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ABSTRACT We propose efficient protocols for non-profiled deep learning-based side-channel analysis
(DL-SCA). While the existing protocol, proposed by Timon in 2019, requires computational resources for
training as many neural networks as the number of key candidates, our protocol requires training only one
network, which can be transformed into a network associated with each key candidate. For instance, in the
case of analysis for the AES, the network training complexity is 1/256 of that for the existing protocol. In this
study, we describe our idea and formulate it as two protocols depending on the metrics used. We numerically
examine them by implementing each protocol with two network architectures, multilayer perceptron and
convolutional neural network. Using publicly available open data (ASCAD), we show that both protocols
efficiently work as expected. We also clarify that our trained network, as in Timon’s original case, can be
recycled for an attack against the same device with different key materials. Non-profiled DL-SCAs are
superior to profiled ones in that they require no reference device for profiling before analyzing the target
device. This property holds for our proposal as well.

INDEX TERMS Deep learning-based side-channel analysis, non profiled analysis.

I. INTRODUCTION
The emergence of new information processing technologies
sometimes poses new threats to the IT community. Although
new technologies enable a variety of applications that enrich
our lives, they may also offer malicious attackers new tools
that were previously unavailable. Thus, to safely enjoy new
technologies, we must carefully evaluate their safety.

Machine learning is a prime example of such technology
today. Since computational resources, such as GPUs, have
become relatively inexpensive, deep learning (DL) has
attracted considerable attention among several machine
learning technologies. Its applications in many fields, such
as image recognition and automated driving, demonstrate the
potential of DL. At the same time, malicious uses of DL have
already been recorded. Thus, we need to further investigate
the benefits and threats of DL.

In the field of hardware security, the use of DL in
side-channel attacks (SCA) was recognized relatively early.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

SCA is an attack to reveal secret parameters in crypto-
graphic systems, typically secret keys, by analyzing side-
channel information. Execution time, power consumption,
and electromagnetic waves are typical examples of side-
channel information. They are obtained as time series data
by measurements during the execution of the cryptographic
algorithm. Successful use of DL with physically observed
data naturally entails its use for SCA. Such attacks are called
DL-based SCAs (DL-SCAs).

SCA is roughly categorized into two types depending
on the data available during the attack. Referring to the
target device as the device under test (DUT), non-profiled
SCA [1], [2], [3], [4], [5] has access only to the data from
DUT. At the same time, profiled SCA [6], [7], [8], [9] is
an attack when additional data from reference devices are
available. Both SCA types are practically used, depending on
the attacking scenarios.

Following the above two categories, DL-SCAs may be
categorised into non-profiled DL-SCA and profiled DL-SCA
types. The profiled DL-SCA, in which data from the refer-
ence devices are available as training data, can be regarded as

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

83221

https://orcid.org/0000-0001-7921-7023
https://orcid.org/0000-0003-1126-4645
https://orcid.org/0000-0002-6707-5408
https://orcid.org/0000-0002-5316-7555
https://orcid.org/0000-0002-4386-1172


K. Imafuku et al.: Non-Profiled DL-SCA With Only One Network Training

FIGURE 1. Sketch of profiled DL-SCA.

a straightforward application of supervised learning. Because
of this affinity, profiled DL-SCAs have been studied more
extensively [10], [11], [12], [13], [14], [15], [16] than non-
profiled DL-SCAs [17], [18], [19]. Similar to ordinary SCAs,
both types of DL-SCAs have practical significance.

As shown in Fig.1, profiled DL-SCA consists of two
phases. The first phase is the training phase, in which data
from the reference devices are used to train a network.
The network is taught the relationship between traces as
side-channel information and labelling values. Notably, the
output of the sbox function or its Hamming weight are
typically examined as the labelling values. The network
has parameters that control the output for a given input.
The training is a process of tuning the parameters so
that the network statistically reproduces the input–output
relation. The second phase is the attacking phase: the
profiled network is fed traces from the DUT to estimate the
corresponding labelling values. Using the estimated values
with the corresponding plaintexts, the attacker can estimate
the secret key used in the DUT.

The basic protocol for non-profiled DL-SCAs has been
proposed by Timon in [19], which is, to our best knowledge,
the only such protocol. The basic idea of the protocol is
that training the network on correctly labelled data yields
a better-trained network than training on wrongly labelled
data. In the original paper, the Hamming weight and the least
significant bit of the output of the sbox function were used as
the labelling values. The protocol may be outlined as follows
(see Fig.2 and Sec.II-B for details):
1) A key is hypothetically assumed. The labelling value is

computed with the plaintext and the assumed key.
2) By pairing the labelling value with the corresponding

trace, a data set consisting of the pairs is prepared.
3) Using the data set, a network is trained. When the

training is accomplished, the obtained value of the loss
function, or most typically cross-entropy, is recorded as
a metric of the degree of network training.

4) The key hypothesis is varied and the obtained values
of the loss function are compared; the key yielding the
best training is taken as an estimation of the true key.

The protocol works based on the difference in ‘‘learnability’’
of the correctly and wrongly labelled data. Learnability is one
of the fundamental concepts clarified in machine learning.
In this sense, the protocol brilliantly exploits an essential

FIGURE 2. Sketch of non-profiled DL-SCA proposed in [19].

aspect of machine learning. This was a significant step in
understanding non-profiled DL-SCAs.

Compared to profiledDL-SCAs, the non-profiledDL-SCA
proposed by Timon requires more computational resources.
In both DL-SCA types, network training, an iterative search
over parameter space, is used. In general, such a param-
eter search requires considerable computational resources.
In Timon’s protocol, such training must be repeated for
each key candidate, resulting in substantial computational
complexity. Therefore, the non-profiled DL-SCA appears
less practical than the profiled DL-SCA, which requires only
one network training for the training data.

To evaluate the true significance or impact of non-profiled
DL-SCA, more efficient protocols must be thoroughly
explored. The present study proposes efficient protocols for
non-profiled DL-SCAs. In our approach, a network is trained
in such a way that the network can be transformed a posteriori
into all networks that are to be obtained with key-dependent
training. The universality of such a network is comparable to
that of a stem cell which can be transformed into a variety of
cells. This stem cell-like network plays a central role in our
approach.
Our Contributions:
Our contributions in this study are threefold:
1) We propose protocols to realise non-profiled DL-SCA

with only one training process. Consequently, the
required training complexity for AES [20] is approx-
imately 1/256 of that in Timon’s protocol [19]. Our
approach is general and can be applied regardless of
the network details or the cryptographic algorithm used
in DUT. Note that, in general, the more complex and
functional the network, the greater the complexity of
the training. The more such networks are used, the
greater the superiority of our ideas to Timon’s originals.

2) We numerically show that the proposed protocols work
using a publicly available dataset ASCAD [21].

3) We clarify that our trained network, as is Timon’s
original case, can be recycled for an attack against the
same device with different key materials.

The remainder of this paper is organised as follows:
Section II outlines the problem setting for our discussion
and Timon’s protocol. In Sec.III, we describe our idea and
formalise it as two protocols: S-protocol and T-protocol.
Then, in Sec.IV, we numerically examine our protocols and
study their characteristics, followed by discussion in Sec.V.
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Finally, we summarise the main findings of this study in
Sec.VI.

II. PROBLEM SETTING AND TIMON’s IDEA
This Section introduces the setting and notations, followed by
a review of Timon’s original work in [19].

A. SETTING
The following is a summary of the settings used in the present
study:

• We consider a function that maps the bitwise XOR of an
input (x ∈ X ) and a parameter (k ∈ K) to an output
(y ∈ Y), similar to the sbox function in AES.
Subsequently, this relation is denoted as y = sbox(x⊕k),
generally called the sbox function, without further spec-
ifying the function’s form. The input and the parameter
are called plaintext and secret key, respectively.

• A DUT is a device that executes an algorithm consisting
of the sbox function with a particular secret key denoted
by k∗. This study uses the secret key used in DUT as the
true key.

• A set of plaintexts is introduced as {x1, · · · , xN } with
index j ∈ {1 · · · ,N }. wj ∈ W denotes the trace obtained
by measuring power consumption, electromagnetic
leakage, etc. when j-th plaintext xj is input.

• Non-profiled DL-SCAs are herein considered the attacks
to estimate the true key solely from a given data set

DDUT :=
{
⟨xj,wj⟩ | j ∈ {1, · · · ,N }

}
(1)

using DL techniques.
• A labelling function is introduced. The domain and
range of the function are X × K and a set of discrete
values, say 3 := {ℓ1, · · · , ℓd }, respectively. A specific
choice of 3 is considered later.

• As a network to be trained, we consider an input–output
system with a tuning parameter θ determined through
the so-called network training process, where the
system’s domain is W . The output is the probability
distribution of the discrete set 3 obtained assuming
that the last layer of the system is implemented by the
so-called softmax function [22]. Let µ

(w)
θ (ℓα) be the

probability distribution obtained by inputting the trace
w ∈ W into the network. It should be noted that, because
of the properties of the softmax function,

µ
(w)
θ (ℓα) ⩾ 0, and

d∑
α=1

µ
(wj)
θ (ℓα) = 1 (2)

always hold.

B. TIMON’s PROTOCOL
Based on the above setting, below we formulate Timon’s
protocol for our discussion:

1) For each key candidate κ ∈ K and plaintext xj ∈ X ,
labelling value is defined as

ℓj(κ) := λ(xj, κ) (3)

where λ(x, k) is the labelling function introduced in the
previous section and specified below.

2) Using the data set of (1), we prepare a κ-depending data
set consisting of pairs of the labelling value and traces
associated with the corresponding plaintext as

D(κ) :=
{
⟨ℓj(κ),wj⟩ | j ∈ {1, · · · ,N }

}
. (4)

Note that the number of such data sets is |K|, the
number of κ’ variations.

3) We execute the network training using the data set
in (4). The training is an iterative search for θ to
obtain the network output µ

(wj)
θ (ℓα) minimising cross-

entropy [22], [23]

Sθ (κ) := −

N∑
j=1

logµ
(wj)
θ (ℓj(κ)). (5)

The search can be performed using a standard method
of training for the general DL framework. We do not
specify the training algorithm unless it is relevant to
our discussion. Let θ∗

κ be the value of the parameter
determined by the training.

4) By comparing Sθ∗
κ
(κ) over κ ∈ K, we estimates the true

key. More specifically, we can consider

argmin
κ∈K

Sθ∗
κ
(κ) (6)

as the most likely candidate for the true key. We can
also determine the estimation ranking of each candidate
key by arranging Sθ∗

κ
(κ) in the order of decreasing size,

if necessary.
Timon also discusses the estimation using sensitivity anal-
ysis. However, we omit it because it is less relevant to
the purpose of the present study. In Timon’s protocol, the
total training complexity is proportional to |K|. There-
fore, Timon’s protocol requires considerable computational
resources, particularly in cases where the size of the trained
network is reasonably large.

Considering the choice of the labelling function,

λ(x, k) = Hw(sbox(x ⊕ k)) (7)

and

λ(x, k) = LSB(sbox(x ⊕ k)) (8)

are suggested in [19]. As carefully pointed out in section III-C
in the paper, the labelling function must not be bijective for
the protocol. If the labelling function is bijective, consisting
of a group of traces with the same label value ℓj(κ) from
D(κ) in (4) as Qℓ :=

{
wj | ℓj(κ) = ℓ

}
, variations in κ

are reflected only in the labelling value attached to each
group but not in the membership of Qℓ because the value
of Sθ∗

κ
(κ) does not depend on κ . In the case of AES, the

sbox function is bijective; thus, it cannot be employed as the
labelling function. For this reason, an alternative labelling
function that depends on a power consumption model like
the above examples needs to be chosen. Timon’s protocol is
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summarised as Algorithm 1 below. Let us underline that the
network training part in line 3 is in the loop on the key variable
of lines 1 to 9.

Algorithm 1 Timon’s Protocol
Inputs: {⟨xj,wj⟩| j ∈ {1, · · · ,N }}, Netθ , nepochs, sbox

/* DDUT in (1), a network parametrized by θ , the number
of epochs for training, and sbox function*/

Output: κ̂ /* The estimation for the true key.*/

1: for κ ∈ K do
2: ℓj(κ) = sbox(xj ⊕ κ) → D(κ) = {⟨ℓj(κ),wj⟩| j ∈

{1, · · · ,N }}

3: DL(Netθ ,D(κ), nepochs) → Netθ∗ /* Network Train-
ing with Deep Learning.*/

4: for j ∈ {1, · · · ,N } do
5: ⟨Netθ∗

κ
,wj⟩ → µ

(wj)
θ∗
κ
(ℓ)

6: ⟨sbox, xj, κ, µ
(wj)
θ∗
κ
(ℓ)⟩ → µ

(wj)
θ∗
κ
(Hw(sbox(xj ⊕ κ)))

7: Sθ∗
κ
(κ) = Sθ∗

κ
(κ) − logµ

(wj)
θ∗
κ
(Hw(sbox(xj ⊕ κ)))

8: end for
9: end for

10: κ̂ = argminκ∈K Sθ∗
κ
(κ)

11: return κ̂

III. OUR PROPOSAL
In the previous section, we showed that the training com-
plexity is proportional to |K| in Timon’s protocol. However,
the training complexity can be reduced to 1 based on a
simple idea explained in this section. As shown below, our
proposal is based on the additivity rule, a fundamental law in
probability theory. The additivity rule states that when events
A and B are mutually exclusive, the probability of A or B is
the sum of the probabilities of A and B, described as

p(A ∪ B) = p(A) + p(B), for A ∩ B = ∅. (9)

Equation (9) holds in general and does not depend on the
probability distributions of A and B.

A. PRINCIPLE OF OUR APPROACH
Here we explain how the additivity rule plays a role in
our approach. Let us hypothesise three probability distribu-
tions, (10)–(12), to be obtained as outputs of three networks
using the following three labelling functions:

• λ(x, k) = Hw (sbox(x ⊕ k)): We perform the network
training described in the previous section by temporarily
assuming the value of the key to κ . Then we obtained a
network parameterised by θ∗

κ . Let

µ
(w)
θ∗
κ
(ℓ) (10)

be the output probability distribution from the trained
network when w is input. It should be noted that the
range of ℓ must coincide with the range of the labelling
function, that is ℓ ∈ {0, · · · , 8} in this case.

• λ(x, k) = sbox(x⊕ k): We perform the network training
by assuming the value of the key as κ . We obtain a
network parameterised by σ ∗

κ . Let

ν
(w)
σ ∗

κ
(r) (11)

be the output probability distribution from the trained
network when w is input. It should be noted that the
range of r is the range of the sbox function itself.

• λ(x, k) = x: We perform the network training. Let

ρ
(w)
η∗ (ξ ) (12)

be the output probability distribution from the trained
network when w is input, where η∗ is the value of the
network parameter obtained through the training. Notice
that the range of ξ is the range of x, i.e., X . The training
process to obtain η∗ is independent of κ and so is η∗.

Now let us hypothetically consider a joint probability
distribution

pκ (w, ℓ, r, ξ ) (13)

describing ‘‘the true probability distribution’’ where w,
ℓ, r , and ξ are the random variables mentioned above.
If the above three trainings are properly performed with
sufficient data, the obtained probability distributions are good
approximations of the conditional probability distributions
derived from the joint probability as

µ
(w)
θ∗
κ
(ℓ)≃pκ (ℓ|w), ν

(w)
σ ∗

κ
(r)≃pκ (r|w), and ρ

(w)
η∗ (ξ )≃p(ξ |w).

(14)

It should be noted that these approximations are a conse-
quence of the choice of the cross-entropy as a loss function
for the network training, just as in (5). We can easily
prove that the loss function is minimised only when the
output distribution agrees with the corresponding conditional
probability [22]. Because additivity naturally holds between
the conditional probability distributions on each right-hand
side, we can safely conclude that additivity approximately
holds for the three distributions on the left-hand side. Thus
we obtain

µ
(w)
θ∗
κ
(ℓ) ≃

∑
r∈�ℓ

ν
(w)
σ ∗

κ
(r) , �ℓ := {r | Hw(r) = ℓ} (15)

and

ν
(w)
σ ∗

κ
(r)≃

∑
ξ∈4r,κ

ρ
(w)
η∗ (ξ ) , 4r,κ := {ξ | sbox(ξ ⊕ κ) = r}.

(16)

Notably, �ℓ and 4r,κ can be prepared in advance inde-
pendently from the training process and their preparation
may be performed utilizing significantly less computational
resources than the network training. By combining (15)-(16),
we obtain

µ
(w)
θ∗
κ
(ℓ) ≃

∑
r∈�ℓ

∑
ξ∈4r,κ

ρ
(w)
η∗ (ξ ) (17)
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as our central finding. In Timon’s protocol, µ
(w)
θ∗
κ
(ℓ) on the

left-hand side was supposed to be obtained via multiple
κ-dependent network training processes. Thus, obtaining
µ
(w)
θ∗
κ
(ℓ) for all κ ∈ K would require |K| network training

processes. At the same time, according to (17), once ρ
(w)
η∗ (ξ )

is obtained, µ
(w)
θ∗
κ
(ℓ) can be constructed using �ℓ and 4r,κ .

In short, the presented finding reduces the number of training
processes from |K| times to 1.
Let us further stress that the distribution ρ

(w)
η∗ (ξ ) is the

output from the network trained by data labelled by plaintext.
Equation (17) shows that the network can be transformed a
posteriori into all networks that are to be obtained with key-
dependent training; thus, such a network is referred to as the
stem cell-like network in Sec.I.

B. IMPLICATIONS OF ρ
(w)
η∗ (ξ )

Leaving aside the mathematical structure of our approach, let
us consider the implications of the proposed network training
for the estimation of the known plaintext, which may seem
slightly odd at first glance.

The application of Bayes’ theorem to p(ξ |wj) in (14) yields

ρ
(wj)
η∗ (ξ ) ≃ p(ξ |wj) =

p(ξ )
p(wj)

p(wj|ξ ) (18)

As ξ is a plaintext variable, let us assume p(ξ ) =

|X |
−1 for clarity. In addition, let us consider a simple

case where ξ -dependence in wj is primarily given through
Hw(sbox(ξ ⊕ k∗)) with true key k∗. In this case, p(wj|ξ ) ≃

p(wj | Hw(sbox(ξ ⊕ k∗))), and the above expression can be
rewritten as

ρ
(wj)
η∗ (ξ ) ≃

|X |
−1

p(wj)
p(wj | Hw(sbox(ξ ⊕ k∗))). (19)

Equation (19) indicates that the probability is approximately
equal for all ξ yielding the same value of Hw(sbox(ξ ⊕ k∗))
and that the distribution depends on the true key. The essence
of the proposed training is to obtain the true key dependence
in ρ

(w)
η∗ (ξ ) rather than correctly estimate the known plaintext.

C. PROTOCOLS
In this section, we formalise the above idea as two concrete
protocols.We call them S-protocol and T-protocol, depending
on the metrics used.

1) S-PROTOCOL
The first protocol is a direct extension of Timon’s protocol
and is based on the same metric, namely

Sθ∗
κ
(κ) := −

N∑
j=1

logµ
(wj)
θ∗
κ
(ℓj(κ)). (20)

However, when computing µ
(wj)
θ∗
κ
(ℓj(κ)) on the right-hand

side, our finding in (17) is used instead of repeating the
network training for each k ∈ K. The protocol is summarised
in Algorithm 2, and Fig.3. As described above, the network

Algorithm 2 S-Protocol
Inputs: DDUT = {⟨xj,wj⟩| j ∈

{1, · · · ,N }}, Netη, nepochs, sbox
/* DDUT in (1), a network parametrized by η, the number
of epochs for training, and sbox function*/

Output: κ̂ /* The estimation for the true key.*/
1: DL(Netη,DDUT, nepochs) → Netη∗ /* Network train-
ing with Deep Learning.*/

2: for κ ∈ K do
3: Sθ∗

κ
(κ) = 0

4: for j ∈ {1, · · · ,N } do
5: ⟨Netη∗ ,wj⟩ → ρ

(wj)
η∗ (ξ )

6: ⟨sbox, xj, κ, ρ
(wj)
η∗ (ξ )⟩ → µ

(wj)
θ∗
κ
(Hw(sbox(xj ⊕ κ)))

/* According to (17).*/
7: Sθ∗

κ
(κ) = Sθ∗

κ
(κ) − logµ

(wj)
θ∗
κ
(Hw(sbox(xj ⊕ κ)))

8: end for
9: end for
10: κ̂ = argminκ∈K Sθ∗

κ
(κ)

11: return κ̂

FIGURE 3. Sketch of the S-protocol.

training is done with data labelled by plaintext. Let us stress
that the network training part in line 1 is separated from
the loop on the key variable of lines 2-9 and is executed
only once, unlike in Timon’s original protocol shown in
Algorithm 1.

2) T-PROTOCOL
The second protocol is based on a new metric that is
uniquely derived from the essence of our approach. Referring
to the distribution in (19), we introduce the following
distribution:

τ
(wj)
κ (ξ ):=

Z−1
j for ξ s.t

(
Hw(sbox(ξ ⊕ κ))
= Hw(sbox(xj ⊕ κ))

)
0 otherwise

(21)

where Zi is the number of ξ that satisfies Hw(sbox(ξ ⊕κ)) =

Hw(sbox(xj ⊕ κ)). The distribution is obtained from (19) by
replacing k∗ by κ and by supposing

p(wj|Hw(sbox(ξ ⊕ κ)) = 0 (22)

for ξ s.t. Hw(sbox(ξ ⊕ κ)) ̸= Hw(sbox(xj ⊕ κ)).
Using of (21), τ

(wj)
κ=k∗ (ξ ) is expected to be one of the

most similar distributions to ρ
(wj)
η∗ (ξ ) among {τ

(wj)
κ (ξ )}κ∈K.
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Algorithm 3 T-Protocol
Inputs: DDUT = {⟨xj,wj⟩| j ∈

{1, · · · ,N }}, Netη, nepochs, sbox
/* DDUT in (1), a network parametrized by η, the number
of epochs for training, and sbox function*/

Output: κ̂ /* The estimation for the true key.*/
1: DL(Netη,DDUT, nepochs) → Netη∗ /* Network train-
ing with Deep Learning.*/

2: for κ ∈ K do
3: T (κ) = 0
4: for j ∈ {1, · · · ,N } do
5: ⟨Netη∗ ,wj⟩ → ρ

(wj)
η∗ (ξ )

6: ⟨sbox, xj, κ⟩ → τ
(wj)
κ (ξ ) /* According to (21).*/

7: T (κ) = T (κ) +
∑

ξ τ
(wj)
κ (ξ ) log

[
τ
(wj)
κ (ξ )/ρ

(wj)
η∗ (ξ )

]
8: end for
9: end for

10: κ̂ = argminκ∈K T (κ)
11: return κ̂

FIGURE 4. Sketch of the T-protocol.

It should be noted that the similarity for all j is maintained
only for κ = k∗ and no other κ . Additionally, (21) can be
prepared independently from the network training. Therefore,
by preparing {τ

(wj)
κ (ξ )}κ∈K in advance as a sort of template,

and by introducing ametric to measure the similarity between
ρ
(wj)
η∗ (ξ ) and τ

(wj)
κ (ξ ) as

T (κ) :=

N∑
j=1

∑
ξ

τ
(wj)
κ (ξ ) log

τ
(wj)
κ (ξ )

ρ
(wj)
η∗ (ξ )

, (23)

we can estimate the true key through the κ-dependence of
the metric. We assumed that the last layer of the network
is a softmax function. Therefore, ρ

(wj)
η∗ (ξ ) can be guaranteed

to be positive for all ξ . Equation (23) is the Kullback-
Leibler divergence, which is often used as the standard
information-theoretic metric of the similarity between two
probability distributions [24]. The protocol is summarised
in Algorithm 3 and Fig.4. Similar to the S-protocol, the
network training is performed with data labelled by plaintext.
The network training part in line 1 is separated from the
loop on the key variable in lines 2-9 and is executed only
once.

TABLE 1. Four data for examination.

IV. NUMERICAL EXPERIMENTS
In this section, we numerically examine our protocols in
practice. For this purpose, similarly to [19], we use a publicly
available dataset introduced in [21]. The dataset named
ANSSI SCADatabase (ASCAD) aims to provide the research
community with a benchmarking reference. Below, we first
summarise the main characteristics of the data analysed in
the present study and then present the results of applying our
approach.

A. TARGET DATA
In the present study, ‘‘ATM_AES_v1_fixed_key.h5’’
included in the ASCAD v1 dataset was used. The data in the
file is a set of traces by measurements of the electromag-
netic waves of an assembly-developed AES cryptographic
operation on the ATMega8515 8-bit AVR microcontroller.
The measurements were taken for the first round of AES
processing with a fixed key and various plaintext inputs.
As illustrated in Fig. 4 in [21], the corresponding plaintexts
and keys are stored in the file in addition to the traces. The
16 sbox in AES from 0 to 15 are with the so-called masked
implementation as countermeasures against SCA. The first
two sbox (sbox0 and sbox1) are implemented with a constant
masking value of 0, essentially an unmasked implementation.
The rest are randomly masked to be resilient to first-order
SCA. Notably, the values of the mask and output of each
sbox function are also stored in the file, though they are not
used in our analysis. A code to mimic the effect of jitter,
which can be implemented as an SCA countermeasure, is also
available. That is done by additionally processing the data to
introduce random desynchronization to traces. Themaximum
magnitude of desynchronization is tuned by a parameter
called desync-param. If the parameter is set to 0, the data
corresponds to the case where the countermeasures were not
taken. As each sbox function is executed serially in time,
DL-SCA can be performed on each sbox by roughly cutting
out the corresponding portion from the trace consisting of
100,000 sampling points. The portion size is decided by the
input size of the network to be used, which is 700 in all our
experiments. The rough location of the portion corresponding
to the target sbox can be estimated through an a priori check
of the location of the point of interest using SNR, as shown
in Figs. 2 and 3 in [21]. For our numerical experiments,
combining these conditions, we prepared the four traces; (A),
(B),(C), and (D), as listed in Table 1.

B. NETWORK MODELS
The following two network architectures were adopted
as typical examples in the experiments. These initially
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appeared in [21], where several architectures were numer-
ically examined and compared in terms of efficiency.
One is the multilayer perceptron (MLP), and the other is
the convolutional neural network (CNN). Following [21],
we refer to these networks as MLPbest and CNNbest. The
main components of their architecture are as follows:

• MLPbest: This network consists of six layers of
perceptrons and a softmax function layer. Layer 1 con-
sists of 700 nodes corresponding to the length of the
input trace. Layers 2 through 5 consist of 200 nodes
each, and layer 6 consists of 256 nodes. The sixth
layer is further connected to a softmax function with
256 outputs in [0, 255]. This final layer ensures that we
obtain a positive normalised numerical output that is
interpretable as an estimated probability. Each node in a
layer within the six layers is fully connected to all nodes
in the following adjacent layer as reflecting input–output
relations. Each node represents the so-called activation
function, which is chosen as ReLU in this network
model. In all our experiments with MLPbest, the
network is trained with RMSProp optimiser at a learning
rate of 10−5, and batch size of 200.

• CNNbest: This network consists of three parts, i.e.,
convolution part, fully connected layers, and softmax
function. The convolution part has five blocks, each
consisting of (64,128,256,512,512) filters, followed by
a pooling layer for each block. All the filters have the
same kernel size of 11. The padding scheme is the so-
called same padding. The convolution part is connected
to the two dense layers of 4,096 units before being
connected to a softmax function with 256 outputs in
[0, 255], similar to the above case. The network is also
trained with RMSProp optimiser at a learning rate of
10−5, and batch size of 200.

See [21] for more details. An example of python code
executing the training of these two networks is attached to the
ASCAD dataset, and we use of these codes for our numerical
experiments.

C. RESULTS
This section presents the results of applying our two protocols
proposed in Sec.III-C to the four data types listed in Table 1
using the two networks introduced in Sec.IV-B.

1) S-PROTOCOL
Figure 5 shows the results of applying the S-protocol with
MLPbest to the four data sets. N is the number of traces
used in the analysis, and the experiment was conducted for
three different N : 2000, 5000, and 10000. Row names of
(A), (B), (C), and (D) correspond to the different data types
presented in Table 1. In Fig.5(a), the dependences of Sθ∗

κ
(κ)

on the number of epochs are shown. The red plot (in color
print) is for the true key and the green plot is for the other
255 keys. Figure 5(b) shows histograms corresponding to
cross-sectional views at epoch number 200. An arrow and a
number indicate the position and the estimation rank by the

FIGURE 5. S-protocol with MLPbest.

true key. The cases where the true key did not take the first
place at 200 epochs are enclosed in a dashed box. Figure 6
presents similar results but for CNNbest.

Figures 5 and 6 show that our approach works as
envisioned. As expected from the general characteristics of
machine learning, the larger the N , the clearer the separation
of metrics by the true key, and the more favourable the
situation for the attacker.

In addition, a comparison of row (B) in Fig.5 and 6,
suggests that the attack can succeed with fewer traces for
CNNbest than forMLPbest, reflecting the general property
that CNN is more resistant to translational misalignment
than MLP. This means that our protocols benefit from
using a high-level network that can capture and learn data
features more faster because of a more complex structure.
When using high-level networks, the training complexity is
generally significant, and thus the effect of reduction in the
number of network trainings is more critical. In other words,
a more advanced network may be used when employing our
approach.

For data (C) and (D), the estimation of the true key did not
achieve first place around 200 epochs in both MLPbest and
CNNbest. To improve the visibility of Fig.6(a), Sθ∗

κ
(κ) may
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FIGURE 6. S-protocol with CNNbest.

be rescaled as

1Sθ∗
κ
(κ) =

Sθ∗
κ
(κ) − Save
SDS

(24)

where

Save =
1

|K|

∑
κ∈K

Sθ∗
κ
(κ)

and

SDS =

√
1

|K|

∑
κ∈K

(
Sθ∗

κ
(κ) − Save

)2
.

Through rescaling, the lower half of Fig.6(a) becomes Fig.7,
showing that the estimation by the correct key achieved
the first place around 100 epochs using the S-protocol with
CNNbest when a sufficient number of traces is given.
The region of the large epoch number where the estimation
becomes unstable coincides with the area where overlearning
occurs with CNNbest, which was studied in detail in [21].
As with other DL applications, this indicates that the negative
effect of overlearning needs to be carefully considered.

FIGURE 7. Rescaled version of the lower half of Fig.6(a).

2) T-PROTOCOL
Similar to the S-protocol, the T-protocol was applied with
MLPbest and CNNbest to the four data types listed in
Table 1. We obtained Figs.8,9, and 10 for the T-protocol
corresponding to Figs.5,6, and 7 for S-protocol. 1T (κ) in
Fig.10 is defined as

1T (κ) =
T (κ) − Tave

SDT
(25)

where

Tave=
1

|K|

∑
κ∈K

T (κ)

and

SDT=

√
1

|K|

∑
κ∈K

(T (κ) − Tave)2

similar to (24).
As shown above, the T-protocol works similarly to or

better than the S-protocol. In the case of CNNbest, the
analytical capability is significantly improved over that in the
S-protocol. In addition to enabling the estimation of the true
key with fewer N , it shows the robustness for overlearning,
as discussed in the previous section. As introduced in
Sec.III-C, the only difference between the S-protocol and
T-protocol is the metric defined in (20) and (23), respectively;
it should be stressed that the network training process is
identical in both cases. In the S-protocol, we once transform
the probability distribution on the plaintext space into another
probability distribution on the Hamming weight space, and
then introduce a metric based on the transformed probability
distribution. At the same time, in the T-protocol, we obtain
a natural metric directly based on the output probability
distribution itself. During the transformation process in
S-protocol, some information may be lost. In contrast,
the information contained in the distribution can be fully
utilised in the T-protocol. Thus, the T-protocol more fully
utilises the networking capabilities gained in the training
process.

V. DISCUSSION
Here we clarify that our trained network, as Timon’s original
case, can be recycled for an attack against the same type
of device with different key materials. Let us consider
a situation with two DUTs as exhibited in Fig.11. The
two DUTs with different key materials are supposed to

83228 VOLUME 11, 2023



K. Imafuku et al.: Non-Profiled DL-SCA With Only One Network Training

FIGURE 8. T-protocol with MLPbest.

have similar physical characteristics, including their circuit
implementations, because they are two products with the
same specifications.

When we apply Timon’s protocol to DUT0, we can have
multiple trained networks for all key candidates; therefore
we can pick a correctly trained network once we obtain the
true key in the first attack. Then, using the picked network
as a profiled network, we may attack DUT1 by immediately
applying the attacking phase of profiled DL-SCA. Thus,
we need neither the training phase nor reference devices
for the second profiled DL-SCA. Such recycling can be
performed rather straightforwardly with Timon’s approach.
However, the required computational resources, including
the first attack, are considerable compared with the ordinary
profiled DL-SCA; therefore it might not have a significant
impact in practise.

Here we show that a similar recycling use of the trained
network can also be possible in our case but implies a
different impact from Timon’s. In the first attack, we obtain
a trained network that outputs ρ

(w)
η∗ (ξ ) for the given trace w,

as explained in (12). Once we obtain the true key k∗

0 in the
first attack, we may use (16) with k∗

0 to acquire a probability
distribution for the estimation of the output of the sbox

FIGURE 9. T-protocol with CNNbest.

FIGURE 10. Rescaled version of the lower half of Fig.9(a).

FIGURE 11. Recycling use of the trained network.

function as

ν
(w)
σ ∗

k∗0

(r) ≃

∑
ξ∈4r,k∗0

ρ
(w)
η∗ (ξ ) (26)
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where

4r,k∗

0
:= {ξ | sbox(ξ ⊕ k∗

0 ) = r}. (27)

The distribution is identical to the output of a profiled network
in profiled DL-SCA with the same network settings, where
the sbox function correctly labels the data. Then, we can
execute the second attack. By inputting the trace w′

j from
DUT1 into the profiled network, we obtain the probability

distribution ν
(w′

j)

σ ∗

k∗0

(r). Based on the distribution, we may

introduce the following cross-entropic metric

U (κ) = −

∑
j

log ν
(w′

j)

σ ∗

k∗0

(
sbox

(
x ′
j ⊕ κ

))
(28)

and estimate the true key of DUT1 as

argmin
κ∈K

U (κ).

Notably, this recycling approach is similar to Timon’s case,
but with much lower training complexity.

The above can be understood more clearly when the sbox
function is bijective, as in AES. Let us recall the training
process, which is symbolically denoted as

DL(Netη,DDUT, nepochs) → Netη∗ (29)

in Algorithms 2 and 3, where

DDUT :=
{
⟨xj,wj⟩ | j ∈ {1, · · · ,N }

}
as in (1). Network Netη∗ in (29), corresponds to the trained
network in Fig.11. Let us consider a similar training process
described as

DL(Netη,Dk∗ , nepochs) → Netη∗

k∗
(30)

where

Dk∗ :=
{
⟨sbox(xj ⊕ k∗),wj⟩ | j ∈ {1, · · · ,N }

}
. (31)

It should be noted that Netη∗

k∗
in (30) corresponds to the

network profiled on data correctly labelled by the sbox
function. As there is a one-to-one correspondence between
xj and sbox(xj ⊕ k∗) because of the bijectivity of the sbox
function, the above two training processes are equivalent
to each other, except for the interpretation of the labeling
values. To be more concrete, considering the two probability
distribution outputs from the two networks with the same
input w

⟨Netη∗ ,w⟩ → ρ
(w)
η∗ (ξ ), and ⟨Netη∗

k∗
,w⟩ → ρ

(w)
η∗

k∗
(ξ ), (32)

we can introduce a translation rule as

ρ
(w)
η∗ (ξ ) = ρ

(w)
η∗

k∗
(sbox(ξ ⊕ k∗)), (33)

and

ρ
(w)
η∗

k∗
(ξ ) = ρ

(w)
η∗ (sbox−1(ξ ) ⊕ k∗). (34)

Such a translation rule indicates the essential equivalence
of the two networks, Netη∗ and Netη∗

k∗
. This equivalence

directly implies the precise equivalence of the computational
complexities required to obtain the two networks.

The above argument shows that recycling in our protocol
has a different impact than in Timon’s. Our protocol can
attack two DUTs without using reference devices with about
the same computational complexity as a standard profiled
attack on one DUT. Unlike Timon’s, it gives a non-trivial and
significant meaning to the recycling scenario.

VI. SUMMARY
Herein, we proposed new protocols for non-profiled DL-SCA
that are improvements over Timon’s protocol, resulting in
a decrease in the network training complexity to the order
one. The training complexity is identical to that of profiled
DL-SCA, implying that non-profiled DL-SCA is superior to
profiled DL-SCA in that it requires no reference device for
profiling before analysing the target device.

We want to emphasize that the primary point of our
research is to present a way to use networks wisely. Our
approach generally applies to many network models that
output guess probability distributions. In other words, the
analytical capability itself depends on the network employed
rather than on the proposed method. However, our approach
reduces the learning complexity required for the overall
analysis. In this sense, it facilitates the adoption of network
models with high analytical capability but learning costs,
allowing for more robust analysis.

Our protocols can be used for research to improve
security, particularly for experimental evaluations of SCA
countermeasures. The proposed protocols are expected to
make these hands-on analyses more efficient and accelerate
research and development in this area. We hope to contribute
to the improvement in hardware security through this
research.

Note that some of the contents of this article have been
reported by the same authors as preliminary results in the
non-refereed proceedings of a domestic workshop [25].
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