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ABSTRACT The brain performs cognitive functions through rhythmic communications of neural
oscillations across numerous spatially distributed neurons. This process is known as ‘‘binding by syn-
chrony’’. Herein, we demonstrate oscillatory neural networks (ONNs) based on a nanoscale NbOx device
for compact oscillation neurons (ONs). When a voltage (VDD) is applied to the NbOx-based device, a high
resistance state is temporarily changed to a low resistance state due to the formation of a conducting
path. Owing to the volatile switching characteristics, the VDD across the NbOx device, serially connected
with an additional load resistor (RL), is repeatedly increased and decreased, generating oscillations at the
intermediate node. We experimentally investigated the impact of RL and VDD on the oscillation behavior
of the single ON circuit. Thereafter, through simulations, we analyzed the interactions between the voltage
oscillations when two NbOx-based ONs were connected by a coupling element (e.g., variable resistor or
capacitor). The results showed that the oscillations were either in- or out-of-phase synchronized owing to
the coupling strength. These two distinguishable synchronizations can be used to encode binary information
in the phase domain, resulting in energy-efficient computing. This study proves that by building ONNs
comprising multiple ONs, both sharp edges and pretrained patterns can be detected from images.

INDEX TERMS NbOx-based device, oscillation neurons, oscillatory neural networks, pattern recognition.

I. INTRODUCTION
The development of artificial intelligence algorithms has
enabledmachines to perform natural language translation and
pattern recognition [1], [2], [3], [4]. This has led to a dramatic
increase in the number of parameters and datasets used in
applications, implying the need for data-centric computing.
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Conventional computing systems based on the von Neumann
architecture work by sequentially loading data across the
memory elements and processing units [5], [6], [7], [8], [9].
As the amount of data increases exponentially, the per-
formance gains are limited by delays in the data transfer
process. Therefore, neuromorphic technologies emulating the
biological structure of the brain have recently attracted con-
siderable attention. The brain comprises nearly 100 billion
crosslinked neurons, which communicate by exchanging
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neuronal signals through synapses [10], [11]. Therefore, fully
parallel computing enhances the efficiency of a brain sys-
tem, and many studies have attempted to implement parallel
structures for synapses using cross-point resistive memory
arrays [12], [13]. In addition, recent studies have shown asso-
ciative memory by developing analog circuits that describe
the integrate-and-fire behavior of neurons [14], [15], [16].
As neuroscience has further explored the underlying prin-

ciples of the brain, the mechanisms of cognitive tasks per-
formed by collective behavior of neurons that are widely
dispersed in brain have been elucidated. Neurons gener-
ate their own signal oscillations, and the interacting signals
are eventually synchronized, resulting in a perceptron func-
tion [17]. Based on this understanding, the use of oscillatory
neural networks (ONNs), wherein all artificial neurons are
connected, has been demonstrated in various image pro-
cessing techniques [18], [19]. For neuron devices that can
generate continuous oscillations, nano-oscillators have been
studied instead of the conventional oscillator circuits com-
posed of many transistors [18], [19], [20], [21]. Threshold
switching devices based on binary oxide or chalcogenide
materials have primarily been used as oscillation neurons
(ONs). When the voltage applied to the threshold switching
device exceeds the threshold voltage (VTH), the high resis-
tance state changes to a low resistance state.When the voltage
is lower than the hold voltage (VHOLD), the changed state
rapidly returns to the initial state. In a circuit configuration
wherein the threshold switching device is connected to an
additional load resistor (RL), a continuous voltage oscillation
with a specific frequency is generated at the intermediate
node [22], [23], [24], [25].

In this study, we developed NbOx-based threshold switch-
ing devices for ONs and conducted experiments and simula-
tion studies to identify the natural responses of oscillations
in different environments. More specifically, reliable voltage
oscillation was first achieved in a single ON circuit through
device characterization, and the oscillation tunability was
determined as a function of the RL and applied voltage pulse
(VDD). Subsequently, a simulation was used to investigate
the mutual synchronization of oscillations in ONN systems,
wherein multiple ONs are cross-coupled, for edge detection
and image recognition tasks.

II. MATERIALS AND METHODS
Reactive sputtering was used to deposit a 50-nm-thick NbOx
layer on top of a plug-type TiN bottom electrode having a
diameter of 30 nm. Subsequently, a TiN-based top electrode
of size 10 × 10 µm2 was patterned using photolithography.
The performance of the fabricated NbOx-based ON device
was evaluated by applying VDD to the top electrode and
grounding the bottom electrode using an HP 4156C semi-
conductor parameter analyzer. An Agilent 81110A pulse
generator was used for the oscillation measurements, and the
response of the ON device was detected using a Keysight
CX3300 current waveform analyzer.

FIGURE 1. Resistance–voltage curve of the fabricated threshold switching
device comprising a TiN/NbOx/TiN stack.

III. RESULTS AND DISCUSSION
A. SINGLE ON DEVICE
The fabricated threshold switching device exhibited two
volatile resistance states, as shown in Fig. 1 [22]. As volt-
age was applied, a high resistance of hundreds of k� was
abruptly converted to a low resistance of several k� at a
VTH of approximately 2.4 V. In contrast, a voltage lower
than VHOLD of 2.1 V caused the low resistance state to
return to its initial state. This threshold switching has been
explained by the nucleation theory [26]. The electric field
induced the agglomeration of oxygen vacancies in the NbOx
layer, thus creating a conductive path. This locally formed
path was thermodynamically stable only when a voltage was
applied, and it dissolved spontaneously when the voltage was
removed.

For the ON element, the NbOx device was connected in
series with the RL, as shown in Fig. 2a. A VDD with a pulse
width of 50 µs was provided through the pulse generator,
and the intermediate node between the RL and NbOx-based
ON was monitored using the analyzer. In general, the ini-
tial high resistance of the ON device was larger than that
of the RL. Most of the VDD was first applied to the ON,
which increased the output voltage (Vout) at the intermediate
node. When the ON device was turned on, the VDD began
transferring to the RL, causing Vout to decrease. Therefore,
the NbOx-based ON device was repeatedly turned on and
off at a given VDD, resulting in Vout oscillations. Because
charging/discharging dynamics play an important role in trig-
gering the oscillations, designing an appropriate RL range
can help achieve robust oscillation behavior. As shown in
Fig. 2b, the single ON device produced oscillations with a
frequency of approximately 670 kHz; however, random Vout
spikes were observed. This is because the resistance of the
NbOx device at the VHOLD can be lower than that of the
RL owing to device variability, thereby preventing dynamics.
Reliable Vout oscillations were observed when RL > 3.9 k�
was used, as shown in Figs. 2c and 2d. The frequency was
inversely proportional to RL, as shown in Fig. 2e.
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FIGURE 2. (a) Schematic of the single ON circuit, where the NbOx-based ON device is connected using the RL. The VDD was provided from the
pulse generator, and the signals were evaluated through the waveform analyzer. Vout oscillations for RL stacks of (b) 3 k�, (c) 3.9 k�, and
(d) 15 k�. (e) Faster frequency obtained by lowering the RL stack.

FIGURE 3. (a) Vout oscillation of the single NbOx-based ON device as a
function of VDD. (b) Faster oscillation frequency extracted from the fast
Fourier transform obtained owing to the higher VDD. (c) In addition to the
faster frequency, a more uniform frequency distribution during the
oscillation was achieved at VDD of 4 V.

Further, we investigated the effect of VDD on the oscilla-
tion frequency. Because VDD was greater than the VTH of
the NbOx-based ON, Vout oscillations could be achieved.
To analyze the oscillation response over a wide range of VDD,
a threshold switching device with a VTH of less than 2 V was
used, which was fabricated using a thinner NbOx layer [22].
The higher the VDD, the faster the frequency, as shown
in Fig. 3a. The peak frequency was extracted through fast
Fourier transform, as shown in Fig. 3b. By increasing VDD
from 2 to 4 V, the location of the maximum frequency ampli-
tude moved from 315 kHz to 1.2 MHz. A tight distribution
of each frequency was also obtained using a larger VDD,
as shown in Fig. 3c. These results indicate that the Vout
oscillation can be tuned using both the operating voltage con-
ditions and the internal controllable components (e.g., RL).

FIGURE 4. (a) Schematic of the coupled NbOx-ONs. The HSPICE
simulation results show that the synchronization of the two oscillations
was achieved differently as a function of the type of coupling element
and its strength. (b) Lowering Rc resulted in in-phase synchronization.
(c) In-phase synchronization was obtained as the Cc was increased.

B. COUPLED ON DEVICES
To understand the interaction of Vout oscillations in coupled
NbOx-based ONs, we performed HSPICE simulations using
the measurement data. Two identical NbOx-based ONs were
coupled using a variable resistor (or capacitor), as shown
in Fig. 4a. We assumed an RL of 10 k� and a parasitic
capacitance (Cp) of 180 pF. Vout for the left and right ON
elements were defined as Vout1 and Vout2, respectively. The
Vout1 oscillation (‘‘symbol’’ curve) of the ON1 was activated,
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FIGURE 5. (a) Input pattern can be recognized in the 3 × 5 ONN.
(b) All oscillation responses obtained from the ONN system under the
given noisy zero pattern. The data from the magnified region (<20 µs)
clearly show individual oscillations based on pixel colors. The oscillations
are synchronized over time, and two synchronization methods can be
observed.

as shown in Fig. 4b. Unlike the single oscillation circuit
configuration for electrical measurements, the RL was con-
nected to ground in simulations. The position where the
RL is connected induces a change in the order in which
charging/discharging occurs, so the oscillation frequency is
the same [22], [24]. To examine the effect of the coupling
strength, VDD with a slight delay was applied to ON2.
When the NbOx-based ONs were strongly connected with a
smaller coupling resistance (Rc) of 1 k�, the Vout1and Vout2
oscillations rapidly became similar, resulting in in-phase
synchronization. A larger Rc of 20 k� caused the Vout2
oscillation (‘‘line’’ curve) to steadily shift toward the right,
implying quasi out-of-phase synchronization. Out-of-phase
synchronization was eventually exhibited when two ONs
with Rc of 200 k� were connected. This indicates that the
weak coupling of the coupled ONs induces oscillation phase
inversion [27], [28]. However, when a variable capacitor was
employed as the coupling component, the voltages of the two
ONs were shared, thereby mitigating the voltage difference.
A larger coupling capacitance (Cc) of 2 nF induced a longer
voltage-sharing time, allowing sufficient time for the Vout
oscillation to achieve in-phase synchronization, as shown
in Fig. 4c. The voltage-sharing time was shortened using
a smaller Cc of 10 pF. The voltage difference at each ON
was still noticeable; thus, out-of-phase synchronization was
preferred.

C. ONN SYSTEMS
For neural network applications, an ONN comprising 15 ONs
was built using MATLAB/Simulink [29]. Because all ONs

FIGURE 6. ONN accurately identified the noisy input patterns (expressed
in gray in pixels).

were fully connected through Rc, the Hebbian learning rule
was used to map the Rc values of the 3 × 5 digit patterns,
as shown in Fig. 5a [30], [31], [32]. A 3 × 5 ONN that
corresponded to each pixel of the input pattern was con-
structed. Thus, trained weights were assigned to each Rc in
the ONN. The pixel color of the input pattern was classified
using the VDD delay entering the ONN system, which was
determined based on the degree of darkness. The VDD of
the brightest white pixel was applied to ON device immedi-
ately without any delay to trigger oscillation. Compared to
this pixel, the darker pixels produced a VDD with a delay.
The ONN systems utilized how oscillations that turn on at
different times interact and synchronize to distinguish pat-
terns [28]. ONs corresponding to brighter pixel positions
exhibited oscillations within 2µs, as shown in Fig. 5b. In con-
trast, the oscillations of the ONs representing darker pixels
were activated after∼6 µs. The oscillation of an ON that was
strongly (or weakly) coupled to neighboring ONs naturally
converged into in-phase (or out-of-phase) synchronization.
Consequently, the random oscillations in the initial stagewere
soon converted into one of two phases: 0◦ or 180◦. This
implies that even noisy patterns could be clearly retrieved
(Fig. 6), which is useful for hardware security applications
and pattern recognition tasks [33].

The ONN can also serve as a convolutional filter for
detecting edges within an image, as shown in Fig. 7.
Many recent studies have attempted to implement filtering
algorithms on hardware using cross-point resistive memory
arrays [34], [35]. The convolutional output is determined by
sensing the weighted sum current along a specific column in
the array, which consumes power. Instead, when a 3× 3ONN
filter scans an image to find matches with pretrained horizon-
tal, vertical, and diagonal patterns, the ONN system drives
the oscillations in an out-of-phase synchronization [19]. The

82446 VOLUME 11, 2023



H. W. Kim et al.: Brain-Inspired Mutual Synchronization

FIGURE 7. Input image scanned using the 3 × 3 ONN filter. The nine
oscillations were synchronized based on the scanned patterns. The
out-of-phase synchronization was observed only when the trained
patterns were detected, allowing for extraction of the edges of the image.

output color was extracted through comparisons with the
reference ON, which is denoted as ON10 in this study. In a
100 × 100 image obtained from the Columbia Object Image
Library, areas without dark colors showed in-phase synchro-
nization after the settling time, which were represented by
white pixels. When one of the three patterns was detected
during scanning, the oscillations of the specificONs preferred
to interact in an out-of-phase synchronization.

These results indicated that ONN systems implemented
by densely integrated NbOx-based ONs in a limited space
instead of conventional neuron circuits composed of multiple
transistors can demonstrate a compact image processing chip.
Furthermore, the ONN systems encoding the output informa-
tion in the phase domain rather than the current (or voltage)
are expected to reduce energy consumption [19].

IV. CONCLUSION
We examined the Vout oscillation behavior of the fabricated
nanoscale NbOx-based ON as a function of RL and VDD.
We revealed that in image-processing applications, the Vout
oscillations are linked based on the strength of the coupling
element, resulting in two types of synchronizations. Thus, the
black and white color ranges of a given image are clearly

classified as either white or black, allowing ONN systems
to perform pattern recognition and edge detection using the
given hardware.
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