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ABSTRACT In this work, we study the restoration of low-light images with outdoor scenes without ground
truth. Until now, approaches in the literature have avoided using the Retinex decomposition model in an
unsupervised way or have added constraining priors on the searched components. We propose here to relax
the constraint of a grayscale illumination of the Retinex model. Indeed, according to the physics of light,
it should include a colored illumination. Resulting from this new decomposition model, we formulate a new
deep learning-based architecture inspired by the style transfer methods. Our method enables us to visualize
the illumination (i.e. a complex style with the same dimensions as an image) and the reflectance (i.e. the
content). It achieves more visually pleasing components compared to the state-of-the-art i.e. without artifact,
without noise amplification and without hallucination with a simple restoration for each of the components.

INDEX TERMS Low light enhancement, image decomposition, image restoration, inverse problems,

Retinex model, neural networks.

I. INTRODUCTION
Many technological fields, such as self-driving vehicles,
would benefit from more efficient algorithms for the restora-
tion of outdoor nighttime images. To do so, three charac-
teristics have to be considered. The first two are due to the
image itself. Indeed, (i) the image is captured during the
night, therefore the image is very dark with a low intensity
signal, the noise level is high, but more importantly the light
sources in the scene are artificial and thus mostly colored
and not white. Second, (ii) the image contains an outdoor
scene. Therefore, the image contains details of various types,
with also a large range of depth of field. As for the last
characteristic, it is related to the restoration task itself, which
must (iii) preserve the integrity of the image. It is of great
importance to avoid adding fake details for nightvision tasks.
Due to the image characteristics (i) and (ii), the restoration
method must be unsupervised. Indeed, obtaining night/day
image pairs of the same outdoor scene is difficult and, existing
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datasets do not contain true day/night image pairs but rather
estimated ones. For instance, in the database FiveK [8], the
normal-light image is made by human experts. Other datasets
consider pairs with modified exposure parameter (e.g. [ISO)
of the scene, which is different from a night/day illumination
(e.g. NPE [47], LIME dataset which is called HDR by the
original authors [44], VV [2], MEF [32], LOL [51], DICM
which is a mix of images from USC-SIPI [50] and a True
Color Kodak images database [1] or the multi exposure
dataset from [3]). Therefore, supervised methods based on
these datasets, such as KinD++ [63], learn to compensate
the exposure parameter (e.g. ISO) change during the capture,
but not the lighting change (e.g. colored street lamps during
the night versus white sun lighting at daytime). By contrast,
we choose to work with the Waymo dataset [45]. This dataset
does not contain any night/day image pairs of the same scene
but provides true day and true night scenes with similar
contents.

In a first set of approaches, the restoration of low-light
images, either does not preserve the integrity of the image
(requirement (iii)), or significantly increases the noise level.
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Indeed, Jiang et al. restore night images using adversarial
generative networks in their EnlightenGAN approach [24].
The restored image is thus a pleasant and plausible image.
However, elements, which were not present in the origi-
nal image may be introduced. CLEGAN [52] use a similar
method adding a regularization to maximize mutual informa-
tion between low and normal-light images but still hallucinate
details in the output. This prior is even more powerful since
satellite images have strong self-similarity. The authors train
a neural network on a different type of dataset. The datasets
they use contain mainly underexposed images changing
exposure parameters of the camera sensor and not nighttimes
images. Therefore, the required restoration is different from
the one we seek with our method. For instance, they do not
deal with the noise introduced in low-light conditions.

In another set of approaches, the Zero-DCE method [30]
and the work of Wang et al. [48] consists of tonemapping
functions. The former is based on a deep neural network while
the latter is not. The latter doesn’t need a dataset to train and
has low complexity. In these two methods, no hallucination
is added but the noise is increased. They do not deal with the
noise in these images which is not ideal in our case.

To overcome the previous issues, Horn’s interpretation
of the Retinex theory [16] has been used to restore low-
light images. This theory states that an image is a product
of two components: illumination and reflectance, where the
illumination contains the lighting dependent information and
the reflectance the true color of the objects in the scene.
Retinex-based low light image restoration methods therefore
perform a decomposition of the low-light image into two
components. Then, the restored image is either considered as
the reflectance, or as the product between a gamma-corrected
illumination and the estimated reflectance. These Retinex-
based approaches have two drawbacks which come from the
underdetermined nature of the separation problem, where
the number of observations is smaller than the number of
unknowns.

The first drawback observed in LIME [13], Retinex-
GAN [33], and RetinexDIP [29] is that these methods propose
to explore solutions around an initialization of the illumi-
nation component as the maximum of the image over the
color channels, and originally proposed in [13]. However,
the method only explores the neighborhood of its solution.
A second drawback, is that in all the Retinex-based methods,
the prior of a grayscale illumination is used in order to reduce
the number of degrees of freedom and facilitate the search for
solutions to this inverse problem. In this paper, we propose
to relax this constraint by defining a decomposition model
based on the physics of light thanks to the Retinex model
with a colored illumination. The extraction of the components
then becomes an even more difficult problem and to solve it,
we propose firstly the idea of extracting common information
thanks to the physics of light, and define a GAN-based archi-
tecture allowing, in fine, a restoration of the images with low
illumination in an unsupervised way.
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Indeed, according to the physical definition of
reflectance [22], this property of a material represents the
fraction of the radiance reflected by a surface over the radi-
ance received by this surface. However, a consequence of this
definition, is that the value of the reflectance of a material
varies with respect to the wavelength of the incident light.
In other words, in nighttime images, where the lighting is
colored, the estimated reflectance does not contain all the true
colors of an object but only part of it, and the illumination is
colored. Therefore, we propose a novel Retinex model that
takes into account low-light characteristics, and decompose
an image into the product of the reflectance and illumina-
tion, with two main differences. First, the reflectance is the
common information between daytime and nighttime image
domains after a specific correction is applied. Indeed, the
low-light reflectance that we can estimate is only a portion
of the whole estimated normal-light reflectance. Thus, the
low-light reflectance is the common information but it is the
best estimate of the reflectance we can possibly extract from
the two domains because of this degradation. By contrast,
previous contributions in low-light restoration assumed that
the reflectance was equal under daytime and nighttime light-
ing. Second, the illumination is colored, whereas previous
contributions considered grayscale illumination.

Another set of methods try to restore low-light images
with additional metadata present in the RAW version of
these images. For instance, in [19], the authors propose
an approach to unprocess the images, correct them in the
RAW image space and simulate back the image processing
pipeline. In our case, we do not have access to the RAW
metadata of the images. Thus we cannot use this information
for the training phase of our algorithm. An interesting fact,
however, is that the authors conclude that the linearity with
respect to the irradiance on the sensor is critical to restore
low-light images. We reach the same conclusion with the
Retinex theory in Section II-B. To better estimate the Retinex
components, reversing the nonlinear camera operations is
important.

Our problem shares similarities with the source separa-
tion problem as it can be seen as an instantaneous mixture.
However, our case differs from the methods referenced by
the reviewer since the number of unknowns in the outputs
is greater than the number of input variables. For instance,
in the works of Yao et al. [55], [56], [57], the hyperspectral
images have between a hundred to four hundred bands or
channels for each sample. Moreover, the goal of unmixing is
to decompose a spectrum into a collection of spectral signa-
tures of pure materials (i.e. endmembers or classes) and their
fractional abundances (i.e. abundance maps). This discrete
set of classes can contain from three to twelve elements in
the datasets shown in the papers which is far less than the
dimension of the input samples. Therefore, this problem is
overdetermined whereas in our case we seek to find the values
of six variables out of a three-dimensional input and thus it is
underdetermined.
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In summary, the main contributions of our paper are as
follows:

o We formulate different improvements to the original
Retinex decomposition model thanks to a colored illu-
mination and define new appropriate priors for the com-
ponents. The first one is designed to avoid the scale
ambiguity problem of the decomposition and the second
one deals with the problem of a saturated sensor and its
effect on the resulting components.

o We also propose a new architecture with deep neural
networks inspired by state-of-the-art source separation
and style transfer methods trained in an unsupervised
fashion taking a single standard RGB image as input.
This deep neural network has two branches, one for each
of the component and outputs two colored images: the
RGB illumination and the reflectance. It is trained with
additional loss terms corresponding to physical priors
such as the reflectance being the degraded common
information between the night and daylight image dis-
tributions.

o We demonstrate the efficiency of our method compared
to the competitors in the literature on a real world dataset
without any ground-truth [45]. We then show the first
visualization of the Retinex components following the
physics of light as well as the original Horn’s model [16]
while only coarse approximations can be found in the
literature.

Il. IMPROVEMENTS TO THE RETINEX MODEL

A. BACKGROUND ON THE ORIGINAL RETINEX MODEL
The study of the human visual system which lead to
the Retinex theory goes back to the fundamental work
by Land et al. [27] quickly followed by Barrow et al. [4].
Through its history, this theory had diverse interpretations
based on path, center/surround approaches or physics of light.
We refer the reader to [40] for a more detailed review. How-
ever, the Retinex image decomposition model commonly
found in the literature nowadays was first defined by Horn
in [16] for one-channel grayscale images. In the context of
low-light image restoration [13], [29], [51], [63], this model
is extended to RGB images I € R3" as follows:

I=L.xR+n. (n

where .x is the element-wise product, L € R" the
light-dependent component known as the illumination
map, R € R the complementary component named
the reflectance, and n an additive Gaussian noise. Thus,
the illumination is considered a grayscale image scaling the
reflectance with a common factor for the different color
channels. The reflectance is assumed to be Lambertian
(i.e. the surface at every point in the scene is diffusely
reflecting light rays). The incident angle of the irradiance
can be ignored and the Bidirectional reflectance distribution
function (BRDF) [36] is not used. Besides, any specular or
ambient component is also neglected since these methods
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only take a single image as input which invalidate the use
of models such as Phong’s model of the reflection of the
illumination on a surface [37].

B. A COLORED ILLUMINATION

Since the Retinex decomposition model is only valid if
applied on the irradiance of the camera sensor, it cannot be
used directly on a standard RGB image. The intensity of
the image needs to be linear with respect to this irradiance.
Thus, the non linear camera operations (i.e. mainly gamma
corrections or tonemappings) need to be reversed. Complex
pipeline can be used to achieve this goal whether by esti-
mating the camera response model [23], [25], [58] or by
reversing each step of the image processing pipeline [7], [18],
[31]. We assume in this paper that we can reverse the image
processing pipeline by only inverting the gamma correction
(y =2.2).

The reflectance is officially defined by [22] as the frac-
tion of the radiance reflected by a surface over the radiance
received by that surface. In the computer graphics commu-
nity (e.g. [6], [9], [60]), the illumination is assumed to be a
colored component. Since the spectral reflectance curves of
the material present in the scene depends on the wavelength,
this property is needed to accurately simulate the reflection
of light rays. If the light sources in the scene are colored
and not ‘““white”’, the camera sensor only receives partial
information about the whole spectral reflectance curve. Thus,
the reflectance cannot be considered as the true color of
the scene in this case. It is only a ratio map over the three
bands, RGB, in the visible spectrum. Therefore, it can be
counter-intuitive and not look like a realistic image. Different
authors tried to reconstruct the spectral reflectance curve of
the scene in a discrete fashion [5], [11], [54], [64] or in a
continuous one [53]. However, identifying each material in
low-light images is extremely challenging and ill-posed in
practice without using strong priors on the diversity of the
present elements because of the metamerism effect (i.e. one
RGB color can be the result of different combinations of
wavelength). Indeed, in a night image, all colors result from
artifical lights (e.g. street lamps, car headlights, .. .) reflecting
on the different objects in the scene and then going straight
through the camera sensor. Since these artificial lights are
colored and the reflectance spectra of the objects in the scene
are highly non-linear, we only observe a tiny portion if not
none of the “true” colors (i.e. the color under a white light)
of the scene. We introduce a different definition of the Retinex
decomposition to address these challenges. In the literature,
indoor datasets such as LOL [51] don’t fully represent the
complexity of the degradation in outdoor images. Reducing
the exposure to simulate a low-light image is too simplistic
to capture the whole shift of the distribution. In this paper,
we also do not consider the multiple scattering of light rays
or the attenuation of the fog during the night in the out-
door scene to simplify the model as opposed to [35] for
instance.
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Instead, we define the reflectance as the corrected common
information between two distributions of images (which is
assumed to have similar scenes and objects but not paired
images). Indeed, the reflectance extracted from low-light
images is degraded and thus not equal to the one estimated
from normal-light images. In that sense, the reflectance is
really independent from the domain while the illumination
is the light-dependent component and contains, for instance,
the specific noise of low-light images.

With these definitions, we redefine eq. (1) as eq. (2).

1V=(§+n).*a1e 2)

where I € [0,1]*" the RGB image, L € [0,1]*" the
illumination, &« € R* a scaling factor as the decomposition
leads to an infinity of solutions. R € [¢, 1 — &]*" as the only
object which absorbs all light is a black hole. On the contrary,
perfect mirrors are still not widely commercialised and may
not appear frequently in our everyday lives. ¢ = le™3 in our
experiments. Thus, we relax the original previous model of
the grayscale constraint of the illumination. The component
now has a local chrominance in addition to a local luminance
value. In Section II-C, we quickly define an additional prior
to reduce the solution set with the scaling factor « and extend
a previously published prior in [29] to address a colored
illumination. Since the illumination is supposed to contain
the low-light noise and degradations, adding an illumination
smoothness prior (e.g. the one in [51], [63] would be ineffi-
cient).

C. NEW PRIORS

1) SCALE AMBIGUITY (HIGH REFLECTANCE PRIOR)

The « factor introduced in the model (2) highlights the scale
ambiguity problem in the Retinex decomposition. Any posi-
tive real value can lead to a plausible solution. To reduce even
further the solution set we propose a new prior defined as
follows:

1
Lyr = | = (3)
o b
o = 1 as an initial value before the optimisation process.

As we are working with low-light images, we assume that
the illumination should have the lowest possible value. On the
other hand, minimising this prior is equivalent to seeking for
the highest reflectance. Intuitively, it can be seen as consid-
ering a high V-channel (HSV) for the reflectance, one with
a low value for the illumination. This also means that the
optimisation process is biased against black bodies.

2) EXPOSURE PRIOR (RGB VERSION)

In this section, we extend the exposure prior [29] to RGB
images. As long as the camera sensor is not saturated by the
light ray (i.e. Ice{r,G,py # 1), the illumination can not be
saturated as well (i.e. L.e(r,G,B) 7 1). This prior is defined
to prevent the trivial solution where L = 1 and thus I = R.
Only light sources or overexposed regions in the input image
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should lead to such values in the components. This prior is
defined as

L= Y e sl )

ce{R,G,B)

, 1 —¢
where g is a threshold function g(x) = o= .
0, otherwise

and L = max
c€{R,G,B)
following the work LIME by Guo et al. [13].

I, an approximation of the illumination

IIl. THE ARCHITECTURE

A. ARCHITECTURE CHOICES

In this section we describe the architecture shown in Fig. 1
that we propose to decompose an image. Since we do not have
access to the ground-truth images and want a low execution
time, we use a GAN-based architecture. To better separate
the input image into the two components, we make use of
two discriminators, one to generate each of the component
respectively.

The network is composed of two branches to extract each
component. We build on the YTMT source separation strat-
egy [17] which consists of alternating positive ReLu on
one branch and negative ReLu on the other to avoid losing
information and to better connect the two networks together.
We use two UNets [42]. The illumination branch receives
as input an approximation of the illumination of the input
image I.

In MUNIT [21], the authors managed to transfer the style
of an image such that the resulting image belongs to another
domain while preserving the content of the image. To perform
that, they improve upon the work of [12] and the surprising
result that instance normalization [46] followed a procedure
to align the mean and variance of the content features with
those of the style features [20]. By nature, this problem is
similar to the Retinex decomposition problem if we consider
the reflectance as the content we try to preserve and the illu-
mination as a complex style (i.e. a whole RGB image instead
of mean and variance parameters). Therefore, we add instance
normalization modules to the reflectance extraction branch.
The information of the style of the image flows through the
illumination branch.

B. THE LOSS TERMS

1) THE RECONSTRUCTION LOSS

For ease of notation, we omit the « scaling factor in
the following equations to compute the two estimated
components (f,, IA?).

L=X% max I, (®)]
ce{R,G,B}

Gr:l;j e R > Ry e R™ (6)

Gr:LieR" > [, e R™ @)

where ) is the mean triplet RGB over the spatial dimensions
of the input image, d € {0, 1} the label being equal to 1 for
the normal-light domain and O for the low-light one.
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FIGURE 1. An illustration of architecture composed of two branches: the upper branch extracts the reflectance from the image normalizing the style
of the features, the lower branch on the contrary keeps the style information to produce the illumination and takes as input an approximation of
this component to facilitate the process. The two branches can swap information with the YTMT strategy [17] for source separation. Each
component has its own discriminator to follow the definition of the Retinex components with common information. We reapply the gamma

correction to display the images illustrating the variables.

To make sure that the two generated components we get
can reconstruct the input image according to the Retinex
model, we use the mean absolute error for the structure of
the image and the angular error to ensure that the color is
accurately recovered. This can be summed up as the following
terms,

Lyag = ||Iy —L. *IA?HI (8)
L-R
Ecolor TN (9)
[L1R]

We don’t use the latent reconstruction terms like in [21] since
applying the illumination of one image to the reflectance
of another would result in an unrealistic and not plausible
image and then would mislead the discriminators during
the training process. The £!-norm guarantees that no infor-
mation is lost during the decomposition process. However,
we directly extracts a noisy illumination instead of a noiseless
version since its easier to do so and then denoise the resulting
component.

2) DOMAIN DISCRIMINATOR ADVERSARIAL FUNCTIONS
Our architecture relies on adversarial loss terms to find the
components in an unsupervised fashion. We define the two
discriminators function as follows,

Dr:Ry+— d (10)
Dy, :id — d
d € {0, 1}. (an
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where d is the estimated label resulting from each of the com-
ponent. We use a multi-scale discriminator architecture such
as the one in [38]. The discriminators need to be able to iden-
tify the domain of the input component they get (i.e. separate
each component according to their domain). We empirically
find that the training of the generators is more stable with
the Least Squares GAN [34] than the other versions. The
parameters of (Gg, G1,) are fixed in this pass.

o, = Y B [(uGean—a)] a2

de{0,1}

Log= 3 By[(oxGrum —a)]  a3)
de{0,1}

3) GENERATOR ADVERSARIAL FUNCTIONS

To train the generators (Gg, Gr), we fix the parameters
of (Dg, Dr). The illumination generator should extract the
component from the image and the domain should be accu-
rately identified by the corresponding discriminator. On the
contrary, we seek to extract information which cannot be
classified by the reflectance discriminator between the low
and normal-light domains. Therefore, we optimize it to align
the low-light reflectance to the normal-light one. This leads
to the following equations,

Lo, = Y E[(peGiwm -a)] a4
de{0,1}

Loo= 3 By[(oxGrum—1)7]  as)

delo,1}
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FIGURE 2. From left column to right column: the input image, the extracted raw illumination and reflectance. The illumination contains the specific

low-light noise and degradations.

4) THE RESULTING OPTIMIZATION PROBLEM
As a result, we obtain the following problem to train the
decomposition network,

(GRs GL) = argmin A\yag LyaE + Acolor Leolor
GR,GL,C(

+ ARLHR + AELE
+ Maav(Le, + Lag) (16)
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and for the Retinex components domain discriminators,

(ﬁR, ﬁL) = argmin Lp, + Lp, - (17)
Dg.Dyr,

C. VISUALIZATION & RESTORATION OF THE
COMPONENTS

One of the key benefits of considering a complex style as
the illumination (i.e. a style that has the same dimensions of
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TABLE 1. Properties of the different datasets we use throughout the paper.

Dataset Publicly available  Indoor/Outdoor  Contains paired images  Contains real-world scenes Size
Waymo [45] 4 Outdoor X v 128 093 normal-light images / 15419 low-light images
BDD [59] v Outdoor X v 14772 low-light images
LOL [51] v Indoor v v 500 pairs

(e)

(8)

FIGURE 3. From left to right: the input image Fig. 3a, the extracted raw illumination Fig. 3b, the denoised component Fig. 3¢, the component if we denoise
before the decomposition Fig. 3d. To denoise the illumination, the noise map is weighted. Since the gradient of the reflectance Fig. 3e has less
information about the structure of the scene than the weight map Fig. 3f as the inverse of the approximation of the illumination as defined in LIME [13],
we use the latter here. We could not further denoise the image as it would lead to a loss of details. Fig. 3d shows that if we denoise the image before the
decomposition, it only affects the illumination as the reflectance remains untouched Fig. 3g. We decide to denoise the component after the
decomposition as the former would lead to some artifacts introduced by the denoising network and amplified by the restoration of the components.

C))

()

FIGURE 4. From left to right: the input image, the extracted raw reflectance, the gamma corrected component. The low-light noise is not strengthen after
the restoration which confirms the components are correctly separated according to the defined model. We restore with a different y for each RGB color
channel as we empirically find it leads to visually better output images. The higher gamma value for the blue color channel giving the component its
non-natural hue is set to balance the green noise of the illumination. See Fig. 12 for an example of the components extracted from an image of the

BDD100K dataset [59].

an image here) is that it can be visualized. Some examples
of the obtained Retinex components are illustrated in Fig. 2.
To the best of our knowledge, this is the first time that
these components are linked to the style transfer literature
and that the common and specific domain information are
displayed. The reflectance is sharper than the input image.
The dark areas present in it can be intuitively explained as
loss or missing information about the scene. It shows that this
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component also needs a custom restoration. Besides, shadows
and light rays coming from the car headlights and street lamps
still end up in the reflectance. However, the glare effect of the
light sources are reduced and the colors are less saturated.
On the other hand, the illumination contains the low-light
noise and degradations. We seek to restore low-light images
but not estimate a daylight version. Thus, we denoise the
illumination component instead of the reflectance like in the
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@) (b) | (©

FIGURE 5. From left to right: the input image, the extracted raw illumination and reflectance if we consider a grayscale smooth illumination as previously
used in the literature.

(@ (b) (9 (d)

0 (1) (k) U]

(m) (n) (o) (p)

FIGURE 6. From left column to right column: the input image, the output of our method without denoising, with denoising and denoising with a different
noise level for each RGB color channel.

previous works in the literature and avoid any tone mapping the reflectance in Fig. 3. Using the maximum of the refle-

to avoid amplifying the noise. We use a weight map to denoise tance over the color RGB channels gives more information
the component according to the structure of the scene in than a simple gradient and guide the denoising network to
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(@ (b)

(c) (d)

FIGURE 7. Style transfer and data augmentation methods with from left to right: Fig. 7a The input image, Fig. 7b CoMoGAN [38], Fig. 7c ManiFest [39],
Fig. 7d MUNIT [21] trained on the Waymo dataset. These style transfer methods do not preserve the integrity of the scene in the input image and add

hallucinations.

FIGURE 8. From left column to right column: the input normal-light image, the extracted raw illumination and the reflectance. Textural details such as the
frontage of the buildings end up in the reflectance which demonstrates the quality of the decomposition model.

TABLE 2. LPC-SI scores [14] on the Waymo dataset with respectively in
blue methods that hallucinate and in black methods which don’t. Scores
in bold are the hightest scores in each of the category. We obtain the best
LPC-SI score among the non-hallucinating approaches.

Methods LPC-SI(1)
MUNIT [20] 0.95428
EnlightenGANretrained [24] 0.97610
EnlightenGANwaymo [24] 0.97848
Retinex DIP color [29] 0.94439
Retinex DIP gray [29] 0.94686
Zero-DCE [30] 0.96943
Gamma Correctionygy 0.96746
Gamma Correctionggg 0.96463
KinD++ [62] 0.96572
LIME [13] 0.96343
Ours 0.97152

strengthen the denoising process where the reflectance does
not have a lot of information in the dark areas. We try to find
the best compromise to keep the maximum of information in
the image. Since the reflectance contains the textural details
of the different objects of the scene, we seek to amplify this
information to highlight and make it easier to distinguish the
elements. The different works in the literature do it with a
tone mapping function such as a gamma correction [13] or
by the use of a neural network [30], [62]. Defining which
type of function to apply here can be difficult without any
ground-truth images or priors to control the exposure of the
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image (e.g. section III-C in [30]). Therefore, we decide to
use the simple and efficient gamma correction with a low
execution time. We empirically find the best gamma values
by maximising the LPC-SI metric [14]. We also found that we
can get visually better results with a higher correction on the
blue channel to balance the colored noise of the illumination.
This effect is dataset-specific though and not mandatory in
other cases. It may be due to the sensors that the authors
used but we couldn’t verify this hypothesis. We also tried
a unique gamma for all the channels or in the HSV domain
but the results were either too whitened by the process or the
colors too saturated. An example of the restoration process
of the illumination is shown in Fig. 3 and in Fig. 4 for the
reflectance. Using a gamma correction on the reflectance
does not reveal a hidden noise or another low-light degrada-
tion. This shows the high quality of the decomposition.

IV. RESULTS

A. METRICS & EVALUATION METHODOLOGY

As we are not seeking to approximate the distribution of
daylight images with the restored images and we have no
ground-truth, neither commonly used metrics like FID [15],
IS [43] or CIS [21] nor classic reference-based metrics such
as PNSR, SSIM [49] or LPIPS [61] can be used here. The
LPC-SI metric [14] measures the sharpness of an image
through local phase coherence of complex wavelet coeffi-
cients. Even though it cannot measure the whole low-light
degradation, being sharp is one of the properties we desire
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FIGURE 9. (a-e) First part of the qualitative comparison between the restoration methods applied to the input image Fig. 9a and the
state-of-the-art approaches. Our method Fig. 9b leads to a visually better result than the competitors with respectively Fig. 9c KinD++ [62],
Fig. 9d Retinex DIP color [29], Fig. 9e Retinex DIP gray [29]. (f-k) Second part of the qualitative comparison between the restoration methods
applied to the input image Fig. 9a and the state-of-the-art approaches. Fig. 9f EnlightenGAN [24] and Fig. 9g EnlightenGAN fine-tuned on the
Waymo dataset [24] hallucinates trees at the top of the image as shown in the red squares. Applying gamma corrections in the RGB and HSV
spaces leads to the outputs illustrated in Figs. 9h and 9i with an undesirable “fog” effect whitening the image. Fig. 9j LIME [13] and Fig. 9k
Zero-DCE [30] amplify the noise in the darkest parts of the image.
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FIGURE 9. (Continued.) (a-e) First part of the qualitative comparison between the restoration methods applied to the input image Fig. 9a and the
state-of-the-art approaches. Our method Fig. 9b leads to a visually better result than the competitors with respectively Fig. 9c KinD++ [62], Fig. 9d
Retinex DIP color [29], Fig. 9e Retinex DIP gray [29]. (f-k) Second part of the qualitative comparison between the restoration methods applied to the
input image Fig. 9a and the state-of-the-art approaches. Fig. 9f EnlightenGAN [24] and Fig. 9g EnlightenGAN fine-tuned on the Waymo dataset [24]
hallucinates trees at the top of the image as shown in the red squares. Applying gamma corrections in the RGB and HSV spaces leads to the outputs
illustrated in Figs. 9h and 9i with an undesirable “fog” effect whitening the image. Fig. 9j LIME [13] and Fig. 9k Zero-DCE [30] amplify the noise in the

darkest parts of the image.

for the result. We choose the best gamma values to apply for
the gamma correction over the RGB color channels with a
trade-off between the LPC-SI metric and the visual quality of
the images.

As there are no ground-truth images available for our
problem, we consider a two-steps process to evaluate the
methods: First, we use a visual approach: we observe
the level of noise and note if there are hallucinations in the
outputs. Then, since there are no ground-truth in the datasets,
we cannot use metrics with reference. Thus, we compare
the methods using a non-visual test with the reference-free
LPC-SI metric [14]. The results are illustrated in Table 2.
The hallucinating methods can reach higher scores since they
invent very sharp objects. On the contrary, ours gives the
sharpest images among the methods which cannot halluci-
nate. The LPC-SI scores of the different methods are shown
on Table 2.

B. IMPLEMENTATION DETAILS

We use the ADAM optimizer [26] with a fixed learning
rate of le™* optimized over 200 epochs, Pytorch [10] as
framework and the Kornia library [41]. We empirically find
the coefficients Arecon = 3€', Aeolor = le', Agr = 1,
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Xe = Sel,yr = 2,96 = 2,y8 = 6,08 = 15,06 =
10, op = 15. We crop the images to the size 256 x 256 and
group them by 3 to make a batch. To denoise the component,
we use the plug-and-play denoising network trained on spa-
tially varying noise in [28]. We found out that we get better
results using the same noise level map for all color channels
as illustrated in Fig. 6.

C. ABLATION STUDY
If we consider the original Retinex model with a
grayscale smooth illumination, we get the results shown
in Fig. 5. Then, even if we denoise the reflectance, we cannot
obtain visually pleasing outputs here.

In Fig. 8, Retinex components of a daylight image are illus-
trated. Textural details such as the frontage of the buildings
end up in the reflectance.

D. QUALITATIVE COMPARISON

1) ON THE WAYMO DATASET [45]

The state-of-the-art results are illustrated in Figs. 7 and 9.
Fig. 7 contains the outputs of several style transfer
methods. These works are mainly aiming at augmenting
data to enhance datasets with the goal of training networks
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(® (h)
FIGURE 10. lllustration of failure cases of the decomposition if applied on
the LOL dataset on the input image Fig. 10a compared to the ground-truth
image Fig. 10b. The model cannot extract the two components if trained
with a colored illumination Figs. 10c and 10d because the dataset is too
small and contains a high diversity of scenes. The same problem occurs if
pretraind on the Waymo dataset [45] Figs. 10g and 10h. Using a grayscale
illumination for training Figs. 10e and 10f, it recovers a smooth
illumination which was also a previous prior in the literature.

which will be robust to these modifications. CoMoGAN [38]
simulates night images with daylight images and cannot do
the reverse process as seen in Fig. 7b. In Figs. 7c and 7d,
ManiFest [39] and MUNIT [21] completely modify parts of
the image and do not preserve the integrity of the scene which
is undesirable in our case.

In Fig. 9f, EnlightenGAN [24] hallucinates trees in the
background as shown in the red squares which is obviously
not desirable in our case. However, the image is sharper.
We fine-tune it on the same dataset to see if we could improve
the results and still obtained hallucinations in Fig. 9g.

For the gamma correction, we apply the same gamma
values as with our method (i.e. with a higher gamma for
the blue channel) in the RGB color space and the result is
shown in Fig. Oh. The “fog” effect results from the gamma
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FIGURE 11. Comparison of histograms between the input image Fig. 11a,
the image after applying a simple gamma correction on all color channels
in RGB Fig. 11b or the V channel in HSV Fig. 11¢, the image restored with a
gamma correction according to our method in RGB Fig. 11d or HSV

Fig. 11e.

correction applied on all the color channels. The histogram of
the blue channel is shifted to the right as shown in Fig. 11b.
This effect is not present if we restore the V channel in the
HSV color space instead, see Fig. 9i and its corresponding
histogram Fig. 11c. With our method, it’s not the case even
if we restore the reflectance with a gamma correction on
all RGB channels as shown in Figs. 11d and 11e. There is
little to no difference applying a gamma correction on all
RGB channels or V channel in HSV with respect to the
histograms. Moreover, the histograms are flatter than the ones
with gamma correction only which can be seen as histogram
equalizations or contrast enhancement. We get visually more
appealing results with our method than the gamma correction.
Looking at the histograms of the input images, the blue
channel pixels have really low intensity and there are more
information about the scene in the red and green channels.
Our method Fig. 9b leads to a visually better result
than the competitors such as LIME, Zero-DCE or KinD++
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FIGURE 12. An example of the obtained Retinex components and the
restoration output on an image coming from the BDD100k dataset [59].
We apply the network trained on the Waymo dataset [45]. From left
column to right column: the input image Fig. Fig. 12a, the restored image
Fig. 12b, the extracted raw illumination Fig. 12c and its restored version
Fig. 12d, the extracted raw reflectance and its restored version Figs. 12e
and 12f. The illumination still contains the low-light noise and
degradations which strengthen the conclusion on the quality of the
decomposition.

Figs. 9c, 9j and 9k. Applying our network trained on the
Waymo dataset [45] to the BDD100k dataset [59] leads to
the results shown in Fig. 12. We only reduce the yp = 2 to
the same value as the other color channels as this dataset does
not suffer from the green hue. We obtain similar results with a
network pretrained on another dataset which really highlights
the generalisation ability of the restoration. Moreover, the
visual quality of the decomposition is on par with the one
on the Waymo dataset. Nonetheless, we emphasize that this
dataset is composed of images with similar scenes (same
objects and backgrounds).

2) FAILURE CASES

Fig. 10 illustrates the outputs of our method if the net-
work is trained on the commonly known LOL dataset.
Figs. 10a and 10b are respectively the input low-light image
and its corresponding ground-truth normal-light image.
Figs. 10c and 10d show the illumination and reflectance
components we can extract if a colored illumination is con-
sidered. The datatset size being relatively small with around
500 paired images, a GAN-based architecture has trouble to
learn in an unsupervised fashion. Specifically, the common
information of widely diverse scenes is really challenging
to estimate. If we consider a grayscale smooth illumination
like in previous works, the constraints are strong enough to
guide the decomposition but the low-light noise still ends up
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in the reflectance and makes it even more difficult to get rid
of it. If we apply the network already trained on the Waymo
dataset to the LOL dataset, we obtain results as shown in
Figs. 10g and 10h. Since there is an enormous gap between
the type of scene and degradation between the two datasets,
the network experiences difficulty in extracting the correct
information. We provide more information on the different
datasets we use in Table 1.

V. CONCLUSION

In this paper, we proposed a new approach based on
state-of-the-art source separation and style transfer methods
to decompose in an unsupervised fashion outdoor night-
time images. We improved on the original Retinex model
by extracting common information between the low and
normal-light domain thanks to a colored illumination. More-
over, we also defined a new architecture with deep neural
networks building on this physical model. To the best of
our knowledge, this is the first time this definition of the
Retinex components is put into practice. It makes it feasible
to visualize the complex style known as the illumination and
the reflectance in an image. Applied to the Waymo dataset,
our method is more stable and produces visually pleasing
images without hallucinating parts of the image compared to
the state-of-the-art methods. However, different aspects of the
method could be improved in a future work. Indeed, each non
linear operation applied by the camera pipeline like a gamma
correction or a specific tonemapping makes it more difficult
to decompose the image. Reversing this pipeline from a
single input image is already an active research field in the
literature. See [31] for instance. Since it’s another challenging
inverse problem and our model is still valid in our context,
reversing the camera pipeline is beyond the scope of this
paper. It remains an interesting research direction to improve
the accuracy of the estimation of the Retinex components.
We also could find a better method to restore the components
than a gamma correction and a denoising network.
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