
Received 23 June 2023, accepted 29 July 2023, date of publication 2 August 2023, date of current version 10 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3301188

Large-Scale Oceanic Dynamic Field Visualization
Based on WebGL
DONGLIN FAN1,2, TIANLONG LIANG 1,2, HONGCHANG HE 1, MENGYUAN GUO 3,
AND MENGHUI WANG 1,2
1College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
2Ecological Spatiotemporal Big Data Perception Service Laboratory, Guilin University of Technology, Guilin 541006, China
3College of Arts, Guilin University of Technology, Guilin 541006, China

Corresponding author: Hongchang He (hhe@glut.edu.cn)

This work was supported in part by the Natural Science Foundation of Guangxi Province under Grant 2022GXNSFBA035637, in part by
the Basic Scientific Research Ability Improvement Project for Young and Middle-Aged Teachers of Universities in Guangxi under
Grant 2021KY0255, and in part by the ‘‘BaGui Scholars’’ Program of the Provincial Government of Guangxi.

ABSTRACT The dynamic visualization of ocean dynamics data is essential for effectively presenting
oceanic information data. However, with the increasing spatial resolution of ocean remote sensing data,
performing global-scale visualization in a single pass has become challenging. Directly rendering ocean
data with high spatial resolution can result in problems such as increased communication time, blocked
resource loading, and page lag. To address this issue, this paper proposes a common ocean data standard
based on the characteristics of massive ocean element data, constructs an efficient three-level LOD model
for ocean dynamic field rendering, and achieves particle rendering of ocean dynamic data by converting
ocean data into image slices to complete the rendering of high-volume ocean data on the Web side.
Compared with traditional methods, the proposed method significantly improves rendering performance.
The average window construction time (FT) is reduced to 51.77ms, enhancing the overall rendering speed
by approximately 64%. Meanwhile, the average frames per second (FPS) increase to 57.45fps, augmenting
rendering stability and smoothness by around 18%. The peak memory consumption of the highest resolution
data used in this paper is about 90MB, which is only 1/4 of the original. The proposed method effectively
compensates for the disadvantage of slow rendering of large-scale ocean data visualization in some systems,
enabling fast rendering of dynamic ocean data on the Web.

INDEX TERMS Oceanic engineering and marine technology, oceanography, application software.

I. INTRODUCTION
The oceanic dynamic field generally refers to a field of
force generated by natural phenomena such as ocean currents,
wind, and tides in the ocean [1]. Visualizing this field allows
for the extraction and intuitive display of information, which
is crucial for understanding patterns of change in the marine
environment [2], [3]. With advancements in remote sensing
techniques and vector visualization methods, along with the
power of HTML5 technology, it has become possible to visu-
alize oceanic dynamic fields on a large scale [4], [5], [6], [7].
To achieve dynamic visualization of oceanic dynamic data,
it is necessary to transmit the data directly to the browser

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang .

for rendering [8], [9]. However, global network congestion
during the transmission of oceanic dynamic data can cause
webpage lagging and negatively impact the efficiency and
user experience of data rendering [10]. Additionally, render-
ing data directly using the CPU in the browser can further
contribute to webpage lagging and delays [11]. To address
these challenges, this paper proposes a method for dynam-
ically visualizing large-scale oceanic dynamic data based
on WebGL.

Advancements in oceanic visualization technology and
network application architectures in recent decades have
laid the technological groundwork for large-scale oceanic
data visualization [12], [13], [14]. Some researchers have
approached oceanic data processing from a data perspective
and proposed methods to reduce network transmission for

82816
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0007-6909-0365
https://orcid.org/0009-0004-3294-3019
https://orcid.org/0009-0001-6552-1072
https://orcid.org/0009-0007-5087-8646
https://orcid.org/0000-0002-5121-0599


D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

individual pieces of oceanic data, such as data compres-
sion [15] and data partitioning [16]. If we consider only one
aspect, even with the latest remote sensing data compres-
sion technology, it isn’t easy to meet the requirements for
large-scale ocean data visualization. [17], [18], [19]. Thus,
it becomes necessary to address the issue of data volume from
alternative perspectives.

Level Of Detail (LOD) techniques [20] can tackle the
problem by focusing on the ‘‘transmission’’ aspect. By trans-
mitting data with varying levels of precision based on user
requirements, the efficiency and quality of oceanic remote
sensing data transmission and utilization can be significantly
improved [21]. There is existing evidence to suggest that
using LOD technology can effectively enhance the rendering
performance of ocean data [10]. Furthermore, by enhancing
existing LOD models, LOD models specifically designed for
ocean data are more targeted and can significantly improve
rendering efficiency and quality [22]. Therefore, establishing
a generalized LOD oceanic data processing model based
on LOD technology, combined with methods such as data
compression and downsampling, can substantially improve
rendering efficiency.

Within the realm of visualization, oceanic dynamic fields
are classified as vector fields, encompassing phenomena such
as ocean currents, winds, and related factors [23]. Traditional
methods for visualizing vector fields include the use of point
glyphs and line glyphs, which map geometric shapes, as well
as the point noise method that relies on texture generation
mapping [24], and the line integral convolution method [25].
However, these approaches encounter challenges in effec-
tively capturing the continuity and complex structural charac-
teristics of vector fields, often resulting in high computational
overhead and low rendering efficiency [26]. To overcome
these limitations, a particle system-based multilevel ocean
flow dynamic visualization method [5] has been proposed
to address the shortcomings of traditional arrow symbols
and streamline methods. This method can clearly and effi-
ciently represent ocean vector field data while improving
rendering efficiency. This method has become a leading
commercial approach for vector field visualization and is
currently widely used in visualization systems related to flow
fields [27].
In the web application architecture, the Browser/Server

(B/S) architecture has become a superior choice for modern
web applications due to its advantages, such as cross-platform
compatibility, security, scalability, maintainability, and user
experience [28]. HTML5, a key component of the B/S
architecture, plays a significant role in oceanic visualization
research [29]. The Canvas API within HTML5 enables the
depiction of oceanic features and dynamic changes through
the rendering of static graphics and dynamic animations [30].
However, when dealing with large-scale oceanic data, the
Canvas API’s performance and data processing speed may
become limiting factors, making real-time visualization chal-
lenging [11]. This limitation will be discussed further in
the third section of this paper. WebGL, a web graphics

library based on OpenGL ES, provides optimizations such
as shader program optimization, GPU parallel computing,
data batching, texture usage optimization, and caching, which
can enhance the efficiency and quality of oceanic visual-
ization [7]. Despite this, traditional ocean flow visualization
methods based on WebGL and GPU acceleration, while
improving rendering efficiency, have failed to achieve the
desired visual effect [31]. To address this limitation, combin-
ing the aforementioned particle system visualization method
with certain WebGL extensions can significantly enhance the
visualization of ocean flow and improve the performance
and quality of GPU-accelerated particle systems [32]. Conse-
quently, there is significant potential for large-scale oceanic
dynamic field visualization based on WebGL.

Oceanic dynamic field visualization can help fishermen,
oceanographers, coastal managers, and others to obtain infor-
mation about oceanic dynamic fields better, allowing for
further analysis and understanding of their spatiotemporal
patterns [33]. Despite significant achievements in remote
sensing technology, visualization technology, and web appli-
cation architecture [4], [28], [34], there are still significant
challenges in achieving large-scale, high-precision, and effi-
cient oceanic dynamic field visualization. Therefore, based
on the advantages of the aforementioned technologies, this
article proposes a large-scale oceanic dynamic field visual-
ization method. By utilizing this method, it is possible to
significantly reduce the size of individual transmissions of
ocean data within a limited window, which can be lever-
aged to render visualizations of ocean dynamics efficiently.
The specific contributions to the field of ocean visualization
research are as follows:

• A universal LOD ocean data processing model has
been established. By utilizing LOD techniques in
combination with data compression, data resampling,
and data partitioning, the original data can be effec-
tively processed, significantly reducing the amount
of data required to be transmitted for a single data
rendering.

• A particle-based dynamic fine-flow method was
employed to develop a process for visualizing ocean
dynamics. By mapping particle length, width, head and
tail size to velocity and map viewport scaling level,
the ocean dynamics data can be expressed with clarity
and beauty while also improving the efficiency of data
rendering.

• A global ocean dynamics visualization has been imple-
mented using WebGL. Compared to Canvas, using the
WebGL framework for rendering ocean dynamics data
has greatly improved the efficiency of data rendering.

The rest of this article is organized as follows. Section II
provides an overview of the system architecture, including the
technical process, standardization rules, and rendering pro-
cess. Section III describes a series of experiments conducted
based on this architecture, demonstrating the effectiveness
and superior performance of the visualization rendering.
Finally, Section IV presents the conclusion.

VOLUME 11, 2023 82817



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 1. Technical flow chart.

II. ARCHITECTURE DESIGN
This paper introduces a multi-source data processing and
publication standard to provide a universal data render-
ing method compatible with various oceanic dynamic data
sources. Each type of oceanic dynamic data was resampled at
four LOD according to the standardization rules. The process
achieves numerical conversion of the data, metadata writing,
and oceanic element value writing and facilitates slice service
publication by utilizing a web server. Finally, a marine data
rendering mode is designed based on the target’s and oceanic
data’s characteristics. This model is utilized to render vec-
tor marine data, following the technical process illustrated
in FIGURE 1.

A. DATA STANDARDIZATION
This paper presents a comprehensive set of data standards
encompassing data naming conventions, tile hierarchy and
size, and tile metadata to ensure seamless data transmis-
sion and visualization of oceanographic data from different
sources. The proposed data naming conventions establish a
consistent organization scheme based on the data’s source,
type, time, and depth. The following rules govern the naming
conventions:

(Data Type) − (Data Source)

− (YYYYmmDDHHMMSS) − (Depth) (1)

where: YYYY represents the year, mm represents the month,
DD represents the day, HH represents the hour, MM repre-
sents the minute, and SS represents the second.

The process of data standardization also encompasses
data filling and data resampling [26]. Data filling comprises
two aspects: filling missing data within the entire original
dataset by assigning the mean value of the 3 × 3 window
surrounding the missing value, and filling data boundaries
when they fall outside the range of longitude [−180, 180]
and latitude [−90, 90]. Data resampling involves extracting
low-resolution images from high-resolution remote sensing
images. In this study, the data was resampled into four levels
of spatial resolution: 0.5◦, 0.25◦, 0.1◦, and 0.05◦, correspond-
ing to levels 0, 1, 2, and 3, respectively. Bilinear interpolation
was employed as the interpolation algorithm, which com-
putes the value of the target point by interpolating the four
neighboring points of the original point. The specific formula
used is as follows:

f (P) =
y2 − y
y2 − y1

f (R1) +
y− y1
y2 − y1

f (R2) (2)

f (Ri) =
x2 − x
x2 − x1

f (Q1i) +
x − x1
x2 − x1

f (Q2i) (3)

The formula can be expressed as follows: P represents the
pixel coordinate value in the target image; Ri represents the
coordinate value of the i-th interpolation in the x direction;

82818 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 2. Schematic diagram for addressing the problem of resampling.

Q1i and Q2i represent the pixel coordinate values of the four
original images; (x, y) is the pixel coordinate of the target
image; (x1, y1), (x1, y2), (x2, y1), and (x2, y2) correspond to
the coordinates of Q11, Q12, Q21, and Q22, respectively.
However, there are two issues with the resampling process

using the above formula. Firstly, FIGURE 2a illustrates the
resampling results with different coordinate system origins at
the top left and top right corners, indicating that inconsistent
results are produced based on the selected coordinate system
origin. Secondly, FIGURE 2b shows that the geometric centre
of the original image is (1,1) while that of the target image
is (2,2). According to the corresponding relationship, the
position of the geometric centre of the target image cor-
responds to (1.2,1.2) in the original image, indicating that
the centre point of the target image is offset relative to the
geometric centre point of the original image. This causes the
overall image position to shift and causes a loss of relative
positional information due to all participating points being
shifted down and to the right. Therefore, it is necessary
to optimize the bi-linear interpolation formula by aligning
the geometric centre points to solve the issues mentioned
above. The final optimized bi-linear interpolation formula is
as follows:

src_x = (des_x + 0.5)×
src_w
des_w

−0.5 (4)

src_y = (des_y + 0.5)×
src_h
des_h

−0.5 (5)

The formula can be expressed as follows: des_x represents
the x-coordinate value of a pixel in the target image, while
des_y represents its y-coordinate value. src_w refers to the
width of the source image, and des_w refers to the width
of the target image. Similarly, src_h refers to the height of
the source image, and des_h refers to the height of the target
image.

B. DATA SLICING
After the data resampling, the next step is data slicing, which
involves metadata writing and value conversion. For the

FIGURE 3. Schematic diagram of tile picture size.

slicing level and size design, a four-layer pyramid structure
is employed to store the ocean feature data values at different
levels. The spatial resolutions of these four levels are 0.5◦,
0.25◦, 0.1◦, and 0.05◦, corresponding to levels 0, 1, 2, and 3,
respectively. Each level covers a spatial range of longitude
[−180, 180] and latitude [−90, 90]. Adhering to the principle
of equal dimensions, the size of each tile is set as 375× 370,
as illustrated in FIGURE 3. The first five rows of each tile are
reserved for metadata, as indicated in TABLE 1. Additionally,
there is a 5-element overlap area surrounding each tile. Con-
sequently, the size of the original data tile is 360 × 360.

TABLE 1. Meta information to be written.

VOLUME 11, 2023 82819



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

In this study, the oceanographic data, initially in floating-
point format, is converted to PNG format using the ocean
data model constructed. This conversion involves a numerical
transformation process. A linear transformation is employed
to map the data values onto the range of 0-255, which
corresponds to the integer pixel values in the PNG format.
The linear transformation formula used in this process is as
follows:

encodeValue = ceil
(
realValue − min

max − min
× 255

)
(6)

decodeValue = (
encodeValue

255
× (max − min) +min) (7)

The formula can be expressed as follows: realValue rep-
resents the actual numerical value of oceanographic data,
while min and max respectively denote the minimum and
maximum values of the oceanographic data in the current
tile.

After completing the abovementioned steps, the original
data transforms from a floating-point type to an integer
type, and the decoded metadata is stored as character-based
information. For ocean dynamics data, such as ocean cur-
rents, winds, and waves, two data values are simultane-
ously present, necessitating the recording of both values.
For instance, the actual ocean currents consist of u and v
components, where u represents the eastward current value,
and v represents the northward current value. Following the
numerical conversion method employed in this study, u is
obtained and recorded in the R band, the converted v is
recorded in the G band, the B band is used to record the sign,
and the alpha band is used to record the value of dir= u2+v2.
The recording rules for each byte (8 bits) in the B band are as
follows: the first and second bits represent the signs of the u
and v data, respectively. A value of 1 for the first bit indicates
a positive sign for u, while a value of 1 for the second bit
indicates a positive sign for v.

Following the conversion of image formats, the data pro-
cessing LOD model is used to process the sliced images.
The images are then organized by depth, level, latitude
direction index, and longitude direction index based on
the Web Server. Finally, the service publication of the
ocean environmental data layer is completed, as shown
in FIGURE 4.

C. OCEAN DATA VISUALIZATION
In order to accommodate the differences between the data
tiles in this paper and the standardWMTS (WebMapTile Ser-
vice) service tiles, a logical process for data retrieval within
the map service framework needs to be established. Consid-
ering the characteristics of data slicing explained earlier, and
the visualization requirements of oceanographic data, a class
structure related to data retrieval and rendering is designed,
consisting primarily of three groups: Tile, Layer, and Render.
The Tile group represents the sliced oceanographic data, the
Layer group represents the oceanographic data layers, and the
Render group handles data rendering. Scalar represents scalar

FIGURE 4. Schematic diagram of data processing LOD model.

oceanographic data within these groups, and Vector repre-
sents vector oceanographic data, as illustrated in FIGURE 5.
For this paper, we are only focusing on the visualization of
vector data.

By converting the standard map service display level to
the four LODs level, the appropriate data zoom level was
determined based on the map window’s current zoom level.
Next, the corresponding set of tiles in the current display
range of the window and enqueue all the computed tile sets
for loading. The frontend application maintains a separate
cache queue and iterates through the loading queue. Web Pull
operation for each tile was conducted in the loading queue,
if not in the cache queue. Once a tile finishes loading, the
frontend saves a logical window (WindowField) that aligns
with the map view range. The values within this logical
window are obtained by sampling the loaded tiles using the
sampling logic depicted in FIGURE 6.
The next step involves retrieving the corresponding tile

images for dynamic ocean data and constructing the logical
window. This process generates the WindowField, which
includes the u, v, and dir data of the target ocean dynamic
data. The dir data is represented using a colour table, and
a spatial transformation is applied to the values within the
WindowField to map them to a predefined colour gradi-
ent. Then, a dynamic particle animation is created, which
response to re-rendering functions triggered by zooming or
panning of the map. This process enables the reconstruction
of the WindowField and the rendering of pixels within the
viewport, ultimately achieving the visualization of dynamic
ocean data.

82820 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 5. Tiles pull the logic diagram.

FIGURE 6. Class creation and inheritance design diagram.

When it comes to visualization, the adoption of a particle-
based dynamic streamline method for rendering vector data
offers advantages over glyph and vector line methods in rep-
resenting the continuity of vector fields and capturing essen-
tial features like ocean eddies [35]. This method involves
mapping the length, width, and head/tail size of the particle
streamlines to the velocity and map viewport zoom level.
It provides clear expression of the direction and orientation
of the vector data by defining the shapes of the particles
based on different speeds and levels. FIGURE 7 illustrates
this approach, where the x-axis represents the length of the
same particle at different speeds across various map viewport
zoom levels, and the y-axis represents its width. This method
enhances the visualization of vector data by effectively

conveying its characteristics and capturing the dynamic
nature of ocean phenomena.

In order to create a dynamic particle animation, it is neces-
sary to store both the current position and the next position for
each particle in terms of spatial position. The positions of the
particles can be continuously updated based on the frame rate
of the frontend rendering. When a particle updates to its next
position (posnext), the coordinates of the subsequent position
relative to posnext can be calculated. The calculation formula
for determining the coordinates of the subsequent position is
as follows:

posxnext = speed×u+ posx (8)

posynext = speed×v+ posy (9)

VOLUME 11, 2023 82821



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 7. Description of particle shape.

The formula can be expressed as follows: speed is an
adjustable parameter, u represents the eastward ocean current
value, v represents the northward ocean current value, posx
represents the current x coordinate, and posy represents the
current y coordinate.

III. EXPERIMENT
This paper uses the commonly used ocean data source,
the Copernicus Marine Environment Monitoring Service
(CMEMS), to address the differences in data sources and
workload issues. CMEMS relies on the European Ocean Data
Producer Network to establish ocean data products based
on the latest scientific knowledge provided by the network.
It provides about 160 different products for observation and
model outputs, covering ocean physics (temperature, salinity,
sea level, ocean currents, waves) and sea ice (concentration,
thickness, drift) [36], [37].

Taking CMEMS’s ocean current data as an example,
we processed the data following the methodology outlined in
this paper. As a result, we obtained the global ocean current
data at LOD 2 for June 20, 2022, represented as a pyramid
model with a resolution of 0.25◦

× 0.25◦, as illustrated
in FIGURE 8.

FIGURE 8. Global ocean current data at layer 2 of the LOD model.

A series of experiments were conducted to evaluate
the effectiveness of the proposed Web-based dynamic

visualization and rendering architecture presented in this
paper—the experiments aimed to assess the system’s per-
formance and visual quality using vector field data. The
implementation of the experiments was based on the Leaflet
framework. Detailed information about the development and
running environment is listed in TABLE 2.

TABLE 2. Development environment.

A. RENDERING EFFECT OF OCEAN DATA
Web-based rendering of ocean data involves several chal-
lenges: the browser’s viewport is incapable of displaying a
large amount of map data and details concurrently; due to
the enormous data volume, communication cannot be accom-
plished at once during the rendering process on the Web side;
page reflow, resource loading blocking and other issues that
induce page lag. Therefore, this paper aims to enhance the
rendering performance of ocean data by employing LOD data
processing pyramid model to reconstruct ocean environment
dynamic data.

The visualization of the ocean dynamic field is based on the
concept of a logical window. The logical window represents
a portion of the ocean surface that is displayed on the screen.
It acts as a viewport through which the ocean data is rendered
and visualized. The logical window is constructed using
the WindowField subclass, which inherits from the Field
class. The WindowField contains the necessary information
to define the boundaries and resolution of the logical window,
allowing for precise rendering and visualization of the ocean
dynamic data.

82822 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 9. Dynamic rendering of ocean currents at zoom level 4.

The dynamic rendering of ocean currents is shown
in FIGUREs 9, 10, and 11, where FIGURE 9 displays a
view at zoom level 4, and FIGURE 10 and 11 show views
at zoom level 7. The three images depict several common
Atlantic ocean currents features, such as centres, attracting
focus, and repelling focus [35]. FIGURE 9 presents more
map content, but with lower spatial resolution and less detail
in ocean current features, it could be more effective for
analyzing the variation patterns of the ocean dynamic field.
In contrast, FIGUREs 10 and 11 display less map content,
but as the zoom level increases, the spatial resolution also
improves, allowing formore evident observation of the details
in ocean current features. Additionally, the ocean current
data is rendered using a particle-based dynamic streamline
method, which is visually appealing and conveys the direc-
tion, orientation, speed, and characteristics of ocean currents,
effectively overcoming the limitations of traditional visual-
ization methods [5].

B. RENDERING TIME CONSUMPTION
To fully validate the performance of the proposed rendering
framework (WebGL version) in this paper, a Canvas ver-
sion was developed as a control, and the time-consuming of
building the logical window (FT), frames per second (FPS),
and the memory consumption during rendering were used as
benchmarks to evaluate rendering efficiency. In the iterative

rendering process, the particle number, particle disappear-
ance transparency, particle motion speed factor, particle loss
rate, and particle size were adjusted to influence render-
ing efficiency at different viewport levels to achieve testing
objectives. The appropriate values of rendering parameters
were selected based on experience, as shown in TABLE 3.
In this paper, the vector field of ocean current data was

retrieved to perform the test for constructing the logical win-
dow, and the FT consumed during this process was used as
an indicator of rendering performance. The experiments were
conducted at different zoom levels, and each group performed
20 motion tests. The FTs recorded and analyzed in both the
WebGL version and the Canvas version.The results of the
experiments are presented in FIGURE 12, which illustrates
the FT at different zoom levels of the WebGL and Canvas
versions.

The average time taken by the WebGL version to construct
2D logical windows was recorded as 54.32 ms, 53.17 ms,
50.06 ms, and 49.51 ms at the respective zoom levels.
The average time taken decreases as the map zooms in,
indicating improved efficiency. The line fluctuation also
decreases, suggesting increased stability in rendering. In con-
trast, as the map zoomed in, the Canvas version exhib-
ited higher average time values and a lack of clear trends.
The average time to construct 2D logical windows was
83.61 ms, 83.76 ms, 78.58 ms, and 92.72 ms at the respective

VOLUME 11, 2023 82823



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 10. Ocean currents characteristics 1 at zoom level 7.

zoom levels. The line fluctuation remained high, indicating
less stability in rendering.

Comparing the WebGL and Canvas versions, the WebGL
version showed a 63.56% increase in performance when ren-
dering dynamic data. By analyzing the line trends, it can be
concluded that the WebGL version is more stable across all
scaling levels. These results highlight the effectiveness of the
proposed architecture in overcoming the limitations of slow
rendering for massive vector data using traditional methods.

C. PERFORMANCE AND STABILITY
FPS refers to the frames per second, which indicates the
animation’s refresh rate and smoothness. It serves as a
performance metric for evaluating the dynamic rendering
architecture. The frame rendering statistics were monitored
in the Chrome 11 browser console during the experiments.
After the page stabilized, the logical window was contin-
uously moved, simulating user interaction and transition-
ing from a stable state to a construction state. Each group
contains ten movement tests, and the FPS values during
logical window construction were recorded at different move-
ment frequencies. The movement frequencies were set at 1s,
0.75s, 0.5s, and 0.25s. The results of the experiments are
depicted in FIGURE 13, showcasing the FPS values obtained
during logical window construction at each movement
frequency.

In FIGURE 13, the upper part displays the results of the
WebGL-based, while the lower part shows the results of
the Canvas-based. The coordinate frame contains three lines
representing the mean FPS values, and the vertical distance
between the upper and lower lines represents the deviation.
The scatter plot represents the FPS value obtained for each
group. The FPS of the WebGL-based exhibited a fluctuation
range of [52.80, 59.50]. The mean FPS was 57.45fps, and
the page zoom operations had minimal impact. However,
with increased movement frequency, the FPS values showed
a slight downward trend, indicating decreased performance
stability. On the other hand, the FPS of the Canvas-based fluc-
tuated between the range of [29.4, 59.50]. The mean FPS was
48.74fps, and the page zoom operation significantly impacted
the performance. The Canvas version showed a lower FPS
than the WebGL version. The WebGL-based demonstrated
better performance and stability, with a higher average FPS
and less impact from themap zoom operation. The result indi-
cates that WebGL-based rendering architecture outperforms
the Canvas-based regarding dynamic rendering efficiency.

In addition, the experiments revealed that as the move-
ment frequency increased, the FPS and stability decreased.
Comparing the WebGL-based with the Canvas-based, the
WebGL-based exhibited an overall increase in the mean FPS
by 18%, and themean FPS in all zoom levels exceeded 55 fps,
indicating good performance. In contrast, the Canvas-based

82824 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 11. Ocean currents characteristics 2 at zoom level 7.

TABLE 3. Scale levels and rendering parameters.

showed a difference of 30.10 fps between the maximum and
minimumFPS, whereas theWebGL-based had a difference of
only 6.70 fps. This significant reduction in this FPS difference
indicates a relative increase of 77.74% in overall stability
for the WebGL-based. These results highlight the proposed
architecture’s effectiveness, leveraging the GPU’s parallel
rendering capabilities and employing a frustum culling strat-
egy. The system designed using this architecture achieves
smooth animations and fast dynamic rendering of massive
ocean data on the web.

D. RENDERING DATA MEMORY CONSUMPTION
The memory consumption comparison compares the
browser’s memory usage when using the entire ocean data as
the request source to when using the LOD-based image as the
request source. Based on performance records in the browser
console, we analyzed memory usage during the logical

window construction of web pages at different resolutions.
The tested image resolutions were 0.5◦

× 0.5◦, 0.25◦
× 0.25◦,

and 0.1◦
× 0.1◦. FIGURE 14 shows the position of the test

viewport.
When we directly render the global ocean dynamics data

as the data source, the memory usage of the three image res-
olutions during webpage loading is 7.02MB, 24.04MB, and
256.42MB, respectively. Since JavaScript has an automatic
garbage collection mechanism, local variables are marked for
collection when they are no longer needed, freeing up mem-
ory when the function ends. This causes the memory usage to
gradually decrease and stabilize as the dynamic effects of the
webpage are completed. Based on this mechanism, we can
infer that the memory usage during the rendering process
will reach a peak, with peak values of 8.21MB, 35.31MB,
and 331.23MB for image resolutions of 0.5◦

× 0.5◦, 0.25◦
×

0.25◦, and 0.1◦
× 0.1◦, respectively. The memory usage then

VOLUME 11, 2023 82825



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 12. Time-consuming for building logical window.

FIGURE 13. FPS value during logical window construction.

decreases and stabilizes in the range of [6.38, 6.71], [29.78,
30.92], and [306.32, 307.83]. If the memory usage contin-
ues to increase during the rendering process, it indicates a
memory leak. The results show that rendering high-resolution
image data not only causes webpage lag and even crashes due
to excessive consumption of browser memory resources, but
also leads to loss of accuracy if low-resolution image data is
used, resulting in missing details.

By switching the data source to the LOD model con-
structed based on the method proposed in this paper and
testing it with the same viewport, FIGUREs 15a, 15b, and

15c show the memory consumption during the rendering
process. In contrast, the memory consumption for an image
resolution of 0.5◦

× 0.5◦ remained consistent because that
level was not sliced. However, at image resolutions of 0.25◦

× 0.25◦ and 0.1◦
× 0.1◦, the peak memory consumption

decreased by 17.30MB and 240.92MB, respectively, which is
approximately half and one-fourth of the memory consump-
tion of traditional methods (theoretically, the performance
can reach a maximum of 1/4 and 1/16, respectively, where
the numerator represents the number of tiles pulled and the
denominator represents the total number of tiles), as shown

82826 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

FIGURE 14. Illustration of the test window.

FIGURE 15. Loading performance renderings.

in FIGURE 15d. Therefore, it can be concluded that the
method proposed in this paper significantly reduces the size
of transmitted data in a limited viewport, effectively improv-
ing the realism and rendering speed of the scene.

IV. CONCLUSION
To reduce the size of ocean data transmitted during visu-
alization in a limited viewport and achieve effective ocean
data visualization, this paper proposes a generic web-based
rendering architecture for ocean dynamic factors. This archi-
tecture is utilized to realize dynamic rendering of parti-
cle movement trajectories and global ocean current data

mapping, and the rendering performance is analyzed based
on FT, FPS, and the memory consumption of data trans-
mission. Compared with traditional methods, the proposed
approach can significantly reduce the amount of ocean data
transmitted during the rendering process, effectively address-
ing the slow rendering and poor visual effects of massive
ocean data visualization in some systems, and overcoming
the limitations of Canvas to achieve fast dynamic rendering of
massive ocean data on the Web. However, there are still some
limitations in this research. Although the standardized data
satisfies the timeliness and correctness requirements of ocean
environmental factor data system architecture, which solves

VOLUME 11, 2023 82827



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

the problems of multi-source and heterogeneous redundant
ocean data, single data format, and inconsistent data spatial
resolution to some extent, there is still room for improvement
in the resampling algorithm used in the process. Moreover,
while the efficiency of drawing and rendering is greatly
improved by directly obtaining relevant data through meta-
data when calling slices, the conversion of data format back
and forth during this process causes some loss of accuracy in
the processed data. Therefore, further research is needed to
explore these issues in more depth in future studies.

REFERENCES
[1] D. Olbers, J. Willebrand, and C. Eden, Ocean Dynamics. Springer, 2012.
[2] W. H. Ali, M. H.Mirhi, A. Gupta, C. S. Kulkarni, C. Foucart, M. M. Doshi,

D. N. Subramani, C. Mirabito, P. J. Haley, and P. F. J. Lermusiaux,
‘‘SeaVizKit: Interactive maps for ocean visualization,’’ in Proc. OCEANS
MTS/IEEE, Seattle, WA, USA, Oct. 2019, pp. 1–10.

[3] Y. Wang, F. Li, B. Zhang, and X. Li, ‘‘Development of a component-based
interactive visualization system for the analysis of ocean data,’’ Big Earth
Data, vol. 6, no. 2, pp. 219–235, Apr. 2022.

[4] M. Amani, S. Mehravar, R. M. Asiyabi, A. Moghimi, A. Ghorba-
nian, S. A. Ahmadi, H. Ebrahimy, S. H. A. Moghaddam, A. Naboureh,
B. Ranjgar, F. Mohseni, M. E. Nazari, S. Mahdavi, S. M. Mirmazloumi,
S. Ojaghi, and S. Jin, ‘‘Ocean remote sensing techniques and applications:
A review (Part II),’’Water, vol. 14, no. 21, p. 3401, Oct. 2022.

[5] Q. Shi, B. Ai, Y. Wen, W. Feng, C. Yang, and H. Zhu, ‘‘Particle system-
basedmulti-hierarchy dynamic visualization of ocean current data,’’ ISPRS
Int. J. Geo-Inf., vol. 10, no. 10, p. 667, Oct. 2021.

[6] S. Fulton and J. Fulton, HTML5 Canvas: Native Interactivity and Anima-
tion for the web. Sebastopol, CA, USA: O’Reilly Media, 2013.

[7] B. Danchilla, Beginning WebGL for HTML5. Berkeley, CA, USA: Apress,
2012.

[8] L. Liu, D. Silver, and K. Bemis, ‘‘Visualizing three-dimensional ocean
eddies in web browsers,’’ IEEE Access, vol. 7, pp. 44734–44747, 2019.

[9] J. A. James, T. Moh, and C. A. Edwards, ‘‘Web-based visualization
of marine environmental data: Performance analysis of a MatPlotLib
implementation,’’ in Proc. Int. Conf. Collaboration Technol. Syst. (CTS),
Oct. 2016, pp. 288–293.

[10] M. De-Lie, G. Peng-Fei, and W. Mi, ‘‘On realization of visualization
system for global ocean simulation,’’ inProc. Int. Conf. Audio, Lang. Image
Process., Nov. 2010, pp. 1446–1450.

[11] C. A. Gutwin, M. Lippold, and T. N. Graham, ‘‘Real-time groupware
in the browser: Testing the performance of web-based networking,’’ in
Proc. ACMConf. Comput. Supported Cooperat. Work (CSCW), Mar. 2011,
pp. 167–176.

[12] M. E. Portman, ‘‘Visualization for planning and management of oceans
and coasts,’’ Ocean Coastal Manag., vol. 98, pp. 176–185, Sep. 2014.

[13] T. Rossby, ‘‘Visualizing and quantifying oceanic motion,’’ Annu. Rev. Mar.
Sci., vol. 8, no. 1, pp. 35–57, Jan. 2016.

[14] S. Martin, An Introduction to Ocean Remote Sensing. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[15] K. Sayood, Introduction to Data Compression. Newnes, 2012.
[16] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov,

‘‘A survey of data partitioning and sampling methods to support big data
analysis,’’ Big Data Mining Anal., vol. 3, no. 2, pp. 85–101, Jun. 2020.

[17] S.-X. Nan, X.-F. Feng, Y.-F. Wu, and H. Zhang, ‘‘Remote sensing image
compression and encryption based on block compressive sensing and 2D-
LCCCM,’’ Nonlinear Dyn., vol. 108, no. 3, pp. 2705–2729, May 2022.

[18] C. Hu, Y. Pu, F. Yang, R. Zhao, A. Alrawais, and T. Xiang, ‘‘Secure and
efficient data collection and storage of IoT in smart ocean,’’ IEEE Internet
Things J., vol. 7, no. 10, pp. 9980–9994, Oct. 2020.

[19] C. Shi, J. Zhang, and Y. Zhang, ‘‘A novel vision-based adaptive scanning
for the compression of remote sensing images,’’ IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 3, pp. 1336–1348, Mar. 2016.

[20] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R.
Huebner, Level of Detail for 3D Graphics. San Mateo, CA, USA: Morgan
Kaufmann, 2003.

[21] M. Zárate, G. Braun, M. Lewis, and P. Fillottrani, ‘‘Observa-
tional/hydrographic data of the South Atlantic Ocean published as
LOD,’’ Semantic Web, vol. 13, no. 2, pp. 133–145, 2022.

[22] K. Xu and X. Xie, ‘‘Real time rendering technology of ocean data based on
improved LOD model,’’ in Proc. Artif. Intell. Complex Syst. Conf. (AICS),
Aug. 2020, pp. 68–72.

[23] G. K. Vallis, Essentials of Atmospheric and Oceanic Dynamics.
Cambridge, U.K.: Cambridge Univ. Press, 2019.

[24] J. J. Van Wijk, ‘‘Spot noise texture synthesis for data visualization,’’ in
Proc. 18th Annu. Conf. Comput. Graph. Interact. Techn. New York, NY,
USA: ACM, 1991, pp. 309–318.

[25] B. Cabral and L. C. Leedom, ‘‘Imaging vector fields using line integral
convolution,’’ in Proc. 20th Annu. Conf. Comput. Graph. Interact. Techn.
(SIGGRAPH), Sep. 1993, pp. 263–270.

[26] H. Ma, P. Wang, Y. Wen, and C. Yang, ‘‘Research on key technologies
of 3D visualization of marine environmental field,’’ J. Phys., Conf. Ser.,
vol. 2006, no. 1, Aug. 2021, Art. no. 012042.

[27] T. Lv, J. Fu, and B. Li, ‘‘Design and application of multi-dimensional
visualization system for large-scale ocean data,’’ ISPRS Int. J. Geo-Inf.,
vol. 11, no. 9, p. 491, Sep. 2022.

[28] R. Qin, B. Feng, Z. Xu, Y. Zhou, L. Liu, and Y. Li, ‘‘Web-based 3D visual-
ization framework for time-varying and large-volume oceanic forecasting
data using open-source technologies,’’ Environ. Model. Softw., vol. 135,
Jan. 2021, Art. no. 104908.

[29] B. Lawson andR. Sharp, IntroducingHTML5. Indianapolis, IN, USA:New
Riders, 2013.

[30] M. Bajammal and A. Mesbah, ‘‘Web canvas testing through visual infer-
ence,’’ in Proc. IEEE 11th Int. Conf. Softw. Test., Verification Validation
(ICST), Apr. 2018, pp. 193–203.

[31] M. Aristizabal, J. Congote, A. Segura, A.Moreno, H. Arregui, and O. Ruiz,
‘‘Hardware accelerated web visualization of vector fields—Case study in
oceanic currents,’’ in Proc. Int. Conf. Comput. Vis. Theory Appl. (IVAPP).
2012, pp. 759–763.

[32] L. Andersson and O. Lenschow, ‘‘Optimizing a GPU-Accelerated Parti-
cle System for WebGL 1.0 using extension,’’ Dept. Comput. Sci. Eng.,
Chalmers Univ. Technol., Univ. Gothenburg, 2021.

[33] V. Klemas, ‘‘Remote sensing of coastal and ocean currents: An overview,’’
J. Coastal Res., vol. 28, no. 3, pp. 576–586, May 2012.

[34] A. Yao, L. Wang, J. Li, X. Xia, X. Jin, and N. Jing, ‘‘2D/3D visualization
of large-scale wind field based on WebGL,’’ in Proc. Int. Conf. Aviation
Saf. Inf. Technol., Oct. 2020, pp. 269–274.

[35] K. Wu, Z. Liu, S. Zhang, and R. J. Moorhead, ‘‘Topology-aware evenly
spaced streamline placement,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 16, no. 5, pp. 791–801, Sep. 2010.

[36] P. Y. Le Traon et al., ‘‘From observation to information and users: The
CopernicusMarine Service perspective,’’FrontiersMar. Sci., vol. 6, p. 234,
May 2019.

[37] H. Xi, S. N. Losa, A. Mangin, M. A. Soppa, P. Garnesson, J. Demaria,
Y. Liu, O. H. F. d’Andon, and A. Bracher, ‘‘Global retrieval of phyto-
plankton functional types based on empirical orthogonal functions using
CMEMS GlobColour merged products and further extension to OLCI
data,’’ Remote Sens. Environ., vol. 240, Apr. 2020, Art. no. 111704.

DONGLIN FAN received the B.S. degree in
geographical information systems (GIS) from
Guizhou University, Guiyang, China, in 2011, and
the M.S. degree in cartography and geographic
information engineering from the China Univer-
sity of Geosciences, Wuhan, China, in 2014. He is
currently pursuing the Ph.D. degree in geologi-
cal resources and geological engineering with the
Guilin University of Technology, Guilin, China.

From 2016 to 2023, he was a Lecturer of GIS
with the Guilin University of Technology. His current research interests
include the development and visualization of ocean data fields and retrieval
of ocean color using artificial intelligence.

82828 VOLUME 11, 2023



D. Fan et al.: Large-Scale Oceanic Dynamic Field Visualization Based on WebGL

TIANLONG LIANG was born in Liuzhou,
Guangxi, China, in 2000. He received the bach-
elor’s degree in geographic information science
from the Guilin University of Technology, in 2022,
where he is currently pursuing the master’s degree
in resources and environment. His current research
interests include ocean optical remote sensing,
ocean chlorophyll inversion, and related areas.

HONGCHANG HE received the Ph.D. degree
in remote sensing and geographical information
systems (GIS) from the University of Fribourg,
Switzerland, in 2000. He was a Postdoctoral
Researcher with the Canada Centre for Remote
Sensing (CCRS), Canada, and later became a
Professor with the Hangzhou Dianzi University,
China. Currently, he is a Professor with the Guilin
University of Technology, China, where he devel-
ops algorithms for retrieval of chlorophyll, sea

surface temperature, and salty in coastal waters using artificial intelligence.
His research interest includes fishing ground prediction.

MENGYUAN GUO was born in Mianyang,
Sichuan, China, in 1997. She received the bach-
elor’s degree in art from the Sichuan Film and
Television College, in 2019. She is currently pur-
suing the master’s degree in digital media art with
the Guilin University of Technology. Her current
research interest includes emotional design and
related fields.

MENGHUI WANG was born in Cangzhou,
Hebei, China, in 1996. She received the bachelor’s
degree in surveying andmapping engineering from
the City College, Hebei University of Technology,
in 2019. She is currently pursuing the master’s
degree in surveying and mapping science and
technology with the Guilin University of Technol-
ogy. Her current research interests include ocean
optical remote sensing, atmospheric correction for
2-class water, and related areas.

VOLUME 11, 2023 82829


