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ABSTRACT To broaden the stability domain of the H-bridge inverter, a control method of the H-bridge
inverter combined with PI and improved power reaching law sliding mode control is studied in this paper.
To analyze the complex dynamical behavior of this inverter, firstly, the mathematical model of this system
is established and numerical simulation of this model is performed. Secondly, the nonlinear dynamical
behavior of this inverter is observed by a bifurcation diagram, folding diagram, stroboscopic diagram, time-
domain diagram, and spectral diagram. Thirdly, the stability theory of the system is analyzed by applying
the fast-varying stability theorem, and the consistency between the theoretical analysis and numerical
simulation further proves the mechanism of nonlinear dynamical behavior occurring in this inverter. Finally,
the influence of the circuit parameters: input voltage, load inductance, and load resistance on the nonlinear
dynamical behavior of the inverter is analyzed. It is shown that this joint control mode can broaden the
operating stability domain of the H-bridge inverter, which provides an important theoretical basis for the
design and manufacture of the inverter.

INDEX TERMS H-bridge inverter, nonlinear, chaos, bifurcation, discrete mode.

I. INTRODUCTION
H-bridge inverter system is a typical nonlinear system, which
shows strong complex dynamic characteristics, which has
an important impact on the stability and reliability of the
system. When the circuit parameters are not designed prop-
erly, electromagnetic noise, intermittent oscillation, and even
sudden collapse will occur in the use of the system, resulting
in severe challenges to the working stability of the system.
In response to the complex dynamical behavior that occurs in
the H-bridge inverter system, many experts and scholars have
studied the nonlinear dynamical behavior of the H-bridge
inverter in recent years [1], [2], [3], [4].
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In [5], the chaos and bifurcation of the H-bridge converter
with reference current as DC and current control mode are
studied for the first time. The inverter’s nonlinear behavior
due to changes in circuit parameters (such as k, R, and L)
is analyzed using bifurcation diagrams. The results are of
great significance for designing and debugging single-phase
H-bridge inverters [6]. In the study of the parallel single-
phase H-bridge inverter, two scales, fast and slow variation,
were introduced and both types of instabilities were discussed
from a practical design point of view, and these findings can
be used to guide the adjustment of the inverter system param-
eters [7]. The stability of a PI-controlled current-controlled
H-bridge passive inverter is thoroughly analyzed, including
establishing a discrete iterative mapping model, analyzing
dynamic bifurcation behavior, and exploring the influ-
ence of other parameters on system stability. This analysis
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FIGURE 1. Working principle diagram of H-bridge inverter based on PI
control.

provides valuable reference for designing and applying
H-bridge inverters [8]. To solve the jitter problem of sliding
mode control, an chattering free improved sliding mode con-
trol is proposed to improve the stability and anti-interference
of the system [9]. A fast-varying stability theorem for
H-bridge inverters with sliding-mode control is proposed,
which can be used to analyze whether the system is in
a stable state or not [10]. A new algorithm based on the
combination of sliding-mode variable structure control and
fractional-order PID control is studied and proposed. Exper-
imental results show that the algorithm has excellent control
performance with fast convergence, small error, and robust-
ness [11]. Experiments show that the algorithm has fast
convergence, small errors, strong robustness, and excellent
control performance. In recent years, these studies provide an
important theoretical basis for the design of the inverter, and
it is of great practical significance to control the nonlinear
dynamic behavior.

To broaden the stability domain of the system, this paper
studies a control mode based on the combination of linear
control and nonlinear control, which is based on the H-bridge
inverter under the combined control of PI and improved
power reaching law sliding mode. The discrete mathematical
model under the control mode is established, and the nonlin-
ear dynamic behavior of the system is observed by bifurca-
tion, folding, stroboscopic and time-domain diagrams, and by
frequency spectrum and other methods, and the fast-varying
stability theorem is used for in-depth theoretical analysis.
he influence of external circuit parameters on the nonlinear
dynamic behavior of the system is studied, the stable working
range of the H-bridge inverter is broadened, and a reliable
theoretical basis is provided for the design of the inverter.

II. SYSTEM MODEL OF H-BRIDGE INVERTER BASED ON
PI AND IMPROVED POWER REACHING LAW
A. MODELING OF H-BRIDGE INVERTER
CONTROLLED BY PI
Based on the H-bridge inverter controlled by PI, the circuit
has two working states in a switching cycle. The modulated

signal ic is comparedwith the triangular wave it. State 1: when
ic is greater than it, PWM high-level output, D1 and D4 are
turned on, D2 and D3 are off; state 2: when ic is less than
it, PWM low-level output, D1 and D4 are off, D2 and D3 are
turned on, as shown in Figure 1.
dn is the duty cycle of state 1, and its expression is given in

formula (1)

dn =


0, (dn ≤ 0)
1
2
(1 +

ic
IH

) (0 < dn < 1)

1, (dn ≥ 1)

(1)

The inverter switches repeatedly between states 1 and 2,
and the state equation of the main circuit in the nth switching
cycle Ts is given by formulas (2) and (3):

di
dt

= −
R
L
i +

E
L

, nTS < t ≤ (n+ dn)nTs (2)

di
dt

= −
R
L
i −

E
L

, (n+ dn)Ts < t ≤ (n+ 1)Ts (3)

According to the stroboscopic mapping theory [12], [13],
[14], the switching period Ts is taken as the time interval of
stroboscopic sampling, and the sampling value of the state
variable in the nth switching period is used to represent the
sampling value of the state variable in the nth plus 1 switching
period. The discrete iterative model of the inverter main
circuit is derived (4):

in+1 = e−
R
L Ts in + [

2
R
e−

(1−dnRTs)
L −

1
R
(1 + e−

R
L Ts )]E (4)

in is the value of inductor current at sampling time. The
state equation of modulated signal can be obtained by inverse
Laplace transform (5):

dic
dt

= −kp
die
dt

− kiie + u (5)

In the above formula: ie = iref − i,

u = kp
diref
dt

+ kiiref , iref = iref max sinωnTs, ω = 2π f ,

kp, ki are proportional and integral parameters, respectively.
The modulation circuit is analyzed in the frequency

domain, from the transfer function G(s) of the PI controller
and Figure 1:

Gc(s) = kp +
ki
s

(6)

ic(s) = Gc(s)ie(s) (7)

ic(s) and ie(s) are the input and output variables of the PI con-
troller, respectively, which are obtained from equations (6)
and (7):

sic(s) = kpsie(s) + kiie(s) (8)

The time domain equation of equation (8) is obtained after
Laplace transform:

dic(t)
dt

= kp
die(t)
dt

+ kiie(t) (9)
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After substituting ie into equation (9), equation (10) is
obtained:

dic(t)
dt

= −kp
die(t)
dt

− kii(t) + kp
diref (t)
dt

+ kiiref (t) (10)

When nTS < t ≤ (n+ dn)nTs, equation (11) can be obtained
from equation (2).

i(t) = −
L
R
di(t)
dt

+
E
R

(11)

Substituting equation (11) into equation (10), we can obtain
equation (12):

dic(t)
dt

= (ki
L
R

− kp)
di(t)
dt

− ki
E
R

+ u(t) (12)

In equation (12), the

u(t) = kp
diref (t)
dt

+ kiiref (t) (13)

The equation of state of the modulation circuit is shown in
equation (12), and the iterative model is derived from the
stroboscopic mapping theory. The reference current is set as
a sine wave, and the sampling gap is taken as the clock period
Ts, for which the discrete derivation, since f ≪ fs, within the
nth clock period Ts, iref can be considered as a constant value,
irefn = A sin(ωnTs), so u(t) can be expressed as follows:

Un = kiA sin(ωnTs) (14)

When nTS < t ≤ (n + dn)nTs, the inverter works in state 1,
and the load current value of the main circuit at (n + dn ) Ts
can be deduced from equation (2):

in+dn = (in−
E
R
)e

dnTsR
L +

E
R

(15)

According to equation (15), discrete treatment of equation (12)
leads to equation (16):

ic(n+ dn) = (ki
L
R

− kp)ic(n+ dn) − (ki
L
R

− kp)in

+ (−ki
E
R

+ Un)dnTs + ic(n) (16)

When (n+dn)Ts < t ≤ (n+1)Ts, equation (12) then becomes
equation (17):

dic(t)
dt

= (ki
L
R

− kp)
di(t)
dt

+ ki
E
R

+ u(t) (17)

According to equation (16), discrete treatment of equation (17)
leads to equation (18):

ic(n+ 1) = (ki
L
R

− kp)(in+1 − in) + ic(n)

+ ki
E
R
Ts(1 − 2dn) + TsUn (18)

The discrete iterative model of the circuit is obtained by sub-
stituting equation (4) into equation (18). The discrete model
of H-bridge inverter controlled by PI is formula(19):

ic(n) = a1in−1 + ic(n− 1) + a2E + TsUn−1 (19)

FIGURE 2. Working principle diagram of H-bridge inverter with sliding
mode control.

In formula(19):

a1 = (
L
R
ki − kp)(e−

R
L Ts − 1) (20)

a2 = (
L
R
ki − kp)(

2
R
e−

R(1−dn)
L Ts −

1
R

−
1
R
e−

R
L Ts ) + a3

(21)

a3 =
kiTs
R

(1 − 2dn−1) (22)

Un−1 = kpiref maxωcosω(n− 1)Ts + a4 (23)

a4 = kiiref max sinω(n− 1)Ts (24)

B. MODELING OF H-BRIDGE INVERTER BASED ON
IMPROVED POWER REACHING LAW SLIDING
MODE CONTROL
The circuit consists of a switch tube (D1 ∼D4), a DC voltage
source, a load resistance and an inductor.

The result of the comparison between the load current and
the sinusoidal reference current is sent to the sliding mode
controller, and the output control variables enter the PWM
drive circuit to control the switch on and off. The working:
schematic diagram is shown in Figure 2.

According to the principle of sliding mode control, the
expression of the control variable is (12)

u = −sgn(e) (25)

In the formula: e = i− iref . Because the sliding mode control
is easy to produce system chattering, the control system is
unstable. The improved power reaching law sliding mode
control method is more stable [15], [16], [17], the sliding
mode motion quality is better, and the convergence speed is
faster. After adding the improved power reaching law, the
control variable is expressed as formula (26):

u = −k1 |e|a sgn(e) − k2(e)2sgn(e),

k1 > 0, k2 > 0, 0 < a < 1 (26)

The nonlinear dynamic behavior of the system is studied, and
the discrete model of the system is established according to

83796 VOLUME 11, 2023



W. Jiang et al.: Research on the Nonlinear Dynamic Behavior of H-Bridge Inverter

the stroboscopic mapping method. The iterative equation is
formula(27):

in+1 = (in − a)e−
Ts
t + 2ae

−(1−dn)Ts
t − a (27)

dn represents the duty cycle of the nth switching cycle.
According to the boundedness theorem of duty cycle, the
following results are obtained:

dn =


0, (dn ≤ 0)
u, (0 < dn < 1)
1, (dn ≥ 1)

(28)

In the formula(29):

u = −k1 |e|a sgn(e) − k2(e)2sgn(e),

k1 > 0, k2 > 0, 0 < a < 1 (29)

e is the difference between the load current sampling value
and the reference current sampling value at the nth switching
cycle, e = in − iref ,n, iref ,n = A sin(2π fnTs). The discrete
model of H-bridge inverter with improved power reaching
law sliding mode control is composed of formula(25)-(29).

C. MODELING OF H-BRIDGE INVERTER BASED ON JOINT
PI AND IMPROVED POWER REACHING LAW SLIDING
MODE CONTROL
The joint control mode process involves comparing the load
current and reference current, inputting the result of their
subtraction to both a PI regulator and a modified power reach
method sliding mode controller. The modulating signal is
then obtained through joint control, compared with the delta
wave, and finally output as a PWM drive signal that turns the
switch on or off. The working principle diagram of the system
is shown in Figure 3.
dn represents the duty cycle of the nth switching cycle, and

the duty cycle of the H-bridge inverter in this control mode is
expressed as formula (30):

dn =


0, (dn ≤ 0)
1
2
(1 + icon), (0 < dn ≤ 1)

1, (dn > 1)

(30)

ien = a1in−1 + ien−1 + a2E + TsUn−1 can be known from
equation (19), From equation (29), we can know that

u = −k1 |e|a sgn(e) − k2(e)2sgn(e),

k1 > 0, k2 > 0, 0 < a < 1, (31)

and icon = ic(n) + u. That is, icon is expressed as an
equation (32):

icon = a1in−1 + ic(n− 1) + a2E + TsUn−1 − k1 |e|a sgn(e)

− k2(e)2sgn(e)k1 > 0, k2 > 0, 0 < a < 1. (32)

The discrete model of H-bridge inverter under the joint PI
and improved power reaching law sliding mode control is
composed of formulas (30) and (32).

FIGURE 3. Working principle diagram of H-bridge inverter using joint PI
and improved power reaching law sliding mode control.

III. ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOR OF
H-BRIDGE INVERTER UNDER JOINT PI AND IMPROVED
POWER REACHING LAW SLIDING MODE CONTROL
The circuit parameters are set as follows: ki = 180, E= 160V,
R = 10�, L = 3 mH, fs = 30kHz, iref = 5sin(40π t), k1 =

0.2, k2 = 0.1. The nonlinear dynamic behavior of the system
under different proportional adjustment parameters - kp is
analyzed bymeans of a bifurcation diagram, folding diagram,
frequency spectrum, and so on [18].

A. COMPARISON OF BIFURCATION DIAGRAMS UNDER
JOINT CONTROL MODE OF PI AND IMPROVED POWER
REACHING LAW SLIDING MODE
Bifurcation diagram method [19]: The discrete model of
the system is utilized to select an iterative initial value ran-
domly, and after achieving stability through iteration, state
variables at several fixed switching moments are selected
under different bifurcation parameters to construct a graph.
The bifurcation diagram of the system is thus derived. If a
bifurcation parameter corresponds to one state variable, the
system is stable; if a bifurcation parameter has n state vari-
ables corresponding to it, the system is still stable and in the
n-cycle state; if a bifurcation parameter has an infinite number
of state variables corresponding to it, the system is unstable
and in the chaotic state.

Through the observation of the bifurcation diagram, the
relationship between a parameter in the system and the state
variables of the system can be obtained. Using the propor-
tional adjustment parameter - kp as the bifurcation parameter,
the bifurcation diagrams of the peak and valley values of the
output current varying with kp under two different control
modes are drawnwhen kp is used as the bifurcation parameter.

The peak bifurcation diagram of the load current varying
with the proportional adjustment parameter - kp is shown
in Figure 4. The peak sampling bifurcation diagram in PI
control mode is shown in Figure 4(a). When kp > 1.08,
the system enters the multiply-periodic bifurcation state, and
the stability domain of kp is [0.18,1.08] as shown by the
bifurcation diagram. The peak sampling bifurcation diagram
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FIGURE 4. Peak bifurcation diagram of load current varying with kp.

in the joint PI and improved power reaching law sliding mode
control is shown in Figure 4(b). For the kp = 1.26 of the stable
boundary point in this control mode, it can be seen from the
bifurcation diagram that when 0.1< kp < 2.0, the system
goes through the process that with the increase of kp, from
the stable state to the period-doubling bifurcation state, and
finally to the unstable chaotic state, the parameter range of
the stable operation of the system is [0.18, 1.26].

Comparing the bifurcation plots of the two peak samples
shows that the inverter has a wider stabilization range with the
combination of PI and the improved power convergence law
sliding mode control. In the steady state, the peak current in
the combined control mode is closer to the reference current
peak (5A) as shown in Figure 4(a) and (b).
The valley bifurcation diagram of the load current varies

with the proportional adjustment parameter - kp, as shown in
Figure 5. The peak sampling bifurcation diagram in PI control
mode is shown in Figure 5(a). When the bifurcation occurs,
the critical point is 1.08A, and the valley current is -5.8A.
It can be seen from the figure that with the increase of kp,
the system quickly enters a chaotic state; the peak sampling
bifurcation diagram under the joint control mode is shown
in Figure 5(b). For the kp = 1.26 of the stable demarcation
point, the stable region of the system proportional adjustment
parameters of the joint control mode is [0.19, 1.26], and the
current trough is −5A in the steady state. When kp > 1.26,
the system changes from a stable state to a period-doubling
bifurcation state and finally enters an unstable chaotic state.

By comparing the bifurcation diagrams sampled at the two
valleys, it can be seen that the stable demarcation point of the
kp value of the joint control mode is larger, the stable region
is wider, and the current trough in the stable state is closer to
the reference current trough.

B. FOLDING DIAGRAM AND TIME-DOMAIN DIAGRAM
UNDER THE JOINT CONTROL MODE
The initial value of any iteration is substituted into the dis-
crete equation of the system for iteration, several periods
after stability are selected, and several periods are aligned
according to the sampling time, and then folded, a system
folding diagram can be obtained. the folding diagram can
directly reflect the nonlinear dynamic behavior of the system.

FIGURE 5. Valley bifurcation diagram of load current varying with kp.

The folding diagram shows one curve for stable motion; two
curves for divergent motion; and irregular points for chaotic
motion.

When the integral adjustment factor ki is 180 and the
proportional adjustment factor - kp is 0.45, 1.35, 1.8 respec-
tively, the folding diagram and time-domain diagram of the
system is drawn, as shown in Figure 6. It can be seen from
Figure 6(a) that when kp = 0.45 the folded graph is a smooth
sinusoidal curve, the inverter is in a stable period 1 state, and
the time-domain diagram is also in a period 1 state; when kp =

1.35, the folded graph is two smooth sinusoidal curves, the
system works in a period-doubling bifurcation state, and the
time-domain diagram also shows a period 2 state. When kp =

1.8, the display area of the folding graph is densely filled with
sampling points, indicating that the inverter enters a chaotic
state and the time-domain map also works in a chaotic state.

The research shows that when ki is selected, the con-
clusions of the bifurcation diagram, folding diagram and
time-domain diagram of the system varying with kp are
consistent.

C. STROBE DIAGRAM AND SPECTRUM DIAGRAM UNDER
JOINT CONTROL MODE
The nonlinear dynamic behavior of the system under different
proportional parameters is further observed by a stroboscopic
diagram and spectrum analysis. The specific implementa-
tion steps of the stroboscopic sampling map are as follows:
according to the discrete model of the system, sampling
is carried out at a certain time interval in the process of
iterative stability, and the value of the sampling points is
maintained [20].

When the integral adjustment factor ki = 180, select kp
equal to 0.45, 1.35, 1.8 respectively, and draw the strobe
diagram and spectrum diagram of the system, as shown in
Figure 7. The intensity of the spectrum represents the distri-
bution shape of the amplitude of the signal in the spectrum.
The stroboscopic diagram and spectrum diagram are used for
numerical analysis to further verify the stable region of the
proportional parameter kp of the H-bridge inverter under the
joint control mode.

As can be seen from Figure 7 (a), when the kp = 0.45 and
the strobe diagram is a smooth sinusoidal curve, the spectrum
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FIGURE 6. Folding diagram (left) and time-domain diagram (right) under
different kp values at ki = 180.

diagram shows only the fundamental frequency, and the
inverter operates in a stable period 1 state; when kp = 1.35,
the strobe diagram shows two smooth curves near the peak
and trough, indicating that the system is period-doubling, and
the spectrum diagram shows a bisector shape.When kp = 1.8,
the sampling points are densely distributed near the peak and
valley values of the strobe map, the system enters a chaotic
state, and the spectrum is continuous.

The research shows that when ki is selected, the bifurcation
diagram, strobe diagram, and spectral diagram of the system
change with kp are consistent.

IV. STABILITY ANALYSIS OF SYSTEM BASED ON FAST
VARIATION STABILITY THEOREM
Lyapunov index method, Jacobian matrix method, bifurca-
tion diagram, and folding diagram are common methods to
analyze the stability of inverter. In the theoretical analysis of
stability, both the Lyapunov index method and the Jacobian
matrix method need to solve the iterative equation of the
system by derivative. However, there is a non-differentiable
part of the discrete equation of the H-bridge inverter system
under the joint joint control mode, so the above two analysis
methods can not be used.

In order to further verify the consistency between the
results of simulation analysis and theoretical analysis, such
as the bifurcation diagram, folding diagram, and spectrum

FIGURE 7. Stroboscopic diagram (left) and spectral diagram (right) under
different kp values at ki = 180.

diagram, the fast-varying stability theorem method is used
to analyze the stability of the H-bridge inverter with a joint
control mode. the core idea is to take the M switching period
near the zero point of the current drop section. The duty cycle
of each switching cycle and the duty cycle of the next switch
cycle are compared as the difference and divided by the
absolute value of the difference, and the number of calculated
M is added to get the P value [10]. The expression of P is as
follows(33):

P =

N0+M∑
n=N0

dn − dn+1

|dn − dn+1|
(33)

In the formula, dn is the duty cycle in the nth switching
cycle, and dn+1 is the duty cycle in the n+1 switching cycle.
The absolute value of the difference is divided by the differ-
ence between the duty cycle of each switching cycle and the
duty cycle of the next switching cycle, and the calculated M
numbers are added together to obtain P. The current drop is
obtained by taking M switching cycles near the zero point.
When the system is in a stable state, P = M. When the
system is unstable, P < M. After substituting the duty cycle
expression (30) in the formula (33), the calculation formula
for the stability analysis of the H-bridge inverter with the joint
control mode can be obtained.

P =

N0+M∑
n=N0

icon(n) − icon(n+ 1)
|icon(n) − icon(n+ 1)|

(34)
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FIGURE 8. Judgment result of fast variation stability theorem.

Other parameters remain unchanged. N0 = 1125 and M =

19 are substituted into Equation (34) to obtain the judg-
ment result based on the fast variable stability theorem. The
relationship between P and kp when ki = 180 is shown in
Figure 8(a). It can be seen from the figure that when 0.20 <

kp < 1.24, the system is in a stable state.When kp runs outside
the region [0.20, 1.24], the values of P are less than M, and
the system is in a state of chaos and bifurcation, so it can be
verified that the stable operating domain of kp is [0.20, 1.24].
When ki = 180, M = 19 and other parameters remain

constant, through the analysis of fast-varying stability the-
orem, for the H-bridge inverter in PI control mode, when
ki = 180, other parameters remain unchanged. The sta-
bility region based on the fast-varying stability theorem,
Figure 8 (a) is completely consistent with the bifurcation dia-
gram of Figure 4(a) and Figure 5(a).

Similarly, for the H-bridge inverter with the joint con-
trol mode, when ki = 180, the other parameters remain
unchanged, and the stability region Figure 8(b) judged based
on the fast-varying stability theorem is completely consistent
with the analysis conclusion of the bifurcation diagram of
Figure 4(b) and Figure 5(b).

V. THE INFLUENCE OF EXTERNAL CIRCUIT PARAMETERS
ON THE STABILITY OF THE SYSTEM
The stability of the H-bridge inverter under the joint control
mode is also related to the external circuit parameters such as
input voltage-E, load inductance-L, and resistance-R.

FIGURE 9. Bifurcation diagrams under different circuit parameters in joint
control mode.

When ki = 180, the circuit parameters are as follows: kp =

0.6, fs = 30kHz, iref = 5sin (40π t), k1 = 0.2, k2 = 0.1,
α = 0.9. The input voltage, load inductance, load resistance
and switching frequency are taken as bifurcation parameters,
respectively. The bifurcation diagram of the circuit parame-
ters varying with the external bifurcation parameters is drawn
as shown in Figure 9.
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FIGURE 10. Bifurcation diagrams of different circuit parameters based on
PI control.

When the input voltage increases from 50V to 450V, the
bifurcation diagram of the load current varies with the input
voltage is drawn, as shown in Figure 9(a). In the joint control
mode, the input voltage parameter is 50V∼415V and the sys-
tem is in a stable state. Selected input voltage = 160V, other
parameters remain unchanged, draw the bifurcation diagram

TABLE 1. Parameter stability range.

of the load inductance change, when the inductance is greater
than 1.15mH, the system enters a stable state, as shown in
Figure 9(b). The bifurcation diagram with the load resis-
tance as the bifurcation parameter is drawn. As the resistance
increases, the load current decreases, and the system is always
in a stable state, as shown in Figure 9(c). The system reaches
a steady state when the switching frequency exceeds 11 kHz,
as shown in Figure 9(d) during bifurcation plotting of the
change in switching frequency.

Under the same circuit parameters, draw the bifurcation
diagram of input voltage, load inductance, load resistance,
and switching frequency under the control of PI, as shown
in Figure 10.
When the input voltage is used as the bifurcation parame-

ter, the bifurcation diagram in the PI control mode is observed
as shown in Figure 10(a), and the system stability domain
is [50V,295V]. However, the stability domain of the input
voltage parameter in the joint control mode is [50V,415V].
The stability domain of the H-bridge inverter system in the
joint control mode is wider and more stable.

When the load inductance is used as the bifurcation param-
eter, as shown in Figure 10(b), the system in PI control mode
starts to enter the stable state only when the inductance L
increases to 1.80mH. However, in the joint control mode,
the system enters the steady state when the load inductance
increases to 1.15mH. The stability domain of the H-bridge
inverter system in the joint control mode is wider and more
stable.

When the load resistance is used as the bifurcation param-
eter, it is shown in Figure 10(c). The system in PI control
mode enters the stable state only when the load resistance
is [40�,120�]. However, the system in the joint control
mode is always in a steady state when the load resistance
is [0�,240�]. The stability domain of the H-bridge inverter
system in the joint control mode is wider and more stable.

When the switching frequency is used as the bifurcation
parameter, as shown in Figure 10(d), the system in PI control
mode starts to enter the steady state only when the switching
frequency is increased to 17kHz. However, in the joint control
mode, the system enters the steady state when the switching
frequency is increased to 11kHz. Obviously, the stability
domain of the H-bridge inverter system in the joint control
mode is wider and more stable.
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The above numerical simulation experiments were con-
ducted on theMatlab software platform, and the experimental
results are shown in Table 1. The analysis of this parameter
stability range table shows that the expansion of the system
stability range in the joint control mode is reflected not
only in the proportional parameter-kp, but also in the circuit
parameters. These are of great significance.

VI. CONCLUSION
The purpose of this paper is to study the nonlinear dynamic
behavior of an H-bridge inverter under a joint control mode,
and the stability of the system is analyzed using a bifurca-
tion diagram, folding diagram, time-domain diagram, stro-
boscopic diagram, and frequency spectrum diagram. The
theoretical analysis is carried out through the fast-changing
stability theorem, and the conclusion of the theoretical anal-
ysis is consistent with that of numerical simulation. The
stability of the system is analyzed by circuit parameters such
as input voltage-E, load inductance-L, and load resistance-R.
The research shows that the H-bridge inverter system under
the joint control mode has a wider stability region and
stronger stability. The conclusion of the study provides an
important theoretical basis for the design and manufacture of
an H-bridge inverter.
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