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ABSTRACT Spiking Neural Networks (SNNs) show their potential for lightweight low-power inferences
because they mimic the functionality of the biological brain. However, one of the major challenges of
SNNs like other neural networks is memory-wall and power-wall when accessing data (synaptic weights)
from memory. It limits the potential of spiking neural networks implemented on edge devices. In this
paper, we present a novel spiking computing hardware architecture named NASH-3DM using 3D-IC-based
stacking memory with power supply awareness to effectively decrease power consumption for AI-enabled
edge devices. Instead of storing one or multiple weights in a single memory word, we split them into small
subsets and allocate each subset into a separate memory in every stacking layer. With the natural separation
of stack layers, our system can activate and deactivate each layer separately. Therefore, it can offer in-situ
(online, post-manufacture, and without interruption) dynamic quantization with multiple operating modes.
With the CMOS 45nm technology, our energy per synaptic operation for MNIST classification can reduce
by 36.67%while having 0.93%-1.14% accuracy loss at 5-bit quantization. The energy per synaptic operation
reduction for the CIFAR10 dataset is 36.68% when switching from the 16-bit active operation to the in-situ
10-bit one with an accuracy loss of 5.69%.

INDEX TERMS Spiking neural network, 3D IC-based stacking memory, digital neuromorphic.

I. INTRODUCTION
Edge devices embedding Artificial Intelligence (AI) have
been an emerging computing paradigm recently [1]. How-
ever, embedding AI functions into these devices has a lot
of challenges because of their resource intensity and power-
hungry. As one of many solutions, Spiking Neural Networks
(SNNs) show their potential for lightweight inferences com-
pared to other neural network models [2], [3], [4]. Because,
as a mimic of the biological brain, SNNs only transmit infor-
mation using a sequence of spikes that are believed to be
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spatial and temporal sparse, which allows them to reduce
energy significantly. Moreover, the computation involved
in SNNs, especially with Integrate-and-Fire-like models,
is comparatively simpler than the conventional neuronal net-
work models. As a result, it reduces the power consumption
and hardware area cost.

To exploit the great potential of SNNs, many researchers
have investigated deploying these Neuromorphic Com-
puting (NC) systems in recent years. These systems
are usually implemented in specific hardware, such
as Application-Specific Integrated Circuits (ASICs) or
Field-Programmable Gate Arrays (FPGAs), to optimize
power and area efficiency, and to perform computations in
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parallel. In practice, these neuromorphic systems have three
main design approaches, which are: (1) 2D-ICs based digital
hardware [3], [4]; (2) 2D-ICs based analog mixed-signal
hardware [2], [5]; and (3) 3D-ICs based hardware [6], [7].
Nevertheless, as the era of Moore’s Law for a single mono-
lithic die nears its end, hardware architectures, particularly
memory architectures, are undergoing a transition towards
3D packages or 3D-ICs in order to enhance performance. The
architecture of SNNs follows this trend as well [8].
On the other hand, with 3D-IC technologies, memories

can be stacked to reduce the hardware footprint. However,
we realize that instead of stacking memory banks, we can
split the memory word and stack them above each other.
In this case, each layer in 3D memory will represent different
levels of precision for synaptic weights, such as one, two,
or multiple-bit precision. Consequently, the neuromorphic
system can selectively deactivate the power supply of indi-
vidual memory layers that contain the Least Significant Bits
(LSBs) in order to conserve energy while still maintaining
an acceptable level of accuracy. This is feasible because
the absence of LSBs can be treated as a form of noise,
and SNNs exhibit resistance to this type of fixed-pattern
noise [9]. Based on this feature, in this paper, we present a
novel in situ dynamic quantization hardware architecture of
a spiking computing processor using 3D-IC-based stacking
memory. In our previous publications [10], [11], we have
designed a 2D-SRAM-based neuromorphic core connected
via 3D-Network-on-Chip, where the memory and the logic
computations are placed at the same silicon layer. Based on
our experiment, we found out that power consumption of the
memory access occupies the major part of the whole system.
With our previous architectures, it is difficult to isolate and
optimize the power consumption of memory to reduce the
overall power consumption of the system. Therefore, in this
work, we present a new approach to dynamically reduce
the power consumption of memory access with 3D-IC-based
stacking memory and in-situ quantization. The main contri-
butions of this paper are summarized in the following:

• A novel 3D-IC stacking synaptic memory architecture,
called NASH-3DM, supports splitting the memory word
into subsets. The SNN architecture supports computing
with not only all subsets available but also missing
subsets.

• An in situ dynamic quantization approach. In contrast
to the conventional ex-situ quantization, the bit-width of
synaptic weight is decided before fabrication and stays
unchanged during inference. Our architecture supports
changing the bit-width in situ and dynamically by turn-
ing on and off the memory layers. As a result, the system
has multiple power modes and adjusts the bit precision
of synaptic weights based on its power supply.

• A novel yield improvement approach for the proposed
NASH-3DM by swapping the subsets once defects are
detected in the layer. This approach acts like quanti-
zation by cutting off the least significant bit subset.

FIGURE 1. High-level view of the 3D-IC-based spiking neural network
architecture.

Moreover, it can be a fail-safe feature in our system
against new defects if necessary.

• Evaluating the transformation of power consumption,
and accuracy of the 3D spiking computing processor
at multiple bit-width modes. This evaluation is based
on the NANGATE 45nm Open Cell Library [12] as the
standard cells, OpenRAM library [13] for generating
the system memory, and the Through-Silicon Via (TSV)
from FreePDK3D45 [14] for 3D implementation.

The rest of this paper is organized as follows. Section II
presents our motivation for the in-situ 3D spiking com-
puting processor and explains its hardware architecture.
In Section IV, the performance and power consumption of
our NASH-3DM will be evaluated. Finally, there are some
conclusions and perspectives in Section V.

II. BACKGROUND AND MOTIVATIONS
A. BACKGROUND
The high-level view of 3D-IC-based SNN architecture is
shown in Fig. 1. Compared to other neural network models,
information is encoded in Spiking Neural Networks (SNNs)
using an encoding scheme. This information is then trans-
mitted between neurons through trains of action potentials
called spikes. Those spikes biologically are generated by the
neuron’s membrane potential reaching a certain threshold.
They operate in a discrete-time domain, with each neuron
sending and receiving spikes at specific times. As a result,
it allows them to process temporal information, such as pat-
terns and sequences, in a more natural way than traditional
Artificial Neural Networks (ANNs). The most popular hard-
waremodel for simulating this behavior of biological neurons
is the Leaky Integrated-and-Fire (LIF) because of its energy
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efficiency and capability of capturing the essential features
of bio-information. Theoretically, LIF neuron operations are
expressed in the following equation:

Vi(t) = Vi(t − 1) +

∑
j

wi,j × xj(t − 1) − λ (1)

where wi,j is the synaptic weight between the ith neuron and
the jth one. Vi(t) is the membrane potential of ith neuron at
the t timestep and xj(t−1) is the output pre-synaptic spike of
ith neuron and the leaky value λ, respectively. This output of
the ith neuron is expressed with the equation below.

xi(t) =

{
1, if Vi(t) ≥ Vth,
0, otherwise.

(2)

Moreover, the neuromorphic systems are expected to be
asynchronous and independent of neurons within the net-
work. Therefore, the ability to learn the timing information
is also crucial. In practice, there are two learning approaches,
which are off-chip learning and on-chip learning. For the off-
chip method, the popular one is the ANN-to-SNN conversion
with a fully connected feed-forward neural network using
the RELU activation function [15]. It is usually trained in
software using back-propagation with zero bias and then
mapped into the LIF network in a normalized way. For the
on-chip method, the famous algorithm is the Spike-Timing-
Dependent Plasticity (STDP) [16], an unsupervised learning
algorithm with the biological characteristic. It is based on
synaptic plasticity to represent the relative difference in tim-
ing between the pre-synaptic spike and the post-synaptic one.

B. RELATED WORKS
1) ARCHITECTURE DESIGN PERSPECTIVE
In Section I, it was mentioned that there are three different
approaches to designing SNN hardware. The most widely
used approach is the 2D-ICs based digital hardware. Notable
examples of this approach include Intel’s Loihi [2] and IBM’s
TrueNorth [5]. Loihi utilizes the asynchronous Network-on-
Chip (NoC) to represent the spike transmission of active
synapses. Furthermore, Loihi’s neurons are reconfigurable,
allowing for the implementation of different neuron mod-
els and supporting adaptive bit-width operations (1)-to-9
bits) for synapses. In the case of IBM’s system, TrueNorth
relies on fixed-bit-width weights for its Leaky-Integrated-
and-Fire (LIF) neuron cores. However, TrueNorth operates
on a large-scale network with 1 million neuron cores, each
having a 256 × 256 crossbar connecting pre-synaptic spike
events to post-synaptic ones. In conclusion, TrueNorth stands
out due to its ease of prototyping and system debugging.
However, in terms of power consumption, it requires more
power than the other two approaches (2D-ICs based ana-
log mix-signal hardware and 3D-ICs based hardware) when
scaled to the identical fabrication technology [17].
Regarding the 2D-ICs based analog mixed-signal hard-

ware, this approach has the ability to accurately emulate the
electrical behaviors of biological neurons while having lower

power consumption than digital systems. A demonstration of
such a system is NeuroGrid from Stanford University [3],
which is based on the analog sub-threshold design. This
system is capable of achieving real-time performance. Neuro-
Grid utilizes theNetwork-on-Chip (NoC)with a tree topology
and multicasting feature. Despite using older technology
(180nm), NeuroGrid outperforms TrueNorth (28nm) in terms
of energy efficiency, with an energy-per-operation result of
45pJ compared to 50pJ. Moreover, the analog mixed-signal
approach can also match the capabilities of the digital system
in cases of scalability and robustness, as demonstrated by
Heidelberg University’s BrainScaleS-2 architecture [4]. This
system utilizes analog wafer-scale circuits and operates at
a time scale 10.000× times faster than real-time biological
processes. However, fabricating analog circuits have higher
complexity than digital circuits. The reason is that standard
analog cells tend to require customization when shifting tech-
nology. Additionally, these systems pose challenges in terms
of control and calibration, even when scalability is achieved.
This is due to significant variations in analog circuit charac-
teristics across different process technologies, temperatures,
and voltage levels.

In terms of the 3D-ICs based hardware, there is grow-
ing interest in the Loihi-2 architecture [7], which supports
3D multi-chip scaling and represents the next generation
of hardware architectures. NeuroSIM [6], a 3D neuromor-
phic system, incorporates two-layer memristors as electronic
synapses for SNN. This integration leads to a 50% reduction
in the hardware area, 1.48× times lower power consump-
tion, and 2.58× times lower latency compared to traditional
2D single-layer configurations. Another 3D-IC-based SNN
architecture called MigSpike [11] is specifically designed
for fault tolerance and reduces migration costs associated
with remapping in NoC by a factor of 10.19× compared
to 2D approaches. Consequently, 3D-ICs offer significant
advantages over the aforementioned approaches, including
reduced hardware footprint, cost, and power consumption.
It is reasonable to expect that a 3D SNN system would
provide even greater benefits in terms of power consumption
and hardware area reduction for edge devices.

2) POWER EFFICIENCY PERSPECTIVE
SNNs have attracted attention for their superior energy effi-
ciency over other neural network models [18], [19]. At the
moment, although other neural networks have been able to
perform various cognitive tasks at the human level, the power
consumption of those models deployed in the state-of-the-art
hardware is still significantly higher than our human brain,
which consumes only ∼20W for those tasks with a volume
of ∼1200cm3 [20]. Moreover, for real-time energy-hunger
applications such as robotics, automobile, and Internet-of-
Things (IoT), conventional deep neural networks (DNNs)
with a large number of computations have become the main
obstacle [21]. In contrast, neuromorphic systems emulate the
ultra-high efficiency and agility of brains, along with their
correctness [19]. The reason is that SNNs, which incorporate
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FIGURE 2. The overview hardware architecture of NASH-3DM with 3D-ICs based stacking memory.
(a) The hardware contains P Leaky Integrate-and-Fire (LIF) cores and M memory layers stacked on top of
it. (b) The bit distribution in M stacking memory layers. (c) The hardware architecture of each LIF core at
the logic die.

temporal dynamics of spikes, only output when necessary and
do not constantly process information like traditional neural
networks. As a result, it is suitable for edge devices, which
usually utilize the sensors to record temporal information in
the environment [22]. As a result, SNNs become an emerging
neural network model that could promisingly provide effi-
ciency and reliability for AI-enabled edge devices.

An alternative approach to enhancing power effi-
ciency involves utilizing new memory technologies,
such as In-Memory Computing (IMC) and 3D stacking
memory. IMC currently offers two approaches: analog
IMC [23], [24], [25] and digital IMC [26], [27], [28]. Analog
IMC, unfortunately, suffers from limited conversion accuracy
due to low-cost analog-to-digital converters (ADC), mak-
ing it unsuitable for applications demanding high precision,
such as automobiles. Analog IMC also faces challenges
related to variations caused by factors like temperature and
sneak currents, which can affect its performance [29]. Con-
versely, digital IMC boasts higher computational accuracy
and robustness but consumes more power compared to ana-
log IMC [30]. On the other hand, 3D stacking memory
aims to achieve greater memory capacity and minimize data

movements [31], [32]. By stacking multiple SRAMs, sub-
stantial bandwidth and caching capacity can be attained
for CPUs or DNN inferences [33], [34]. Communication
between the stacked layers can be achieved through wired
integration using through-silicon vias (TSVs) [31], [32],
or wireless integration via inductive coupling, known as
ThruChip Interface (TCI) [35], [36]. Regardless of the
method chosen, 3D stacking memory holds the potential to
enhance power efficiency by reducing data movements.

Combining the above point with the fixed-pattern-noise
resilience of SNNs [9], we observe a chance to keep
the synaptic operations at low-power mode, which is still
able to maintain the performance of neuromorphic systems,
to reduce overall power consumption by using the char-
acteristic of 3D stacking memory and dynamic bit-width
quantization. The next section will provide a detailed expla-
nation of this 3D neuromorphic architecture.

III. HARDWARE ARCHITECTURE
Fig.2 illustrates the architectural overview of our NASH-
3DM hardware. Here, we show the NASH-3DM contained
P LIF neurons with M stacking memory layers. All neurons
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or processing elements are placed at the bottom layer (logic
die) and the stacked layers (memory die) contain only synap-
tic memory. The synaptic weights are partitioned into M
memory layers, with data transmission via Through-Silicon
Vias (TSVs). It is important to highlight that the number of
LIF neurons and memory layers are customizable parameters
that can be adjusted during the design phase. Each neuron
inside NASH-3DM has its own address decoder and encoder
inside to update the synaptic weights correctly. They act as
the receiver and transmitter for messages in the network. The
output spike of LIF neurons to the next ones could either
be in the same NASH-3DM or other NASH-3DMs. On the
contrary, the input spike received from the previous neurons
triggers the crossbar to attach the corresponding weights
from memory layers via TSV for the LIF function. Each LIF
neuron contains one STDP for self-learning and self-updating
synaptic weights over operating time.

A. 3D STACK MEMORY STRUCTURE WITH IN SITU
DYNAMIC QUANTIZATION
Let’s assume the SNN system uses n-bit weight format for
design which stays unchanged after manufacturing. Rather
than consolidating one or multiple n-bit weights within a
single memory word, our approach involves dividing each p-
bit weight into a collection of subset bits {m0,m1, . . .mM−1},
where mi represents subset i andM denotes the total number
of subsets. Notably, m0 represents the subset with the highest
significance, while mM−1 corresponds to the subset with the
lowest significance.

The in situ dynamic quantization is obtained by following
the rule:

• At the beginning and in normal power consumption
mode, all sub-sets of synaptic weights are stored in all
memories.

• If lower-power mode is enabled, the system starts to
deactivate the LSB subset using the power-gating tech-
nique. In the processing elements, the turned-off subsets
used in LIF computations are treated as zeros.

• If normal power mode is enabled, the system starts to
turn on the subset containing the most significant bits
among all inactive subsets.

In the exemplary model as in Fig. 2(b), we divide those
n = 8-bit weights into M separated memory layers. The
synaptic weights can be split unevenly into these layers.
In addition, the LSBs are on the top memory layer(s) and the
MSBs are on the bottom. By separating the bits of synaptic
weights into different layers, our hardware architecture is
capable of power-gating the top memory layer(s) to act as
reducing the bit precision of SNN (called in-situ dynamic
quantization). The LSBs will be treated as all zero in the
processing elements. Consequently, this leads to a significant
reduction in overall power consumption while maintaining
a graceful level of accuracy. It is suitable for edge devices
when their battery or power source almost runs out. This hap-
pens by taking advantage of the noise and bit-loss resilience
of SNN, which other neural network models usually lose

their accuracy sharply because of the operating-bit reduction.
Moreover, with the separating structure, this approach has
two other benefits. First, the quantization can be operated
after manufacturing and without any interruptions in the
system operations. Hence, in the case of the power sup-
ply reaching a certain low-level threshold, the system could
switch to the low-powermode, which reduces a small fraction
of accuracy, to increase the operation time. Second, unlike ex-
situ quantization, the LSBs can be refilled and reattached if
necessary during the operations. It is important because of the
fact that the power supply can be also dynamically adjusted
or recharged at run time.

B. SYNAPTIC WEIGHTS OPERATION WITH 3D STACKING
MEMORY
As shown in Fig. 2(c), each NASH-3DM has its own synap-
tic crossbar, which is to enable the synapse weights to be
read from the synapse memory and to update weights in
parallel. For example, with N inputs of n bits, each LIF
neuron utilizes a total of N × n bits inM SRAMs. As shown
in Fig. 3, the subsets of synaptic weights could be either
split equally or unequally. Although 1-bit words or 2-bit
words can be unreasonable, we can pack several LIF neu-
rons’ synapses SRAM to have more traditional word sizes
(8,16, 32, or more) [5], [37].

In each timestep, the crossbar checks for the appearance
of input spike(s). If the spike appears, the one-hot mecha-
nism decodes the address of corresponding synaptic weights
located on M = 4 SRAMs via TSVs. TSVs here act as
wires to connect between layers. The synaptic weights are
then fetched from memory and loaded to the LIF neuron for
the accumulating calculation. When the spike is absent, the
accumulation is stopped, and the NASH-3DM moves to the
next operation.

In each NASH-3DM, the synaptic crossbar can operate
independently. However, the adapting operations are only
available on the memory layers that still had their power
supply. For the missing bits due to power-gating, these values
are treated as zeros on the ongoing operations. Fig. 4 shows
this operation in detail, in which the output spike event(s) may
change according to the missing bits.

In Fig. 4, we provide an example where the synaptic
weights have inactive bits because of power-gating memory
layers. The LIF neurons accumulate the synaptic weights
according to the input spike events. Whenever the accumu-
lation reaches the pre-trained threshold, the LIF neuron fires
the output spike to the downstream neurons. However, when
the power supply is low, our in-situ NASH-3DM switches
its operation mode by power-gating the memory layer one
by one. The aim is to reduce the power consumption while
taking fixed-pattern-noise-resilient advantages of SNNs to
maintain accuracy [9]. In practice, the NASH-3DM applies
the power-gate technique tomemory layers with the top-down
direction, which starts from the LSBs of synaptic weights
and keeps the MSBs. For instance, by power-gating the top
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FIGURE 3. Demonstration of n-bit operations of synaptic weights under normal conditions (no power-gating).

FIGURE 4. Demonstration of n-bit LIF operations of synaptic weights with in-situ quatization using power-gating. (a) The
LIF operation of NASH-3DM without a power supply for the top memory layer. (b) The LIF operation of NASH-3DM without
the power supply for two upper memory layers.

memory layer consisting of two LSBs, the LIF modules
consequently operate on 6-bit synaptic weights.

In Fig. 4(b), two memory layers containing LSBs are
discarded and the rest MSBs are still available to perform
LIF operations. However, the output spike has been delayed
because the accumulation cannot reach the threshold. The
reasons are that the threshold stays the same as it is in the
normal power mode and the four LSBs are now treated as
zeros. Consequently, if the number of power-gated layers
continuously increases, and the synaptic weights are removed
at a certain level, the output spike event may not occur. Hence,
it changes the sequence of the next computations in SNN in
the wrong way, which affects the final prediction. Therefore,

despite the noise resiliency of SNNs, there are still several
cases that cause the alternation of the final results of NASH-
3DM when the memory layers are power-gated. The change
in weights could lead to the alternation of output spike events
which may alternate the overall accuracy as a trade-off.

C. POWER CONSUMPTION FOR IN-SITU QUANTIZATION
In this subsection, we analyze the projection of the power effi-
ciency of in-situ quantization for NASH-3DM with multiple
stacked memory layers. Overall, there are two main power
consumers in our NASH-3DM, which are Pmem from the
memory and Ppe from the processing elements (LIF core,
controller, STDP, address decoder, and encoder). It can be
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expressed as the following equation.

Ptotal = Pmem + Ppe (3)

However, a large part of power consumption in neuromor-
phic systems comes from memory, which is around 75%
of total power [38]. Consequently, by altering the power
distribution in memory, the total power consumption could
alter significantly. Therefore, our method is to power-gate
the memory layers for power reduction and it also provides
an in-situ synaptic weight quantization. For example, with
the 8-bit (n = 8) synaptic memory from the architecture in
Fig. 2, we can define the total power consumption of synaptic
memories with the following equations.

Pmem = Pmemint + Pmemleak + Pmemswitch (4)

where Pmemint is the internal power of synaptic memories;
Pmemleak is the leakage power of synaptic memories; Pmemswitch
is the power consumption of synaptic memories from switch-
ing activities. If we assume an equal distribution of power
supply among synaptic memories, the power consumption of
memory mathematically decreases by k/n when one or more
memory layers, containing k LSBs, are power-gated.

P′
mem =

n− k
n

× (Pmemint + Pmemleak + Pmemswitch) (5)

This is due to the fact that all the memories in the layers
are consolidated and exhibit identical switch activities when
an input spike event occurs. With a value of n = 8 as shown
in Fig.2, we can achieve anticipated power reductions of 25%
and 50% for k = 2 and k = 4, respectively. Additionally,
assuming that the memory accounts for approximately 80%
of the power in a neuromorphic system, we could potentially
reduce the overall power consumption by 20% and 40%
correspondingly. As a result, for each feasible value of k ,
we can establish a power-aware mode.

Nonetheless, it is crucial to consider the remaining bits
of synaptic weights to ensure the accuracy of the SNN
model. Despite the noise resilience of SNNs, excessively
power-gating the memory layers beyond a certain threshold
will lead to the collapse of the spiking computing processor,
rendering it unable to function correctly. In Section IV, the
experimental results for each power-aware mode of operation
will be presented to further demonstrate this.

D. YIELD IMPROVEMENT MECHANISM
As having low yield rates is a critical issue of 3D-ICs,
in this section, we discuss the yield-rate improvement for 3D
designs with our proposed architecture. The issue of low yield
rate poses a significant challenge in 3D-stacking technology.
Assuming the yield rate for a single layer (die) is γlayer < 1.0,
the yield rate of stacking D layers, denoted as γD_layers, can
be expressed using the following equation.

γD_layers =

D−1∏
i=0

γi (6)

where D is the number of layers, γD_layers is the overall
yield rate and γi is the yield rate of the ith layer. Therefore,
by stacking multiple layers on top of each other, the yield rate
is much smaller than γlayer , according to Eq. 6. To illustrate,
let’s consider a scenario where all layers possess the same
yield rate, γlayer = 0.95, and the number of stacked layers
is D = 3. Consequently, the effective yield rate of the 3D-
stacked chip is diminished to 0.85, which is 0.1 lower than
that of a single-layer chip (0.95).

However, in our architecture, we split the synaptic weights
into multiple memories and stack them on top of the logic
layer. Therefore, if the defect in one memory layer affects
the overall accuracy greatly, we could consider to power-gate
that defective layer and swapping the bits of synaptic weights
in that layer with the layer containing lower significant bits.
Fig. 5 shows an example of an output spike affected by the
fabrication-defective memory layers.

As shown in Fig. 5, the defective layer will cause the
errors in logic functions of transistors, which are usually the
stuck-bit or bridging faults. Therefore, the fabricated design
cannot function properly. In the case of Fig.5(a), the output
spike fires earlier than expected, which causes the incorrect
logic function. The reason is that the (M − 2)th layer has
been defective in the manufacturing process. However, in our
architecture, we can power-gate the (M − 2)th layer that
caused the logic faults for the output spike and swaps the
bits in that layer to the (M − 1)th layer. It is because the
(M−1)th layer contains the less valued bits than the (M−2)th

layer. Assuming that the (M − 1)th layer does not affect
the outcome of the system. As a result, the output spike
fires correctly. Consequently, we could consider accepting the
manufacturing faults to increase the yield rate while reducing
a fraction of accuracy. It will be explained in Section IV.
In general, with D stacking memory layers, NASH-3DM

has T defective memory layers caused by the alternation
of output spikes and D − T unharmful layers. Therefore,
if we accept the defects in the manufacturing process, the
actual yield rate is improved as shown in the following
equation.

γD_layers =

D−T∏
i=0

γi (7)

For example, NASH-3DM has a total of D = 4 layers
with 3 stacking memory layers and it has two defective
memory layers that affect the output spikes. Normally, this
product is considered as not working. However, with our
architecture, we could accept and power-gate these defective
layers. Consequently, the faulty values become zeros and they
are treated as LSBs. The higher-valued bits are shifted to
other unharmful layers. As a result, NASH-3DMstill operates
with acceptable accuracy and the yield rate is improved.
By plugging in the numerical values into Eq.7, the resulting
actual yield rate is approximately Yactual ≈ 0.9025, rather
than 0.8145, thereby resulting in an enhanced overall yield
rate.
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FIGURE 5. Example of Leaky-Integrate-and-Fire operations of NASH-3DM with defective memory layer(s). (a) The LIF
of the NASH-3DM under one manufacturing-defected memory layer. (b) The LIF of NASH-3DM with power-gating the
manufacturing-defected memory layer.

In summary, we have presented an approach to improve
the low yield rate in 3D-IC-based SNN architecture. Further-
more, this mechanism can work as a fail-safe feature if new
faults are detected which allows the system to maintain its
operation under faulty situations.

IV. HARDWARE IMPLEMENTATION & EVALUATION
In this section, we perform the evaluation of the hardware
complexity of NASH-3DM. Afterward, the quantization is
evaluated in terms of power/energy and overall accuracy.
Next, we evaluate the accuracy under defective memory
layers before and after power-gating these layers. Finally,
we compare our proposed architecture with the existing
works. The proposed architecture was developed in Ver-
ilog, and the synthesis results and layout implementation
were extracted using commercial Cadence tools. In addition,
we use NANGATE CMOS 45nm open-cell library for ASIC
implementation, OpenRAM for the systemmemory, and TSV
from FreePDK3D45 for connecting between 3D layers.

To evaluate the power consumption, we use two image
datasets, which are MNIST dataset [39] and the CIFAR10
dataset [40]. For the MNIST dataset, we use an 8-bit SNN
structure consisting of 3 layers, which include one input layer,
one hidden layer, and one output layer, and we change the
size of the hidden layer. Hence, there are two settings for
this structure, which are 784:512:10 and 784:64:10. For the
CIFAR10 dataset, we use the VGG16 SNNmodel with 16-bit
synaptic weights. The accuracy evaluation of the SNNmodels
is based on off-chip learning. The images from the MNIST
dataset and CIFAR10 dataset were transformed into spikes

TABLE 1. Hardware complexity of NASH-3DM.

using rate coding with Poisson distribution. Please note that
the configuration of this SNN structure can also be changed
to different sizes and connections. In addition, the MNIST
and CIFAR10 were selected for this evaluation because it has
wide usage and provides a basic comparison with existing
works [2], [5], [37], [41], [42], [43], [44].

A. HARDWARE COMPLEXITY
In this paper, we implement our proof-of-concept architec-
ture with the NANGATE CMOS 45nm open-cell library
with the support of OpenRAM for memory technology and
FreePDK3D45 for TSV. Tab.1 shows the hardware area cost
of our synthesized NASH-3DM for the MNIST dataset with
64 neurons in the hidden layer. It is about 812.8KGEs (kilo
gate equivalents) at the operating frequency of 100MHz. Our

82384 VOLUME 11, 2023



N.-D. Nguyen et al.: In-Situ Dynamic Quantization With 3D Stacking Synaptic Memory

FIGURE 6. Energy Consumption and Accuracy of NASH-3DM for a prediction in different in situ dynamic quantization modes and different
timesteps. (a) The evaluation is for the MNIST dataset with the layer configuration of 784:64:10. (b) The evaluation is for the MNIST dataset
with the layer configuration of 784:512:10. (c) The evaluation is for the CIFAR10 dataset with VGG16 SNN model.

NASH-3DM uses 8 bits for synaptic weights. Moreover,
we split those synaptic weights into four memory layers
(m0,m1,m2,m3). The bit configurations of those layers are
2-bit, 3-bit, 1-bit, and 2-bit, respectively. The reason for this
kind of division choice is that we want to keep the generaliza-
tion of splitting weight bits by intentionally avoiding dividing
the synaptic weight equally into 4 memory layers. We would
like to note that the bit configurations are selected empirically
in our experiment. Designers of course could choose different
configurations (number of silicon layers, number of bits for
each weight, and number of bits of each weight in each silicon
layer); however, due to limited space and execution time,
we choose the above configurations as a proof-of-concept
work.

Specifically, the synaptic SRAM-based memory accounts
for the majority of the hardware area, comprising approxi-
mately 97%. It is because we use the same size of SRAM
in every memory layer even if the active bits in one layer
are smaller than the actual size of SRAM. It is necessary
to make space because it can use when switching defec-
tive layers, as mentioned in Section III-D. For the rest,
the processing elements including crossbar, controller, and
LIF neurons occupy 3% of the total hardware area of the
NASH-3DM.

B. POWER VS. ACCURACY
As stated in Section III-B, our hardware area cost is
unchanged with our in situ dynamical quantization approach.
However, power consumption and accuracy are affected by
switching the operation bits. Hence, we evaluate these trans-
formations based on time steps. In detail, we analyzed our
system’s accuracy and energy under 8-bit, 6-bit, and 5-bit
active operations for the MNIST dataset and 16-bit, 12-bit,
and 10-bit active operations for the CIFAR-10 dataset on
multiple time steps.

According to Tab.1, for the MNIST dataset, the 8-bit
active operation is equal to the normal operation of NASH-
3DM without power-gating any layers. Consequently, the
power-gating top memory layer is the 6-bit active operation
and the power-gating two top memory layers is the 5-bit
active operation. In the case of the CIFAR-10 dataset, we keep
the ratio of 16-bit synaptic operations as same as the 8-bit
operations in the MNIST dataset. Therefore, by power-gating
the top memory layer, the synaptic operations are based
on 12 active bits; by power-gating the two upper memory
layers, the synaptic operations are then based on 10 active
bits. The evaluation of accuracy and energy consumption
lasts from 50 to 250 timesteps for the MNIST dataset. For
CIFAR10, the evaluation is from 20 to 100 timesteps.
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As shown in Fig.6, for the MNIST dataset, the accuracy of
our 8-bit-active NASH-3DM at the 250th computing timestep
reaches 95.57% and 98.21% with the SNN configuration of
784:64:10 and 784:512:10, respectively. With the 5-bit active
operation, they drop by 0.93% and 1.14%, respectively. For
the CIFAR10 dataset, the accuracy of 16-bit active operation
is 91.38% at the 100th computing timesteps and it drops by
5.69% when switching to 10-bit active operation. This highly
suggests that there is a strong possibility for us to provide
low-power modes while accepting a trade-off in terms of
reduced accuracy.

In terms of energy, we evaluate the energy per prediction
time-step-by-time-step, as shown in Fig. 6. For the total
energy consumption with the same bit-width synaptic oper-
ation, the MNIST evaluation results increase from the 50th

timestep to the 250th one by 5.041-5.055× fold. Similarly,
the energy consumption with the VGG16 model increases
approximately 5 times from the 20th timestep to the 100th

one. On the other hand, those two energies with the MNIST
dataset are dropped significantly by 22.95% and 34.44% at
the 250th timestep when we turn off one and two memory
layers, respectively. For the CIFAR10 dataset, these numbers
are 24.54% and 36.67% at the 100th when we turn off one
memory layer and two memory layers, respectively.

In summary, our evaluation results with MNIST demon-
strate that our in situ dynamic quantization can reduce the
energy per prediction by 36.67% while suffering 0.93%-
1.14% of accuracy losses in 5-bit active operations with two
SNN configurations (784:64:10 and 784:512:10). By com-
bining with timesteps reduction, we can further reduce
87.04%, and 60.73% of energy reduction per prediction while
suffering 7.2% and 1.18% for 5-bit active operation with
SNN configuration of 784:512:10 in 50 and 150 timesteps,
respectively. Our in situ dynamic quantization method has
shown an excellent energy reduction ability.

C. YIELD RATE VS. ACCURACY
In this section, we evaluate the accuracy transformation
under the defected probabilities according to three yield rates
(0.905, 0.9905, and 0.99905). Assuming that the defective
layer causes the stuck-bit event in the logic function of
transistors and these defects have a uniform distribution.
Therefore, the probability of the fault appearing in mem-
ory layers is equal to 0.095, 0.0095, and 0.00095, respec-
tively. In this case, we use Monte Carlo simulation with
1,000 samples to get the average accuracy and its min-max
values. The accuracy is evaluated with only the MNIST
because it takes a long run time for CIFAR10with the VGG16
SNN model. Hence, we use two SNN configurations for
MNIST, which are 784:512:10 and 784:64:10.

As shown in Fig.7 and Fig.8, we illustrate the accu-
racy of NASH-3DM with three different fault probabilities,
the normal accuracy and the accuracy with power-gating
the defected memory layer. With the SNN configuration of
784:64:10, the worst-case accuracies for three yield rates
(0.905, 0.9905, and 0.99905) at the 350th are 95.25%,

FIGURE 7. Accuracy of NASH-3DM (784:64:10) for MNIST dataset with
different yield rates.

FIGURE 8. Accuracy of NASH-3DM (784:512:10) for MNIST dataset with
different yield rates.

95.37%, and 95.41%, respectively. Compared to the 8-bit
operation without any defect, the accuracy reduces subse-
quently by 0.42%, 0.3%, and 0.26%. With the SNN con-
figuration of 784:512:10, the worst-case accuracies change
to 97.99%, 98%, and 98.04%, which reduce 0.32%, 0.31%,
and 0.27% compared to the normal operation. However,
when power-gating the defective memory layer, the accura-
cies in both SNN configurations (784:64:10 and 784:512:10)
gain 0.21%-0.37% and 0.24%-0.29%, respectively. There-
fore, we could accept the defective memory layer to improve
the yield rate of 3D design while suffering a fraction of accu-
racy. Applying the numbers to Eq.6 and Eq.7, we improve
the yield rate by about 0.0009-0.0638 with three assumptions
(0.905, 0.9905, and 0.99905).

On the other hand, throughout all the computation time,
we could observe that the accuracy starts to saturate around
100 timesteps. The impact on accuracy caused by defective
synaptic weights in the early timesteps has a bigger impact
than in the late timesteps. For example, as shown in both Fig.7
and Fig.8, at the timestep of 50, the original accuracy without
any defects or noise is lower than other defective ones. The
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TABLE 2. Comparison results between the proposed architecture and existing works.

reason is that we use rate coding in this evaluation and the
number of timesteps affect the precision of the information
transmitted between neurons. With more timesteps, the infor-
mation becomes more detailed which leads to better accuracy
and less noise impacts.

D. COMPARISON
In this section, we compare our hardware architecture with
other existing works [2], [5], [10], [37], [44], as shown
in Tab.2. We chose two SNN configurations which are
fully-connected layers (784:64:10) for the MNIST dataset
andVGG16 for the CIFAR10 dataset. For theMNIST dataset,
we use the fixed 8-bit SRAMs for synaptic weights. For
the CIFAR-10 dataset, we use the fixed 16-bit SRAMs for
synaptic weights. Hence, we evaluate our architecture with
three scenarios. They are the normal operations, the opera-
tions without the power supply for the top memory layer, and
the operations without the power supply for the two upper
memory layers.

Regarding accuracy, the evaluation reveals that our system
achieves 95.57% in accuracy when applied to the MNIST
dataset using an 8-bit operation. For the 5-bit operations,
the accuracy drops by 0.93% compared to the 8-bit one.
On the other hand, with the CIFAR10 dataset, our NASH-
3DM achieves an accuracy of 85.68% and 91.38% with
the 10-bit active operation and 16-bit active operation,
respectively.

In relation to power consumption, we evaluate our work
against others using the parameter of energy per synaptic
operation. To account for the technology gap, we employ
the scaling equation proposed by Stillmaker and Baas [45]
to downscale the 14-nm technology node. The results,

as presented in Tab.2, demonstrate that our hardware con-
sumes 244.08pJ, 188.04pJ, and 160.01pJ for the MNIST
dataset at the 45-nm technology node, utilizing 8-bit, 6-
bit, and 5-bit active operations over 350 timesteps, respec-
tively. When considering the CIFAR10 dataset, the energy
per synaptic operation changes to 300.96pJ, 358.58pJ, and
475.20pJ for 10-bit, 12-bit, and 16-bit active operations.
After scaling down to the 14-nm technology, our energy per
synaptic operation achieves values of 9.18pJ, 10.79pJ, and
14.01pJ for the MNIST dataset accordingly. For CIFAR10
dataset, the numbers change to 17.27pJ, 20.58pJ, and
27.27pJ. Here, we could notice that CIFAR-10 implementa-
tion uses more energy per synaptic operation than MNIST
because they utilized more bits in the synaptic weights
(16 bits vs 8 bits) and in the in-situ dynamic quantization
(10, 12, and 16 bits vs 5, 6 and 8 bits).

Compared to other works, our energy consumption has
bigger values. It is because we design our memory layer
to have the same size as SRAM to cover the defect from
manufacturing, which causes extra power consumption.
However, these evaluations indicate that our architecture,
featuring 3D stacking memory, offers a notable benefit in
terms of lowering energy consumption during the transition
between operating modes.

V. CONCLUSION
In this paper, we have proposed a spiking computing pro-
cessor with 3D-IC-based stacking synaptic memory named
NASH-3DM and implemented it as a proof-of-concept sys-
tem. The proposed architecture aims to the edge applications
which their power supply tends to decrease over the operat-
ing time. With the 3D stacking memory, the neuromorphic
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system can turn on/off the power supply of one or multiple
metal layers inside it based on the power source. As a result,
it canmaintain a graceful degradation in accuracywhile offer-
ing a low-power operation mode in power-hungry situations.
In addition, our architecture could improve the yield rate by
power-gating the defective memory layer(s). It is acted as a
fail-safe feature of our hardware system against manufactur-
ing defects. The defective layer(s) will be power-gated and
the operating bits in that layer will be shifted to the upper
memory layer(s). The reason is that the less important bits in
the upper layers can be discarded and replaced by the more
important bits in the lower layer(s). As a result, the defective
hardware is able to continuously operate by reducing a small
fraction of accuracy, which leads to yield improvement.

However, our proposed work still has some drawbacks.
First, the combination of splitting weight bits is sub-optimal.
It is because there are many combinations to divide synap-
tic weights. To address this problem, our future works will
investigate the optimization algorithms such as Genetic Algo-
rithms or Particle Swarm Optimization. Second, adding more
low-power techniques (e.g., voltage-scaling, clock-gating)
can further improve this work. Hence, one of our future works
will be a combination of our quantization with lowering the
memory voltage to further reduce the power consumption
and the integration of large-scale systems using Network-on-
Chips. Third, the 3D stacking SRAM used in this paper is
only one of many memory types and our proposed architec-
ture is able to work with any types of memory. In the future,
we will investigate and implement other memory technolo-
gies such as 2D SRAM, ReRAM, and go on, to evaluate their
power consumption in our system. Furthermore, we would
like to investigate our yield improvement mechanism as a
fail-safe future with the help of fault detection or testing.
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