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ABSTRACT Coronary artery procedures are primarily performed based on X-ray angiography images.
However, coronary arteries in X-ray images are often partially broken, complicating diagnoses and
procedures owing to lack of visibility. In this paper, we propose a fully automatic method to restore
locally broken parts of coronary arteries in X-ray images without using any external information, such as
computed tomography images. To this end, we design a new multi-scale generative adversarial network and
a vesselness-loss function. The proposed method is optimized for focus on elongated structures and can be
utilized in various clinical applications. The proposed method is evaluated and compared with four other
existing methods using the performance metrics, PSNR, MSE, and SSIM, and the result shows 34.3, 0.18,
and 0.91 averages, respectively for each metric. Based on the performance result, the blocked regions are
plausibly reconstructed into such original shapes of blood vessels, which can aid in image-based guiding
catheter manipulation during coronary artery procedures. Eventually, the proposed method can be utilized
in various clinical applications, e.g., image-based planning and guidance of coronary procedures and prior
simulation of results.

INDEX TERMS Coronary artery, X-ray angiography, procedure guidance.

I. INTRODUCTION
Coronary artery diseases (CADs), which are one of the
main causes of deaths worldwide [1], [2], [3], result from
the blockage of blood vessels by plaques, e.g., cholesterol
or fat. Fortunately, such blockages can be removed via
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percutaneous coronary intervention (PCI) in conjunction
with accurate diagnosis. Currently, the two-dimensional (2D)
X-raymodality is regarded as the gold standard for PCI image
guidance.

2D X-ray angiography is used to identify positions of
catheters and patient-specific structures of coronary arteries
in real time for PCI guidance. However, it involves injecting
contrastive substances, which creates significant burden on
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FIGURE 1. Examples of two X-ray images and their segmentation results,
depicting broken parts: (a) X-ray image depicting coronary artery without
any broken regions; (b) the corresponding segmentation result to (a);
(c) An X-ray image depicting the coronary artery with broken parts due to
chronic total occlusion (CTO) (red box); (d) the corresponding
segmentation result to (c) (red box).

patients, and long-term exposure to X-ray radiation, which is
also known to be harmful to both patients and operators.

To reduce the potential clinical risks, significant research
has been conducted to minimize both the aforementioned
factors. However, the quality of X-ray images still depends
significantly on cardiac motion artifacts and various types
of noise, complicating PCI image guidance and the accurate
diagnosis of coronary arteries by operators based on X-ray
images.

Moreover, some parts of coronary arteries may be com-
pletely blocked, particularly in chronic total occlusion (CTO)
cases, which further complicate PCI and diagnosis as they are
not visible in X-ray images. Therefore, PCI procedure tends
to be highly dependent on the intuition and experience of the
operator.

Image segmentation processing is helpful for image-based
diagnosis and procedure planning. However, segmentation
models may fail to segment regions where blocked parts
are not visible in X-ray images. For instance, in the X-ray
image of a normal person depicted in Fig. 1(a), the predicted
segment of the coronary artery does not include any broken
regions (Fig. 1(b)). In contrast, X-ray images of patients
with CAD or CTO (Fig. 1(c)) predicted segments with
broken regions (Fig. 1(d)). The reconstruction of these broken
regions is an important problem to make blocked regions
completely visible, thereby facilitating PCI.

To this end, several registration-based approaches for
procedure guidance have been proposed to reduce the
uncertainty inherent in 2DX-ray images via feature matching
between 2D X-ray images and three-dimensional (3D) CT
images [4], [5], [6], [7], [8], [9], [10]. In [4], statistical motion
models of coronary arteries based on 4D CT angiography
(CTA) were introduced, and a 2D/3D+t coronary artery
registration method using motion models based on cardiac

and respiratory information was proposed in [5]. Addition-
ally, Pernus et al. [6] used intensity gradients of 2D X-ray
images to match 3D vascular geometry and Zhu et al. [7]
introduced a matching method based on iterative closest
graphs using coarse-to-refine vessel matching for rigid
and non-rigid transformation. Recently, convolutional neural
network (CNN) models have been used to extract the
central lines of coronary arteries in 2D X-ray images and
energy function-based 3D deformation has been utilized for
real-time registration [8], [9], [10].
However, these methods are applicable only if an addi-

tional 3D CT image is scanned from each patient. Further,
registration-based methods are significantly dependent on
segmentation performance during the extraction of the central
lines of coronary arteries from both 2D X-ray and 3D CT
images. The segmentation tasks are known to be challenging
even by themselves. Moreover, even after extracting central
lines successfully from both modalities, registration remains
challenging and computationally expensive, making these
methods difficult to apply in emergency situations.

We assume that the ideal approach minimizes the depen-
dency on external information, such as CT images. In our pre-
vious study [11], we proposed a re-connection method based
on detection and connection of local vascular geometries
without any external information. However, the performance
of the proposed method depended on the performance of
the initial segmentation model. Further, the local broken
regionswere sometimes over-compensated for, evenwhen the
re-connection task was performed successfully.

In this study, instead of reconnecting broken segments
in the absence of vascular information, we design a novel
generative model to reconstruct broken regions robustly
without any external dependence. The proposed method
is based on generative adversarial networks (GANs) [12].
A GAN consists of two components—a generator G and a
discriminator D. They are trained in an adversarial manner
to synthesize realistic image values and have achieved great
success in diverse tasks, such as image synthesis [13], image
translation [14], image inpainting [15], [16], [17], and even
medical imaging reconstruction [18], [19], [20].

Among these tasks, we focus on image inpainting,
which involves the restoration of impaired images or those
containing certain naturally erased objects. We assume that
the broken parts of coronary arteries in X-ray images can be
naturally reconstructed via inpainting. The generative model
realistically restores broken parts without using any external
information if it is trained sufficiently on normal vascular
structures.

We propose a fully automatic method based on GAN to
restore broken regions of coronary arteries. The contributions
of this paper can be summarized as follows:

• To the best of our knowledge, the proposed method
is the first approach that uses a GAN-based model to
reconstruct blocked regions directly without depending
on any external modality.
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• For the optimal performance, we first introduce the
vesselness-based objective function (vesselness-loss)
specifically tailored for elongated objects.

• Novel multi-scale aggregation block (MAB) networks
are proposed for multi-scale image encoding that
considers both global and local context information.

• The proposed method outperforms the state-of-the-
art methods in terms of three quantitative evalua-
tion metrics—peak signal-to-noise ratio (PSNR), mean
squared error (MSE), and structural similarity index
measure (SSIM), and also generates the vessel-likes
images in qualitative terms.

• The proposed method can be utilized for image-based
procedure guidance as it yields quantitatively and
qualitatively plausible vessel paths even in the cases of
severe CAD patients.

The remainder of this paper is organized as follows.
Related works are outlined in Section II. The fully automatic
vessel reconstruction process is introduced in Section III.
Next, the extensive set of experiments performed to evaluate
the proposed method and their results are described in
Section IV. Finally, related discussions and conclusions are
presented in Sections V and VI, respectively.

II. RELATED WORKS
A. CLASSICAL INPAINTING METHODS
Traditional inpainting methods fill holes in images based on
existing content. These methods can be categorized into two
main classes—diffusion-based [22], [23] and patch-based
methods [24], [25], [26]. Diffusion-based methods fill
missing regions using undamaged neighboring information,
whereas patch-based methods search for patches similar to
missing holes in the background or external databases and
use them to complete the image.

Although simple cases involving stationary backgrounds
or repeating patterns, for example, can be inpainted quite
effectively using such traditional methods, they fail in
complex cases owing to lack of high-level structural under-
standing of the entire images. Thus, the inpainted results
are visually inconsistent with their surroundings, implausible,
and unsatisfactory.

B. LEARNING-BASED INPAINTING
Natural Image Inpainting In recent years, deep-learning-
based solutions [15], [16], [27], [28], [29], [30] have
exhibited superior performance compared to classical non-
learning-based approaches, and have been demonstrated to
be capable of synthesizing more visually plausible and
satisfactory content even in complex scenes. By exploiting
large-scale data in either supervised or unsupervised adver-
sarial manners [12], rich texture patterns are learned by
such methods, and missing or damaged regions are filled
with reasonable content based on features located at great
distances from the target regions.

The context encoder [15] was the first learning-based
approach introduced for this task—it utilizes an encoder-
decoder architecture with adversarial loss and Euclidean
distance-based loss. Iizuka et al. [27] further improved syn-
thesized image quality by incorporating dilated convolution
into their encoder-decoder architecture and utilizing local
and global discriminators, which ensure semantic coherence
between original regions and generated regions. Subse-
quently, the contextual attention module [28] was proposed to
capture long-range contexts, further improving performance.

Meanwhile, coarse-to-refine frameworks were devised
in [28], [29], and [31] where each stage utilizes a novel auto-
encoder network. A model similar to that developed in [31]
was introduced in [21]—each employs a two-stage training
scheme, but the latter uses an attention computing module
(ACM) and attention transfer module (ATM) to generate
attention scores and create aggregated residuals to synthesize
high-quality images.

In conjunction with two-stage pipelines, additional edge
information has been exploited to generate more realistic
images [16]. A two-stream network has also been proposed
by guiding and constraining texture and structure in a bal-
anced manner to achieve more detailed image synthesis [32].
In both of the aforementioned methods, the edges of holes are
generated via specific generators, instead of via propagation
to another objective function.

Medical Imaging Inpainting Early research on medical
imaging inpainting [33], [34], [35] focused on removing
artifacts or anomalies for targeting tasks, e.g., image seg-
mentation and registration. Deep learning has shifted the
paradigm of medical imaging inpainting.

In two successive studies, Armanious et al. proposed
adversarial learning frameworks [18], [36] for MR images
that synthesize missing content in rectangular and arbitrarily
shaped regions. Meanwhile, [20] used information on edge,
structure, multi-scale residual blocks, and multi-scale loss to
synthesize more realistic CT and MRI images.

C. MULTI-SCALE FUSION
Multi-scale fusion blocks have been used for single-image
super-resolution [37], [38]. Also, they have been utilized
in conjunction with self-guided regression loss to generate
visually coherent images [39]. Subsequently, [17] proposed
Aggregated contextual Transformation (AOT) blocks that
aggregate contextual transformations from various receptive
fields.

D. MULTI-SCALE VESSEL EXTRACTION
Frangi et al. [40] devised a method to distinguish continuous
edges and tubular structures, such as vessels, using Hessian
matrices. Additionally, [40] and [41] proposed multi-scale
Frangi filters, in which the eigenvalues of Hessian matri-
ces are emphasized for vessel-like structures. This filter
has been widely used for vessel segmentation [42], [43].
In particular, [42] demonstrated the effectiveness of the

VOLUME 11, 2023 86337



K. Han et al.: Reconstruction of Partially Broken Vascular Structures

TABLE 1. The methodologies, pros and cons of baseline methods comparing our proposed methods.

Frangi-based filter in multi-scale vessel extraction using
fundus images.

As is evident from the preceding discussion, the
reconstruction of broken regions in X-ray images using
Hessian-guided objective functions (vesselness-loss) to
guide generative models implicitly has not been researched
yet.

Table 1 describes the methodologies, advantages,
and disadvantages of prior similar works used in our
experiments.

III. METHODS
Ideally, in X-ray images of normal cases, coronary arteries do
not contain any broken regions. However, in X-ray images
of patients with coronary artery disease (CAD), coronary
arteries may appear to be broken into several segments.

Let the coronary regions and segments be denoted byC and
ci ∈ C , respectively, and the broken parts and the other intact
parts be denoted by Cbroken and Cvessel, respectively. Then,
the ideal coronary artery can be denoted by C = {Cvessel

},
whereas the broken coronary artery can be denoted by C =

{Cbroken
∪ Cvessel

}.
It is worth noting that coronary arteries are very thin

and, thus, sparsely represented in raw data. If random stroke
masking is used on data following previous studies [16],
[32] the inpainting model may suffer from being significantly
affected by background information, resulting in sub-optimal
performance.

Meanwhile, in our previous work [11], we demonstrated
that the model proposed therein was capable of defining
a local broken region, cbrokeni , given the region, Cvessel.
In other words, local broken regions, cbrokeni , can be extracted
automatically and directly. Thus, for the first stage of our
framework, we leverage our previous method to detect local
broken regions and avoid the aforementioned issue.

Using this technique, we extract a square-shaped patch
Xpatch
i centered on cbrokeni . We take the size of Xpatch

i to
be sufficiently large to utilize probable vessel direction
flow information (local) and neighboring area information
(global). Also, we allow the vessel information in the ROI

Xpatch
i to be completely blocked, rendering the broken parts

completely invisible. This situation is described by Eq. 1:

Xblocked
i = Xpatch

i ⊙ (1 − M) + M (1)

where M has the same shape as Xpatch
i and consists of

values, 1 (corresponding to the region of interest) and 0
(corresponding to the external original region), where ⊙

represents the Hadamard product.
AfterG reconstructsXblocked

i , it is blended with the original
input of Xpatch

i using the mask, M , to preserve the external
original region that ought to be consistent during the
reconstruction process. This is described by Eq. 2.

X̃blocked
i = Xpatch

i ⊙ (1 − M) + G(Xblocked
i ) ⊙ M (2)

The final objective of this study is to reconstruct the broken
parts realistically such that X̃blocked

i is indistinguishable
from Xpatch

i .
In the following parts of this section, we present the

novel method and compare its architecture and objective
function with those of existing state-of-the-art methods.
First, we describe the novel MAB generator and discrim-
inator. Next, various objective functions and the novel
vesselness-loss objective function used in our experiments are
described in detail. Fig. 2 provides an intuitive illustration of
the training and testing pipelines, and Fig. 3 depicts a core
module of our MAB network.

A. ARCHITECTURES
1) GENERATOR
To reconstruct broken regions containing potentially impor-
tant vessel information, information from both adjacent and
distant contexts should be considered. The proposed model
synthesizes the broken region using both local and global
information. An overview of the generator is illustrated in
Fig. 2. The generator is a single-stage network comprising
an encoder, a stack of novel multi-scale aggregation blocks
(MAB), and a decoder. It receives an image and a mask
indicating the missing pixels values, and outputs a restored
image. The details are described below:
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FIGURE 2. Fully automatic vessel information reconstruction workflow. Training Phase X-ray patches Xpatch
i

containing ideal connected coronary arteries C = {Cvessel} are extracted via random sampling of their
corresponding ground truths. Next, extracted patches are synthetically blocked or damaged to simulate various
situations that may be encountered in actual clinical situations. Then, blocked or damaged patches are
transmitted into models to enable them to learn to reconstruct broken vessels into ideal ones. In particular, in the
reconstruction process, various loss functions are used; to force the model to focus on sparse vessel regions
explicitly, the novel vesselness-loss Lℓ1(V ) is applied, minimizing differences between vesselness probability

maps V (Xpatch
i , σ ) and V (X̃blocked

i , σ ), obtained from the region of interest (ROI) (Xpatch
i ) and the model output

(X̃blocked
i ) at scale σ , respectively. Test Phase In this phase, extreme cases, such as those involving coronary

artery disease, that can lead to the absence of vessel information, are simulated. Our previous methods [11]
perform segmentation masking on the cases, followed by tip point detection to find Xbroken

i containing broken
coronary arteries C = {Cbroken ∪ Cvessel} with a sufficient size to cover broken coronary areas Cbroken

i . Then, our
trained model receives those areas and outputs results X̃blocked

i that are similar to the ideal ones Cvessel. This
phase is rephrased as follows. Corresponding to the broken coronary artery (C = {Cbroken ∪ Cvessel}), the model
aims to reconstruct it from Cbroken to Cvessel so that Cbroken = φ. In other words, the broken coronary artery
(C = {Cbroken ∪ Cvessel}) is reconstructed to be similar to the ideal coronary artery (C = {Cvessel}).

Encoder & Decoder We use an encoder-decoder struc-
ture based on vanilla convolutions for a single-refinement
inpainting network, where both the encoder and decoder are
composed of three convolutional layers. Following previous
studies [28], [30], we do not use any kind of normalization
layer to avoid color shift.

MAB Features compressed and propagated by the encoder
are transmitted to a stack of MAB blocks. Inspired by
previous studies that used large kernels [44], [45], [46]
and multi-scale fusion blocks [17], [32] for more effective
representation learning and image restoration, respectively,
we construct a simple but novel MAB block, bridging two
branches of previous studies. A diagram of the block is
presented in Fig. 3.

To design the basic structure of the block, we adopt a
split-transform-merge strategy. Split: The input from the

previous layer or encoder is split and propagated to multiple
blocks with varying kernel sizes of 1, 3, 5, and 7. Transform:
As mentioned, both adjacent and distant contexts are
important in inpainting. For adjacent contexts, features from
convolutional blocks of kernel sizes 3 and 5 are concatenated.
For distant contexts, features from blocks of kernel sizes
1 and 7 are concatenated. The two concatenated features are
transmitted to a convolutional layer with a kernel size of
1 to enhance expressiveness and efficiency. The first branch
is effective at capturing and recovering global background
information as a convolutional layer with large kernel size
(7×7) is integrated with a pixel-wise convolutional layer
(1×1), whereas the second branch handles vessel-specific
local information.Merge: The blocks are concatenated again
for integration and transmitted to a convolutional layer with a
kernel size of 3. Additionally, inspired by the great success
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FIGURE 3. Multi-scale aggregation block (MAB) incorporates
convolutional layer with large kernel size into multi-scale fusion blocks.

of ResNet [47], we add information flow from another
convolutional layer with kernel size 3 to facilitate training and
amplify ensemble effect [48] during restoration.
Here, we adopt the gated residual connection strategy,

proposed in [17], weighted sums are obtained using gated
values in place of simple residual summation.

2) DISCRIMINATOR
The discriminator used in this task is obtained from
Spectral-NormalizedMarkovian PatchGAN (SN-PatchGAN)
[49], [50], following previous studies [17], [21], [30]. It is
simple in formulation but enables fast and stable training,
thereby producing high-quality samples.

B. LOSS FUNCTIONS
To synthesize images realistically while preserving structure,
the generator, G, and the discriminator, D, should be trained
simultaneously in an adversarial manner. In this section,
we introduce various loss functions used for this purpose in
detail.

1) HINGE LOSS
Lim and Ye [51] proposed a loss function based on a
soft-margin support vector machine (SVM) linear classifier,
which utilized a hyperplane that maximizes the margin
between two distributions. It has been verified that this
method produces more stable training and constraints the
occurrence of mode collapses. Eq. (3) and (4) describe the
generator and discriminator, respectively:

LG = −Ex∼PX̃blocked
[D(X̃blocked

i )] (3)

LD = Ex∼PXpatch [ReLU (1 − D(Xpatch
i )]

+ Ex∼PX̃blocked [ReLU (1 + D(X̃blocked
i )] (4)

2) INDUCED RECONSTRUCTION OF ENTIRE CONTEXT
INFORMATION
A contextual loss function is required to generate X̃blocked

i

that is semantically close to the actual image Xpatch
i . For

this purpose, we use the ℓ1 loss function instead of the ℓ2

loss function as the former converges more easily, preserves
sharp details more robustly and, the most importantly, is less
vulnerable to yielding blurry results. Using X̃blocked

i and
Xpatch
i , we define Eq. (5) as follows:

Lℓ1 = ||X̃blocked
i − Xpatch

i ||1 (5)

3) STRUCTURAL SIMILARITY INDEX LOSS
The structural similarity index measure (SSIM) [52],
as shown in Eq. (6), is a metric that is used to measure
image quality. Unlike Lℓ1 in Eq. (5), which simply compares
pixel-wise differences, we optimize our models in terms
of SSIM, which uses both luminance and contrast. Thus,
SSIM represents human visual perception more faithfully.
This index is determined based on correlation coefficients—
with high values corresponding to generated images that are
more qualitatively plausible to the naked human eye.

SSIM (X ,Y ) =
2µXµY + C1

µX
2 + µY

2 + C1
·

2σXY + C2

σX 2 + σY 2 + C2
(6)

For simplicity, we denote X̃blocked
i and Xpatch

i by X ,Y
respectively. Moreover,µ and σ denote average and variance,
respectively, C1 = (k1L)2 and C2 = (k2L)2 are used, the
pixel intensity is denoted by L, and the constants, k1, k2, are
set to 0.01 and 0.03, respectively. Finally, the SSIM loss can
be defined using Eq. (7).

LSSIM = 1 − SSIM (X ,Y ) (7)

4) PERCEPTUAL LOSS
Perceptual loss [53] has been widely used in low-level vision
tasks, e.g., inverse problems such as image synthesis and
image reconstruction, owing to its ability to generate more
visually plausible results. It encourages similarities between
the target and synthesized images in a feature space of
pre-trained VGGNet [54] models. For this purpose, we adopt
the relu5_1 layer of VGG19.

Lper =
1

CiHiWi
||φ

vgg
i (X̃blocked

i ) − φ
vgg
i (Xpatch

i )||1 (8)

where φ
vgg
i (·) denotes the feature map at the i-th layer of

VGG19, and Ci, Hi and Wi denote elements of that feature
map, indicating channel, height, and width, respectively.
We also use ℓ1 loss for the reasons described earlier.

5) ENFORCED RECONSTRUCTION OF VESSEL INFORMATION
In Eq. (5), to generate a semantically close X̃blocked

i while
preserving the contextual information of Xpatch

i , the intensity
difference at every pixel between X̃blocked

i and Xpatch
i was

calculated. However, calculating the intensity difference at
all pixels in the image is so vague because the model should
reconstruct the broken vessels focusing on the characteristics
of thin and sparsely existing blood vessels. This difficulty
necessitates the development of a new objective function that
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preserves contextual information by concentrating only on
the vascular region, occupying a very small area in a thin and
elongated form in the image.

In this study, in conjunction with Eq. (5), which is
used to preserve the contextual information of the entire
image, a Hessian-based loss is used to preserve the vascular
contextual information by focusing on the local vascular
region in the image.

The Hessian matrix, H, represents the curvature char-
acteristics of a function by Eq. (9), and its elements are
second-order derivatives and a linear transformation that
makes a certain bowl-shaped function geometrically more
convex or concave. Based on the eigenvalues, λ, and
eigenvectors, ν, of the Hessianmatrix, the degree of change in
the linear transformation can be ascertained. The eigenvector
represents a direction vector with a large function curvature,
whereas the eigenvalue represents the magnitude of the
curvature of the function in the direction of the corresponding
eigenvector.

H =

 ∂2I (x,x)
∂x2

∂2I (x,y)
∂xy

∂2I (y,x)
∂yx

∂2I (y,y)
∂y2

 (9)

Based on these characteristics of the Hessian matrix,
several approaches have been proposed using the difference
between its eigenvalues as a threshold for the complete
segmentation of vascular regions from the background
region [40], [41], [42], [43]. Among them, Frangi et al. [40]
developed the most representative Hessian-based vascular
segmentation technique based on the concept of vesselness
probability. Vesselness probability represents the probability
that a specific pixel belongs to a blood vessel and can be
derived using the ratio, R, between the magnitudes of the
two eigenvectors and the corresponding eigenvalues, λ1 and
λ2, obtained from the Hessian matrix. Then, using the ratio
R2b =

|λ1(p,σ )|
|λ2(p,σ )|

and S =

√
λ1

2
+ λ2

2, Hessian-matrix-based
vesselness probability at a pixel p = (x, y) can be obtained in
multiple scales using Equation (10).

v(p, σ ) =


0 if λ2 > 0,

exp(−
R2b(p, σ )

2β2 )(1−exp(−
S2(p, σ )
2C2 ))

(10)

In equation (10), R and S indicate the blobness and
structuredness, respectively, when |λ1(p, σ )| < |λ2(p, σ )| at
x with scale s. Then, if we denote the set of pixels in the image
by X , the vesselness probability map of the entire image I on
scale σ can be defined to be V (I , σ ).
However, the obtained vesselness probability based on the

Hessian matrix, H, varies with respect to the scale, σ , of the
matrix, as illustrated in Fig. 4.When σ is small, micro-vessels
and false positives (FP) are segmented because the probability
is high in the vessel-like structure. On the other hand, when σ

is large, micro-vessels cannot be segmented satisfactorily as
the probability is high only in the clear vessel-like structure,

thereby reducing the number of FPs. Thus, a trade-off exists
between σ and the segmentation accuracy of vessels.
In this study, FPs generated during the reconstruction

of blood vessels, including micro-vessels, are minimized
by taking σ = 3−7 to cover both micro-vessels and thick
blood vessels elaborately. Then, using X̃patch, the generator,
G, reconstructs thin and sparse blood vessels in Xpatch by
preserving the information of the vessels by optimizing ℓ1
based on Equation (11).
Then, using X̃patch, generator G can reconstruct thin and

sparsely existing blood vessels in Xpatch by preserving the
information of the vessels through optimizing ℓ1 based
vesselness-loss as Eq. (11).

Lℓ1(V ) = ||V (X̃blocked
i , σ ) − V (Xpatch

i , σ )||1 (11)

C. LINEAR COMBINATION OF LOSS FUNCTIONS
In the previous sections, five loss functions are introduced
to improve the quality of the synthesized vessel information.
They are now summed linearly with weighted constants.
Eq. (12) and (13), describe the objective terms for the
discriminator, D, and generator, G, respectively.

LDtotal = λ1Lhinge (12)

LGtotal = λ1Lhinge+λ2Lℓ1+λ3LSSIM+λ4Lper+λ5Lℓ1(V )

(13)

IV. EXPERIMENTS AND RESULTS
In this section, we describe extensive experiments to
quantitatively and qualitatively evaluate the performance of
the proposed method based on reconstructed broken parts.
First, the details of the dataset used for the experiments are
outlined in Section IV-A. For fair comparison, we use popular
evaluation metrics, which are introduced in Section IV-B.
Moreover, the reconstruction performance is evaluated both
quantitatively and qualitatively using synthesized images to
simulate various cases encountered in real-world clinical
sites; this evaluation is presented in Section IV-C. The
reconstruction performance is then evaluated under the
assumption of complete blockage of the vessel, as discussed
in Section IV-D. Additionally, the performance of the pro-
posed fully automated process is demonstrated by presenting
the result of each step in Section IV-E. Finally, ablation
studies performed to demonstrate the effectiveness of our
novel vesselness-loss are described in Section IV-F.

All of the following experiments are conducted in an
Ubuntu 18.04 environment with 64 AMD EPYC 7513
32-Core CPU Processors, 1 TB RAM, and NVIDIA®RTX
A6000 GPU. We use Pytorch version 1.10 as the main deep
learning framework.

A. DATASET
The proposed methods were trained and evaluated using
a dataset, enrolled clinically stable adult patients from
September 2015 to February 2016 at Severance Cardio-
vascular Hospital who underwent clinically indicated ICA.
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FIGURE 4. Results of Hessian-based vesselness probability map and normalization depending on the scale, σ , indicating a trade-off
relationship. When σ is low, vessel-like structure region has high vesselness probabilities, and thus thin vessels are well segmented;
however, vessel-like false positives are segmented together. In contrast, when σ is high, the vesselness probabilities are high only in thick
vessel-like structures, and thus thin vessels are not well segmented, and false positives are reduced.

Institutional Review Board (Severance Hospital, IRB Num-
ber 1-2017-0031) approval was obtained for this retrospective
study and informed consent was waived. The dataset com-
prises 3,136 2D X-ray angiography images captured from
85 patients, and corresponding ground truth (GT) coronary
artery regions marked by clinical experts with more than
5 years of experience. No significant difference exists in
intensity or structure among the images in the dataset. Each
image is reconstructed as a 512 × 512 image with a size
between 0.28 mm × 0.28 mm and 0.36 mm × 0.36 mm for
each pixel.

The models are trained to restore blood vessels more
robustly by randomly sampling pixels corresponding to the
coronary region in the GT to generate 128 × 128 patches
centered on the pixel. When a 64 × 64-sized blocked mask,
sufficient to cover the coronary artery, is positioned at the
center of a patch where actual blood vessels are restored,
only those 128 × 128 patches depicting more than 30% of
the coronary artery in the same region in the GT are used
for learning. The dataset is divided into training and testing
sets—1,994 images from 50 patients are used for training and
1,142 images from 35 patients are used for evaluation. Then,
via patch generation, 20,752 patches extracted from the 1,994
images are used for training, and 11,808 patches extracted
from the 1,142 images are used for evaluation. The details of
the dataset used in the experiment are listed in Table 2.

B. EVALUATION METRICS
For the quantitative evaluation of the proposed method with
other state-of-the-art counterparts, three major metrics are
used.

• PSNR: PSNR is a frequently used metric to evaluate the
amount of quality loss in a generated image. The lower
the degree of quality loss, the higher the PSNR value.
PSNR is defined as the log of the value obtained by
dividing the square of the maximum value, MAX , of a
pixel (peak signal) that can be expressed in the image
by the mean squared error (MSE), MSE, as given by
Equation (14).

PSNR = 10 · log10
MAX2

MSE
(14)

TABLE 2. The Details of dataset used for experiments.

• MSE: It is obtained by dividing the square of the error
of each sample by the number of samples. During image
quality evaluation, this value indicates the mean square
of the intensity difference for each pixel—the lower the
loss, the lower the MSE value. If yi denotes the actual
value, and ŷi denotes the predicted value, MSE is given
by Equation (15).

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (15)

• SSIM: SSIM can be used not only as an additional
loss function to generate an image, as described in
Section III-B3, but also as one of the main evaluation
metrics used to measure luminance, contrast, and
structural similarity between original and generated
images, as given by Equation (6).

C. EVALUATION IN THE CASE OF DAMAGED VASCULAR
INFORMATION
The proposed method is first evaluated on cases involving
damaged vessel information pertaining to non-severe dis-
eases, e.g., with weak stenosis or inherent limitations of
X-ray images. To simulate various cases encountered by real-
world clinicians, arbitrary damaged images are synthesized
by adding Gaussian blur or noise to the vessel information in
intact X-ray images.

We denote the Gaussian blur kernel by B and the additional
Gaussian noise added to each pixel by N . Then, we apply
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TABLE 3. Quantitative comparison of various methods on the reconstruction of synthesized arbitrary damaged images.

Gaussian blur or Gaussian noise n times, which can be
denoted by Bn and N n, respectively. If ⊗ represents the dot
product, the damaged vascular regions, Xdamaged

i , in arbitrary
levels depending on Bn and N n can be defined by Eq. 16.

Xdamaged
i = (Xpatch

i ⊙ (1 − M) + ((Xpatch
i ⊙ M)⊗Bn+N n)

(16)

Then, the remaining non-damaged regions, which may be
affected during the noise-reduction process, are preserved
by defining the output, X̃damaged

i , of the generator, G, using
Eq. 17.

X̃damaged
i = Xpatch

i ⊙ (1 − M) + G(Xdamaged
i ) ⊙ M (17)

For fair comparison between the proposed MAB network
and other state-of-the-art networks [15], [17], [18], [21], the
loss functions is taken to be identical to that of the baseline
network described in the original papers. Experimental
results reveal that the proposed MAB network outperforms
the other methods in three experimental environments—
weakly damaged (B1,N 1), moderately damaged (B3,N 1),
and strongly damaged (B5,N 1). Moreover, the following
constant values of the loss terms yield the best results: λ1 = 1,
λ2 = 256, λ3 = 1, λ4 = 128 and λ5 = 256.
As shown by the quantitative comparison outlined in

Table 3, the proposed MAB network exhibits the highest
PSNR, MSE, and SSIM scores of 35.666, 0.121, and 0.919,
respectively, over strong baseline networks (CE, IPA, HR,
AOT, and MAB) in weakly damaged settings. The proposed
MAB network also exhibits the best PSNR, MSE, and SSIM
scores of 33.852, 0.193, and 0.902, respectively, in mod-
erately damaged settings. Even in the strongly damaged
case, the MAB network exhibits the best performance in

terms of PSNR and MSE, with scores of 33.206 and 0.227,
respectively. However, its SSIM score of 0.898 is slightly
lower than that of 0.899 obtained by IPA; this is because
SSIM can be higher in blurry images [55].
Next, we evaluate the performance improvement of

the vessel-specific restoration process achieved using our
proposed vesselness-loss function, Lℓ1(V ). Additional exper-
iments are conducted with the regularization of the baseline
networks and the proposed MAB network using Lℓ1(V ) or
LSSIM or both. As shown in Table 3, adding LSSIM does
not always lead to improved vessel-specific reconstruction
performance. On the contrary, optimization using Lℓ1(V )
contributes to improvement in vessel reconstruction—every
baseline model exhibits its highest quantitative results in all
arbitrarily damaged settings. Further, training networks using
Lℓ1(V ) in conjunction with LSSIM results in higher quantitative
results in some cases, implying that improved results can
be expected when the model is optimized along with other
objective functions.

The reconstructed results of each baseline network when
trained with Lℓ1(V ) or both Lℓ1(V ) and LSSIM are presented
in Fig. 5. The proposed MAB network achieves the highest
performance in vessel reconstruction, as demonstrated by the
data in Fig. 5 and Table 3.

The proposed network is capable of reconstructing the
most robust results compared to the baseline networks that
are consistent with neighboring pixels and the most similar
to the intact X-ray images visually. In comparison, the other
baselines [15], [18], [21] generate blurry results with the
broken parts in several regions, which does not provide
realistic vessel paths for image-based procedure guidance.
Further, compared to the original X-ray images depicted
in (a), the strong baseline network [17] still generates some
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FIGURE 5. Qualitative results X̃damaged
i reconstructed using each baseline network using synthesized damaged

images Xpatch-damaged
i under different settings: (a) intact X-ray images Xpatch

i (GT); (b) synthesized images

Xpatch-damaged
i (Input); (c) CE [15]; (d) IPA [18]; (e) HR [21]; (f) AOT [17]; (g) our proposed MAB network.

broken parts, and some of the vessels are narrower than the
original ones because of the low intensity. On the other hand,
the MAB network produces robust results without broken
parts and does not generate narrow vessels.

D. EVALUATION IN THE ABSENCE OF VASCULAR
INFORMATION
In this section, we consider the worst CAD case. To evaluate
the robustness of the synthesis performance, the proposed
method is used to reconstruct extreme cases featuring
complete blockage of vessel information.We train ourmodels
to reconstruct blocked images, Xblocked

i . Here, the weight
parameters of the various loss terms are taken to be λ1 = 1,
λ2 = 256, λ3 = 0, λ4 = 128 and λ5 = 128—these constants
yield the best results.

As indicated by the quantitative results listed in Table 4, the
proposed network achieves the best PNSR andMSE scores of
29.660 and 0.543, respectively, in the case of blocked images
and damaged images, whereas its SSIM score of 0.873 is
slightly lower than that of AOT (0.875) [17]. Moreover, even
corresponding to completely blocked vessel information, all
baseline networks exhibit the highest performance in terms
of PSNR, MSE, and SSIM when trained in conjunction with
vesselness-loss Lℓ1(V ). In particular, superior performance
enhancements are effected on the baseline networks other

than MAB, when they are optimized with both Lℓ1(V )
and LSSIM . In contrast, the MAB network performs the
best when only Lℓ1(V ) is used, yielding PSNR, MSE, and
SSIM scores of 29.850, 0.515, and 0.873, respectively.
Its performance is still improved when both loss terms
are used for training. Thus, for vessel-reconstruction tasks,
the proposed vesselness-loss is demonstrated to be highly
beneficial.

Additionally, the reconstructed results obtained from the
networks are qualitatively compared in Fig. 6. From the
reconstructed results of [15], [17], [18], and [21], we can
observe that distortions remain in the edges or shapes of
the vessels because the blocked images are reconstructed
considering only the direction of blood flow in the vessels
and contextual information of external regions. In contrast,
the results of the MAB network are confirmed to contain
almost no distortion in the vessel areas and to be reconstructed
with similar intensity values as those of actual coronary
arteries.

E. EVALUATION OF THE PROPOSED FULLY-AUTOMATIC
RECONSTRUCTING METHODS
The proposed fully automated reconstruction process is
evaluated in real CTO cases involving broken coronary
arteries,C = {Cbroken

∪Cvessel
}. The process comprises three
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TABLE 4. Quantitative comparison of various methods on the reconstruction of completely blocked images.

FIGURE 6. Qualitative results X̃blocked
i of baseline networks using completely blocked images Xblocked

i : (a) ideal

patches Xpatch
i containing intact vessel information; (b) blocked patches Xblocked

i without vessel information; (c)
CE [15]; (d) IPA [18]; (e) HR [21]; (f) AOT [17]; (g) proposed MAB network.

steps. First, we utilize our previous studies on ROI detection
methods. Thus, tip detection sub-methods are used to search
for broken parts. Second, target areas Xblocked

i are defined

where the broken parts are to be reconstructed. Finally,
those target areas Xblocked

i are reconstructed realistically to
be similar to the broken coronary arteries, C = {Cbroken

∪
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FIGURE 7. Results of the proposed fully automated reconstruction process in X-ray images: (a) 2D X-ray images that contain broken coronary arteries
C = {Cbroken ∪ Cvessel}; (b) automatically detected ROI areas via ROI detection methods, with tip points colored in red; (c) corresponding X-ray patches
where broken parts exist; (d) target areas Xblocked

i where a block is blended with broken parts; (e) realistically reconstructed outputs X̃blocked
i , showing

vascular path; (f) reconstructed 2D X-ray images containing restored coronary arteries indistinguishable from ideal C = {Cvessel}.

Cvessel
}, relative to the ideal case, C = {Cvessel

}. We block
the target areas to assume no meaningful vessel information
present on the broken parts.

The reconstructed results of the proposed MAB network
are presented in Fig. 7. First, the broken parts in the X-ray
image are detected precisely via ROI detection, including the
core broken coronary arteries. Next, the vascular paths are
very realistically reconstructed even when the target areas are
completely blocked, owing to the explicit guidance provided
by our vesselness-loss.

F. ABLATION STUDIES
In this section, we conduct ablation studies to verify and
demonstrate the effectiveness of our vesselness-loss function.
The previous quantitative comparison in Table 3 and 4
demonstrates that using the vesselness-loss function, all
models demonstrate improved performance in terms of
PSNR, MSE, and SSIM when the vessel information is
damaged or completely blocked. It is also observed that, when
vesselness-loss is used in conjunction with SSIM loss, some
models exhibit larger performance improvements. Even if

model performance does not improve when trained with both
SSIM loss and vesselness-loss, it still improves when trained
using only vesselness-loss.

We also evaluate whether the vesselness-loss constrains the
models to foster a vessel-specific reconstruction capability
as follows. First, we configure the other factors, i.e.,
internal parameters of the model architecture, remaining loss
functions, and hyper-parameters, such as learning rate and
mini-batch size, to be identical. Then, we train the network
under four configurations: 1) without both Lℓ1(V ) and LSSIM ,
2) with only LSSIM , 3) with only Lℓ1(V ), and 4) with both
Lℓ1(V ) and LSSIM .

Figs. 8(a) and (b) present an X-ray image and the
synthesized blocked images. The model trained without
Lℓ1(V ) and LSSIM generates blurry results, as depicted in
Fig. 8(c). When trained using only LSSIM , the model yields
visually improved results, as depicted in Fig. 8(d), compared
to those depicted in (c). On the other hand, for the models
trained using Lℓ1(V ), the edges of the vessel regions are
clearly reconstructed, as shown in Fig. 8(e), compared to
those depicted in (c) and even (d). Moreover, the intensity
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FIGURE 8. Multiple results from ablation studies to visualize effectiveness of our novel vesselness-loss function
on our novel MAB network: (a) X-ray images Xpatch

i ; (b) blocked images Xblocked
i ; (c) blurry results of model

trained without both f the model trained without both; (d) blurry results for where broken parts exist of model
trained only with LSSIM ; (e) clear results containing realistically restored intensity values of model trained only
with Lℓ1(V ); (f) results with sharply represented edges in vessel regions of model trained with both Lℓ1(V )
and LSSIM .

values in vessel regions are reconstructed to be identical
to those of (a) without broken regions. This is because
vesselness-loss focuses on recovering the vessel structure and
intensity in the vessel region by minimizing the difference
in the vesselness probability map between the input image
and model output. To describe further, SSIM loss may train
models to learn luminance and even noise, besides structure,
in the X-ray images. Meanwhile, the models can focus on
vessel-specific structure when optimized using vesselness-
loss, because it minimizes the pixel-wise difference only
within the vessels. Finally, in cases 1 and 3, it is verified
that training using Lℓ1(V ) and LSSIM are highly synergetic in
vessel reconstruction, as revealed by the comparison between
Fig. 8(f) and (d, e)—the former depicts the results obtained
using the model trained using bothLℓ1(V ) and LSSIM , whereas
the latter depicts those obtained using the model trained using
either Lℓ1(V ) or LSSIM .

V. DISCUSSION
Partially invisible coronary arteries in X-ray images have
been reported to be one of the main challenges that hinder
successful image-guided PCI procedures. The diagnosis of
coronary arteries is challenging for two reasons. Firstly,
cardiac motion artifacts or intrinsic limitations of X-ray
images, e.g., noise, adversely affect the quality of X-ray
images, thereby leading to indistinct vessel regions. Secondly,
in patients with severe CAD, such as CTO, the vessel regions
are completely blocked, preventing the visualization of the
vessel regions via the injection of contrastive substances into
the regions.

To address the aforementioned issues, we propose a
method that uses a GAN-based approach to reconstruct
blocked coronary artery regions directly using only single

X-ray modalities. The proposed method aims to reconstruct
blocked regions into ideal regions automatically, or depict
broken coronary arteries as ideal coronary arteries. For very
realistic reconstruction and clinical aid, we propose an MAB
network that accounts for both global and local features, e.g.,
direction of the vessels and context information, respectively.
Additionally, a novel vesselness-loss function is proposed
to induce the networks to focus on sparse vessel regions
while learning reconstruction and, specifically, to generate
synthetic vessels with similar intensity values or shapes to
those of real vessels.

Via quantitative and qualitative experiments, it is con-
firmed that the proposed MAB networks, which encodes
multi-scale images for reconstruction tasks, exhibits the
best performance even in cases of damaged or blocked
vessel information. Furthermore, it is verified that our
novel vesselness-loss function, which is designed to focus
on the vessel regions, is effective, exhibiting distinctly
improved performance in quantitative evaluation. We further
demonstrate that vesselness-loss can control themodel during
the vessel reconstruction process—when the vesselness-loss
is used, the reconstructed outputs recover similar intensities
or shapes as those of the real vessels. Further, vesselness-loss
generates synergistic results when optimized in conjunction
with other objective functions, e.g., SSIM loss. However,
SSIM loss conserves the structures of entire images without
taking consideration into vessel-structures—thus, during
reconstruction, noise or inherent luminance of X-ray images
inevitably are included during the reconstruction process.
On the other hand, as vesselness-loss conserves the structures
only in vessel regions, the reconstructed results conserve
robust vessel edges. In our experiments, when the weighted
constant λ5 of the vesselness-loss is larger than the weighted
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constants λ3 of the SSIM loss, the vessels are reconstructed
realistically.

The proposed fully automatic method reconstructs broken
parts of the coronary artery by integrating our previously pro-
posed ROI detection method and a novel GAN-based model.
Excluding input-output under our experiment environment,
only 0.27 s (3.7 Hz) is required per image to perform the
entire process. Most of the operating time is attributed to
tip point detection, which identifies broken parts. Notably,
compared to the times required by conventional registration-
based methods, that of the proposed methods is acceptable
for real clinical situations.

However, the proposed method suffers from certain
limitations. We have not considered cases in which the vessel
is blocked from the initial point of the catheter. In such cases,
the broken parts can be lengthy, which is not addressed by the
current method. In addition, extremely rare cases, involving
multiple broken parts, including CTO and stumpless cases,
are not considered. Meanwhile, as mentioned previously,
detection of broken parts via tip detection is a major
bottleneck in terms of operating time. To overcome these
limitations, we intend to construct a pipeline consisting
of two networks—a module that detects multiple broken
parts in multiple sites over an entire 2D X-ray image, and
a deep and versatile inpainting network that reconstructs
various broken parts, including lengthy vessels in future
works.

In summary, the current paper is important from both
engineering and clinical perspectives. From the engineering
perspective, an MAB network and vesselness-loss are pro-
posed that encode both vessel-specific regions and contextual
information and guide networks to focus on vessel-specific
areas to reconstruct realistic X-ray images. From the clinical
perspective, we propose the first fully automatic framework
that receives only a single X-ray image to reconstruct broken
coronary artery regions. In addition, the proposed method
requires the smallest amount of time, 0.27 s (3.7 Hz),
among all existing alternatives, but reconstructs the most
robust and realistic vascular paths, even in the worst CTO
cases. We expect the proposed method to be utilized for
image-guided procedure or diagnosis systems in real clinical
sites.

VI. CONCLUSION
X-ray images are the primary standard images used to guide
PCI procedures during the treatment of blocked coronary
arteries. Unfortunately, it is challenging to detect and identify
of accurate vascular paths for damaged or invisible vessels
during the procedure due to inherent limitations of X-ray
images. There have been proposed several registration-based
techniques that match the features of 2D X-ray images with
those of 3D CT images, however, they are difficult to apply
in real-world emergency situations because registration is
time-consuming and requires both modalities.

For convenience and simplicity, we propose a fully-
automatic GAN-based reconstruction pipeline that exploits

only single modality, 2D X-ray images. First, we devise an
MAB network, which robustly and realistically reconstructs
broken coronary arteries as ideal ones. Then, we propose
a novel vesselness-loss that compels the model to focus
on sparse vessels. Under an extensive experiments using
in-house 2D X-ray angiography vessel data, we confirm
that our both proposed methods contribute to outstanding
vessel reconstruction performance both quantitatively and
qualitatively, even in the worst situation where vessel
information is completely blocked. The fully automatic
pipeline, from broken region detection to reconstruction,
is achieved when the proposed methods are adopted to our
previous tip point detection module.

In conclusion, the proposed method is highly worth to
be considered to have a significant clinical value as it can
be operated in a fully automatic fashion to reconstruct very
realistic vessel information, which is sufficient to support
an image-guided procedure. In the future, we expect our
proposed methods to be applied to real clinical sites for
image-based procedure guidance.
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