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ABSTRACT Accurately forecasting crude oil prices is challenging due to market noise and non-stationarity.
To address these challenges, we propose a forecasting framework that incorporates variational mode
decomposition (VMD), time-series imaging, and bidirectional gated recurrent unit network (BGRU). Our
approach eliminates additional assumptions and auxiliary data. First, the raw data are preprocessed through
normalization, followed by decomposing multiple stationary sub-series through VMD. Subsequently, three
time-series imaging techniques, recurrence plot (RP), Gramian angular field (GAF), and Markov transition
field (MTF), are employed respectively to transform the sub-series into two-dimensional images. A con-
volutional neural network (CNN) is then used to extract features from these images. Finally, the extracted
features are fed into BGRU for prediction and the Adam optimizer is used to train models. Experimental
evaluations are conducted using a dataset from the U.S. Energy InformationAdministration (EIA), consisting
of the weekly spot prices free on board (FOB) of the West Texas Intermediate (WTI) crude oil, spanning
from June 19, 1998, to May 12, 2023. Results demonstrate that all three models constructed following
our approach outperform benchmark methods. Specifically, our VMD-RP-BGRU model achieves the best
forecasting performance withMAE=2.429, MSE=10.94, MAPE=2.94%, and R-squared=0.9418. The model
exhibits reductions of 21.64%, 23.15%, and 36.46% inMAE,MSE, andMAPE, respectively, compared to the
seasonal autoregressive integrated moving average (SARIMA) model, and reductions of 21.18%, 22.70%,
and 36.08% compared to the Holt-Winters exponential smoothing (HWES) model. Our study contributes
to the advancement of crude oil price forecasting techniques and supports informed decision-making in the
energy sector.

INDEX TERMS Crude oil price forecasting, deep learning, variational mode decomposition, time-series
imaging, bidirectional gated recurrent unit.

I. INTRODUCTION
Crude oil is one of the essential energy sources for modern
industrial production and transportation, often referred to as
the ‘‘lifeblood of industry.’’ With the globalization of the
economy and financial markets, fluctuations in crude oil
prices impact global economic stability and development.

The associate editor coordinating the review of this manuscript and

approving it for publication was Akin Tascikaraoglu .

According to the International Energy Agency (IEA), crude
oil constituted 30.9% of the global total energy supply in
2019, establishing it as the largest primary energy source [1].
Fluctuations in crude oil prices can significantly affect global
economic stability. For instance, the 2008 global financial cri-
sis was exacerbated by the sharp increase in crude oil prices,
which reached a peak of $145.31 per barrel in June 2008 [2].
The surge in oil prices contributed to the economic downturn
by reducing consumer spending and increasing production
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costs. Conversely, the drastic year-over-year decline of 31.9%
in crude oil prices in 2014 imposed notable economic hard-
ships on oil-exporting nations, thereby impeding their fiscal
stability and prospects for development [3]. Therefore, accu-
rate forecasting of crude oil prices is of significant importance
for energy policy formulation, risk management, and invest-
ment decision-making [4], [5].
The main characteristics of crude oil price time series

data are non-stationarity, non-linearity, and high volatility [6].
Various unstable factors, including economic conditions,
political events, and trader expectations, exert influence on
oil prices [7]. All of these factors make accurate price pre-
diction challenging and pose significant difficulties in fore-
casting. Traditional methodologies for time series analysis,
such as moving average (MA), exponential smoothing (ES),
and autoregressive integrated moving average (ARIMA) [8],
have proven inadequate in achieving satisfactory predictions.
With advancements in computer technology, deep learn-
ing methods have been successfully applied to forecasting
crude oil price time series, particularly recurrent neural
networks (RNN) [9], long short-term memory (LSTM)
[10], [11], [12], [13], [14], [15], and gated recurrent unit
(GRU) [16], [17]. Leveraging their strong capabilities in
handling substantial volumes of data and capturing non-
linear relationships, deep learning models outperform their
linear counterparts in predicting crude oil prices. However,
the persistent non-stationarity exhibited by crude oil prices
continues to negatively impact the predictive performance
of deep learning models, indicating the need for further
enhancement. Furthermore, historical time series encompass
a multitude of implicit features, and recurrent neural network
models face certain limitations in uncovering these latent
features, thus necessitating the exploration of more effective
methodologies.

To overcome these challenges and improve the accuracy
of crude oil price forecasting, we propose a novel forecast-
ing framework that combines variational mode decomposi-
tion (VMD), time series imaging, and deep learning. Our
approach is entirely data-driven, without any assumption or
additional search for auxiliary data potentially related to
crude oil prices. Specifically, our framework consists of the
following five steps: 1) Data preprocessing: The original data
are standardized by division to reduce the influence of scale
variance in the time series. 2) Decomposing subsequences by
the VMD: The non-stationary time series is decomposed into
simple, stationary intrinsic mode function (IMF) series with
certain periodic patterns. 3) Time series image generation:We
employ three time series imaging techniques, Recurrence Plot
(RP), Gramian Angular Field (GAF), and Markov Transition
Field (MTF), respectively, to transform the one-dimensional
IMF series into two-dimensional images, which reveal more
features of these series and facilitate subsequent processing
by Convolutional Neural Network (CNN). 4) Image feature
extraction using CNN: By leveraging the powerful compu-
tational vision capabilities of CNN, we extract and utilize

the hidden features embedded in the time series, avoiding
the need for manually collecting additional auxiliary data.
5) Forecasting through Bidirectional Gated Recurrent Unit
Network (BGRU): We employ the BGRU module to extract
information from both the forward and backward directions,
train the model, and obtain the final prediction results.

Our primary contributions can be summarized as follows:
(1) The originality of this study lies in the proposal of

three new hybrid forecasting models, namely VMD-RP-
BGRU, VMD-GAF-BGRU, and VMD-MTF-BGRU, based
on different time series imaging techniques. These models
integrate the advantages of VMD, time series imaging,
CNN, and BGRU. We applied the proposed methods to
publicly available West Texas Intermediate (WTI) crude
oil price data to evaluate their performance. Comparative
experimental results demonstrate that our proposed VMD-
RP-BGRU model achieves the best prediction performance,
followed by VMD-MTF-BGRU and VMD-GAF-BGRU.
Specifically, VMD-GAF-BGRU, VMD-MTF-BGRU, and
VMD-RP-BGRU exhibit a MAE reduction of 21.64%,
23.15%, and 36.46% compared to the SARIMA model, and
21.18%, 22.70%, and 36.08% compared to the HWESmodel,
respectively.

(2) We have, for the first time, employed the time series
imaging technique to analyze the time series of crude
oil prices. By transforming one-dimensional subseries into
two-dimensional image matrices, additional feature informa-
tion embedded in the sequence is revealed, thereby enhancing
the performance of crude oil price forecasting. Ablation
experimental results demonstrate a significant improvement
in the predictive performance of the crude oil price time series
through the use of Recurrence Plot (RP) time series imaging
compared to other ablation experiment benchmarks. Specif-
ically, after employing the RP time series imaging method,
there was a reduction of 27.51% in MAE, 41.62% in MSE,
and 24.29% in MAPE, while the coefficient of determination
R2 increased by 4.61%.

(3) Our study expands the research on crude oil price
forecasting and enhances the theoretical framework of deep
learning-based time series prediction methods, thereby con-
tributing to the field. Moreover, our approach proves to be
effective and holds the potential to provide valuable guid-
ance to energy policy-makers, macroeconomic regulators,
and investors.

While our approach shows promising results, it is
important to acknowledge its limitations. Currently, our
methodology solely relies on univariate analysis and does not
consider the influence of other significant factors or exoge-
nous variables. However, to further enhance the accuracy
of predictions, future research endeavors can explore the
incorporation of additional variables, such as news media and
search engine data.

The subsequent sections of this paper are structured as
follows. Section II provides an overview of the related
work in crude oil price forecasting. Section III presents the
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methodology proposed in this study. Section IV substantiates
the effectiveness and superiority of our proposed approach
by means of comparative analyses with existing methods and
ablation experiments. The last section provides a summary
and conclusion for the paper.

II. RELATED WORK
Developing an accurate prediction method to forecast future
price fluctuations in the oil market has consistently been a
focal point for investors. Traditional statistical techniques
offer various models for time series analysis, such as the
autoregressive moving average (ARMA) model [8] and the
autoregressive integrated moving average (ARIMA) model
(see [8], [18], [19]). For example, [20] applied the ARIMA
technique to forecast oil prices and observed reasonable
predictions for the annual average oil prices worldwide.
However, these statistical methods rely on assumptions of
stationarity and linearity, rendering their performance inade-
quate when applied to non-stationary and chaotic forecasting
of crude oil prices.

To address the non-stationarity, extreme irregularity, and
multiscale variability of crude oil prices, an increasing
number of studies have adopted a sequence decomposition
approach. This approach decomposes the original time series
data into several fixed components using various decom-
position techniques, which often exhibit certain stationarity
and regularity. The main decomposition methods include
empirical mode decomposition (EMD) [21] and its vari-
ants [22], [23], [24], wavelet analysis [25], and VMD [26].
Reference [27] utilized the ensemble empirical mode decom-
position (EEMD) combined with extreme learning machines
(EELM) to predict spot prices of crude oil. Using a dataset of
crude oil spot prices of West Texas Intermediate (WTI), their
proposed EEMD-EELM-ADDmodel demonstrated the high-
est prediction accuracy, which was statistically confirmed
by the Diebold-Mariano (DM) test with a 90% confidence
level. In another study, [28] constructed a hybrid model
consisting of complete ensemble empirical mode decompo-
sition (CEEMD), support vector machines (SVM), particle
swarm optimization (PSO), and Markov-switching general-
ized autoregressive conditional heteroskedasticity to more
effectively capture the nonlinearity and volatility of crude oil
price time series. Using daily closing prices of WTI crude
oil, their hybrid model achieved a MAE of 0.042, RMSE of
0.053, and MAPE of 0.057, outperforming SVM-PSO and
MS-GARCH models. Reference [29] introduced a new fore-
casting approach for oil price prediction by combining VMD,
LSTM networks, and a moving window strategy, known
as the VMD-LSTM-MW model. Using monthly WTI data,
their proposed model exhibited significantly better MAPE
compared to the VMD-GA-SVM model, EEMD-GA-SVM
model, GA-SVM model, and ARIMA model, with relative
improvements of 35.39%, 40.16%, 72.06%, and 67.23%,
respectively. Additionally, [30] utilized an improved com-
plete ensemble empirical mode decomposition with adaptive

noise (ICEEMDAN)method to decompose the original crude
oil futures price series into a set of subseries and recon-
structed them into high-frequency, low-frequency, and trend
components using permutation entropy (PE). Their proposed
ICEEMDAN-PE-EMD-PSR-CSSA-KELM model achieved
significant reductions of 52%, 49.8%, and 44.8% in MAE,
MAPE, and RMSE, respectively, in one-step ahead fore-
casting for Brent crude oil futures prices compared to the
PSR-KELM model. Furthermore, [31] proposed two hybrid
predictors based on RNN, employing VMD, sample entropy
(SE), and GRUs for oil price prediction. Using the WTI
dataset, their VMD-SE-GRU framework exhibited a RMSE
of 0.6735, MAE of 0.4585, MAPE of 0.8059, and an R2 value
of 0.9272.

With the development of artificial intelligence (AI),
machine learning models are increasingly being used for time
series forecasting. Themainmachine learningmodels include
LSTM (see [12], [29], [32]) and GRU (see [31], [33]). Com-
pared to traditional statistical techniques, AI-based models
do not require any assumptions about the data distribution.
They possess good generalization and self-learning abilities,
leading to a significant improvement in forecasting accu-
racy. For example, [34] proposed a hybrid method combining
LSTM and GRU architectures for crude oil price forecast-
ing and addressed challenges such as long-term dependen-
cies, overfitting, and hyperparameter tuning. Experimental
results using daily crude oil price data demonstrated that
their hybrid model slightly outperforms the individual LSTM
and GRU models. Reference [35] proposed a new hybrid
forecasting technique based on local mean decomposition
(LMD), ARIMA and LSTM models to improve the accu-
racy of crude oil price forecasting. Experimental results
using WTI crude oil price data showed that their LMD-SD-
ARIMA-LSTMmodel achieves anMAE of 0.106 andMAPE
of 1.124. Reference [36] proposed a text-driven crude oil
price forecasting method based on CNN and LSTM, which
uses text information from various sources such as social
media, news and expert comments to capture the impact
of market sentiment and expectations on crude oil price
fluctuations. Results indicated that the SVR model incor-
porating text and financial features outperforms the model
using only financial features, with improvements of 6.67%
and 2.5% in MAE and RMSE, respectively. Reference [37]
proposed a learning paradigm that combines the trajectory
similarity (TS) method, VMD, and sample entropy (SE) to
forecast nonlinear and highly volatile crude oil price series,
and achieved better performance than benchmarks by using
LSTM networks and ARIMA models. For the Brent dataset,
the MAPE of their TS model was reduced by 45.66%,
59.55%, 55.12%, 44.08%, and 30.07% compared to Snaive,
SVR, ELM, ANN, and LSTM, respectively. Unlike previous
deep learning models that assumed unidirectional relation-
ships in time series data, the BGRU method enhances model
performance by extracting information from both forward
and backward directions [38]. For example, [39] integrated
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news sentiment analysis, variational mode decomposition,
attention mechanism, and BGRU for oil price forecasting,
improving forecasting performance by capturing both qual-
itative and quantitative information. Experimental results
using dailyWTI crude oil futures price data demonstrated that
their FinBERT-VMD-Att-BiGRU model achieves an RMSE
of 0.0077 and MAE of 0.0049 for one-step ahead prediction.

In recent years, there have been significant advancements
in computer vision technologies, which are gradually finding
applications in the field of forecasting. One emerging area of
research involves utilizing deep learning architectures with
imaging techniques for time series forecasting. However, the
utilization of time series imaging methods in the domain
of crude oil price forecasting remains relatively unexplored.
Time series imaging has proven to be an effective approach
for analyzing time-dependent data and has demonstrated
its efficacy in various domains, including tourism demand
forecasting [40], drought prediction [41], and residential
electricity consumption forecasting [42]. These studies have
provided evidence of the ability of time series imaging to
enhance prediction accuracy. Specifically, combining time
series imaging with CNN can fully leverage the advantages of
CNN in computer vision processing and enhance the accuracy
of time series forecasting.

In view of this, this study takes into account the
non-stationarity and complex variations of crude oil price
fluctuations. By integrating VMD, time series imaging tech-
niques, CNN, and BGRU, this study aims to fully leverage the
strengths of VMD in non-stationary sequence decomposition,
time series imaging in feature representation, CNN in image
processing, and BGRU in sequence data handling. Through
comparative experiments, the superiority of the proposed
forecasting framework is demonstrated.

III. METHODOLOGY
A. METHODOLOGICAL FRAMEWORK AND PRINCIPLE
Fig. 1 illustrates the comprehensive framework of the
methodology proposed in this research. The methodol-
ogy comprises five components: 1) Data preprocessing;
2) Decomposing subsequences by the VMD; 3) Time series
image generation; 4) Image feature extraction using CNN;
5) Forecasting through BGRU.

In the data preprocessing stage, the raw time series data are
transformed into the required format for subsequent model-
ing using a normalization method, eliminating the prediction
challenges caused by scale variance. Since crude oil prices
exhibit continuous fluctuation and are non-stationary time
series, the VMD component is used to decompose multiple
subsequences used for forecasting the crude oil price in the
next period. Each subsequence is decomposed into a set of
IMF series that exhibit certain periodic patterns.

In the time series image generation module, the
one-dimensional IMF sequence is transformed into two-
dimensional image data using time series imaging techniques.
This transformation is crucial for revealing the relationship
between observations with different time lags in the IMF.

It captures the temporal correlations and patterns of various
components of crude oil prices series in response to environ-
mental factors, which are helpful for forecasting future price
changes.

In the next section, leveraging the powerful computer
vision processing capability of CNN, features from each time
series image are gradually extracted using convolutional ker-
nels, capturing local feature information. Subsequently, the
dimensionality of the results from the convolutional layers is
reduced through pooling layers. This aims to retain essential
information while reducing computational complexity. Addi-
tionally, it helps prevent overfitting and improves the model’s
generalization ability. Finally, the features extracted by the
CNN module are transformed into the input format required
by the BGRU network through fully connected layers.

The last module is the BGRU network, which consists of a
two-layer GRU network that is trained simultaneously in both
forward and backward directions along the time sequence.
The outputs from both directions are then concatenated and
fed into an output layer. As proposed by [43], time series
data are bidirectional, meaning that the current state reflects
the past state and forms the basis for the future state. There-
fore, BGRU is more advantageous in capturing the long-term
correlations of time series observations as a whole. The
CNN-BGRUmodel is trained using the Adam optimizer with
the objective of minimizing MSE to obtain the predictive
model for forecasting future crude oil prices.

In summary, in our proposed method, the strengths of
VMD in non-stationary sequence decomposition, time series
imaging in feature representation, CNN in image processing,
and bidirectional GRU in sequence data handling are fully
leveraged.

B. THE SPECIFIC PROCESS OF THE METHOD
The detailed expansion of the steps shown in Fig. 1 is
described below.

1) DATA PREPROCESSING
To accurately forecast crude oil prices, our prediction model
must capture both the global and local variations inherent
in the time series data. The global variation primarily arises
from scale (or level) variance, while the local variation is
characterized by local nonlinear trends that encompass recur-
ring patterns and temporary relationships. Deep learning
models have strong nonlinear fitting capabilities and can
effectively capture and model local variations in time series.
However, they often encounter challenges when dealing with
scale variance. By eliminating scale variation, deep learning
models can fully utilize their nonlinear fitting capabilities,
outputting improved forecasts.

In this paper, we employ a division-based method known
as scale normalization for preprocessing the raw data. Scale
normalization involves dividing the current value by the pre-
vious value, as denoted by the equation:

xt =
yt
yt−1

, (1)
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FIGURE 1. Methodology framework.

where yt represents the crude oil price at the current time,
yt−1 represents the crude oil price at the previous time, and
xt represents the normalized value of the time series at the
current time. The normalized series of crude oil prices can be
represented as a vector

x = (x1, x2, · · · , xt) . (2)

We forecast the future value xt+1 using multiple historical
subsequences in x. Each subsequence is defined with a length
referred to as the ‘‘image size’’ (denoted as M ). A subse-
quence used for predicting xt+1 can be represented as:

st = (xt−M+1, · · · , xt−1, xt) . (3)

2) DECOMPOSING SUBSEQUENCES BY VMD
Let f (t) represent an original sequence that undergoes
decomposition using the VMDmodule, generatingK decom-
posed signals, i.e., IMF series. VMD is an adaptive and
fully non-recursive method for mode variation and signal
processing. This technique has the advantage of determin-
ing the number of mode decompositions. Its adaptability
is demonstrated by determining the appropriate number of
mode decompositions based on the specific situation of the

given sequence. Subsequently, in the search and solving pro-
cess, it can adaptively match the optimal center frequency
and finite bandwidth for each mode and effectively separate
the IMFs, thus obtaining the effective decomposition compo-
nents of the given signal. For a detailed explanation of the
principles of VMD, please refer to [44].
Let {uk} = {u1, u2, . . . , uK } and {ωk} = {ω1, ω2, . . . , ωK }

represent the k-th decomposed signal and the center fre-
quency of the signal, respectively. λn denotes the noise
tolerance in the n-th iteration calculation, which is used
to satisfy the fidelity requirement of signal decomposition.
ûnk (ω), f̂ (ω) and λ̂n (ω) correspond to the Fourier transforms
of unk (ω), f (ω) and λn (ω) in the n-th iteration calculation,
respectively. The main steps of VMD are as follows:
Step 1. Let n = 0. Initialize {û1k}, {ω

1
k }, λ̂1 and the max

number of iterations N .
Step 2. For each mode, update ûnk and ωn

k using the follow-
ing equations:

ûn+1k (ω) =
f̂ (ω)−

∑
i<k û

n+1
i (ω)−

∑
i>k û

n
i (ω)+λ̂n(ω)/2

1+ 2α
(
ω − ωn

k

)2 ,

(4)
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ωn+1
k =

∫
∞

0 ω

∣∣∣ûn+1k (ω)
∣∣∣2dω∫

∞

0

∣∣∣ûn+1k (ω)
∣∣∣2dω

. (5)

Step 3. For each iteration, update λn by the following
equation:

λ̂n+1(ω) = λ̂n(ω)+ τ
[
f̂ (ω)−

∑
k
ûn+1k (ω)

]
. (6)

Step 4. If
∑

k

(
||ûn+1k − ûnk ||

2
2/||û

n
k ||

2
2

)
< ε and n < N

are not satisfied, return to Step 2; otherwise, complete the
iteration and output the final {uk} and {ωk}.
In this paper, K IMF series obtained from the decomposi-

tion of the subsequence st can be represented as:

V (st ,K )=


ut,11 ut,12 · · · ut,1M
ut,21 ut,22 · · · ut,2M
...

...
. . .

...

ut,K1 ut,K2 · · · ut,KM

=

vt,1
vt,2
...

vt,K

 . (7)

3) TIME SERIES IMAGE GENERATION
The CNN model has demonstrated significant advan-
tages in computer vision. However, when dealing with
one-dimensional IMF series, it becomes necessary to
employ time series imaging techniques to convert the
one-dimensional series into two-dimensional images. This
conversion allows for the mapping of temporal correla-
tions and patterns between each observation within the lag
order to pixels in the resulting images. Consequently, CNNs
are better equipped to recognize and learn these extracted
features, facilitating improved performance in analysis
tasks.

There are three commonly used time series imaging tech-
niques: recurrence plot (RP) (see [45], [46]), Gramian angular
field (GAF) [47], and Markov transition field (MTF) [47].
These techniques are capable of preserving the temporal and
spatial relationships inherent in the time series data, as well
as capturing essential characteristics such as periodicity and
trend. By leveraging these transformation methods, we can
effectively convert a complex time series analysis problem
into a more manageable image classification problem. This
conversion not only enhances the prediction accuracy but also
improves computational efficiency [40].
Let the vector X = (x1, x2, . . . , xn) denote the time series

to be processed. The computational processes of these three
techniques are as follows.

a: RECURRENCE PLOT (RP)
RP technique is widely used to visualize the periodicity of
trajectories in phase space, making it a valuable tool for
analyzing the periodicity, non-stationarity, and chaos present
in time series data. RP effectively captures the similarity and
stability of the internal structure of time series, making it
particularly suitable for analyzing short-term time series. The
output values of each pixel in the original RPmethod are only

0 and 1. The process is as follows: First, the time-domain
space of the time series is transformed into the phase space,
where each point xi in the time domain is transformed into
the corresponding state in the phase space:

ςi=
(
xi, xi+τ , . . . , xi+(µ−1)τ

)
, i=1, 2, . . . , n−(µ−1)τ,

(8)

where µ represents the dimension of the extracted trajectory,
and τ denotes the time delay. Next, the distance (vector
norm) between each pair of states is calculated, and threshold
binarization is performed to obtain an n × n recursive plot,
where the calculation formula for each point in the image
is:

gRPi1,i2 = 2
(
ε −

∥∥ςi1 − ςi2

∥∥)
, i1, i2 = 1, . . . , n, (9)

where ε is the distance threshold that makes gRPi1,i2 ∈ 0, 1, and
2(·) represents the Heaviside function.

b: GRAMIAN ANGULAR FIELD (GAF)
GAF technique utilizes the Gramian matrix and polar coordi-
nate system to transform time series data into visual represen-
tations in the form of images. This encoding process enables
the images to effectively capture the temporal correlation
present within different time intervals. The calculation pro-
cess for GAF is as follows: First, normalize X to the interval
[−1, 1] to obtain X̃, where the formula for calculating the i-th
element is:

x̃i =
2xi −max (X)−min (X)

max (X)−min (X)
. (10)

Then, X̃ is represented in polar coordinates based on the
following formulas: ϕi = arccos (x̃i)

ri =
i
C

, i = 1, 2, . . . , n, (11)

where C is the constant factor used to regularize the span
of the polar coordinates. Finally, the sequence represented
in polar coordinates is transformed into a two-dimensional
image of size n × n, where the calculation formula for each
point in the image is:

gGAFi1,i2 = sin
(
ϕi1 − ϕi2

)
, i1, i2 = 1, 2, . . . , n. (12)

The resulting image effectively captures the temporal corre-
lations within different time intervals.

c: MARKOV TRANSITION FIELD (MTF)
The fundamental concept behind the MTF technique is to
convert time series data into image format using a Markov
state transition matrix based on quantile bins. By preserving
the temporal information within the sequence, the Markov
transition probability captures the changes in the quantile bin
to which the observed values belong. The calculation process
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FIGURE 2. Representative cases of RP, GAF, and MTF images.

for MTF is as follows: First, divide X into Q quantile bins to
obtain B1,B2, . . . ,BQ. Then, calculate{

wq1,q2=P
(
xi−1∈bq1 |xi∈bq2

)∑
q2
wq1,q2 = 1,

q1, q2 = 1, 2, . . . ,Q, (13)

to obtain a weighted adjacency matrix W =
(
wq1,q2

)
Q×Q.

Finally, a two-dimensional image of size n × n is obtained,
where the value of each point in the image is:

gMTFi1,i2 = wq1,q2 |
(
xi1 ∈ Bq1 , xi2 ∈ Bq2

)
,

i1, i2 = 1, 2, . . . , n; q1, q2 = 1, 2, . . . ,Q. (14)

By employing time series imaging techniques, the IMF
series from (7) can be transformed into images. Taking the
k-th IMF series as an example, the expression is as follows:

I#
(
vt,k

)
=



gt,k,#1,1 · · · g
t,k,#
1,m · · · g

t,k,#
1,M

...
. . .

...
. . .

...

gt,k,#m,1 · · · g
t,k,#
m,m · · · g

t,k,#
m,M

...
. . .

...
. . .

...

gt,k,#M ,1 · · · g
t,k,#
M ,m · · · e

t,k,#
M ,M


, (15)

where # represents a time series imaging method, # ∈
{RP,GAF,MTF}.

To provide a more intuitive representation of these three
types of images, we present typical examples of RP, GAF,
and MTF images in Fig. 2. In these images, lighter regions
correspond to higher values. It is apparent that applying
the same method to different types of curves or employing
different methods on the same curve leads to distinct images.
In Case 1, the time series exhibits periodic trends, and the
distribution of values in the three images clearly demon-
strates periodicity. The regularity of value distribution is more
pronounced in the GAF and RP images compared to the
MTF image, and there is a certain level of complementarity

between the GAF and RP images. In Case 2, the time series
exhibits an increasing trend with periodicity. The distribution
of values in the RP image demonstrates a periodic increasing
trend along the main diagonal axis, while the values in the
GAF image cyclically increase from the bottom-left to the
top-right. Conversely, the values in the MTF image exhibit
a periodic decreasing trend along the main diagonal axis.
In Case 3, the time series lacks any discernible pattern, and
the corresponding distributions of values in the three types of
images do not exhibit any regularity.

4) IMAGE FEATURE EXTRACTION USING CNN
We utilize CNN to extract features from the time series
images. The CNN model utilized in our approach consists of
only one convolutional layer and one pooling layer. A single
convolutional layer effectively detects features such as edges
and shapes in the images, while multiple convolutional layers
can introduce excessive complexity and redundancy, increas-
ing computational costs and the risk of overfitting. A single
pooling layer efficiently reduces the spatial dimensions of the
feature maps while preserving the most prominent features.
This helps to reduce the number of parameters and compu-
tations in the network and prevents overfitting by providing
a more abstract representation of the features. The use of
multiple pooling layers may result in the loss of important
information and excessive reduction in the resolution of the
feature maps. Therefore, employing a single pooling layer is
more appropriate for the current task.

Let S#
(
vt,k

)
represent a submatrix of I#

(
vt,k

)
with a shape

of f × f , where f denotes the size of the filter matrix in
the convolutional layer. We use grid search to determine the
optimal value of the filter size f . Specifically, we have:

S#
(
vt,k

)
f1,f2
=


gt,k,#f1,f2

· · · gt,k,#f1,f2+f−1)
...

. . .
...

gt,k,#(f1+f−1),f2
· · · gt,k,#(f1+f−1),(f2+f−1)

 ,

f , f1, f2 ∈ N+, f + f1, f + f2 ⩽ M + 1. (16)

The feature extraction process by the convolution kernel
weight matrix WCov ∈ Rf×f (i.e., the filter) yields a feature
ct,k,#f1,f2

, which is expressed as follows:

ct,k,#f1,f2
= 8

[
WCov ∗ S#

(
vt,k

)
f1,f2
+ bCov

]
, (17)

where 8 (·) is a nonlinear activation function, which is usu-
ally the rectified linear unit (ReLU) function defined as
Relu(x) = max (x, 0). We use the ReLU activation func-
tion because it can increase the nonlinearity of the neural
network, avoid the gradient vanishing problem that occurs
when using sigmoid or tanh activation functions, and lower
the computational cost of the neural network by only judging
whether the input is greater than zero without performing
exponential operations [48]. The asterisk symbol ∗ denotes
the convolution operation, and bCov represents the bias term
corresponding to each layer. Through (17), the convolution
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feature matrix C#
(
vt,k

)
is calculated as follows:

C#
(
vt,k

)
=

×



ct,k,#1,1 · · · ct,k,#1,f2
· · · ct,k,#1,(M−f+1)

...
. . .

...
. . .

...

ct,k,#f1,1
· · · ct,k,#f1,f2

· · · ct,k,#f1,(M−f+1)
...

. . .
...

. . .
...

ct,k,#(M−f+1),1 · · · c
t,k,#
(M−f+1),f2

· · · ct,k,#(M−f+1),(M−f+1)


.

(18)

Then, we apply pooling operation to the convolution fea-
ture matrix to further reduce the dimensionality and extract
salient features. Let the filter matrix size of the pooling layer
be denoted as p × p. The stride of the filter matrix in the
pooling layer is given by s, and the size of the feature matrix
after the pooling operation is D × D. We can express this
matrix as:

P#
(
vt,k

)
=



zt,k,#1,1 · · · z
t,k,#
1,d2
· · · zt,k,#1,D

...
. . .

...
. . .

...

zt,k,#d1,1
· · · zt,k,#d1,d2

· · · zt,k,#d1,D
...

. . .
...

. . .
...

zt,k,#D,1 · · · z
t,k,#
D,d2
· · · zt,k,#D,D


. (19)

Two calculation methods exist for performing the pooling
operation: average pooling and maximum pooling. The cor-
responding formulas are:

zt,k,#d1,d2
=

∑{
ct,k,#[1+(d1−1)s]:[p+(d1−1)s],[1+(d2−1)s]:[p+(d2−1)s]

}
/p2,

d1, d2 = 1, 2, . . . ,D, and (20)

zt,k,#d1,d2
= max

{
ct,k,#[1+(d1−1)s]:[p+(d1−1)s],[1+(d2−1)s]:[p+(d2−1)s]

}
,

d1, d2 = 1, 2, . . . ,D. (21)

In this paper, we implement the maximum pooling method.
We use the maximum pooling method because it can reduce
the dimensionality of images by extracting only the most
salient features of the data, increase the translation invariance
of the representation, lower the computational cost by reduc-
ing the number of parameters to learn, and prevent overfitting
by providing an abstracted form of the representation.

Flatten the obtained P#
(
vt,k

)
, and then obtain a

one-dimensional vector composed of D × D elements:
Z#
t,k =

(
zt,k,#1,1 , . . . , zt,k,#1,D , . . . , zt,k,#D,1 , . . . , zt,k,#D,D

)
. The

one-dimensional vectors obtained from above time series
imaging and CNN processing for each IMF series are spliced
together to form a fully connected layer. Hence, a new one-
dimensional vector composed of D × D × K elements is
generated as follows:

Z#
t = (zt,1,#1,1 , . . . , zt,1,#D,D , . . . , zt,2,#1,1 , . . . ,

× zt,2,#D,D , . . . , zt,K ,#
1,1 , . . . , zt,K ,#

D,D ). (22)

5) FORECASTING THROUGH BGRU
The number of subsequences used for training is defined
as the ‘‘Image Lag Period’’ and denoted by J . The out-
puts of the fully connected layer in the previous step
Z#
t−j+1, . . . ,Z

#
t−1,Z

#
t for j = 1, 2, . . . , J , are passed to a

BGRU network [33], with a structure illustrated in Fig. 3(a),
and a single cell of the network presented in Fig. 3(b). The
network consists of three parts: a reset gate, an update gate,
and a candidate hidden state. The computation formulas for
each component in Fig. 3(b) are as follows:

rt = σ
(
Wh,rht−1 +Wi,rIt + br

)
, (23)

ut = σ
(
Wh,uht−1 +Wi,uIt + bu

)
, (24)

h̃t = tanh
[
Wr,c (rt ⊗ ht−1)+Wi,cIt + bc

]
, (25)

ht = (1− ut)⊗ ht−1 + ut ⊗ h̃t , (26)

where rt , ut , and h̃t represent the reset gate, update gate, and
candidate hidden state, respectively. ht represents the hidden
state. The symbol⊗ denotes element-wise multiplication.W�
represents the weight vectors for each component, and b�
represents the bias terms for each component. The function
σ (x) = 1/[1 + exp(−x)] is the sigmoid function, and
tanh (x) = [exp(x) − exp(−x)]/[exp(x) + exp(−x)] is the
hyperbolic tangent function. Moreover, the term (1− ut ) ⊗
ht−1 determines the information to be retained in the previous
hidden state, and ut ⊗ h̃t determines the information to be
retained in the candidate hidden state.

From Fig. 3(a), it can be observed that the BGRU connects
the output state values of the hidden layer from the GRU in
two different directions, and the expression is given by:

Ht =
−→
h t ⊕

←−
h t , (27)

where
−→
h t and

←−
h t represent the forward and backward states

of the hidden layer in the GRU at the time t , the symbol ⊕
represents the concatenation operation, and Ht is the final
output value of the BGRU. Finally, after passing through the
fully connected layer, the output value can be obtained as:

x̂t+1 =WxHt + bx , (28)

whereWx and bx denote the weight and the bias term, respec-
tively, of the final fully connected layer.

Since the model is trained on normalized data, inverse
normalization operation is required to obtain the forecasted
value of the crude oil price at the next period, ŷt+1. The
formula is given as:

ŷt+1 = x̂t+1 × yt , (29)

where yt represents the actual crude oil price at the period t .

C. TRAINING OF THE CNN-BGRU MODEL
In this study, the CNN-BGRU model is optimized using the
Adam algorithm. The Adam algorithm is selected due to its
faster convergence and superior learning performance when
compared to other adaptive learning rate algorithms. More-
over, the Adam algorithm overcomes the limitations observed
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FIGURE 3. BGRU and its unit structure.

in alternative optimization techniques, such as unstable learn-
ing rates, slow convergence, and large fluctuations in the
loss function resulting from high-variable parameter updates.
For a comprehensive understanding of the Adam algorithm,
we refer readers to the work of Kingma and Ba [49].
We employ grid search to determine an optimal initial

learning rate, and use exponential decay to multiply the learn-
ing rate by 0.9 every 20 iterations. This approach accounts
for the changes in the training process, as a fixed learn-
ing rate may not effectively adapt. As training progresses,
a smaller learning rate becomes necessary to ensure con-
vergence to a good local optimum and prevent oscillation.
Exponential decay, a widely used method, allows the learning
rate to decrease exponentially with the number of iterations,
enabling smooth adaptation to the evolving training process.

We divide the training data into small batches of size
32 and calculate the loss function and gradient on each batch.
The choice of this batch size balances model performance
improvement and computational cost reduction. A smaller
batch size can increase the generalization ability of themodel,
avoid falling into local optima, and accelerates each iteration.
Conversely, a larger batch size may cause the model to con-
verge to sharp minima, which compromises generalization.
By selecting 32 as the batch size, we satisfy the memory
requirements of most CPUs and GPUs while maintaining a
suitable balance.

We set a maximum number of iterations to 800, which is
an empirical value that can achieve a balance between ensur-
ing model convergence and avoiding overfitting. Insufficient
iterations may result in underfitting, where the model fails
to fully capture the data’s underlying features and patterns.
Conversely, an excessive number of iterations may lead to
overfitting, causing the model to struggle with adapting to
new data. To address overfitting, we employ an early stopping
strategy. If the validation set’s loss function fails to improve
for 40 consecutive iterations, we halt the training process.

This adaptive approach dynamically adjusts the number of
iterations based on the model’s actual performance, prevent-
ing overfitting and unnecessary computations.

D. EVALUATION METRICS
To assess and compare the forecast performance of various
models, this study employs four evaluation metrics to gauge
the accuracy of the forecasts: absolute error (AEt ), mean
absolute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), and determination coef-
ficient R2. Smaller values of AEt , MAE, RMSE, and MAPE
indicate better forecast accuracy, with predicted values being
closer to actual values, and reflecting the high forecast per-
formance of the model. Conversely, a larger value of the
determination coefficient R2 suggests a better training result
of the model. The calculation formulas for these metrics are
provided below:

AEt =
∣∣ŷt − yt ∣∣ , (30)

MAE =
1
T

T∑
t=1

∣∣ŷt − yt ∣∣, (31)

RMSE =

√√√√ 1
T

T∑
t=1

(
ŷt − yt

)2
, (32)

MAPE =
1
T

T∑
t=1

∣∣∣∣ ŷt − ytyt

∣∣∣∣, (33)

R2 = 1−

∑ (
ŷt − yt

)2∑
(yt − ȳ)

, (34)

where ẏt , yt and ȳ represent the forecasted value, the actual
value, and the mean actual value, respectively.

To assess whether the proposed method exhibits superior
forecasting accuracy compared to a benchmark model from
a statistical perspective, we employ Diebold-Mariano (DM)
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FIGURE 4. Time series data of crude oil price.

test [50]. The null and alternative hypotheses for this test are
formulated as follows:

H0 : E
[
L

(
e1t

)]
= E

[
L

(
e2t

)]
, (35)

H1 : E
[
L

(
e1t

)]
̸= E

[
L

(
e2t

)]
, (36)

where L (·) is loss function of forecasting, e1t and e
2
t are the

forecasting errors of the two models. The null hypothesis
H0 posits that model 1 and model 2 have approximately the
same forecast performance, whereas the alternative hypoth-
esis H1 suggests that there is a significant difference in
forecasting accuracy between model 1 and model 2. The DM
test is calculated by

DM =

1
T

T∑
t=1

[
L

(
e1t

)
− L

(
e2t

)]
√
S2/T

S2, (37)

where S2 is an estimator of the variance
[
L

(
e1t

)
− L

(
e2t

)]
.

If DM < 0, the model 1 is superior to the model 2; otherwise,
the model 2 is superior to the model 1.

IV. EXPERIMENTS AND ANALYSIS
A. DATA
The time series data of international crude oil prices is
obtained from the U.S. Energy Information Administration
(EIA) website (https://www.eia.gov/dnav/pet/pet_pri_spt_
s1_w.htm). The dataset comprises weekly spot prices free
on board (FOB) of the Oklahoma Cushing (Cushing, OK)
WTI crude oil, spanning from June 19, 1998, to May 12,
2023. Table 1 presents the descriptive statistics of the dataset,
which consists of 1300 data points with a mean of 59.89 and

TABLE 1. Descriptive statistic.

a variance of 27.48. The range of values spans from 3.32 to
142.52. Fig. 4 (a) illustrates the line graph of the crude oil
price time series, while Fig. 4 (b) visualizes the normalized
series calculated using (1).

B. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTAL
DESIGN
The hardware environment for this experiment consists of
an Intel Xeon Platinum 8255C @ 2.50GHz CPU with
12 cores, an NVIDIA GeForce RTX 3090 GPU, and an
ubuntu20.04 systemwith 43GB ofmemory. The development
environment includes Python 3.8, Cuda 11.2, and TensorFlow
2.9.0.

The dataset from September 18, 1998, to March 8, 2019,
containing 1069 weeks, is chosen as the training set for
model training. The dataset fromMarch 15, 2019, to June 11,
2021, containing 118 weeks, is selected as the validation
set to determine the optimal hyperparameters. The dataset
from June 18, 2021, to May 12, 2023, containing 100 weeks,
is used as the testing set to evaluate the performance of the
model. During training, the maximum number of training
epochs is set to 800, batch size to 32, and the loss function
to MSE.

C. SELECTION OF HYPERPARAMETERS
The proposed models involve several hyperparameters,
including K , image size, image lag period, filter number,
kernel size, GRU units, and initial learning rate. In this
study, we utilize random grid search to determine the optimal
hyperparameters by conducting multiple experiments and
comparing the performance of the validation set. The selected
hyperparameters for the proposed forecasting models are
presented in Table 2.

D. RESULTS AND DISCUSSION
This section is divided into comparative experiments and
ablation experiments.

1) COMPARISON WITH EXISTING METHODS
The experiments conducted in this section compare the pro-
posed method with the following benchmark models. MA:
Moving Average model, ARIMA: Autoregressive Integrated
Moving Average model, SARIMA: Seasonal Autoregressive
IntegratedMoving Average model, and HWES: Holt-Winters
Exponential Smoothing model.
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TABLE 2. The architecture and the training hyperparameters of VMD-GAF-BGRU, VMD-MTF-BGRU and VMD-RP-BGRU proposed in this paper.

TABLE 3. Comparison with existing time series forecasting methods.

FIGURE 5. Evaluation of performance for different models.

• MA: The MA model is a widely employed technique
for smoothing time series data and reducing random
fluctuations. It calculates the moving average based on
past data to derive the forecasted value.

• ARIMA: The ARIMA model is a general and flexible
approach that can capture various patterns and structures
in time series data. By integrating autoregression (AR)
and differencing, the ARIMA model extends the capa-
bilities of the MA model, enabling the elimination of
seasonality and trends present in the data.

• SARIMA: The SARIMA model is suitable for data that
exhibits periodic or cyclical patterns over time. It is an
extension of the ARIMA model that takes into account
seasonal factors.

• HWES: The HWES model is a popular and robust
method that can handle data with both additive and mul-
tiplicative seasonality. By applying exponential smooth-
ing to historical data, the HWES model generates a
weighted average that effectively captures changes in
trends.

According to different time series imaging techniques
used, we propose three models: VMD-GAF-BGRU,

VMD-MTF-BGRU, and VMD-RP-BGRU, based on our
methodology. These models have the same components of
VMD and deep learning, but differ in their utilization of GAF,
MTF, and RP algorithms for generating time series images.
The experimental results, highlighting the best-performing
values in bold, are presented in Table 3. To facilitate an easier
comparison between the models, we provide Fig. 5. From
Table 3 and Fig. 5, the following can be observed:

In terms of MAE and MAPE metrics, the forecasting per-
formance ranking is: VMD-RP-BGRU≻VMD-MTF-BGRU
≻ VMD-GAF-BGRU ≻ HWES ≻ SARIMA ≻ ARIMA ≻
MA. In terms of MSE and R2 metrics, the forecasting per-
formance ranking is: VMD-RP-BGRU≻VMD-GAF-BGRU
≻ VMD-MTF-BGRU ≻ HWES ≻ SARIMA ≻ ARIMA ≻
MA. The symbol A ≻ B indicates that method A outper-
forms method B. In summary, based on any of the evaluation
metrics, our proposed VMD-RP-BGRU model demonstrates
the best predictive performance, followed by the VMD-MTF-
BGRU and VMD-GAF-BGRU models.

There are several possible reasons for the superior per-
formance of our proposed method, which combines VMD,
time-series imaging, and BGRU: 1) The nonlinearity and
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TABLE 4. The DM test results of the comparative experimental results.

FIGURE 6. Boxplot of comparative experimental results.

complexity of crude oil price data can be effectively
addressed by VMD, which decomposes the complex non-
linear signal into a set of basic mode functions representing
different frequency oscillatory components in the signal.
By decomposing the signal, local features and patterns can be
better captured, thereby improving the representation capa-
bility of the signal. 2) Time-series imaging leverages patterns
and trends from historical data for prediction. By combining
time-series imaging with VMD, modeling and prediction can
be performed on the basic mode functions obtained from
the decomposition, thereby capturing long-term dependen-
cies and trends of the signal more accurately. 3) Bidirec-
tional GRU utilizes both past and future context information,
enabling a more comprehensive capture of the nonlinear rela-
tionships in the time series data. By applying bidirectional
GRU to the prediction of the basic mode functions, it com-
bines the local features obtained from the decomposition
with the global dependencies, leading to improved prediction
accuracy.

HWES, SARIMA, ARIMA, and MA are commonly used
methods in time series forecasting. The possible reasons
for the differences in their forecasting performance are as
follows: 1) HWES and SARIMA exhibit stronger modeling
capabilities for trends and seasonality compared to ARIMA

and MA. HWES, through exponential smoothing, effectively
captures trend and seasonal changes in the data. It adapts
the smoothing parameter adaptively, better accommodating
trend and seasonal patterns in the data. In contrast, while
SARIMA can handle seasonal data, its modeling capabil-
ity may be limited when dealing with complex or irregular
seasonal patterns. 2) HWES smoothes the data through expo-
nential smoothing, eliminating some noise and reducing data
volatility. This helps extract trend and seasonal components
from the data, resulting in smoother prediction outcomes.
In contrast, SARIMA requires differencing operations when
dealing with noise and non-stationary data, and larger fluc-
tuations or noise may affect its forecasting performance.
ARIMA and MA are more suitable for modeling stationary
time series, and their forecasting performance may be rela-
tively poorer for non-stationary data.

We calculate the absolute errors of each model at differ-
ent points in the test set to facilitate statistical comparison.
We present boxplots of the absolute errors for each bench-
mark, as shown in Fig. 6. The solid orange line on each
box represents the median absolute error of the correspond-
ing model’s test points, while the dashed green line repre-
sents MAE. Further statistical analysis reveals the following
findings:

Firstly, VMD-GAF-BGRU, VMD-MTF-BGRU, and
VMD-RP-BGRU achieve reductions in MAE of 21.64%,
23.15%, and 36.46%, respectively, compared to SARIMA.
They also outperform HWES with reductions of 21.18%,
22.70%, and 36.08% in MAE, respectively. Moreover, these
three models demonstrate superiority over SARIMA in 61%,
62%, and 65% of cases, and outperformHWES in 58%, 64%,
and 65% of cases.

Secondly, all three of our proposed forecasting models
exhibit exceptional predictive performance. This is attributed
to the effective utilization of VMD’s advantages in han-
dling non-linear and non-stationary signals, the integration
of time series imaging and convolutional neural network
feature extraction, and the ability of BGRU to capture local
non-linear patterns in time series. Among the existing time
series prediction methods, SARIMA and HWES perform rel-
atively well. This may be attributed to their ability to capture
both the scale variations and seasonal patterns in time series.
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TABLE 5. Comparison of ablation experiments.

FIGURE 7. Evaluation of performance for different ablation benchmarks.

FIGURE 8. Boxplot of ablation experimental results.

To evaluate the superiority of our methodology, we con-
duct DM tests to determine whether the forecasting accuracy
of our proposed models is significantly superior to that of
benchmarks [51], [52], [53]. Table 4 presents the results of
theDM tests conducted on existing forecastingmodels.When
the p-value is greater than or equal to 0.05, the null hypoth-
esis is accepted (Accept H0, decline H1), indicating that the
two models have similar performances. When the p-value is
less than 0.05, the null hypothesis is rejected (Accept H1,
declineH0), indicating that the two models have significantly
different performances. It can be observed that, except for
the ‘‘VMD-MTF-BGRU v.s. SARIMA’’ comparison, which
does not meet the conditions to reject the null hypothesis (at a
10% confidence level), all other DM tests exhibit significance
at the 1% or 5% level. These results can strongly indicate

the significant superiority of our proposed methodology over
existing methods in general. Thus, our findings underscore
the effectiveness and advancement of our proposed method-
ology for forecasting crude oil prices.

2) ABLATION EXPERIMENTS
To illustrate the contributions of each component of the
proposed forecasting framework, we conduct ablation exper-
iments by removing certain parts of the best-performing
model, VMD-RP-BGRU. The constructed ablation experi-
ment benchmarks are as follows:
• VMD-RP-GRU: This model replaces the BGRU net-
work in VMD-RP-BGRU with a unidirectional GRU
network.

• RP-BGRU: This model directly performs time series
imaging without the VMD process, followed by CNN
and BGRU networks to generate the predictions.

• VMD-BGRU: This model decomposes the original sub-
sequences using VMD into multiple IMF series but
skips the time series imaging step, directly inputting
the IMF series into the BGRU network to generate the
predictions.

• VMD-RP: Thismodel performsVMD, time series imag-
ing, and CNN feature extraction operations, and then
directly outputs the predictions through a fully con-
nected layer.

• This model omits the VMD process, time series imag-
ing, and CNN feature extraction operations. Instead,
it directly trains the BGRU network on the original
subsequences to generate the predictions.

Table 5 presents the comparison results of the ablation
experiments, with the best-performing results highlighted
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TABLE 6. The DM test results of the ablation experimental results.

in bold. Fig. 7 provides a more intuitive visualization of
the predictive performance of different ablation benchmarks.
Similarly, we have plotted the boxplot of the absolute errors
of the ablation benchmarks at different points in the test set
in Fig. 8 for a more in-depth analysis.

From Table 5 and Fig. 7, it can be observed that removing
any component of our method leads to a decrease in predic-
tive performance. Through analysis of Fig. 8, the following
findings are obtained: (1) The MAE, MSE, and MAPE of
VMD-RP-BGRU are 27.51%, 41.62%, and 24.29% lower
than those of VMD-BGRU, respectively, and the R2 of VMD-
RP-BGRU is 4.61% higher than that of VMD-BGRU. This
indicates that the use of time series imaging (RP) signifi-
cantly improves the predictive performance of crude oil price
time series. (2) The MAE, MSE, and MAPE of VMD-RP-
BGRU are 24.13%, 41.85%, and 20.43% lower than those of
RP-BGRU, respectively, and the R2 of RP-BGRU is 4.65%
higher than that of VMD-BGRU. This indicates that the use of
VMD also significantly improves the predictive performance
of crude oil price time series. (3) The ablation benchmark
without using VMD or RP time series imaging, i.e., BGRU,
exhibits the worst predictive performance. (4) Introducing
the GRU network, particularly the BGRU network, signif-
icantly improves the prediction performance. Specifically,
using a GRU network (i.e., VMD-RP-GRU) reduces the
MAE,MSE, andMAPE of the model’s predictions by 8.66%,
20.09%, and 7.47%, respectively, with an R2 improvement of
2.22%, compared to VMD-RP. The adoption of BGRU net-
work (i.e., VMD-RP-BGRU) further reduces theMAE,MSE,
and MAPE of the model compared to using the GRU net-
work (i.e., VMD-RP-GRU) by 18.67%, 26.77%, and 15.8%,
respectively, and increases the R2 by 2.31%.
Based on Fig. 8 and further statistical analysis, we can

observe that in terms of absolute value errors, VMD-
RP-BGRU outperforms BGRU, VMD-RP, VMD-BGRU,
RP-BGRU, and VMD-RP-GRU in 85%, 85%, 90%, 82%,
and 82% of cases, respectively. This result further confirms
the necessity and rationality of the different components con-
structed in our proposed methodology.

In summary, from the perspective of MAE and MAPE,
the contribution of each component to improving predictive
ability can be ranked as follows: time series imaging+ CNN,
BGRU, and VMD.While in terms ofMSE andR2, the rank is:
VMD, time series imaging+CNN, and BGRU. These results
may arise from the varying sensitivity of different evaluation
metrics to the nature and biases of the predictions, leading
to different performances of the components across different

metrics. MAE and MAPE are absolute error metrics that are
more sensitive to the differences between predicted values
and true values.MSE andR2 are squared error metrics that are
more sensitive to the deviations and goodness of fit between
predicted values and true values. Specifically:

1) Time series imaging + CNN: By transforming time
series data into images and applying CNN for feature extrac-
tion and modeling, the patterns and trends in the time series
data can be better captured. This helps to reduce the absolute
error between predicted values and true values, thus lowering
MAE and MAPE.

2) BGRU: BGRU can capture the long-term dependencies
and contextual information in time series data. By utilizing
both past and future context, BGRU provides a more com-
prehensive data representation, improving the accuracy of
predictions and reducing MAE and MAPE. However, BGRU
may not perform as well as VMD and time series imaging +
CNN in terms of goodness of fit, resulting in a comparatively
inferior ranking in MSE and R2.

3) VMD: VMD decomposes the signal into a set of basic
mode functions, extracting the main components of the sig-
nal. Although VMD performs well in capturing local features
(for MSE and R2), it may be less sensitive to absolute error
metrics such asMAE andMAPE, resulting in a lower ranking
in these metrics.

Table 6 presents the results of DM tests conducted on
the forecast errors of ablation benchmarks in the test set.
It can be observed that, except for the comparison between
‘‘VMD-RP-BGRU v.s. VMD-RP-GRU’’ where the p-value
does not meet the criteria for rejecting the null hypothesis,
all other model comparisons exhibit statistically significant
differences.

V. CONCLUSION
This paper proposes a novel approach for crude oil price
forecasting based on VMD, time series imaging, and deep
learning. Themain purpose is to address the limitations of tra-
ditional forecasting methods in dealing with non-stationary,
non-linear, and highly volatile crude oil price time series data.
The original data are preprocessed through normalization,
and then VMD is used to decompose the subsequences used
for prediction into multiple stationary IMF series. These
IMF series are converted into two-dimensional images using
three different time series imaging techniques: RP, GAF,
and MTF. CNN is employed to extract features from the
images, and BGRU is used for prediction. Experimental eval-
uations are conducted on publicly available crude oil price
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datasets, comparing the proposed method with commonly
used forecasting methods such as SARIMA and HWSE. The
results demonstrate significant advantages of our proposed
approach, particularly the VMD-RP-BGRU model, which
achieves superior forecasting performance across multiple
evaluation metrics including MAE, MSE, MAPE, and R2.
Specifically, our approach outperforms the benchmark meth-
ods, with the VMD-RP-BGRUmodel achieving the best fore-
casting performance, exhibiting MAE=2.429, MSE=10.94,
MAPE=2.94%, and R2=0.9418. It showcases substantial
improvements of 21.64%, 23.15%, and 36.46% in MAE,
MSE, and MAPE, respectively, compared to the SARIMA
model, as well as reductions of 21.18%, 22.70%, and 36.08%
compared to the HWES model.

The proposed approach offers several advantages and
notable contributions that can be summarized in three key
aspects: (1) The application of time series imaging tech-
niques in crude oil price forecasting is introduced for the
first time. By transforming one-dimensional series into
two-dimensional image matrices, the approach uncovers
additional inherent feature information, thereby enhanc-
ing the accuracy of crude oil price forecasting. (2) Three
novel hybrid models, namely VMD-RP-BGRU, VMD-GAF-
BGRU, and VMD-MTF-BGRU, are proposed, incorporating
different time series imaging methods. These models effec-
tively combine the strengths of VMD, time series imaging,
CNN, and BGRU. (3) This study contributes to the expansion
of research in crude oil price prediction theory and enriches
the repertoire of deep learning-based time series forecasting
methods, thus contributing to theoretical advancements in the
field.

However, this study has limitations that can serve as direc-
tions for future work. The proposed approach is univariate
and does not consider other exogenous variables. Future
research can incorporate several exogenous variables, such
as news media and search engine data, to further enhance the
accuracy of predictions.

This study holds significant implications for various stake-
holders including investors, crude oil producers, consumers,
and policy-makers. For investors, accurate forecasts can
inform investment decisions and risk management strate-
gies. Crude oil producers can utilize reliable price forecasts
to optimize production plans and resource allocation. Con-
sumers, such as industries heavily reliant on crude oil, can
better anticipate price fluctuations and adjust their opera-
tions accordingly. Additionally, policy-makers can benefit
from accurate forecasts when formulating energy policies,
regulating market activities, and promoting economic sta-
bility. Overall, this study contributes to advancing the field
of time series forecasting and offers valuable tools for
decision-making in the energy sector.
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