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ABSTRACT Unimodal biometric systems are commonplace nowadays. However, there remains room
for performance improvement. Multimodal biometrics, i.e., the combination of more than one biometric
modality, is one of the promising remedies; yet, there lie various limitations in deployment, e.g., availability,
template management, deployment cost, etc. In this paper, we propose a new notion dubbed Conditional
Biometrics representation for flexible biometrics deployment, whereby a biometric modality is utilized
to condition another for representation learning. We demonstrate the proposed conditioned representation
learning on the face and periocular biometrics via a deep network dubbed the Conditional Biometrics
Network. Our proposed Conditional Biometrics Network is a representation extractor for unimodal,
multimodal, and cross-modal matching during deployment. Our experimental results on five in-the-wild
periocular-face datasets demonstrate that the network outperforms their respective baselines for identification
and verification tasks in all deployment scenarios.

INDEX TERMS Conditional biometrics, face, flexible matching, periocular, representation learning.

I. INTRODUCTION
Biometrics are associated with a subject’s identity, pertaining
to how these biological traits are unique to each person.
For instance, fingerprint, face, and iris are the three most
popular biometric traits for commercial deployment [1].
Biometric systems consisting of only a single modality
for deployment are better known as unimodal biometrics.
Despite its convenience, unimodal biometrics usually suffers
from under-performance [2]. This is due to the stochastic
nature of biometric signals, [3], which is attributed to
different angles, lighting conditions, noisy environments, and
whatnot; implementing a biometric system is not a simple
feat.

To address this issue, multimodal biometrics that utilizes
multiple biometric modalities emerged. Multiple biometric
modalities can be fused at representation, score, decision,
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or rank-level [4], [5]. Though it is well-proven that multi-
modal biometrics can drastically improve accuracy perfor-
mance, various issues exist during its deployment. One main
issue would be the storage of multiple biometric templates,
requiring higher management costs. Another major issue
would be the biometrics availability during the query stage,
e.g., voice may affect the multimodal biometric system’s
performance if the subject’s voice is muffled due to the
subject’s well-being. Additionally, using multiple biometric
modalities may require a subject’s active cooperation, while
certain combinations may not be realistically available, such
as gait and iris.

Another possible deployment mode of biometrics is cross-
modal biometrics, a new notion that balances the pros and
cons of unimodal and multimodal biometrics. For instance,
suppose that the face template is enrolled, and another
biometric modality, such as voice, is used for the query.
Therefore, unlike unimodal or multimodal biometrics, which
require the presence of the same modality for matching,
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FIGURE 1. Evaluation of cross-modal biometrics matching based on (a) learning-based representation (deep network) and (b) hand-crafted feature
extractor (LBP) in terms of genuine-impostor score distribution [7] and Pearson correlation [8] plot. (a) For the separately-trained CNNs with individual
face and periocular images, periocular representation (Fp) shows almost zero correlation (ρ = 0.01) with face representation (Ff ). Furthermore, a low
genuine-impostor separation score, d ′ of 0.15, is elicited. (b) It is noted that despite the LBP-extracted features being visually similar (i.e., periocular
feature visually being a subset of the face), a near-zero correlation (ρ = −0.05) indicates that both faces and periocular are of different modalities. Also,
the genuine-impostor separation score d ′ is as low as 1.12.

FIGURE 2. Evaluation of periocular biometrics performance with CB-enabled instance vs. without counterpart (baseline) in the genuine-impostor
matching score distributions. (a) Periocular representations from its baseline network have a lower genuine-impostor separation score, d ′ , of 15.90.
(b) Periocular representations conditioned by face biometrics have a higher genuine-impostor separation score, d ′ , of 16.51.

cross-modal biometrics is flexible. Unfortunately, the accu-
racy would be far from satisfactory in directly matching two
different biometric modalities despite being the same identity.

This paper considers the face and periocular biometrics as
study subjects. Periocular, a peripheral region of the ocular
area, is a somewhat weaker biometric modality [6] since
periocular biometrics only contain information surrounding
the peripheral area of a subject, as opposed to face bio-
metrics which includes the complete facial representations.
Periocular biometrics is helpful when a subject’s complete
facial representations are not available, such as the subject
has make-up on, has performed facial surgery, or the subject’s
face is occluded [9], [10].
In Fig. 1, we depict the cross-matching between face and

periocular biometrics that are processed by convolutional
networks (CNN) and Local Binary Pattern (LBP) [11], a rep-
resentative learning-based and hand-crafted feature extractor,
respectively. We note the almost zero correlation between
face and periocular features of the same identity i.e., no
relation between two modalities, and the strong overlapping
of genuine and imposter matching score distribution, which
implies poor matching performance. These suggest that

despite periocular images being considered to be a subset of
the face i.e., is made up of the facial and ocular area while
being of the same RGB domain; it is a distinctive biometric
modality from the face. In addition, the results also indicate
that cross-modal matching between face and periocular is
unlikely.

In this paper, we propose a notion coined as Condi-
tional Biometrics (CB) that strives to achieve performance
gain in three biometrics deployment modes i.e., unimodal,
multimodal, and cross-modal. The CB utilizes a biometric
modality to condition another for representation learning.
We demonstrate that the performance of periocular biomet-
rics can be elevated remarkably when conditioned by the
face. In Fig. 2, we depict that the CB-enabled periocular
representation reveals better genuine and imposter matching
score distribution separation compared to its sole periocular
counterpart, which suggests the performance gain of the
former. Parallelly, face recognition conditioned by periocular
is equally helpful.

The CB-enabled multimodal and cross-modal biometric
representation can also contribute to performance gain.
As opposed to the low correlation shown in Fig. 1,
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FIGURE 3. Evaluation of cross-modal matching on CB-enabled
representation in genuine-impostor matching score distribution and
Pearson correlation. CB-enabled periocular (Fp|f ) and face (Ff |p)
representations have high correlations (ρ = 0.66), while also having a
much higher genuine-impostor score, d ′ of 19.58, compared to the ones
shown in Fig. 1.

FIGURE 4. Matching modes supported by the CB regimen, including
unimodal, cross-modal, and multimodal matching.

we demonstrate that the CB-enabled periocular and face
representations have a high correlation with one another in
Fig. 3, which implies the possibility of cross-modal matching.
We demonstrate that the CB representation enables various
flexible deployment modes, as shown in Fig. 4. In Fig. 4, the
CB representation is deployable not only for the unimodal
matching mode, including CB periocular vs. CB periocular
and CB face vs. CB face, but also for cross-modal CB face
vs. CB periocular matching. Besides, multimodal matching
is also permitted by aggregating CB face and CB periocular
representations.

The CB representation learning is substantiated by a CNN
comprising a shared-parameter backbone encoder, appended
with two classification heads for each face and periocular.
In addition to classification losses, a regularized CB loss

TABLE 1. Matching setting in practical applications.

is devised to pull inter-modality and intra-subject examples
closer and push intra-modality and inter-subject examples far
apart in the embedding space.

We summarize the contributions of this paper as follows:
1) We introduce CB representation learning - a newmeans

of representation learning mechanism by conditioning
a biometric modality on another for performance gain
and flexible deployment.

2) We propose the Conditional Biometrics Network (CB-
Net) to realize the CB notion alongside a regularized
CB loss. The CB-Net is a representation learningmodel
that attracts examples of the same identity but different
modalities while enabling the correlation between
the learned representations, allowing the cross-modal
matching task.

3) We benchmark the performance of CB-Net deployed
in unimodal, cross-modal, and multimodal based upon
five periocular-face in the wild datasets. We demon-
strate that the CB-Net enhances the face and perioc-
ular discriminability for identification and verification
tasks.

II. RELATED WORKS
This section presents the remarkable state-of-the-art
approaches for periocular biometrics, multimodal biometrics,
cross-modal biometrics, and other works relevant to the
proposed CB notion.

A. PERIOCULAR BIOMETRICS
Early research on periocular biometrics relies on hand-crafted
feature extraction methods. Among these techniques include
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masking and filtering [12], Histogram of Orientation and
Gradient (HOG) [13], Local Binary Pattern (LBP) [11], and
Scale Invariant Feature Transform (SIFT) [14]. Though it is
shown that these methods can achieve a good performance,
the datasets collected through these methods are under
a constrained environment, wherein there are no pose
invariances nor illumination differences for all of the subjects
in question [15], [16].
As deep learning has become the norm in the last

decade, [17], the recent works for periocular recognition rely
on CNNs for representation learning instead of hand-crafted
feature descriptors. For instance, [18] focuses on extracting
near-infrared (NIR) periocular representation, particularly
mid-level ones. On the other hand, [19] uses a different
approach to infrared, whereby cross-spectrum between
visible light and infrared matching was performed using a
twin shared-parameter CNN with attention. Reference [20]
also utilized a shared-parameter CNN for periocular images.
In this case, a subject’s left and right eyes were considered
instead to fuse the RGB periocular images. Also, different
from the previously mentioned works, Tiong et al. attempted
to solve the periocular in the wild representation problem,
which is more challenging compared to periocular datasets
in a controlled environment.

B. MULTIMODAL BIOMETRICS WITH PERIOCULAR
Due to the lack of discrimination power, the periocular
trait is practically deployed in conjunction with other
biometrics. In particular, the iris is usually fused with
periocular biometrics [21], [22], [23], [24]. On the other hand,
some other biometric modalities have also been considered,
such as face [25], [26] and soft biometrics from facial
representations [27].

In [25], a combination of periocular, face, and hand-crafted
iris representations obtained from the mobile phone are
fused at the score level. On the other hand, [26] used a
multi-representation deep learning network in addition to
texture descriptors to combine face and periocular modalities.
Different from [25], representation level fusion was adopted
instead, such that the correlation between the descriptor and
the raw data renders a new representation.

In a more recent work [24], the combination of periocular
and iris scores was learned via a hierarchical fusion network.
The network is used to perform the fusion and can search for
the best method for score fusion. Similarly, [22] also utilized
the fusion of periocular and iris. However, an end-to-end
neural network with a co-attention module was used to fuse
the representations adaptively.

C. CROSS-MODAL MATCHING BIOMETRICS
Most works involving cross-modal matching of distinct
biometric modalities typically revolve around matching
the face and voice biometrics. For instance, the work by
Nagrani et al. [28] explores the possibility of cross-modal
verification to determine if the given face and voice inputs

are from the same subject. In [29], the work considers
information sharing between face and voice, different from
the work above. Specifically, a Siamese network with
contrastive loss was proposed so that both representations
are learned in a shared space. In addition, it is shown that
the projection of the representation was sufficient to perform
matching.

Unlike the previous works, [30] proposed a work that per-
forms cross-modal matching between visible light (VIS) face
and near-infrared (NIR) face images. Notably, a subspace
projection hashing was designed so that both VIS face and
NIR face images are projected to a common subspace. The
generated hashed codes via this projection method enable the
network to performmatching in different domains with a vast
performance improvement.

D. CONDITIONAL BIOMETRICS RELEVANT WORKS
The existing works close to the CB notion are usually
associated with soft biometrics, i.e., attributes that barely
capture a person’s identity credentials, such as gender,
age, skin color, etc. This is mainly attributed to soft
biometrics being considered a weaker representation than
typical biometric modalities such as the face. Reference [31]
introduced attribute-aware loss such that the representation
mapping with soft biometrics contributes to the performance
gain of face biometrics. On the other hand, [32] proposed
an adaptive margin-based angular loss that functions to
leverage face recognition via soft biometrics. Soft biometrics
is embedded into the margin of the loss function. Despite
both works using soft biometrics to condition face biometrics,
the reverse, i.e., using face to condition soft biometrics,
is undoable, and so for cross-modal and CB multimodal
matching.

In [33], the knowledge distillation [34] with label smooth-
ing was used to enhance the performance of periocular
biometrics via face. More specifically, a teacher-student
network was utilized, whereby the teacher network was
pre-trained with face images. Then, the teacher network
functions to leverage the student network trained with
periocular images. One drawback of this method would
be that two distinct networks must be trained separately.
In addition, the periocular network may not be used reversely
to leverage and enhance the performance of the face network.

III. PROPOSED WORK
We deliberate in this section on the CB-Net network
architecture and the regularized CB loss. Subsequently,
we disclose the realistic deployment modes of the proposed
CB systems.

A. CB-NET NETWORK ARCHITECTURE
The proposed CB-Net is comprised of a shared-parameter
encoder F⋆(x; φ) such that ⋆ = {p|f , f |p} where x is the
input image, φ denotes the encoder parameter, and {p|f , f |p}
represent the periocular conditioned by face, and face con-
ditioned by periocular notations, respectively. In this work,
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FIGURE 5. CB-Net architecture is a composition of a shared-parameter convolutional neural
network, interleaved with non-shared adaptation layers (as face and periocular vary in input
resolutions) and a shared CB representation layer. This is followed by two softmax heads for
each face and periocular. The training loss comprises a CB-based loss term, a face conditioned
by periocular, and a periocular conditioned by face classification losses.

we adopt MobileFaceNet [35] as the representation encoder.
On the other hand, we append the network encoder with two
softmax-based predictors. Each conditioned representation
is associated with the corresponding prediction head as
illustrated in Fig. 5.
This paper’s image resolutions for periocular and face

are 37 × 112 pixels and 112 × 112 pixels, respectively.
We, therefore, interleave the network backbone with an
individual (non-shared) adaptation layer for each modality to
yield fixed-dimension vectors for learning the corresponding
conditioned representation, v⋆ ∈ Rd . It is noted that we set
d = 512 throughout our experiments.

B. LOSS FUNCTIONS
1) NOTATION
Given a set of N face (f) and periocular (p) images with
shared identity labels {(x∗i, yi)|i = 1, . . . ,N }, ∗ = {p, f } of
C identities, the softmax predictions can be computed via
z∗ = softmax(W∗

TF⋆(x∗; φ)) where ⋆ = {p|f , f |p} and
W∗ ∈ RC×d is the prototype weight matrix.

2) CLASSIFICATION LOSS FOR CONDITIONED FACE AND
PERIOCULAR PREDICTORS
For each predictor z∗, the CB-Net is trained with respect to
the margin-based angular softmax loss e.g., CosFace [36] to
be specific, as it is well-proven to enhance the inter-subject
separation and reduce the intra-subject variations.

Given B batch samples of x∗i with its corresponding
identity label yi, the margin-based angular loss,L⋆i is defined
as follows:

L⋆i =
1
B

∑
i=1

− log
es(cos(θyi,i )−m)

es(cos(θyi,i )−m) +
∑

i e
s cos θi

(1)

where θ∗i represent the angles between the L2 normalized
prototype weight vector ŵ∗j ∈ Rd and the L2 normalized v̂⋆i
which are distributed on a hypersphere with radius s, and m

represents the margin penalty, such that cos(θj, i) = ŵT
∗jv̂⋆i .

In this case, we set an equal value for both face and periocular
scales and margins, so neither learning dominates one other
during the training process.

3) CB LOSS WITH REGULARIZATION
The two classification losses attempt to learn an identity-wise
representation for each face and periocular but neglect the
modality gap between them. The CB loss is devised to reduce
inter-modality and intra-subject discrepancies (specifically,
face and periocular belonging to the same subject) and
enhance intra-modality and inter-subject separation (e.g.,
periocular examples from different subjects).

Let (v⋆i , yi) be an anchor example, such that (v+⋆i , y
+

i )
is an intra-subject example v+⋆i with an identity label y+i ,
and (v−⋆i , y

−

i ) represents an inter-subject example v−⋆i labeled
with y−i , where y

+

i = yi and y−i ̸= yi. Given B samples
of intra-subject and inter-subject periocular-face pairs for
a mini-batch of the face and periocular representation.
We define the conditional biometric (CB) loss Lcb, using an
angular contrastive loss, i.e., a special case of the supervised
contrastive loss [37] as follows:

Lcb = −
1
B

B∑
i=1

log
e
(
v⋆iv

+
⋆i

/τ
)

e
(
v⋆iv

+
⋆i/τ

)
+ 6y−i ̸=yi

e
(
v⋆iv

−
⋆i/τ

) (2)

, where v⋆iv
+
⋆i

and v⋆iv
−
⋆i

computes the Cosine similarity
for the intra-subject and the inter-subject periocular-face
representation pairs, respectively, and τ , is a temperature
term. We aim to render a discriminative embedding space
consisting of multiple representation modalities by rectifying
the modality discrepancy between periocular and face (see
Fig. 6). In other words, Lcb operates by attracting the
intra-subject representation pairs close to each other while
repelling the inter-subject representation pairs to be as
far apart as possible, particularly those intra-subject and
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FIGURE 6. Learning paradigm of regularized CB loss Lrcb, where
modality discrepancy between face and periocular is remedied by an
aggressive sampling of inter-modality intra-class and inter-class
representation pairs, aside from intra-modality counterparts.

inter-subject pairs constituted by periocular and face (inter-
modality). To this end, we introduce a regularization term to
Lcb as follows:

Lrcb = Lcb + γ

B∑
i=1

(
e
(
1.0−v⋆iv

+
⋆i

/τ
) 1
2

− e
(
1.0−v⋆iv

−
⋆i

))
(3)

where γ is set to 0.001 in our experiments unless otherwise
stated. We demonstrate in Section IV that Lrcb improves
the CB-Net performance using optimizing the inter-modality
intra-subject and inter-subject variabilities. This is mainly
reflected in the Equal Error Rate (EER) and cross-modal
matching. We single out the hardest inter-subject representa-
tion pairs in our formulation using hard negative mining [38].

Given only the classification losses, the CB-Net exclu-
sively learns two representation clusters, i.e., one each for
face and periocular, despite the shared-parameter encoder.
Specifically, training CB-Net without Lrcb results in two
embedding spaces with a minimal intersection, despite
both modalities sharing the same identity labels. There-
fore, we introduce Lrcb to resolve the inherent modality
gap between periocular and face, as depicted in Fig. 6.
The CB-Net instance trained with Lrcb leverages the
inter-modality representation pairs to elicit a joint embedding
space, whereby the angular distances for the intra-subject
periocular and face pairs are explicitly minimized with
respect to the annotated identity labels. This results in more
effective cross-modal matching.

4) TOTAL LOSS
Given two modalities, i.e., periocular conditioned by face
and face conditioned by periocular, the proposed CB-Net is
learned with respect to three loss terms as follows:

L = Lp|f + Lf |p + αLrcb (4)

where α is a weighting factor governing the contribution of
Lrcb to L.

IV. EXPERIMENTAL ANALYSIS AND DISCUSSIONS
A. DATASETS
Our training set consists of the face and periocular images
sampled from VGGFace [39] and Ethnic [20] datasets. It is
assembled with 166,737 examples of 1,054 identities for

TABLE 2. Summary of testing datasets.

FIGURE 7. Multimodal matching scenarios through representation-level
fusion (including direct concatenation and mean/maximum-pooling), and
score-level fusion.

each periocular and face modality. We evaluate the gener-
alization performance of CB-Net on five testing datasets,
namely Ethnic, Pubfig [40], FaceScrub (FS) [41], IMDb
Wiki (IMDb) [42], and AR [43]. Notably, these testing
datasets are completely disjoint from that of training, i.e., no
redundant identities. Except for the AR dataset, the others
are challenging in-the-wild datasets. However, the AR dataset
is mainly probed against occlusion, a common distracting
factor in real-world deployment scenarios. We summa-
rize the data distribution for these testing datasets in
Table 2.

B. ENROLLMENT AND QUERY STAGES
With reference to Fig. 4, the CB-Net-trained representations
apply to four operational matching modes at both enrollment
and query stages, namely, unimodal, cross-modal, and
multimodal. We detail each deployment mode as follows:

• Unimodal Matching: A CB template, either periocular
or face-conditioned representation, is stored during
enrollment as a gallery set. Direct matching is performed
for verification or identification in the presence of the
corresponding instance during the query stage as a
probe/test set.

• Cross-Modal Matching: This mode necessitates only a
single modality to be enrolled as a gallery set. On the
other hand, another biometric modality is probed during
the query stage, whereby the matching between the
representations of the two modalities is performed to
reach a decision. Under the assumption that periocular
representations are enrolled, and face representations are
queried, the matching score is computed between face
and periocular. The same assumption is also possible for
vice versa.

• Multimodal Matching: Multimodal matching is per-
formed between the aggregated representation of the
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TABLE 3. Hyperparameter configuration for experiments.

conditioned face and periocular. Our experiments
consider (1) representation-level fusion methods, i.e.,
concatenation, and element-wise mean and maximum
fusion; and (2) score-level fusion, i.e., score averaging,
as shown in Fig. 7.

C. EXPERIMENTAL SETUP
We compare the performance of the CB-Net with the baseline
networks over the five testing above datasets summarized
in Table 2. Our experimental results for identification
and verification tasks are reported [2] in terms of rank-
1 identification rate (IR) and verification equal error rate
(EER).

For the identification task, we adopt the k-fold cross-
validation such that the gallery and probe sets are alternated to
compute an average IR. For example, as the Pubfig contains
a gallery and three probes, each set is selected as a gallery,
while the remaining are used as probes. This results in
a total of 3 × 4 = 12 matches, wherein the accuracy
is obtained via averaging. It is noted that this protocol
is only applicable for unimodal matching and multimodal
matching, as we fix a single gallery set for cross-modal
matching.

On the other hand, the verification task involves the
selection of positive and negative pairs via the random
sampling of 4 images from each identity in the gallery
set. This elicits 4 × (4 − 1) = 12 positive samples and
(4 × 4) = 16 negative samples per identity, in which the
matching scores are calculated. We pursue this evaluation
protocol for a fair comparison across different matching
modes. Table 3 summarizes our configurations for all the
empirical parameters.

We apply aggressive data augmentation during the train-
ing, namely random plane rotation within the range of
(−10, 10) degrees, random horizontal flipping, and random
scaling within (1.0, 1.2) ranges.

D. PERFORMANCE ANALYSIS AND DISCUSSIONS
This section summarizes our empirical results accordingly.
We denote the unconditioned face and periocular representa-
tions learned by the single-modality baselines as vp and vf in
Tables 4, 5, and 6. On the contrary, the conditioned CB-Net
representations, including periocular conditioned by face, and
face conditioned by periocular, are referred to as vp|f and vf |p,
respectively.

FIGURE 8. Periocular and face identification CMC and verification ROC
curves for baseline and CB-Net averaged among 5 datasets (Ethnic,
Pubfig, FaceScrub, IMDb Wiki, AR).

1) UNIMODAL MATCHING
We observe from Table 4 that CB-Net outperforms the
baselines consistently. In particular, periocular conditioning
by face reports a remarkable performance improvement
(3.01% for rank-1 IR and 4.08% for EER), compared with
face conditioning by periocular (0.45% for rank-1 IR and
0.70% for EER). The critical reason is that the face is a
stronger attribute than the periocular; therefore, conditioning
the periocular on the face leads to significant performance
gain. On the contrary, the merit of CB is not entirely revealed
for face conditioned by periocular as the periocular attributes
are essentially dominated by the face.

In the meantime, Fig. 8 illustrates the Cumulative
Matching Characteristic (CMC) and Receiver Operating
Characteristic (ROC) curves for the unimodal matching of
both periocular and face modalities. In both curves, the
superiority of CB-Net is demonstrated in the performance
difference compared to the baseline networks, particularly for
the periocular. In Fig. 8, we also disclose the Area Under the
Curve (AUC), wherein the AUC for CB-Net is remarkably
higher than the baseline (2.00% for periocular, 0.19% for
face).

2) CROSS-MODAL MATCHING
We perform cross-modal matching in two different settings:
(1) probing periocular (test) against face (gallery) and
(2) probing face (test) against periocular (gallery). Our
experimental results are summarized in Table 5.
In Table 5, notice that the performance for the baseline is

poor, regardless of the task being performed. On the contrary,
the CB-Net has a vast performance improvement compared to
the baseline, wherein a performance improvement of 82.28%,
82.11%, and 40.61% is observed for the rank-1 IR (using
periocular and face as a gallery, respectively) and EER
respectively. We illustrate these values in the CMC and ROC
curves in Fig. 9.
In Fig. 9, it is observed that though the performances of the

baseline and CB-Net are gradually increasing throughout the
ranks, the performance of the baseline is still not as significant
as the rank-1 IR for both periocular and face galleries are still
less than 5% even after rank-10 IR is considered. On the other
hand, the CB-Net saw a more significant IR performance
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TABLE 4. Performance summary in terms of Rank-1 IR (%) and EER (%) for CB-Net on five testing datasets, including Ethnic, Pubfig, FaceScrub, IMDb
Wiki, and AR.

TABLE 5. Performance summary for cross-modal matching in terms of Rank-1 IR (%) and EER (%) for CB-Net on five testing datasets, including Ethnic,
Pubfig, FaceScrub, IMDb Wiki, and AR.

FIGURE 9. Cross-modal identification CMC and verification ROC curves
for baseline and CB-Net averaged among 5 datasets (Ethnic, Pubfig,
FaceScrub, IMDb Wiki, AR).

increase throughout the ranks. This case is also observed for
the ROC curve in Fig. 9, wherebyCB-Net achieves anAUCof
96.85%, while the baseline only achieves an AUC of 51.04%.

3) MULTIMODAL MATCHING
As illustrated in Fig. 7, we opt for representation-level
(through direct concatenation, mean-pooling, and maximum-
pooling) and score-level fusion strategies to facilitate multi-
modal matching as follows:

• Direct Concatenation: Given two periocular repre-
sentations conditioned by face vp|f , v′p|f ∈ Rd and
two face representations conditioned by periocular
vf |p, v′f |p ∈ Rd , we aggregate these representations into
(vp|f |vf |p) ∈ R2d and (v′p|f |v

′

f |p) ∈ R2d for matching
purposes. Also, given the baseline periocular and face
representations, i.e., vp, v′p ∈ Rd and vf , v′f ∈ Rd ,

TABLE 6. Performance analysis for different multimodal fusion strategies
in terms of Rank-1 IR (%) and EER (%) averaged over all testing datasets,
namely Ethnic, Pubfig, FaceScrub, IMDb Wiki, and AR.

we perform the multimodal matching between (vp|vf ) ∈

R2d and (v′p|v
′
f ) ∈ R2d .

• Mean-Pooling: Accordingly, we compute the mean
representations for v and v′ to elicit the averaged
representations for matching between µ(vp|f , vf |p) and
µ(v′p|f , v

′

f |p). As for the baseline models, µ(vp, vf ) is
matched against µ(v′p, v

′
f ) during evaluation.

• Maximum-Pooling: In lieu of mean-pooling, we exer-
cise maximum-pooling on v and v′ to compose
the maximum representations for matching between
max(vp|f , vf |p) ∈ Rd and max(v′p|f , v

′

f |p) ∈ Rd , and
max(vp, vf ) ∈ Rd and max(v′p, v

′
f ) ∈ Rd .

• Score Fusion: For score-level fusion, we first obtain the
matching scores for (vp|f , v′p|f ), and (vf |p, v

′

f |p). We then
compute the mean of both for decision-making.

For simplicity, we only exhibit the averaged values among the
five testing datasets in Table 6 for rank-1 IR and EER.

Table 6 shows that the CB-Net consistently outperforms
the baseline for verification. However, its rank-1 IR pales
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TABLE 7. Ablation analysis for different CB-Net configurations in terms of Rank-1 IR (%) and EER (%) averaged over all testing datasets, namely Ethnic,
Pubfig, FaceScrub, IMDb Wiki, and AR.

FIGURE 10. Multimodal identification CMC and verification ROC curves
for baseline and CB-Net averaged among 5 datasets (Ethnic, Pubfig,
FaceScrub, IMDb Wiki, AR).

compared to the baseline network for maximum, mean, and
score fusion. In addition, notice that the performance of
the score fusion is strikingly similar to the concatenation,
particularly for the CB-Net. One plausible explanation for
this is due to the saturation of the network, in which the
performance will not improve any further for rank-1 IR or
EER. We include the CMC and ROC in Fig. 10 to depict
the similarities between the score fusion and concatenation
fusion, alongside the maximum and mean fusion methods.

E. ABLATION STUDY
We conduct an ablation analysis in Table 7 with respect to dif-
ferent loss configurations.We report the average performance
over all the testing datasets for CB-Net deployed under the
unimodal and the cross-modal (switching periocular and face
as gallery and test alternately) scenarios.

It is evident that the presence of Lcb results in a vast
performance improvement, particularly for the cross-modal
matching scenario. Notably, there is a performance gain
of 77.70% and 36.5% in rank-1 IR and EER, respectively.
In addition, the regularizer γ causes an even increased per-
formance gain for cross-modal matching, whereby γ = 0.1
and γ = 0.01 resulted in an increase of 8.97% and 10.02%
for rank-1 IR and 3.15% and 2.72% for EER respectively.

In summary, despite CB-Net in the presence of Lrcb where
γ = 0.001 reports the best performance for unimodal
deployment, we conclude that setting γ = 0.01 achieves
the most balanced performance. Furthermore, though setting
γ = 0.01 leads to marginal performance degradation for

TABLE 8. Performance comparison with other SoTA periocular networks
in terms of Rank-1 IR (%) and EER (%) averaged over all testing datasets,
except for AR.

unimodal compared to γ = 0.001, it is indispensable owing
to the significant performance enhancement for cross-modal
matching. More specifically, with this setting, we discern a
performance gain of 6.17% and 1.31% in rank-1 IR and EER,
respectively. Therefore, we deduce that γ plays a vital role
in inter-modality, and intra-class attraction, reflected by the
cross-modal matching performance.

F. COMPARISON WITH OTHER WORKS
We compare in Table 8 the proposed CB-Net and two relevant
periocular networks, specifically [20] and [33]. These works
comply with the CB regimen, which evaluates the same
unconstrained periocular datasets. We exclude the AR dataset
in this section for a fair comparison. We discern that
the CB-Net shows a significant performance improvement
over [20] and [33] - at least 3.55% in rank-1 IR and
4.74% in terms of EER. The important reasons are: (1) [20]
encodes the periocular representations based upon the pre-
extracted descriptors, whereas the CB-Net learns directly
from the raw periocular images. (2) [33] involves knowledge
distillation (KD) from a teacher (face) network to facilitate
embedding learning for a student (periocular) network. This
restricts its overall performance to that of the teacher, and KD
prohibits the teacher network from subsequent learning.

G. DISCUSSIONS
1) HOW DISCRIMINATIVE IS THE CONDITIONED
REPRESENTATION?
In Figs. 11 and 12, we evaluate the discriminability of the
baseline and the CB representations in terms of decidability
index d ′ [7] with respect to the intra-subject and the inter-
subject Cosine similarity scores for both periocular and face,
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FIGURE 11. Intra-modality (Periocular) for baseline and CB-Net
(with Lcb).

FIGURE 12. Intra-modality (Face) for baseline and CB-Net (with Lcb).

respectively. Mathematically, we define d ′ as follows:

d ′
=

|µ+ − µ−|√
(σ 2

+ + σ 2
−)

(5)

where µ+ and σ+ indicate the mean and the variance of the
intra-subject similarity scores;µ− and σ−, in contrast, denote
the mean and the variance of the inter-subject similarity
scores. By definition, d ′ is a performance indicator, whereby
a greater d ′ signifies higher representation discrimination.
Following (5), we investigate the intra-modality matching

with respect to d ′ i.e., comparing periocular to periocular,
face to face, for a more thorough analysis. Figs. 11 and 12
show that CB-Net has a higher d ′ than the baseline by
0.60 and 5.14, respectively. The increased d ′ values conform
to the performance improvement for both periocular and face
in rank-1 IR and EER.

We also conduct an inter-modality matching analysis on
d ′ for a more thorough analysis. In Fig. 13, we depict the
superiority of CB-Net over the baseline network, as well
as the importance of Lcb in our network. Our analyses are
conducted for both inter-class and intra-class for the baseline
networks and the CB-Net, with and without the presence
of Lcb.
In Fig. 13, the intra-subject and inter-subject similarity

score distribution for both the baseline and CB-Net without
Lcb networks overlap one another around the Cosine simi-
larity score of 0.0, whereby the d ′ values are 0.15 and 1.14
respectively. Notably, the intra-subject similarity scores
are deemed to be the same as the inter-subject, despite
being of the same identity. On the contrary, deploying
CB-Net with Lcb shows its flexibility via the well-separated
intra-subject and inter-subject histograms, despite being of
different modalities. This is computed in an estimated d ′

value of 19.58, whereby the intra-class distance of different
modalities has significantly higher similarity scores. This
signifies that Lcb plays an essential role in improving the

TABLE 9. Performance summary for cross-modal matching in terms of
Rank-1 IR (%) and EER (%) for CB-Net on five testing datasets in the
absence of Lcb.

performance of cross-modal matching via representation
learning.

2) HOW STRONG IS THE CORRELATION BETWEEN FACE
AND PERIOCULAR REPRESENTATIONS?
The correlation between face and periocular representations
should be reasonably high for decent cross-modal matching.
We attempt to answer this question via Pearson correlation
defined [8] as follows:

ρ =

∑
i(xi − µx)(yi − µy)( ∑

i(xi − µx)2
∑

i(yi − µy)2
) 1

2

(6)

where µx and µy denote the mean values for x and y
respectively. ρ = 1 signifies a strong linear dependency
between x and y, implying a perfect positive correlation.
On the contrary, ρ = 0 indicates no linear dependency
between the two variables, while ρ = −1 implies a perfect
negative correlation.

With reference to (6), we compute ρ as the inter-modality
correlation between the CB representation, i.e., face x and
periocular y, based upon the softmax-learned prototypes,
indicated by µx and µy, respectively. For simplicity,
we subsample a toy image subset of only six classes in
this pilot study. As shown in Fig. 14, both baseline and
the CB-Net instance without Lcb render two representation
sets of no inter-modality correlation, i.e., with ρ values of
only -0.02 and -0.01. On the contrary, CB-Net with Lcb
shows a positive inter-modality correlation of 0.48. This is
proportional to the performance in Table 5. For a complete
analysis, we provide in Table 9 the cross-modal matching
performance for CB-Net without Lcb.
In summary, the usage of CB-Net alongside Lcb with

a positive correlation showed an improved cross-modal
matching performance of at least 82.56%, in contrast to
CB-Net without Lcb and the baseline networks with negative
correlations, which showed cross-modal matching of 1.02%
and 0.37% respectively (see Table 7).

3) HOW WELL DO HAND-CRAFTED DESCRIPTORS WORK
FOR CROSS-MATCHING?
One may ask whether cross-matching the non-learning-based
face and periocular features is feasible, as the periocular is
part of the face. This section addresses this query with one
of the most classical hand-crafted texture descriptors - Local
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FIGURE 13. Intra-subject and inter-subject cosine similarity distribution for inter-modalities for Baseline and CB-Net (with and without the
presence of Lcb).

FIGURE 14. Pearson correlation of face and periocular representations for baseline and CB-Net (with and without Lcb).

TABLE 10. Performance analysis of LBP descriptors for various matching
modes in terms of Rank-1 IR (%) for all testing datasets, namely Ethnic,
Pubfig, FaceScrub, IMDb Wiki, and AR.

Binary Pattern (LBP) [11], which we use as a feature
extractor of both face and periocular. We present the
experimental results amongst the five datasets for unimodal
and cross-modal matching in Table 10. For simplicity, the
rank-1 IR for cross-modal matching is obtained from the
averaged periocular and face galleries.

As expected, it is disclosed in Table 10 that the LBP
face descriptors perform better than periocular with a
discrepancy of 10.83% in rank-1 IR, as periocular suffers
from severe under-representation issues. Overall, the LBP
descriptors perform poorly across all testing datasets for
unimodal and cross-modal matching, compared to CB-Net
(refer to Table 7). We depict the CMC curve in Fig. 15.
For comparison, we also include the averaged curve for
multimodal matching.

In Fig. 15, it is observed that the face has the best
performance, even more than the matching of multimodal
and also periocular. On the contrary, cross-modal matching

FIGURE 15. CMC curve for various matching modes for LBP descriptors
averaged over 5 testing datasets (Ethnic, Pubfig, FaceScrub, IMDb Wiki,
and AR).

FIGURE 16. Pearson correlation for face and periocular descriptors
handcrafted using LBP.

also performs poorly, despite LBP being a hand-crafted
descriptor dependent on the image’s pixel-wise features.
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Furthermore, despite the periocular being a sub-region of
a face, the LBP descriptors perform poorly in cross-modal
matching. This is because the face and periocular are captured
in different input resolutions, causing the facial landmarks
to be misaligned. We also demonstrate in Fig. 16 that the
Pearson correlation for periocular and face features extracted
by LBP is estimated to be only ρ = −0.12, i.e., close to
no inter-modality correlation. This reaffirms that face and
periocular are unique biometric modalities, although both
share a common peripheral ocular region.

V. CONCLUSION
This paper introduced the notion of Conditional Biometrics
(CB), a framework designed to enhance the performance of
various biometric systems, with a particular focus on perioc-
ular and facial modalities in our study. We have developed
CB-Net, a deep neural network architecture that facilitates
representation learning to achieve this. The CB-Net enabled
mutual conditioning between periocular and facial biometric
information, resulting in improved performance in both
unimodal and multimodal matching scenarios. Additionally,
CB-Net training established correlations between the two
biometric modalities to enable cross-modal matching.

As a demonstration, the experiments were conducted
using challenging in-the-wild face and periocular datasets to
evaluate the learning aptitude of CB-Net on unimodal, cross-
modal, and multimodal matching modes. Our experimental
results disclosed that the CB-Net shows a consistent perfor-
mance improvement in periocular recognition, particularly in
the cross-modal deployment scenario.

In future research, we plan to explore other combinations
of biometric modalities, such as face and iris, periocular
and iris, etc. We hypothesize that using conditioned repre-
sentation learning based on the CB framework can enhance
baseline performances for these biometric combinations.
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