an average accuracy
of 87.12% for Inception-V3 and 74.49% for Xception. Apart
from Retina, the implementation of Deep learning is seen as
highly feasible approach in various other medical imaging
research domain such malaria, diabetic retinopathy, brain
tumor, and tuberculosis. Nevertheless, author also pointed
out that despite several machine learning models being
available for medical imaging applications, not many have
been implemented in the real-world due to the uninterpretable
nature of the decisions made by the network.Thus, this is
a single most critical aspect that needs to be considered as
a tradeoff to the highly efficient deep learning networks in
various domains.

In line with the nature of the project, it is worthwhile to
investigate some application of deep learning in particular
transfer learning [20], [21], [22]. The authors in [23]
compared three CNN architectures, i.e., AlexNet, VGG-16,
and Inception-V3 to perform five-class DR classification
using a total of 166 images from Kaggle. The images
were resized into 227 x 227, 224 x 224, and 299 x
299 for AlexNet, VGG-16, and Inception-v3, respectively.
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The highest accuracy values were 63.2%, 50.03%, and
37.43% for Inception-V3, VGG-16, and AlexNet, respec-
tively. Using a more shallow architecture, authors in [19] used
AlexNet to classify the DR into two classes. A total number
of 580 images from Messidor dataset were resized into
227 x 227 to evaluate the network. The reported accuracy
was 88.3%.

Related research work has been reported in [24] where the
authors used DR images from Kaggle dataset and extracted
the patches to obtain important features of the images
to train and validate five CNN models (AlexNet, VGG-
16, GoogLeNet, ResNet, and Inception-v3). A subset of
243 images from Kaggle were labeled to generate 1,324
image patches containing hemorrhages, microaneurysms,
exudates, retinal neovascularization, or normal. On the other
hand, images from eOphta dataset were used to test the
models. The result showed that the best CNN architecture
was Inception-v3 with accuracy of 96% for the five-class
classification task and 98% for binary classification.

In [25], the performance of four CNN architectures
(AlexNet, VGGNet, GoogLeNet and ResNet) with parameter
tuning to classify fundus images for DR detection was
compared. The paper reported that GoogLeNet achieved the
highest accuracy of 86.35%. Paper [26] used Inception-v3 to
detect DR from fundus images. A total of 2500 images from
Kaggle were resized to 300 x 300 to be fed into Inception-V3
input. This paper classifies the images into two classes. The
reported accuracy of Inception-V3 was 90.9%. In a separate
research, [27] classified the fundus images into five classes by
using Inception-V3 architecture using a public dataset from
Kaggle containing 7,023 images. An image size of 229 x
229 was used in the network. The reported accuracy was 80%.
In [28], a blended multimodal deep convolution network
was applied for two tasks (detecting DR and predicting the
severity level of DR). The authors stated that classifying
the severity of DR was a more challenging task. Accuracies
between 76% and 80% were acquired on the evaluation of
severity level prediction.

In [29], CNN has been used as transfer learning to classify
DR using DRIVE dataset. ResNetl8 was discovered to
have the best performance. In [30], a source-free transfer
learning was proposed to handle the problem of number of
labelled data. When evaluated for DR classification task,
the source-free transfer learning showed a competitive result
with an accuracy of 91.2%, a sensitivity of 0.951, and a
specificity of 0.858. In [31], transfer learning (Xception)
model were used to obtain the deep features of the DR lesions.
With the optimized hyperparameters, the classification tasks
using KNN and neural network were performed. Numerous
studies have presented in-depth reviews of the usage of
various machine learning and deep learning algorithms
for identifying and classifying DR [32], [33], [34]. The
comparisons somehow indicate that there are no superior
deep learning models, which is in line with the computational
“no free lunch theorem”. Therefore, the performance may be
more relevant to the dataset. As such, improving deep leaning
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features may be of interest, i.e., how the existing networks can
be better optimized.

It can be observed that DL continues to be a desirable
option with a variety of factors. Given the present TL
methods, the majority of studies have concentrated on the
implementation. It makes the applicability of the retrieved
features is now better understood, but the TL technique as
a whole still has to be optimized. The current research papers
have not fully addressed this issue.

B. MOTIVATION AND CONTRIBUTIONS

Based on the literature review in the preceeding subsection,
there are two related tasks: DR detection (binary classifica-
tion) and DR severity grading (multi-class classification). The
second task is more challenging. On the opposite, classifying
DR from non-DR has provided more accurate test results
for application purposes, with the majority of researchers
attaining more than 90% accuracy.

When training is carried out using TL, overfitting fre-
quently occurs. Combining features from a few pre-trained
networks has demonstrated effectiveness in addressing this
issue [35]. As a result, in this paper, we propose to implement
multiple frozen network layers as input to the classifier.
In particular, we select four networks in which the frozen
layers are used as inputs to the Support Vector Machine
(SVM) with Error Correction Output Code (ECOC) ensem-
ble. A stochastic approach is proposed to further optimize the
TL and ensemble configuration. Due to the apparent nature of
the TL, it can be assumed that not all features extracted will
be useful. Thus, weighting the numerical features from the
extracted layers can be advantageous.

From the above, the main objective of this research is to
investigate the implementation of optimized ECOC ensemble
and hybrid features from various deep learning network. This
can be beneficial to researchers who wish to hybrid these
features for classification for improvement in the future.
It can be inferred that the extracted features are highly
dependent on the images. However, most of the images
are from different sources. Hence, some applications utilize
a normalization technique called histogram normalization
approach. As an additional investigation, we also consider the
constrast limited adaptive histogram equalisation (CLAHE),
a type of adaptive histogram equalization that restricts the
noise amplification [36].

In summary, the contributions of this paper are listed as
follows:

1) Multiple frozen network layers from a few TL networks
are used as input features to the ECOC-SVM classifier.
ECOC is an efficient ensemble configuration that has
been proven to work well in optimizing a multi-class
classifier by breaking it down to individual binary
classification.

2) As not all features are useful, the features are weighted
using a stochastic approach in the form of Adaptive
Differential Evolution (ADE). ADE is chosen due
to its auto-tuning capability where it can adjust the
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TABLE 1. Number of samples of APTOS and EyePac + Messidor-2 datasets.

Severity Level (Classes)

Dataset Class0 Classl Class2 Class3 Class4 Total
APTOS 1805 370 999 193 295 3662
EyePac + Messidor-2 360 360 360 360 360 1800

FIGURE 1. Sample fundus images (Top: APTOS, bottom: EyePac + Messidor-2).

spectrum between exploration and exploitation when
it converges. This research work presents a solution
to the long-standing research gap in which feature
extracted from TL are not fully optimized. In addition,
both features and classifier ensemble are optimised
simultaneously.

lIl. METHODOLOGY AND PROPOSED APPROACH
A. DATASET
There are various publicly available fundus datasets that can
be used to detect DR. The EyePac, APTOS, Messidor-1,
and Messidor-2 are the common datasets used for such
work. EyePac dataset provides the highest number of image
samples. However, 25% of the images are not gradable by
experts. The APTOS dataset, on the other hand, continues to
be the one that is most frequently used for benchmarking.
However, due to the imbalance class problem, this dataset
creates a challenge for multi-class classification applications.
For the Messidor-1 and Messidor-2 dataset, the same is true.
Several authors have made an effort to merge these datasets
to solve the imbalance class issue. One such attempt is
available in Kaggle public domain,! where EyePac and
Messidor-2 datasets are combined to create a balanced
multi-class dataset (EyePac + Messidor-2). In this paper,
we consider APTOS and EyePac + Messidor-2 datasets.
While APTOS dataset is widely used, the EyePac + Messidor-
2 presents a more balanced dataset in each class. As a result,
it would be a better indicator to “balanced’’ dataset scenario.
It is important to highlight that integrating these two datasets
might raise questions because the severity grading definitions

1 https://www.kaggle.com/datasets/mohammadasimbluemoon/
diabeticretinopathy- messidor-eyepac-preprocessed
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can vary widely. The severity of unbalanced class can be
visualised from Table 1. Hence, for EyePac + Messidor-2
dataset we divide into three classes: No-DR, mild/moderate
DR, and Proliferate DR.

For APTOS dataset, the DR severity can be classified into
five classes as listed in Table 2. It is noteworthy that only
dataset with similar class number and grading approaches
can be combined. In addition, classes are continuous and
the grading from one class to another may be different from
one dataset to another. Therefore, this need to be taken into
account when considering the results. Since, the dataset is
an amalgamation of two known or widely used datasets,
we believe that there should not be much difficulties in the
issue pertaining the validity of the classes grading. Therefore,
a safer and more conservative approach is deployed for
EyePac + Messidor-2 dataset where only three classes are
considered, i.e., Non-Referable DR (class 0), Referable DR
(classes 1-3), and Proliferative DR (class 4). For APTOS
dataset, we apply both binary and multi-class classification
tasks. The binary classification consists of Non-Referable DR
(class 0) and Referable DR (classes 1 - 4). Meanwhile, the
multi-class classfication task uses all the five classes shown in
Table 2. Several sample fundus images from the two datasets
are shown in Fig. 1. The grades (classes) in Table 2 can
be explained as follows [37]. Class O is referred to be the
class free of any DR features. The patient has mild Non-
Proliferative DR when there is at least one microaneurysm,
regardless of whether there are retinal haemorrhages, hard
exudates, cotton wool patches, or venous loops. Patient with
moderate Non-Proliferative DR has a few cotton wool areas
of venous beading, multiple microaneurysms, and retinal
haemorrhages. Meanwhile, numerous haemorrhages and
microaneurysms in 4 retinal quadrants, venous beading in 2 or
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FIGURE 2. t-sne plot for APTOS dataset (2 classes).
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FIGURE 3. t-sne plot for APTOS dataset (5 classes).

more quadrants, and intraretinal microvascular irregularities
in at least 1 quadrant are all signs of severe Non-Proliferative
DR. The last stage of DR, Class 4, exhibits the weak and
brittle blood vessel walls that can lead to blood leakage,
which can result in blindness and visual loss.

In order to observe the separability of the data, t-sne
plot of the features is applied to the APTOS dataset.
Figs. 2 and 3 shows the separability of the two-class and
five-class separation, respectively. It can be seen that the
separability is moderate for the binary classification task but
it is more difficult for the multi-class classification task. This
justifies the need for applying weighted approach to the raw
numerical input.

B. ADAPTIVE DIFFERENTIAL EVOLUTION (ADE)

The concept of Differential Evolution (DE) has been
discussed in many literature [38], [39], [40]. DE algorithm
can be listed as follows:

. . 7G G
1) For each i-th solution vector X =[x}, -,
le S, x.GN]T, select three N-dimensional auxiliary
J i,
’G YG YG :
vectors {X 7, X7, X7}, where i = 1,.--,P,
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TABLE 2. Grade and details.

Grade Details
0 No DR
1 Mild Non-Proliferative DR
2 Moderate Non-Proliferative DR
3 Severe Non-Proliferative DR
4 Proliferative DR
ri,r,1r3 € {1,---,P},i £ r1 # rp # r3, Pis the
population size, and G = 1, - - - , Gyax 1S the maximum
generation. N
2) Form the mutated vector VIG = [vfl, cee, vfj,
- va]T using
Vi=XG+FXS-X9, )

where F is the differential weight.
3) Generate a trial vector using the mutated vector and the
principal parent using

G .
G _ vy if rand; j[0, 1] < Cr,
ug = 1" _ @)
’ X otherwise,

where Cr is the crossover rate and rand; [0, 1]

is a random number drawn from standard uniform

distribution for each j-th component of the i-th vector.
4) Calculate the next generation using

> 6, it FX9) = FTY),

¥ G+1 TJ)G
i T1V¥G WG 776
Xy, fF(XY)<FUY),

3

where F(-) is the fitness function to be optimized.
Furthermore, DE is highly sensitive to Cr and F. Proper
settings of Cr and F are challenging. To solve this problem,
an adaptive (i.e., automated) tuning approach was proposed

in [41]. The adaptive F and Cr are respectively given by

if < ma);zter ,

&+(1—&)xsin(”—f—l),

F= maxiter 2
& — (1 — &) x cos (% — ma’;;ter ., otherwise,
4)
2 2 : i b4 et maxiter
Cr = 'B+(1_'B)X81n(maxiter_7)’ lfth’

otherwise,

B— (= By xcos (5 — i)
)

where & and B are constants, 7 is the generation of iteration,
and maxiter is the maximum number of iterations.

C. ECOC-SVM CLASSIFICATION LAYER

ECOC is the state-of-the-art classifier ensemble configura-
tion which is commonly employed for high-dimensional and
extremely non-linear data. The concept calculates distance
metric for a binary string using the classifier’s output. A class
is assigned to the data sample that is closest to that class. The
Hamming distance and the Euclidean distance are frequently
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used for this purpose. In general, any binary classifier can
be used in the ECOC configuration. In this paper, we choose
SVM as the binary classifier as it is frequently used as
the configuration’s basic classifier. Furthermore, SVM offers
some advantages, such as efficiency compared to Neural
Network, better performance in large dataset, and simple
training process [42].

To separate two target classes, the individual binary SVM
employs a kernel projection and plane. Let us consider
(gi» yi), where g; = {gin} is the i-th data instance with n
features, y; € [—1, +1] is the respective label values, and
i = 1,2,---, N. The hyperplane that separates the data
vectors g; into the label of -1 or +1 is given by f(g) = w’ g+b,
where w is the weight and b is the bias. Essentially, the goal
of plane optimization is to reduce w’w s.t. yif(g) > 1 toa
minimum.

We note that the optimization will not yield much practi-
cality without considering a “‘soft margin” in optimization
during training. The soft margin mechanism considers slack
variables during optimization as follows

Jmin {10, W] +ch“;
st yi(f(g) =1—-2¢&, Vi
¢i=0, Vi (6)

where (-,-) denotes the inner product, ¢; are the slack
variables, and c¢ is the constraint parameter determines
the weightage during optimization of boundary to reduce
slack variables. The aspect of SVM that highly determines
the effectiveness of hyperplane setting lies in A value by
incorporating a kernel that projects the original data into a
higher dimension of A/ +1. This way, we can further optimize
non-linear separation among classes. Various transforms can
be used to gain higher dimensions.

In particular, A is related to the scalling of the gram matrix
as follows

Gj,k =X K(Xj, xk)’ (7)

where K(xj, xp) = xjka is a linear kernel. The linear kernel
SVM is a type of SVM that uses a linear function as its
kernel. In SVM, the kernel is responsible for transforming
the input data into a higher-dimensional feature space, where
it becomes easier to separate different classes. The decision
boundary in a linear kernel SVM is a hyperplane, which is a
flat, multidimensional surface that separates the data points
of different classes. The objective of the SVM algorithm is
to find the optimal hyperplane that maximally separates the
classes while minimizing the classification error.

Let |my j| be the absolute value of the (k, j)-th element of
the coding matrix which is used to calculate the distance from
an assigned class. Let C be the set of class labels, where
C = {0,1,2,3,4}, and |C| be the cardinality of C. The
assigned class, 12, therefore, can be expressed as

L
P 2 ImijlG(me j, 57)
= min
k [ 1

; ®
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where k = 1, - - -, |C| is the index of the class, L is the length
of the code, which is [ 10log, K]. In (8), G(-, -) is the binary
loss function given by

max(0, 1 — uv)

Gu,v) = — C))

where max (0, a) returns @ when a > 0 and O otherwise.

D. FITNESS FUNCTIONS
As there is also an issue of imbalanced dataset, we implement
a weighted balanced scoring approach. Let

q1,1 41,2 -+ 41,C|

q2,1 42,2 -+ 42,|C|
S (10)

qic,1 92,2 -+ 4|c),|C]
be the confusion matrix the system and g¢;;, where
i ={1,2,---,]|C|}, be the correct classified samples in i-th
class. As such, the optimization process will try to optimize
the classes equally using the following fitness

IC|
. qdi,i
fitness = » —— (11)
; 4.

In order to observe the effects on mitigating against
unbalanced class, this will be compared against the results
acquired using the fitness based on the overall accuracy
(conventional) as expressed by

C
> qii

IC|
Z,‘:l q.,:

fitness = (12)

where |C| > 2.

E. PROPOSED APPROACH

The overall proposed approach is depicted in Fig. 4. The
conventional deep learning block shows the typical approach
in which a classification layer receives input from the fully
connected layer. In our approach, the average pooling layers
are extracted and treated as numerical features for training
and evaluation using ECOC-SVM ensemble. The features
can be obtained by concatenating more than one frozen
average pooling layers. In this paper, we use two pre-trained
deep learning networks, i.e., ShuffleNet and ResNet-18. The
reason of choosing ShuffleNet and ResNet-18 is because
of the computation issues. In particular, the number of
feature samples from the concatenated frozen layers of the
ShuffleNet and ResNet-18 is &~ 1000 , which is considered
as an optimization problem with average complexity. Please
keep in mind that architectures other than ShuffleNet and
ResNet-18 may be employed subject to the suitability of the
parameters (e.g., same input size, etc.).

The entire ECOC-SVM ensemble block is inclusive of the
SVM parameters A and c. Moreover, the One-vs-One (OVO)
configuration is applied in this paper. In this configuration,
the entire multi class is separated into binary SVM in
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FIGURE 4. Proposed approach.

which each distinguishes between one class against a pairing
class. Furthermore, the feature weights are optimized using a
stochastic optimization (ADE).

By using ADE, the optimal feature weights and SVM
parameter values are obtained. The solution of ADE can be
expressed by

X = (X1,%2, . -+, Xn, X 15 X4 2) 13)
where
Xnpl = A, (14)
and
Xng2 =C as)

Note that xi,---,x, refer to the feature weights. The
following expression is used to obtain the optimal parameter

F = min(—fitness), (16)
X
with either (11) or (12) as the fitness.
Let g; be the output of the global average pooling from the
selected network. Note that g refers to concatenated features
from the selected networks. The weighted features, g, are
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acquired based on the product of feature weights and g. For
each instance i, the weighted features can be expressed by

g;"/ = {xlgi,l’xZ(éi,Z, tet ,xngi,n}- (17)

Note that as both A and ¢ are the SVM binary classifier con-
figuration, X represents the entire ECOC-SVM configuration
inclusive the feature weights of the input from the average
pooling layers.

F. EVALUATION METRICS

Five evaluation metrics, accuracy (Acc), precision (Pr), recall
(Re), specificity (Sp), and Fl-score (F'1), are used to evaluate
the performance of our proposed classification method. The
five metrics are defined as follows

TP+ TN
Acc = , (18)
TP+ TN + FP + FN
TP
Pr=———, (19)
TP + FP
TP
Re= ———, (20)
TP 4+ FN
Sp = v 21
= IN 1 FP’
2 X Pr x Re
Fl=—MmM— (22)
Pr + Re
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where TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative samples,
respectively. Note that these definitions are in the case of
binary class.

In the case of multi-class classification, two types of met-
rics can be considered: macro average (weighted evaluation)
and micro average metrics. The equivalent metrics for micro
metrics are expressed as follows

IC|
> TP;
Pric = —gr———— (23)
i—1 TP; + FP;
ICI
> TP;
Renic = —gr———. 24)
IC|
> TN;
Spmic = e (25)
Flo. — 2 x Prpjc X Repic 26)
e Priic + Remic '
On the other hand, the macro metrics are given by
IC]
1 TP;
Proge = — —_— 27
" el ; TP; + FP; @7
IC|
1 TP;
Remae = — —_—, 28
" el ; TP; + FN; 28)
IC|
1 TN;
S = — _—, 29
Pac = 177 ; TN T FP (29)
2x P R
Flype = X Elmac X emac’ (30)

Pripac + Reypqc

Note that the accuracy remains the same for both macro and
micro statistics. Another definition for Acc is ratio of the sum
of all diagonal entries in the confusion matrix to the sum of all
entries in confusion matrix. Macro metrics more accurately
represent the class-wise statistics whereas the micro metrics
represent the overall confusion matrix.

IV. RESULTS AND DISCUSSION

Two training/test datasets are presented here. the first set
involves the implementing extracted transfer learning fea-
tures without any modification to the images. Then, ECOC-
SVM ensemble with linear kernel is implemented and two
parameters, A and ¢, are optimized. The second set involves
implementing CLAHE pre-processing prior to feature extrac-
tion. Similar treatment is performed. In addition, the weighted
and non-weighted optimization, as expressed in (11) and (12),
respectively, are compared. Note that weighted optimization
is used to address the imbalanced dataset issue since simple
augmentation approach (random rotation, translation, noise
addition) results in severe overfitting.

Tables 3 and 4 show the test results evaluated on inde-
pendent test data with and without CLAHE pre-processing.
Note that 3-class evaluation is also added and the reason
will be discussed in the subsequent paragraphs. From the
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generated feature samples, 80% of the features are applied
for training/validation while the remaining 20% are reserved
for independent testing. The results are based on 10 trial
runs. Macro and micro statistics indicate the class-wise
and overall Fl-score, specificity, sensitivity, precision. The
accuracy for both metrics are calculated similarly and there
is no distinction between the two metrics. The median and
mean indicate the consistency of the results. It is worth
mentioning that the optimization process is optimal but it
has stochastic nature. As the process is stochastic, various
solutions are generated. Nevertheless, the performance of
the mean and median indicates that the variations converge
to similar performance range. This is commonly known as
“multi-modality”” where there are many optimal solutions,
especially when multiple parameters are simultaneously
optimized.

The corresponding confusion matrices are depicted in
Figs. Figs. 5 and 6. Fig. 5a shows a sample of confusion
matrix for 5-class DR classification. It can be seen that multi-
class classification task still experiences misclassification
in certain classes. This is a common problem attributed
to unbalanced class. On the other hand, good separation
is shown for binary classification (i.e., DR detection) as
depicted in Fig. 5b. Fig. 5¢ shows the confusion matrix
when CLAHE is employed. Some improvements, although
not significant, can be noticed.

The CLAHE enhancements are implemented with the
weighted approach expressed in (11). From the confusion
matrix and table, we can see that the difference is inconclusive
from the two configurations (with and without CLAHE).
Moreover, the t-test indicates that the p-value between the
results is < 1%. Recall that in this implementation, frozen
features are extracted for training. Therefore, features express
the “likeness” towards the extracted objects and would not
have a significant effect whether the contrast of the features
are adjusted or not.

Regarding the two fitness functions, it can be seen from
Table 4, no significant improvement results is observed from
the F1-score. The p-value from these trials is 0.2%, indicating
that the observed mean difference is not statistically signifi-
cant. Theoretically, the approach is designed as a means to
balanced the accuracy from each class given that the dataset
is unbalanced.

Furthermore, when evaluating the mean accuracy for
each specific class, only class 3 demonstrates a slight
improvement. It seems that the limitation may be related to
how the classes are labelled. In particular, classes 1, 2, and 3
(non-proliferative stages) are determined subjectively by
evaluating the presence of microaneurysms. As a result, these
stages essentially rely on the same features but only differ
in the amounts. Notice that misclassifications predominantly
occur between adjacent classes. In fact, classes 1-3 are
difficult to diagnose [43], even by medical professionals with
training. To provide further analysis of the claim, APTOS
dataset is restructured into three classes in which class
0 denotes no DR; classes 1, 2, and 3 are now combined
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FIGURE 6. Confusion matrix for APTOS and EyePAC + Messidor-2 dataset (using independent test data).

into a single class (non-proliferative DR); and class 4 is
the proliferative class. Fig. 6a shows that non-adjacent
misclassification rates are reduced.

The EyePac + Messidor-2 dataset has more balanced data
samples and has accuracies between 73% and 75%. It can be
observed that the F1 score is closer to the accuracy when the
data samples are more balanced. As each configuration is run
10 times, the differences between median and mean indicates
the variation of the fitness solutions generated. Similar
indication can be made by observing the standard deviation.
As the research attempts to look into optimization for TF and
the ECOC configuration, the iteration vs fitness plot would be
a better visual indicator (see Fig. 7). We can observe that the
improvement achieved over the iterations. Note that fitness is
obtained using validation set. Without weighting the features
and optimized the SVM parameters, the accuracy values from
independent test data are 78.83% and 95.90% for 5-class and
2-class APTOS dataset, respectively. We can compare with
the accuracy values using the best configuration obtained
from the optimized ECOC-SVM, which are 82.10% and
96.10%, respectively. It needs to be highlighted that this is
based on independent test data. Therefore, it can be stated
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that classification system has improved in ‘“‘generalized”
evaluation.

Table 5 shows a comparison with various approaches.
Some preliminary results involving fine-tuned pre-trained
networks are also presented. It can be seen that the proposed
approach is relatively comparable with the state-of-the-art
approaches. It can be seen that ECOC + TL model performs
better than the fine-tuned approaches with single deep
learning model. In addition, the implementation of stochastic
optimization for optimizing the parameters (our proposed
approach) gives further improvement. Finally, bench marking
with other research results on similar datasets shows that
our approach is on par with state-of-the-art approaches.
It is interesting to see that, from Table 5, using the method
proposed in [44] could give higher accuracy for the multi-
class classification task. It is reasonable as that the work
presented in [44] was based on sequential classification, i.e.,
DR detection followed by DR grading.

As concluding statement with regards to the results section,
we would like to emphasize that optimizing both classifier
parameters and feature weights has positive effect on the
implementation of TL for DR detection and classification.
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TABLE 3. Macro average metrics.

Dataset Stats Precision Recall Specificity Accuracy Fl-score
EyePac + Messidor-2 (3 classes) Mean 0.693 0.675 0.827 0.738 0.683
fitness: (12) Median 0.695 0.678 0.828 0.740 0.686
Best 0.707 0.692 0.833 0.750 0.696
Std. Dev. 0.009 0.012 0.086 0.010 0.010
APTOS (5 classes) Mean 0.597 0.604 0.945 0.784 0.598
fitness: (11) Median 0.607 0.610 0.946 0.784 0.608
Best 0.6267 0.646 0.952 0.806 0.633
Std. Dev. 0.030 0.029 0.003 0.013 0.029
APTOS (5 classes) Mean 0.608 0.673 0.953 0.808 0.628
fitness: (12) Median 0.611 0.669 0.953 0.807 0.631
Best 0.653 0.708 0.956 0.821 0.674
Std. Dev. 0.028 0.027 0.003 0.011 0.028
APTOS (2 classes) Mean 0.961 0.961 0.961 0.961 0.961
fitness: (12) Median 0.961 0.960 0.960 0.960 0.960
Best 0.966 0.966 0.966 0.966 0.966
Std. Dev. 0.003 0.003 0.003 0.003 0.003
APTOS with CLAHE (3 classes) Mean 0.763 0.765 0.934 0.873 0.763
fitness: (11) Median 0.765 0.765 0.934 0.870 0.765
Best 0.781 0.791 0.942 0.886 0.781
Std. Dev. 0.012 0.017 0.004 0.008 0.012
APTOS with CLAHE (5 classes) Mean 0.583 0.597 0.942 0.770 0.587
fitness: (11) Median 0.585 0.593 0.943 0.776 0.590
Best 0.628 0.658 0.951 0.807 0.640
Std. dev 0.023 0.037 0.007 0.027 0.027
EyePac + Messidor-2 with CLAHE (3 classes) Mean 0.742 0.742 0.859 0.733 0.741
fitness: (11) Median 0.745 0.745 0.861 0.736 0.744
Best 0.768 0.759 0.870 0.754 0.763
Std dev 0.017 0.014 0.008 0.015 0.015

-0.75
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FIGURE 7. Fitness vs generation (best individual in the population).

This postulates that the proposed approach is effective for the
application in DR detection and grading. The improvement,
however, varies depending on the dataset as observed from the
Fig. 7. The acquired is from the accuracy of the validation set,
hence an approach to prevent overfitting. We highlight that
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when compared to the ECOC -SVM, there was significant
difference as shown from Table. 5. The improvement from
fine tuning with conventional Deep learning was significant.
The t-test with the fine-tuned DL is £~ 10(close to 0).

We reiterate that the purpose of the research is to assess
a TL method optimization. Therefore, despite the slight
class imbalance, APTOS dataset implementation is taken into
consideration. For the sake of benchmarking, the majority of
research studies have used the dataset exactly as it is, without
any augmentations. However, a more balanced dataset that
combines EyePac and Messidor-2 is believed to be the
solution to the class imbalance issue.

To close the discussion, we should note that this work
has a few limitations and assumptions that can be carried
out as future work. First, we only consider three different
fundus image datasets, i.e., APTOS, Messidor-2, and EyePac.
Secondly, we only consider ADE as the optimizer for the
feature weights. We do not compare ADE with any other
algorithms as the goal is to show the effectiveness of TL
optimization in DR detection and classification applications,
not to compare the optimization algorithms. Thirdly, we only
use frozen layers from two TL networks. More TL networks
can be used with an increase in complexity.
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TABLE 4. Micro average metrics.

Stats Precision Recall Specificity Accuracy Fl-score
EyePac + Messidor-2 (3 classes) Mean 0.738 0.738 0.869 0.738 0.738
fitness: (12) Median 0.740 0.740 0.870 0.740 0.740
Best 0.750 0.750 0.875 0.750 0.750
Std. Dev. 0.010 0.010 0.052 0.010 0.010
APTOS (5 classes ) Mean 0.784 0.784 0.946 0.784 0.784
fitness : (11) Median 0.784 0.784 0.946 0.784 0.785
Best 0.806 0.806 0.951 0.806 0.806
Std. Dev. 0.013 0.013 0.003 0.013 0.013
APTOS (5 classes ) Mean 0.808 0.808 0.952 0.808 0.808
fitness: (12) Median 0.807 0.807 0.952 0.807 0.807
Best 0.821 0.821 0.955 0.821 0.821
Std. Dev. 0.011 0.011 0.003 0.011 0.011
APTOS (2 classes) Mean 0.961 0.961 0.961 0.961 0.961
fitness: (12) Median 0.960 0.960 0.960 0.960 0.960
Best 0.966 0.966 0.966 0.966 0.966
Std. Dev. 0.003 0.003 0.003 0.003 0.003
APTOS with CLAHE (3 classes) Mean 0.873 0.873 0.936 0.873 0.873
fitness: (11) Median 0.870 0.870 0.935 0.870 0.870
Best 0.886 0.886 0.943 0.886 0.886
Std. Dev. 0.008 0.008 0.004 0.008 0.008
APTOS with CLAHE (5 classes) Mean 0.770 0.770 0.942 0.770 0.770
fitness: (11) Median 0.776 0.776 0.944 0.776 0.776
Best 0.807 0.807 0.951 0.807 0.807
Std. Dev. 0.027 0.027 0.006 0.027 0.027
EyePac + Messidor-2 with CLAHE (3 classes) Mean 0.733 0.733 0.866 0.733 0.733
fitness: (11) Median 0.736 0.736 0.868 0.736 0.736
Best 0.754 0.754 0.877 0.754 0.754
Std. Dev. 0.015 0.015 0.007 0.015 0.015
TABLE 5. Comparison of test results.
Approach Dataset Accuracy (%)

Modified XCEPTION [45] APTOS (5-class grading) 83.09

DenseNet/CBAM [46] APTOS (5-class grading) 82.00

DenseNet/CBAM [46] APTOS (2-class grading) 97.00

Blended Multi modal Deep ConvNet [28] APTOS (5-class grading) 81.79

Combining features with color constancy [44] APTOS (4-Class grading) 96.30

Transfer learning-SVM APTOS (2-class detection) 98.00

Transfer learning-VGG16 model/Colour processing [47] APTOS(2-class detection) 91.23

Fine-tuned AlexNet APTOS (5-class grading) 56.34*

Fine-tuned ShuffleNet APTOS (5-class grading) 66.56*

Fine-tuned DenseNet APTOS (5-class grading) 68.87*

Fine-tuned GoogLeNet APTOS (5-class grading) 67.97*

GooglLeNet [17] APTOS (2-class grading) 97.3%F

ResNet [17] APTOS (2-class grading) 96.2%

ECOC+TL(c=1,A=1) APTOS (5-class grading) 78.83*

ECOC+TL(c=1,A=1) APTOS (2-class grading) 95.90*

Proposed approach, fitness: (11) APTOS (5-class grading) 80.60%

Proposed approach, fitness: (12) APTOS (5-class grading) 82.10%

Proposed approach APTOS (2-class grading) 96.10%

Note: * mean of 10 trials, T no statistical analysis, N pest configuration among 10 trials
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V. CONCLUSION AND FUTURE WORK

We have proposed the ECOC-SVM model to classify the
level of DR. The features are taken from average pooling
layers of TL networks (ShuffleNet and ResNet-18) and
weighted. The weights and SVM parameters are optimized
using ADE algorithm. This approach has been proposed
to avoid overfitting of the conventional fine-tuned TL
networks. To evaluate the performance of our model, we use
APTOS and EyePac + Messidor-2 datasets. According to
the simulation results, our method significantly outperforms
the tuned TL networks. Additionally, it has demonstrated
comparable results when compared to similar work.

For future exploration, a more comprehensive dataset can
be considered. However, we need to consider the unbalanced
nature of the dataset. This is complex as the number of data,
especially for the severe cases of DR, is limited. DL is, after
all, fundamentally a “‘black box” method and they are not
completely explainable, the obtained characteristics can only
be quantified statistically. There are apparently exhaustive
configurations of selected deep learning models that can be
evaluated. This would required more exploration. However,
it is likely that the results attained would suggest in this report
would suggest an improvement in what ever transfer learning
model adopted as the optimisation approach would have be
able to eliminate non-performing features.
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