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ABSTRACT The fast-paced advancement in multimedia production and exchanges over unsecured net-
works have led to a dire need to develop security applications. In this regard, chaos theory has much to
offer, especially high-dimensional (HD) chaotic functions of fractional order. The authors propose a new
symmetric, secure and robust image encryption method in this research work. In this method, the authors
hybridize the Chen and Chua chaotic functions with a Memristor circuit to benefit from the strengths of
each. Such a hybridization of systems allows for the generation of pseudo-random numbers which are used
to develop encryption keys and substitution boxes (S-boxes). For the application of the generated encryption
keys towards carrying out data diffusion, instead of the most commonly used approach of bit-stream level
XOR, this work utilizes different logical and arithmetic operations, which is made possible by performing
this process over variable numerical bases. Moreover, multiple S-boxes of varying base-n are generated and
utilized in a parallel fashion, carrying out data confusion. The computed numerical results reflect the superior
capabilities of the proposed image encryption technique, signifying resilience and robustness against various
attacks.

INDEX TERMS Base-n key, base-n S-box, parallel S-boxes, chaos theory, Chen, Chua, fractional-order,
hyperchaotic map, memristor, image cryptosystem, image encryption.

I. INTRODUCTION

Modern wireless communication networks and big data
applications have made security issues crucial [49]. Hence,
research and development efforts into putting in place data
security measures like cryptography [7], [12], [14], steganog-
raphy [6], [15], watermarking, as well as their combined
use [3], [56] has become a very hot topic in the last decade.
Well-established cryptosystems protected private and sen-
sitive data for years. DES, Triple DES, and AES were
popular and dependable cryptographic algorithms. However,
it became clear over time that not all cryptosystems are
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suitable for multimedia like 2D and 3D images and videos [2],
[62]. This is because such multimedia inherently have sheer
redundancy and high cross-correlation among their pixels.
This, in part, explains the exponential increase in litera-
ture in recent years in relation to image steganography and
cryptography. On examining the literature on image encryp-
tion algorithms, one repeatedly encounters the utilization of
various mathematical operations and constructs originating
from chaos theory [4], [7], [14], [27], [35], [58], cellular
automata [2], [5], [19], DNA encoding [20], [46], [51], [54],
electric circuits [11], [40], and elliptic curves [9], [22], [52].

Chaos theory, in particular, has been widely investigated
and applied in relation to image encryption. This is because
of the array of characteristics inherent in dynamical functions
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of chaotic behavior. Those include ergodicity, sensitivity to
initial values, pseudo-randomness, and periodicity [24]. Such
functions are generally classified into low-dimensional (LD)
functions and high-dimensional (HD) ones, with each class
displaying one or more desirable qualities [14]. While LD
chaotic functions result in simpler software and hardware
implementations, their utilization in image encryption does
not provide sufficient cryptographic strength [25]. On the
other hand, HD chaotic functions while being more complex,
requiring more computing resources and circuitry, are effec-
tively capable of providing very high security. On examining
hyperchaotic functions, one easily realizes the large number
of control parameters involved [37]. This means that their
utilization in image encryption algorithms directly translates
into a much larger key space, effectively mitigating any
chances for the success of brute-force attacks [20]. Attempt-
ing to solve hyperchaotic systems at a fractional-order allows
for a further increase in the number of control variables, and
subsequently, a further increase in the key space. Further-
more, it is possible to reach optimal or near-optimal periods of
PRNGs generated from hyperchaotic systems through careful
design choices of the systems, combinations of maps and
systems, initialization, and post-processing of the generated
raw chaotic sequence [48], [59].

Nevertheless, it is important to note that utilization of
hyperchaotic functions in image encryption algorithms could
also have its disadvantages. For example, hyperchaotic func-
tions are often non-linear, which can make them difficult to
analyze. This makes it difficult to prove that chaotic func-
tions are secure against cryptanalytic attacks. Additionally,
chaotic functions can be computationally expensive to eval-
uate, which can make them impractical for use in real-time
applications. Finally, chaotic functions can be sensitive to
initial conditions, which can make it difficult to ensure that
the encrypted image is consistent with the original image.
However, this work mitigates the problem of computational
complexity through the employment of state-of-the-art paral-
lel processing techniques in the software implementation of
the proposed image cryptosystem [57].

The image processing community has recently found an
interest in fractional-order dynamical systems that exhibit
chaotic behaviors [50]. More specifically, their applica-
tions in image encryption have been gaining momentum
due to the better performance they offer, in comparison
to their integer-order counterparts [7], [10], [26], [28],
[41], [44]. In [7], numerical solutions are obtained for
the fractional-order hyperchaotic 4D Chen system, and are
jointly employed with those of the sine chaotic map to gen-
erate PRNGs. Next, hybrid DNA coding is utilized to imple-
ment an efficient image encryption algorithm. The authors
of [7] carry out an extensive security analysis over a large
array of images, providing a very solid work. The authors
of [10] suggest the use of a fractional-order logistic map in
their proposed image cryptosystem and compare its use with
the classical logistic map. Various analyses are carried out
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to gauge the performance of their proposed cryptosystem,
however, no execution time is provided. An image encryption
technique with a large key space is proposed in [26], where a
4D Chen hyperchaotic map of fractional-order is employed in
conjunction with a Fibonacci Q-matrix. While the proposed
fractional-order hyperchaotic system is shown to perform
well in terms of image encryption, the authors of [26] also do
not provide an execution time analysis. A lightweight image
encryption technique is proposed in [28], where switching
between 3 different fractional-order systems takes place.
While the algorithm proposed in [28] is shown to be very
efficient, providing an encryption rate of 8.32 Mbps, how-
ever, very limited security analysis is provided otherwise.
This makes it hard to gauge its performance. The authors
of [41] propose an image encryption algorithm that makes
use of the solutions of chaotic fractional-order fuzzy cellu-
lar neural networks (FOFCNN). Analysis of chaoticity of
the proposed FOFCNNs are well presented and discussed,
promising excellent application to image encryption. How-
ever, apart from a key space of 1039, a pixel cross-correlation
analysis and an entropy analysis, no further security or effi-
ciency metrics are reported in [41]. In [44], a scheme utilizing
smoothed sliding modes state observers for chaotic systems
of fractional-order is proposed as a secure image and text
encryption design. The authors provide an array of analy-
ses, showcasing the efficiency of their design, its security,
and resistivity to known and chosen plaintext attacks. The
common denominator in many image cryptosystems that are
based on the solutions of fractional-order systems is their use
of PRNGs. Such PRNGs are generated by making use of
either the modulus operation or the comparison of decimal
values against a preset threshold to generate the required
encryption key (which takes the form of a bit-stream).
Design and implementation of pseudo-random number
generators (PRNG) are at the core of research efforts in the
field of cryptography. This is because both key generation
and S-box design benefit from a randomly-distributed bit-
stream [5]. Various instances in the literature showcase the
use of a PRNG in image encryption algorithms. For example,
the authors of [17] make use of the Lucas sequence to gen-
erate an S-box for their proposed 3-stage image encryption
algorithm. While the proposed algorithm in [17] is shown
to be robust, it is not efficient in comparison with the state-
of-the-art. In [13], the authors generate encryption keys by
utilizing the Rossler system and the Recamdn’s sequence,
in another low-efficiency algorithm. Similarly, the authors
of [30] make use of the Fibonacci sequence, a chaotic tan
function, as well as a Bessel function, to generate PRNGs as
encryption keys. The authors of [1] research elliptic curves
and use them to design a PRNG, then utilize it in conjunction
with the Arnold map to carry out image encryption. The
generated PRNG is shown to pass all NIST tests, as well as
other statistical and differential tests, and thus its use in image
encryption provides good security. An FPGA implementation
of a PRNG is proposed in [60], where a memristive Hopfield
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neural network (MHNN) with a special activation gradient
is utilized. The proposed MHNN is computer simulated and
dynamically analyzed before its actual implementation on an
FPGA. Based on the proposed MHNN, a PRNG is generated
and used as an encryption key. The Mersenne Twister is made
use of in [18], where the authors employ it as one of the
encryption keys in an efficient multi-stage algorithm. The
proposed algorithm in [18] is shown to be highly resistive
to various types of attacks. The authors of [31] utilize a
discretized version of the chaotic sine map to design an S-
box, as well as the hyperchaotic Lii system as a PRNG,
in a multi-stage image encryption algorithm. Their proposed
substitution-permutation network operates in the cipher block
chaining mode, and is shown to provide excellent secu-
rity performance. This is because the adopted Lii system is
highly non-linear and generates discrete values with lengthy
orbits.

The previous paragraphs carried out a brief literature
review on the need for image encryption, the importance of
chaos theory to this field, the use of PRNGs in the design of
encryption keys and S-boxes, as well as the recent trend of uti-
lizing the solutions of fractional-order dynamical functions to
realize better performing security measures. In this research
work, a multi-faceted research gap is identified in the litera-
ture and an attempt is made to fill it, as follows. First, when it
comes to key application, it is usually performed over the bit-
stream level. As a commonly employed reversible operation
at this level, XOR has been the default operation in use [2], [5],
[71, [19], [20], [60], which made it predictable by adversaries.
This may eventually lead to some levels of predictability.
Hence, the attempted solution in this work is to apply the key
on different levels (decimal, among others, for example) to
expand the range of available applicable operations, which
can be later performed in an alternating manner. The second
solution this work attempted at is redefining the notion of
the S-box on 2 levels. Instead of only considering 8-bit S-
boxes (where every element € [0, 255]), more ranges are
experimented on. Moreover, multiple S-boxes are applied in
a parallel fashion as well. Third, this work identified multiple
recent works on image encryption that do not provide any
information related to execution time, rendering it impossible
to gauge their propositions suitability for real-time applica-
tions. In this work, execution time is provided and shown to
outperform the state-of-the-art, rendering it suitable for real-
time applications.

This research work proposes the following:

1) A multi-stage symmetric image encryption technique
is proposed. In the first and final stages, encryption
keys are generated based on the solution of different
hyperchaotic functions of fractional-order, which are
applied over different bases with multiple operations.
The center encryption stage utilizes the solutions of
yet another hyperchaotic function such that parallel
S-boxes of different dimensions and bases are applied
in a parallel fashion.
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2) The proposed design is shown to satisfy Shannon’s
ideas of confusion and diffusion [8], and is thus highly
secure.

3) A large array of testing metrics are computed and
their values compared against the ideal benchmarks,
showcasing not only the security but also the robust-
ness capabilities of the proposed design against visual,
statistical, entropy and known plain text attacks.

4) Since the center stage incorporates the use of multiple
S-boxes that are designed based on the solutions of a
hyperchaotic function, this allows for the theoretical
expansion of the key space to infinity, resisting any
possible brute force attacks.

5) The proposed design is shown to be ultra-efficient,
encrypting images at a rate of 4.01 Mbps.

6) Output encrypted images’ data under the proposed
design are shown to successfully pass all the NIST-800
randomness tests.

The remainder of this research work is organized
as follows. Section II provides a discussion on chaotic
fractional-order differential systems as pseudo-random bit-
stream generators. Section III discusses the application of
encryption keys at different levels. Section IV discusses seed-
based, base-n, parallel S-box generation and application.
Section V outlines the proposed color image encryption tech-
nique. Section VI reports the computed visual and numerical
results, as well as conducts a comparative analysis with
counterpart image encryption algorithms from the literature.
Finally, Section VII draws the conclusions and suggests a
couple of future research works.

Il. CHAOTIC FRACTIONAL DIFFERENTIAL SYSTEMS AS
PSEUDO-RANDOM BIT-STREAM GENERATORS

Fraction calculus, as a mathematical phenomenon, has been
well established since 1695 [23]. However, such a phe-
nomenon has not been involved in many applications until
recent years. Accordingly, chaotic fractional-order differen-
tial systems, in recent years, are starting to be utilized as
means for PRNG bit-streams generation techniques. Beside
randomness being fulfilled by the chaotic behaviour of the
system, another property which makes fractional differen-
tial systems especially more fitting for image encryption is
the existence of many control coefficients, which in turns
contribute to enhancing the key space of the overall encryp-
tion technique. In this work, 3 systems are used, namely,
Chen system (Section II-A), Chua system (Section II-B), and
Memristor system (Section II-C). Alongside these section,
a discussion about the method applied to convert the numer-
ical sequences produced by these systems into bit-streams is
presented in Section II-D.

A. CHEN SYSTEM

The fractional order 4D Chen system [23], [55] is a hyper-
chaotic fractional differential system. Hyperchaotic func-
tions are a logical mathematical evolution towards better
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production of PRNG sequences. This is clear because hyper-
chaotic systems produces more than one positive Lyapunov
exponent, which reemphasises on the sudo-randomness of
numerical sequences generated by them (which are later
turned into bit-streams). Alongside randomness, as a 4D sys-
tem, many control variables are involved in the Chen system,
which as mentioned presents it as a good candidate for image
encryption techniques.

The Chen system is modeled using the following
equations:

D'x = a(y — x) + u, (D
D%y = yx—xz+ cy, 2
D%z =xy — bz, 3)
and
D*u = yz + du. “4)

In (1), (2), (3), and (4), 3 groups of control variables are uti-
lized to control the system, and change the produces sequence
in accordance. The first group, the initial values for x, y,
z, and u, (or xg, Yo, 20, and ug), are the representation of
the initial point in the 4D space from which the rest of the
system is emitted. The second group, a, b, c, y, and d, are
the scale coefficients for the 4 equations. Finally, @1, o2,
a3, and o4 are the fractional differential orders. All 3 groups
combined introduce a total of 13 variables.

For demonstration, Fig. 1 shows an example plot for the
fractional-order 4D Chen system. In Fig. 1, the system is
calculated in the 4D space, hence initial values are needed
for the four axes. However, for plotting purposes, one axis is
ignored in each illustration. Further analysis of the system’s
hyperchaotic behavior can be carried out through examining
its bifurcation plots against various parameters, as illustrated
in Fig. 2 and Fig. 3, for b and c, respectively. Moreover, the
4 Lyapunov characteristic exponents (LCEs), which give the
rate of exponential divergence from perturbed initial condi-
tions, are plotted in Fig. 4.

B. CHUA SYSTEM

Another well-known fractional-order differential system
which exhibits a chaotic behaviour is the Chua system [38].
As a chaotic system, its PRNG behaviour, alongside sensi-
tivity to control parameters, makes the Chua system a good
candidate for PRNG seed-based bit-stream generation. The
Chua, as a 3D system, is equated as follows:

D*'x = p(y—x —f(a, b, x)), ®)
D%y = x—y +z, (6)
D%z = —qpy, @)

given that,

f(a,b,x):bx—i—%(a—b)(lx—}—ﬂ—|x—l|)|a<b<0.
®
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As presented in (5), (6), (7), and (8), there is a total of
10 control variables, which can be divided into 3 groups. First
group contains the initial values for x,y, and z. The second
group consists of scale factors, p and ¢ for the main axis
equations ((5), (6), and (7)), and a and b for (8). The third
group, o1, a2, and a3 are the fractional differential orders.

As an illustration, Fig. 5 displays an example plot for the
fractional-order 3D Chua system. The figure shows the solu-
tion of the regular system, however, in application, the system
is further solved in fractional-order. Further analysis of the
system’s hyperchaotic behavior can be carried out through
examining its bifurcation plots against various parameters,
as illustrated in Fig. 6 and Fig. 7, for b and c, respectively.
Moreover, the 4 Lyapunov characteristic exponents (LCEs),
which give the rate of exponential divergence from perturbed
initial conditions, are plotted in Fig. 8.

C. MEMRISTOR SYSTEM

As one of the most recent fractional-order differential sys-
tems, a Memristor system remodeling we presented in [43].
Maintaining the same previously mentioned advantages in
Chen and Chua systems, the Memristor system proposed
exhibited a chaotic behaviour which is controllable with
many tenability variables. The Memristor system is equated
as:

D¥x = ax + b(y — x) x u?, 9)

D¥y = —z—cy—d(y—x) X u*, (10)

D%z =y, an
and

D¥u = eu+f(y — x) — gu(y — x). (12)

As the previously discussed systems, 3 sets of control
variables are present in (9), (10), (11), and (12). The first set
would contain the initial values for the axis x, y, z, and u. The
second set contains 7 scaling factors which are: a, b, ¢, d, e,
f,and g. The last set, o1, orp, 03, and o4, are the fractional dif-
ferential orders. The total number of control variables is 15.

As an illustration, Fig. 9 displays an example plot for
the fractional-order 4D Memristor system. As mentioned in
the cases of Chen and Chua, the figure shows the solution
of the regular system. However, in application, the system
is further solved in fractional-order. Further analysis of the
system’s hyperchaotic behavior can be carried out through
examining its bifurcation plots against various parameters,
as illustrated in Fig. 10 and Fig. 11, for b and c, respectively.
Moreover, the 4 Lyapunov characteristic exponents (LCEs),
which give the rate of exponential divergence from perturbed
initial conditions, are plotted in Fig. 12.

D. SYSTEMS SOLUTIONS TO BIT-STREAMS

Given a set of a sufficient number of control variables, one of
the systems presented in Sections II-A, II-B, or II-C can be
solved. The result of such a process, for a kD system, can be
modeled as k sequences of real numbers (k = 4 for Chen and
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(a) X-Y-Z axes.
X
3710 o 10

TTTTT—

(c) X-Z-U axes.

Memristor for example). Generically, 2 main processes are
needed to transform a kD set of real numbers sequences into
a 1D bit-stream. These 2 processes are a flattening process
(to result in a 1D sequence), and a Boolean checking process
(to convert real numbers into 0’s and 1°s). The flattening of
the k sequences into a single sequence is performed using the
following relation:

J DN DK

!
., Dk Dl

1 1
{p!,Dl, ..

(D!, .. LDk (13)

Given the flattened 1D sequence, and a threshold value ),
a bit-stream can be produced using the relation:

(pl,....05 DL, ... Dk, . )
)

{C@h,...,cd, chy, ..., cwk), ..., (14)
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(d) Y-Z-U axes.
FIGURE 1. 3D plots for the fractional order 4D Chen system over different combinations of axes where
{x,y,z,u}=0.3,a=35b=3,c=12,y =28,d = 0.5, and o = 0.97 (the system is calculated in the 4D space,
hence initial values are needed for the four axes. However, for plotting purposes, one axis is ignored in each
illustration).

such that,

n>\

C(n) = { L (15)

0, otherwise,

where ) is a threshold that would result in a balanced bit-
stream (as aforementioned, having an equal numbers of 0’s
and 1’s). The value of A would be the median of the 1D
sequence of real numbers, as the median value presents the
exact middle value of a sequence (unlike the mean for exam-

ple).

Ill. ENCRYPTION KEY APPLICATION

Applying an encryption key is a default stage in any encryp-
tion algorithm. In image encryption, in particular, it is most
common to utilize a key in 2 out of 3 stages of encryption [5],
[13], [18], [19], [20]. This is due to the fact that such a stage
performs the task of diffusion of an external key into the
data to be encrypted. In the most basic form, applying an
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FIGURE 2. Bifurcation plots of the fractional order 4D Chen system for x, y, z and u against b.

encryption key is the operation which is used first to fuse
both the data and the key into one encrypted result. Moreover,
it is demanded to be possible to perform other operations
on the encrypted result and the key resulting in reproducing
the original input data, defining what is commonly known
as reversible processes. Hence, a reversible process can be
looked at, for the sake of this argument, as a mathemat-
ical/logical function. Evaluating a function, 2 aspects are
analyzed, namely, the domain (containing both input data
and key for encryption, or encrypted data alongside key for
decryption), and the range (presenting the result of encryption
or decryption respectively). In the case of image encryption or
decryption, it is expected that both are of the same numerical
base (bits for example). In other words, naturally, both the key
and the input are operated on in the same base for the same
size of data. Accordingly, the number of possible operations
applicable (especially reversible ones) is limited by the the
numerical base of operations, as further elaborated. Hence,
in Sections III-A, III-B, and III-C, the numerical base, along-
side examples of applicable reversible operations performed
in that base are further discussed in Section III-D.

VOLUME 11, 2023

A. BIT-LEVEL OPERATION
On bit-level (representing data in binary space as sequences
of 0’s and 1’s), only a few operations (logical gates) can
operate in a reversible manner, for example, the XOR, NOT
and the CCNOT (also known as the Toffoli gate [16]). The
main cause of the reversibility of both these operations is
the lack of collision of output with respect to the input. For
example, considering the AND logic gate as a non-reversible
operation, for a second input bit of 0 (as the second input
position is usually reserved for the key bit), regardless of the
first bit values (the image data bit), the output bit would be
a 0, indicating the loss of the image data bit. Therefore, only
the XOR and the NOT operations are considered when there
is a need for reversibility, as in the case of image encryp-
tion. Moreover, alongside being reversible, as the operation
presents an interaction between 2 bits (a data bit and a key
bit), the NOT logic gate can only be utilized in junction with
the XOR gate, presenting the XNOR gate.

According to the discussion provided above, in the binary
numerical base (bit-level), only the XOR, and the XNOR as
the negated variance, are utilizable in the image encryption

85007
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FIGURE 3. Bifurcation plots of the fractional order 4D Chen system for x, y, z and u against c.
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FIGURE 4. A plot of the 4 Lyapunov characteristic exponents of the
fractional order 4D Chen system.

applications as they are binary and reversible. Such lack of
diversity in applications resulted in key application on the
bit-level to be subject to vulnerability issues. Assessing the
main cause of such shortcoming, the core cause is rooted
at the nature of the numerical base in use, which is the bit-
level. As mentioned above, for operations being evaluated

85008

as mathematical functions, the domain and the range are the
main aspects upon which evaluations are based. Being limited
to the binary space, alongside respecting the constraints of
being binary and reversible, results in making the possible
number of ranges of functions to be exactly 2. In accordance
to this, DNA key application (Section III-B), attracted much
research interest as it remodeled the key embedding process
by increasing the possible ranges space, as discussed next.

B. DNA-LEVEL OPERATION

DNA encoding, as a method utilized in key application in
image cryptography, has proved foundational usefulness over
the past years [20], [33], [42], [54], [61]. As a variant applica-
tion, it added a layer of confusion to data diffusion as a result
of introducing other key application (DNA-level) operations
than the classical (bit-level) XOR. In other words, besides
the availability of the previously mentioned operations (XOR
and XNOR) which are applicable on the bit-level (base-2),
other (binary and reversible) operations were introduced as
a result of scaling up the presentation numerical domain to
DNA-level (base-4). Towards further elaboration of such an
enhancement, the DNA key application is discussed in steps,

VOLUME 11, 2023
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FIGURE 5. 3D plot for the fractional order Chua system, shown here for
a=-1.27,b=-0.68,p=10and q = 14.87.

modeling data as DNA proteins (A, T, C, and G), alongside
their numerical base-4 counterparts (0, 1, 2 and 3).
DNA key embedding is performed over 3 steps:

1) Transform image data and Key data into DNA
sequences.

2) Perform a DNA-level operation on transformed data.

3) Transform data back to the original numerical space (as
a reverse of the first step).

Starting with the first step, transformation of data into
DNA is performed as a substitution relation between pairs of
bits and DNA protein. Building such relation, variations of
translations get presented. Numerically speaking, there are
4 permutations of pairs of bits, which are 00, 01, 10, and
11, and 4 possible substitutions of proteins, which are A,
T, C, and G. Taking these possible values in consideration,
a total of 4P4 = 24 possible substitution sets can be used.
However, in previous research, 8 substitution sets have been
commonly utilized, which are shown in Table 1 [20], [54].
In base-4, representation of values is performed as regular
base transformation, which is performed as per the relation:

{(002 — 04), (012 — 14), (102 — 24), (112 — 34)}. (16)

Post transformation to DNA (taking the equivalent base-4
translation in perspective) performed on both image data and
key data, an operation is to be performed. As previously
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TABLE 1. DNA to bit pairs assignment permutations.
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TABLE 2. XOR operation over DNA and base-4 representations.

(A,0) (T,1) (C,2) (G.,3)
(A,0) (A,0) (T,1) (C,2) (G.,3)
(T,1) (T.,1) (A,0) (G.3) (C.2)
(C,2) (C,2) (G,3) (A,0) (T,1)
(G,3) (G,3) (C,2) (T,1) (A,0)

TABLE 3. XNOR operation over DNA and base-4 representations.

(A,0) (T,1) (C,2) (G,3)
(A,0) (G.3) (C.2) (T.,1) (A,0)
(T,1) (C,2) (G,3) (A,0) (T,1)
(C,2) (T,1) (A,0) (G,3) (C,2)
(G,3) (A0 (T,1) (C,2) (G,3)

mentioned, the operations or functions of desire are those
which are both binary (taking 2 inputs), and reversible. For
elaboration sake, out of the 8 mentioned substitutions per-
mutations, the first substitution and the base-4 equivalent
are used in the rest of the discussion, which is given by the
relation:

(00 — (A,0)), (01 — (T, 1)),
(10 = (C, 2)), (11 — (G, 3)). a7

Starting with the operations applicable on the bit-level, the
XOR and the XNOR can be performed in DNA and base-
4 as regular bit-level operations, as shown in Tables 2
and 3. As this operation is a one-to-one mapping from
the bit-level operation, there is not much added value in
using it in DNA-level. On the other hand, it can be better
utilized in an interleaving manner (as alternating between
XOR and XNOR), or in combination with other operations,
as later discussed. Nevertheless, XOR and XNOR can be
seen as examples of self-reversing operations, as in, for
example:

XOR(x,y) = 7z — XOR(z,y) = x. (18)

As a representation of the other group of operations, addition
and subtraction represent the pair-reversing operations such
that:

Add(x,y) =z — Sub(z,y) = x. (19)

Tables 4 and 5 demonstrates the results of DNA and base-
4 addition and subtraction. Moreover, as in the case of bit-
level, the NOT gate can be used in succession to the addition
and subtraction processes, introducing more applicable oper-
ations. However, the main conclusion here is that as a direct
result to the increase in numerical presentation, from base-
2 in bit-level to base-4 in DNA-level, the possible ranges of
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(a) x. ®)y. ©) z.

FIGURE 6. Bifurcation plots of the Chua system for x, y and z against a.

10 T T T T - TABLE 5. subtraction operation over DNA and base-4 representations.
(A,0) (T.,1) (C.2) (G.,3)
> + A (A,0) (A,0) (G.3) (€2 (T,1)
— (T.1) (T.1) (A.0) (G.3) (C.2)
o () (€2 (T.1) (4,0) (G.3)
8 OF / & ] (G,3) (G,3) (C.,2) (T,1) (A,0)
-5 ]
) — - B A3 C. BASE-n LEVEL OPERATIONS
-10p V ‘ ‘ ‘ ‘ e As discussed in the previous sections, increasing the numer-
0 20 40 60 80 100 ical base of the data representation allows for more flexi-
Steps bility in operations design. This comes as a direct result of

FIGURE 8. A plot of the 3 Lyapunov characteristic exponents of the Chua the 1n.crease taking effeCtlon the to.tal numbe.r of possible
system. domain-to-range permutations, treating operations as func-
tions. Hence, the main scope of this work is to explore the
possibility of scaling up the numerical base dynamically. This

TABLE 4. Addition operation over DNA and base-4 representations. L . . .
P P is discussed in terms of, given the image data and the key

%X0) Y om) €m) data transformed to a certain base-n, 5 example operations.
(4,0) (4,0) (T.1) C2) G.3) Needless to say, these operations are binary (taking image
(T.1) (T.1) (C.2) (G.3) (A4,0) data and key data as input), and reversible (as self-reversing
(C,2) (C,2) (G.3) (A,0) (T,1) . . ..
(G.3) (G.3) (A0) (T.1) (C.2) or pair-reversing). Additionally, there are no doubts that these
5 operations are showcase examples, which are:
1) XOR.
functions increased as well. Furthermore, the availability of 2) XNOR.
multiple operations adds a layer of confusion in contrast to the i; AdcfZ/Sub :
Mod.

most commonly used XOR logic gate. This is especially true

if various operations are used in an alternating way, as later S) Rot/Ron

discussed. Hence, the enlargement of the numerical base and As in the case of Section III-B, XOR, XNOR, Add and
the increase in the number of applicable operations is the Sub (Tables 2 and 4, respectively) can be scaled up to base-n
logical next step, as discussed in Section III-C. naturally. Starting with XOR and XNOR as examples 1 and
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(a) X-Y-Z axes.

(c) X-Z-U axes.

(d) Y-Z-U axes.

FIGURE 9. 3D plots for the fractional order Memristor system over different combinations of axes where
{x,y,z,u}=0.3,a=1.5b=360,c=0.0326,d = 36,e = —1.5,f = —0.0213, g = 0.08, and « = 0.97 (the system is
calculated in the 4D space, hence initial values are needed for the four axes. However, for plotting purposes, one

axis is ignored in each illustration).

2, they are to be applied as the case they are applied on a
bit-level. As in the case of bit-level and DNA-level, both of
them are self-reversing. Similarly, addition and subtraction,
which are example 3, are pair-reversing, as in the case of
DNA. However, for a more generic n-level implementation,
for image data and key in base-n, namely /,, and K,,, addition
and subtraction are performed circularly, as per (20) and (21)
respectively.

I, + K, I, +K
Add(L,. K, my = ] 5 nt&n < o)
I, + K, —n, otherwise,
I, — K, I,—K, >0
Sub(l,, Kyom)y =1 "~ " n Bn = 1)
I, — K, +n, otherwise,

For example 4, a self-reversing modulus-based arithmetic
operation is applied. The operation is equated as:

Mod (I, Ky, n) = (n — (In + Ky)%n)%n (22)

VOLUME 11, 2023

For example 5, bit-wise rotation-based pair-reversing oper-
ations are utilized. Due to the availability of more bits per
input, bit-wise cyclic rotation provides a larger range of
results. Rotation-based operations, namely Rot,, for rotations
to the right, and Rot;, for rotations to the left, are equated as
in (23) and (24) respectively.

Rot, (I, Ky, n) = I, > (K, %n) (23)

Rot/(In, Ky, n) = I, K (K,,%n) (24)

Such that x > y means shift x to the right by y positions, and

x < y means shift x to the left by y positions. Using these

5 operations, 2 sets are formed, one for encryption operations,

the other is for the decryption ones, as shown in (25) and (26)
respectively.

EncOp = {XOR, XNOR, Add, Mod, Rot,} (25)

DecOp = {XOR, XNOR, Sub, Mod , Rot;} (26)
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(c) z.

Un
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(d) u.

FIGURE 10. Bifurcation plots of the Memristor system for x, y, z and u against a.

As shown in (25) and (26), each operation in EncOp; has its
reversing operation in the same position DecOp;, in order

to handle both self-reversing and pair-reversing operations
alike.

D. KEY APPLICATION PROCEDURE

Based upon discussion in subsection III-C, instead of always
resorting to XOR use, other operations can be applied instead.
However, in this work, the followed approach makes use of all
operations concurrently. This gets to be feasible by defining
an operation selection mechanism. Hence, the encryption
process is performed as per these steps:

1) Both the image and key are transformed into 1D bit-
streams (base-2) producing 2 sets /> and K» both of the
same size s.

2) Both I, and K, are transformed to the same base-n
(such that n becomes one of the seeds of the process),
producing

In = {il I TR i(s/n)}n

and

Kn = {kl ) k27 ey k(s/n)}n

85012

both of the same size s/n.

3) Given a set of operations EncOp (for example, (25))
of size sop (Sop = 5 in (25)), a seed seed,,, is used to
generate a set of numbers Sel,,, such that

Selyy, = {sely, sely, . ..selism}Isely, € [1, sopl.
4) Using the encryption method:

Enc(ij, ki, n, sel;) = EncOpselj.(ij, ki, n), 27

I is equated as:

Enc(iy, ki, n, sely),
s Enc(iz, ka, n, sely),

n

Enc (i(s/n)» kis/my 1, s€lis/ny)

n

As this procedure would be used as one of the encryption
stages, I, would be later transformed to the target base of the
stage to follow. For decryption, given I,’L, K, and Sel,), and
using the decryption method:

Dec(i}, kj, n, sel;) = DecOpye (i}, kj, n), (28)

VOLUME 11, 2023
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FIGURE 11. Bifurcation plots of the Memristor system for x, y, z and u against e.
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FIGURE 12. A plot of the 4 Lyapunov characteristic exponents of the
Memristor system.

knowing that both EncOp and DecOp are of the same size
s/n, I, is reconstructed as:
Dec(iy, ki, n, sely),
Dec(ih, ka, n, selp),
I, =

El

Dec (izs/n), ks/ny, 1, Sel(s/n))

VOLUME 11, 2023

IV. SEED-BASED S-BOX GENERATION AND APPLICATION

As the main source for non-linearity, and in accordance to
Shannon’s property of confusion [47], an S-box is consid-
ered a component of prime importance in image encryption
algorithms. Therefore, over the years, many S-boxes have
been proposed and evaluated towards achieving the highest
possible levels of confusion [45]. Accordingly, most research
efforts in this area focused mainly on generating 16 x 16
S-boxes, then subject them to a number of evaluations in
order to showcase their confusion capabilities [45]. It is worth
noting here that 16 x 16, which are a total of 256 unique values
covering the range between 0 and 255, is most commonly
used as they cover all the possible values in an image (as
grayscale intensities take on values € [0, 255], in each of
the RGB color channels). Hence, it is used as a means for
changing the values inside the image by substituting for them
by other values within the same range.

In this work, a similar discussion as in Section III-C is
proposed, which is for confusion to be performed over a
variable base (instead of the traditional base-8, where its
elements € [0, 255]). Moreover, instead of relying on a single
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S-box, the proposal of alternating between multiple S-boxes
is introduced as well (partially similar to operation selection,
Section III-D). Both of these propositions aim at increasing
the level of confusion applied by the S-box, as changing the
base of S-box and providing multiple possibilities changes the
confusion mechanism as a whole. Towards that, 2 concepts
are discussed, a variable base S-box instead of the classi-
cal 16 x 16 approach (Section IV-A), and the application
of parallel S-boxes instead of 1 (Section IV-B). Moreover,
Section IV-C demonstrates the incorporation of the 2 con-
cepts into one S-box application technique.

A. BASE-n S-BOXES

In this section, an S-box generation technique is defined.
As demanded in this work, there are 2 properties required out
of the S-box generation mechanism. The first requirement,
which is directly addressed here, is that the S-box generated
is to be of a variable base-n. The second requirement is,
as multiple S-boxes are required to be applied in parallel
(as discussed in Section 1V-B), the generation mechanism
should be able to generate varying S-boxes. Fulfilling both
of these requirements, the proposed S-box generation mech-
anism aims more towards transforming a bit-stream into an
S-box. Taking into consideration that such a design passively
transforms this technique into a seed-based S-box generation
technique as the given bit-stream is seed-based (as in the case
of Sections II-A, II-B, and II-C).

As per the previous discussion, given a bit-steam S, of
size n x 2", where n is the desired base, Algorithm 1 is
followed to generate an S-box in base-n given S;. For an
unsorted list (containing repeated values) of numbers in base-
n, S, € [0,2" — 1], and a sorted set (not containing repeated
values) L = [0, 1,2, ...,2" — 1], S,[m] denotes the element
to move from L to the resulting S-box. Moreover, to ensure
that S,[m] is within the size of L, the modulus operation
is employed. Accordingly, Algorithm 1 acts as a controlled
reshuffle technique of L, such that controlling the reshuffling
is imposed by using the seed-based stream S, as the selection
sequence. Hence, different S,’s result in producing different
Sy’s, which in turn results in different S-boxes, achieving
variability. Moreover, the reconstruction of a certain S-box
is possible using the same bit-stream.

B. PARALLEL S-BOXES

In Section I'V-A, given n as the base of S-box application, and
a bit-stream, an S-box is generated. Correspondingly, the idea
in this section is simply to provide m number of bit-streams
resulting in generating m S-boxes, all for the same base-n,
which is equated as:

{519527--~»Sm}

»LAlgorithm 1

S-boxList = {S-boxy, S-box, ..., S-box,}, (29)

for {S1, S2, ..., Siu} being a set of bit-streams, each of of size
nx?2" Beside S-boxList, alist of the inverses of these S-boxes
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is needed to regenerate the original input, which is equated as:
S-boxList ™' = {S-boxl_l, S—boxz_l, R S-box;l}, (30)

Unlike in normal S-boxes, where each value v has one
substitution S-box[v], in parallel S-boxes v has m possible
substitutions (where m is the total number of S-boxes), as per
the equation:

S-boxList[v, u]l = S-box,[v]|u € [1, m]. 31
Respectively, the inverse of S-boxList[v, u] is equated as:
S-boxList "' [v, u] = S-box; '[V]|u € [1, m]. (32)

The main aim of this is, for the same value of v, different sub-
stitutions would take place in different occasions, based on
different selections of S-boxes i. As aresult for the same value
v getting different substitutions, non-linearity is increased,
which results in enhancing the confusion aspect.

C. APPLICATION OF BASE-n PARALLEL S-BOXES

As discussed in Sections IV-A, and I'V-B, given a value for
the base, n, and a set of m bit-streams, a set of S-boxes is
generated using (29). Respectively, for an image in base-n,

Il’l = {i19i27 MR lj]}v
a selections set is needed of the same size as I,,

Sels_pox = {sely, sely, ..., selj}|sel,, € [1, m],

which is a list of random numbers generated using a seed
value seeds poxrist- Accordingly, applying the S-box (using
(31)) is performed as:

S-boxListliy, sel;],
, S-boxList[il, selr],
I, =

S—boxList[ij, sel;]
Similarly, I, is reconstructed by applying the inverses of the
S-boxes in (32) as:
S-boxList ! [}, sel1],
. S-boxList~'[i}, sely],
=

S-boxList™! [ij’., sel;]

Algorithm 1 Generate S-Box Given S, and n
1) L=1[0,1,2,...,2" —1]
2) S-box= {}
3) convert Sy of size n x 2" to base-n generating S,, of size
2" (same size as L)
4H) m=0
5) i = Su[m]%Length(L)
6) append L[i] to S-box
7) delete L[i] from L
8 m=m+1
9) if Length(L) > 0 : GoTo(5)
10) return S-box
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V. PROPOSED IMAGE ENCRYPTION TECHNIQUE

In this work, many components which can be utilized for
constructing symmetric image encryption techniques were
presented. These components can be summarized as:

o Bit-Streams Generation:

— Chen System (Section II-A).
— Chua System (Section II-B).
— Memristor System (Section II-C).

« Key application on base-n (Section III-D).
« Parallel base-n S-box application (Section IV-C).

Utilizing these components, a 3-stage encryption technique is
proposed, as per the following steps:

1) Stage 1: Chen system key diffusion.

a) First, the input color image, /.., of dimensions M x
N, is converted into a 1D bit-stream to produce the
set /.

b) Given a set of seeds for the Chen system of size
13, a bit-stream is generated of the same length as
1.

¢) Forabase-ng, and a set of operations EncOp, and
a seed for operations selections seed,1, the Key
application in Section III-D is applied, generating
L.

2) Stage 2: Memristor parallel base-n S-box Application.

a) Given a base-ny, and a set of seeds of size m x
15, a set of m bit-streams is generated, which are
used in generating a set of m S-boxes in base-ny,
as discussed in Section I'V-B.

b) Transform I to base-ng, then apply the gener-
ated S-box as discussed in Section IV-C, generat-
ing Is1 2.

3) Stage 3: Chua system key diffusion.

a) For a base-ng3, I51 52 is transformed to that base.

b) Given a set of seeds for the Chua system of size
10, a bit-stream is generated of the same length as
1, then transformed to base-ngs.

c) For a set of operations EncOp, and a seed for
operations selections seed,3, the key application
in Section III-D is applied, generating 51 2 s3-

After performing the 3 stages, reshaping /51 52 53 back into a
2D image (of dimensions M x N) results in the encrypted
image I’. Fig. 13 shows the flowchart of the proposed image
encryption technique. It is worth noticing here that, as per
the definition of the key application technique (as it relies on
any bit-stream), and the parallel S-box generation mechanism
(which operates using any bit-stream as well), other encryp-
tion procedures can be created using the defined components.

Accordingly, for the decryption process to be performed,
given I’ and the encryption seeds, these steps are to be
followed:

1) Stage 3: Chua system key diffusion.

VOLUME 11, 2023

a) First, the input color image, I/, of dimensions M x
N, is converted into a 1D bit-stream to produce the
set Is1 52,3

b) Forabase-ng, I 52,53 is transformed to that base.

¢) Given a set of seeds for the Chua system of size
10, a bit-stream is generated of the same length as
L1 ,52,53, then transformed to base-n;3.

d) For a set of operations DecOp, and a seed for
operations selections seed,3, the key application

in Section III-D is applied, generating I 2.
2) Stage 2: Memristor parallel base-n S-box Application.

a) Given a base-ny, and a set of seeds of size m x
15, a set of m bit-streams is generated, which are
used in generating a set of m S-boxes in base-n;»,
as discussed in Section I'V-B.

b) Transform I s to base-ny,, then apply the gen-
erated S-box as discussed in Section I'V-C, gener-
ating Iy;.

3) Stage 1: Chen system key diffusion.

a) Given a set of seeds for the Chen system of size
13, a bit-stream is generated of the same length as
Isl,s2,s3‘

b) For abase-ny;, and a set of operations DecOp, and
a seed for operations selections seed,), the Key
application in Section III-D is applied, generating
I.

Re-transforming the resulting set I into a 2D image of size
M x N will produce the colored image I, back, concluding
the decryption process. Fig. 14 shows the flowchart of the
proposed image decryption technique.

VI. PERFORMANCE EVALUATION AND NUMERICAL
RESULTS

This section encompasses a number of tests and computation
of metrics that aim at showcasing the performance of the
proposed color image encryption technique. This includes
testing against visual, statistical, differential, randomness,
entropy and brute-force cryptanalysis measures. Testing is
carried out in the Wolfram language v.13.1 on a machine
that employs macOS Catalina v.10.15.7, equipped with a 2.9
Ghz 6-Core Intel Core i9 processor and 32 GB of 2400 MHz
DDR4 RAM. The graphics card is a Radeon Pro Vega 20 with
4 GB, supplemented with an Intel UHD Graphics 630 card
with 1535 MB. A set of images that are popular within the
image processing community is utilized, all of dimensions
256 x 256, unless otherwise stated. These are: Lena, Mandrill,
Peppers, House, House2, Girl, Sailboat and Tree. The chosen
values of the variables used in the keys generation are:

1) Stage 1: Chen system key diffusion.

a) Number of operations: 5.

b) Base: 16.

c) Operations selection seed: 4444 on Mersenne
Twister.
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FIGURE 13. Flowchart of the encryption algorithm of the proposed image encryption technique.
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FIGURE 14. Flow chart of the decryption algorithm of the proposed image encryption technique.
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d) Thesetofseeds: {x,y,z,u} =0.3,a =35,b =3, a) Number of parallel S-boxes: 10.
c=12,y =7,d = 0.5, a1 = 0.85, ap = 0.7, b) Base: 12.
a3 = 0.55, and ag = 0.95. ¢) S-box selections seed: 5555 on Mersenne Twister.

2) Stage 2: Memristor parallel base-n S-box generation d) The set of seeds: Shown in Table 6.
and application. 3) Stage 3: Chua system key diffusion.
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a) Number of operations: 5.

b) Base: 8.

¢) Operations selection seed: 3333 on Mersenne
Twister.

d) The set of seeds: {x,y,z} = 03,a =1.27,b =
—0.68,p =10, = 14.87, a1 = 0.7, ap = 0.55,
and a3 = 0.95.

The carried out security analyses are:

1) Visual and Histogram Analysis (Section VI-A).
2) Mean Squared Error (Section VI-B).
3) Peak Signal to Noise Ratio (Section VI-C).
4) Mean Absolute Error (Section VI-D).
5) Information Entropy (Section VI-E).
6) Fourier Transformation Analysis (Section VI-F).
7) Correlation Coefficient Analysis (Section VI-G).
8) Differential Attack Analysis (Section VI-H).
9) The National Institute of Standards and Technology
Analysis (Section VI-I).
10) Key Space Analysis (Section VI-J).
11) Histogram Dependency Tests (Section VI-K).
12) Execution Time Analysis (Section VI-L).
13) Further Tests on Resistivity to Attacks (Section VI-M)

A. VISUAL AND HISTOGRAM ANALYSIS

The simplest measure of how well a cryptosystem performs
can be carried out using the human visual system (HVS).
Subfigures (a) and (b) in Fig. 15 — Fig. 19, display a number
of plain images and their corresponding encrypted versions.
It is clear that no visual cues are recognized from any of
the encrypted images. Further inspection by the HVS to the
histograms in subfigures (c¢) and (d) of Fig. 15 — Fig. 17
also indicate, statistically, that no information can be inferred
from the histograms of the encrypted images. This is because
all the histograms of the encrypted images show a uniform
distribution of values.

B. MEAN SQUARED ERROR

The mean squared error (MSE) is a simple metric that show-
cases the difference between 2 data sets. In this case, it is
used to showcase the difference between the pixel values of a
plain image 7 and its encrypted version I’. This means that the
higher the MSE value, the better the encryption algorithm’s
ability at removing any similarity between the 2 images. The
MSE is mathematically expressed as

M—1~<N—1
ito 2o Uiy — 1)
M x N

where the dimensions of each image is M x N. Table 7 pro-
vides a comparison of MSE values reported in the literature
and those computed for the proposed technique. It is clear the
proposed technique exhibits comparable performance.

The literature typically reports values of MSE and Peak
Signal to Noise Ratio (PSNR) alongside one another, since
the mathematical expression for PSNR, in (34), depends on
the MSE value. But the authors of [32] only report PSNR

MSE = , (33)
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values, without their corresponding MSE values. This the
reason behind the N/A entries in Table 7 under the heading
of [32].

C. PEAK SIGNAL TO NOISE RATIO

The peak signal to noise ratio (PSNR) relates the error margin
in a signal (in this case, an encrypted image) to the peak signal
value. Since, this metric is applied to images in this research
work, the peak signal value is the maximum pixel intensity
(i.e. 255). Hence, the PSNR is mathematically expressed as

2

I
PSNR = 101og (ﬁ) (34)

where ;4 is the maximum pixel intensity in an image /. Asis
clear from (34), the PSNR is inversely proportional to the
MSE. This means that for the purposes of image encryption
efforts, a lower PSNR value signifies better encryption abili-
ties of an image cryptosystem. Table 8 provides a comparison
of PSNR values reported in the literature and those computed
for the proposed technique. As was the case with MSE,
it is clear the proposed technique exhibits comparable PSNR
performance.

D. MEAN ABSOLUTE ERROR

The mean absolute error (MAE) is a metric that maintains
the linearity of the pixel error distribution behavior between
2 images, I and I'. It is expressed mathematically as

M—1xN-1
2.i=0 Zj:o |I(i’j>_l(/i,j)|
M x N .

In a similar fashion to the MSE, maximizing the MAE
signifies better encryption ability of an image cryptosystem.
Table 9 provides a comparison of MAE values reported in the
literature and those computed for the proposed technique. It is
clear that a comparable MAE performance with the literature
is achieved.

MAE =

(35)

E. INFORMATION ENTROPY

The information entropy, H (m), is a metric that is utilized to
measure the degree of randomness in a distribution of gray
color intensity in a grayscale image. Thus, an RGB image is
first color-separated into its 3 constituent grayscale images
and the information entropy is then computed for each, then
their average is reported. It is mathematically expressed as

M
1

H(m) ;mmz) logy - (36)
where p(m;) refers to the probability of occurrence of symbol
m, while M represents the total number of bits for each
symbol. The ideal information entropy value of an encrypted
image is 8, with practical implementations of cryptosystems
coming very close to this value. Table 10 provides a compar-
ison of information entropy values reported in the literature
and those computed for the proposed technique. It is clear the
proposed technique exhibits comparable performance.
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TABLE 6. Seed values for the Memristor system used for generating the 10 S-boxes used in the performance evaluation and numerical results (all values
for ¢, f and y are multiplied by 10~3, and all values of e and f are negatively signed).

S a b c d e f g x Yy z u o a9 as oy
1 1.5 360 32 36 1.5 21 0.08 0.1 1 0.05 0.01 0.9 0.7 0.95 0.9
2 1.8 500 62 42 1.7 24 0.05 0.5 2 0.07 0.08 0.3 0.9 0.45 0.7
3 1.3 439 12 55 1.9 94 0.09 0.1 5 0.02 0.19 0.4 0.4 0.65 0.3
4 1.2 537 52 67 1.4 34 0.13 0.4 23 0.15 0.16 0.5 0.2 0.23 0.2
5 1.3 338 25 52 1.6 65 0.34 0.7 1 0.02 0.76 0.2 0.3 0.43 0.3
6 1.6 732 32 64 1.3 53 0.64 0.3 53 0.03 0.28 0.6 0.1 0.87 0.4
7 1.5 655 53 77 1.5 63 0.67 0.2 76 0.04 0.63 0.7 0.8 0.47 0.5
8 1.1 813 84 12 1.2 35 0.16 0.5 32 0.03 0.22 0.2 0.4 0.92 0.6
9 1.9 908 75 28 1.4 65 0.34 0.4 87 0.02 0.76 0.8 0.9 0.28 0.8
10 1.4 621 82 92 1.6 75 0.76 0.3 32 0.04 0.97 0.9 0.2 0.74 0.9

(a) Plain image. . (b) cpt ige.

O

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

FIGURE 15. Mandrill image and histogram comparison pre- and post-encryption.

F. FOURIER TRANSFORMATION ANALYSIS unlike that of a plain image which usually displays a structure
Pixel cross-correlation pre- and post-encryption is easily resembling a plus sign in the center of the image. This is
examined through applying the Discrete Fourier Transform  because spatial features of a plain image, such as edges
(DFT) and visually examining the images. The resultant DFT and corners, separate into different frequencies. The larger
of encrypted images would not convey structural information, frequencies of the sine and cosine trigonometric functions
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(a) Plain image.

——

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(c) Histogram of the plain image.

(b) Encrypted image.

00 02 0.4 06 08 10

0.0 0.2 04 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(d) Histogram of the encrypted image.

FIGURE 16. Peppers image and histogram comparison pre- and post-encryption.

TABLE 7. Comparison of MSE values with other algorithms from the literature.

Image Proposed [21] [4] [36] [59] [5] [33] [15] [26]
Lena 8882.4 9112.1 8927 10869.7 4859 8888.9 N/A 8972.8 8867.4
Mandrill 8316.4 8573.4 8290.9 10930.3 6399.1 8295.2 N/A 8352.8 N/A
Peppers 10081.3 10298.7 10045.1 N/A 7274.4 10092.3 N/A 10069.1 10119.5
House 8310.2 8427 8351.6 N/A N/A N/A N/A N/A N/A
House2 9137.1 9374.7 N/A N/A N/A N/A N/A N/A N/A
Girl 12175 12450.9 N/A N/A N/A N/A N/A N/A N/A
Sailboat 10021.7 N/A N/A N/A N/A N/A N/A N/A N/A
Tree 9927.4 N/A N/A N/A N/A N/A N/A N/A N/A
Average 9606.38 9706.1 8903.6 10900 6177.5 9088.8 N/A 9131.6 9493.5

are visually easier to identify in the frequency domain, as a
result of proximity of pixel values in the spatial domain. For a
square image signal f'(a, b), of dimensions N x N, in the spa-
tial domain, its equivalent frequency domain representation
would be mathematically expressed as

N—-1N-1 o

Fle D=2 > fG.pe W0, (37)

i=0 j=0
where every point F(k, [) in the Fourier space is represented
in terms of the product of f(i,j) with an exponential basis

VOLUME 11, 2023

function. It is clear from Fig. 18 (c), the presence of the white
plus sign structure in the center of the DFT of the plain image,
unlike Fig. 18 (d) which displays the DFT of the encrypted
version, and has no such structure. This signifies the absence
of any spatial features in the encrypted image.

G. CORRELATION COEFFICIENT ANALYSIS
A correlation coefficient analysis is carried out to check the
cohesion of pixels locally in an image. That is to say, to what
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(a) Plain image. (b) Encrypted image.
| o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
F— [T . L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(c) Histogram of the plain image. (d) Histogram of the encrypted image.
FIGURE 17. House image and histogram comparison pre- and post-encryption.
TABLE 8. Comparison of PSNR [dB] values with other algorithms from the literature.
Image Proposed [21] [4] [36] [59] [5] [33] [15] [26]
Lena 8.64553 8.53462 8.6237 7.7677 11.3 8.64233 8.5674 8.6554 9.15
Mandrill 8.93143 8.79929 8.9448 7.7447 10.10 8.94253 10.0322 8.9272 N/A
Peppers 8.09565 8.00296 8.11128 N/A 9.55 8.94253 N/A 8.13789 8.13
House 8.93472 8.87405 8.91309 N/A N/A N/A N/A N/A N/A
House2 8.52272 8.41125 N/A N/A N/A N/A N/A N/A N/A
Girl 7.27613 7.17879 N/A N/A N/A N/A N/A N/A N/A
Sailboat 8.12137 N/A N/A N/A N/A N/A N/A N/A N/A
Tree 8.16246 N/A N/A N/A N/A N/A N/A N/A N/A
Average 8.40153 8.30016 8.64822 7.7562 10.3167 8.84246 9.2998 8.5735 8.64
extent nearby pixels share the same or nearly the same colors. as
For plain images, neighboring pixels mostly share the same cov(x. y)
color values and thus the evaluation of this metric results in px,y) = —,y, (38)
values very close to 1. On the contrary, well-encrypted images VoV )
should possess a pixel distribution that does not result in any where

form of similarity among adjacent or nearby pixels. In such
a case, this metric would result in values very close to zero.
The pixel correlation coefficient is mathematically expressed
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cov(x, y) = = D (6 = pE)0i = 1), (39)
i=1
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TABLE 9. Comparison of MAE values with other algorithms from the literature.

Image Proposed [21] [5] [36] [37] [33] 2]
Lena 77.3307 78.3564 77.3752 87 77.35 77.96 77.4877
Peppers 81.9253 82.3273 81.7740 N/A 74.71 N/A 81.9832
Mandrill 75.0986 81.913 75.1659 92 73.91 67.85 75.1632
House 75.0542 N/A N/A N/A N/A N/A 75.4983
House2 78.2498 N/A N/A N/A N/A N/A 78.3327
Girl 90.2537 N/A N/A N/A N/A N/A 89.9807
Sailboat 81.7614 N/A N/A N/A N/A N/A 82.1003
Tree 81.4288 N/A N/A N/A N/A N/A 81.1623
Average 81.4288 80.8656 78.105 89.5 75.6567 72.905 80.2136
TABLE 10. Comparison of information entropy values with other algorithms from the literature.
Tmage Proposed 21] [4] [36] [40] [59] 5] [33] [15]
Lena 7.9989 7.9856 7.999 7.999 7.997 7.996 7.997 7.9972 7.9989
Mandrill 7.9990 7.9905 7.999 7.999 7.999 N/A 7.996 7.9969 7.9987
Peppers 7.9990 7.9951 7.999 7.9991 N/A 7.997 7.9969 N/A 7.9992
House 7.9985 7.9577 7.999 N/A N/A N/A N/A N/A N/A
House2 7.9988 7.9847 N/A N/A N/A N/A N/A N/A N/A
Girl 7.9989 7.9789 N/A N/A N/A N/A N/A N/A N/A
Sailboat 7.9990 N/A N/A N/A N/A N/A N/A N/A N/A
Tree 7.9987 N/A N/A N/A N/A N/A N/A N/A N/A
Average 7.9987 7.9821 7.999 7.999 7.998 7.9965 7.9963 7.9971 7.9989
1Y This allows one to express the NPCR as
o) = = D (5 — px))’, (40)
N YL 2 DG, y)
L& NPCR = == m y—N x 100. (43)
X
ni) = — > (x). (41) _ _
N i1 For a well-encrypted image, the NPCR is expected to pass

Table 11 demonstrates the computed adjacent pixel
cross-correlation values achieved by the proposed image
encryption technique for various images, both plain and
encrypted, in 3 dimensions (horizontal, diagonal and ver-
tical). It is clear that plain images’ adjacent pixels exhibit
high cross-correlation, with values approaching 1. On the
contrary, a value approaching O is computed for encrypted
images. Furthermore, Table 12 provides a comparison with
the literature. It is clear that a comparable performance is
indeed achieved, with all algorithms, including the proposed
one, reporting values that approach 0.

H. DIFFERENTIAL ATTACK ANALYSIS

A differential attack analysis is carried out through comparing
aplain and an encrypted image on a pixel-by-pixel basis. The
purpose here is to compute a percentage of difference in color
intensities resulting from the encryption process. This trans-
late into 2 metrics. The first is the number of pixels changing
rate (NPCR), while the second is the unified average change
intensity (UACI). For 2 images, I and I, of dimensions
M x N, such a difference per pixel, D(x, y), is mathematically
expressed as

0 6Lix,y)=Dhx,y)

e[l,M]&y € [1,N
1 Otherwise rel Jyel |

D(x,y) = [
(42)
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the threshold of 99%. On the other hand, the UACI aims
to compute the difference between 2 images through their
mean averages. This means that the UACI is mathematically
expressed as

I s ey — b )l
UACI = +—— ZZ 555 x 100. (44)
x=1y=1

The literature identifies a UACI value of 33% as an indi-
cation of a well-encrypted image. Table 13 displays the com-
puted NPCR and UACI values of the proposed color image
cryptosystem. It is clear that an average value of the NPCR is
ideal, while an average value of the UACI is very close to the
ideal value. Moreover, Table 14 provides a comparison with
the literature, showcasing very close proximity of the various
algorithms.

I. THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY ANALYSIS

A trustworthy technique for assessing the randomness of
encrypted images is the SP-800 analysis from the National
Institute of Standards and Technology (NIST). It consists of
a series of tests run on a bit-stream to gauge the degree of
randomness provided by a PRNG. A bit-stream’s probability,
or p-value, needs to be greater than 0.01 in order to pass
any of the tests. We show that a lengthy bit-stream created
by concatenating the rows of an encrypted image passes
the NIST suite of tests for our proposed image encryption
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(a) Plain image. (b) Encryted image.

(c) Plain image DFT. (d) Encrypted image DFT.

FIGURE 18. Tree image and DFT comparison pre- and post-encryption.

TABLE 11. Comparison between correlation coefficients of plain and encrypted images.

Plain Image Encrypted Image
Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical
Lena 0.938611 0.913175 0.96833 0.00112809 0.00166795 0.0033841
Peppers 0.959422 0.930426 0.966795 —0.0021352 —0.0037003 —0.011349
Mandrill 0.848778 0.750624 0.79088 —0.0017954 0.0031452 0.0020511
House 0.978232 0.936044 0.952926 0.00442727 0.0042474 0.008562
House2 0.907075 0.850782 0.923091 0.0042833 0.00400797 0.00045403

Girl 0.974013 0.951471 0.965671 —0.0034344 0.0041862 0.00018418
Sailboat 0.952381 0.919872 0.950138 0.00281799 0.0024538 —0.002807

Tree 0.968153 0.929967 0.94515 0.00308483 —0.0080665 0.0015145
Average 0.939355 0.897095 0.932873 0.00058474 0.00099272 0.00030635

technique. For illustrative purposes, Table 15 demonstrates a 256 x 256 image of Lena. All of the computed values in

the numerical results of a such an analysis as performed on Table 15 are exceeding 0.01 as a proof that the proposed

85022 VOLUME 11, 2023



M. Gabr et al.: Image Encryption via Base-n PRNGs and Parallel Base-n S-Boxes

IEEE Access

(c) 3D plot of the pixel co-occurrence matrix of the plain image.

(b) Encrypted image.

0.0010

0.0005

0.0000 |,

(d) 3D plot of the pixel co-occurrence matrix of the encrypted
image.

FIGURE 19. Sailboat image and 3D plot of the pixel co-occurrence matrix comparison pre- and post-encryption.

TABLE 12. Comparison of correlation coefficients of the encrypted Lena
image among various schemes from the literature.

Scheme Horizontal Diagonal Vertical
Proposed 0.00112809 0.00166795 0.0033841
[2] 0.0064113 —0.0015143 0.000568333
[5] 0.002287 —0.00132 —0.00160
[7] 0.0079784 —0.00012531 0.0011584
[15] 0.00144 —0.00151 0.00795
[21] 0.003265 —0.00413 0.002451
[33] —0.0061 —0.0018 0.0067
[36] 0.0054 0.0054 0.0016
[54] 0.000199 0.003705 —0.000924

image encryption technique fulfills the NIST analysis bench-
mark requirements.

J. KEY SPACE ANALYSIS

The proposed image encryption technique is formed by com-
bining 3 stages consecutively. Each of these stages contains a
large set of variables. These variables are:

VOLUME 11, 2023

1) Stage 1: Chen system key diffusion.
a) Number of operations: an integer.
b) Base: an integer.
c) Operations selections seed: an integer.
d) The set of seeds: 13 real numbers.
2) Stage 2: Memristor parallel base-n S-box application.
a) Number of parallel S-boxes: an integer m.
b) Base: an integer.
c) Operations selections seed: an integer.
d) The set of seeds: m x 15 real numbers.
3) Stage 3: Chua system key diffusion.
a) Number of operations: an integer.
b) Base: an integer.
c) Operations selections seed: an integer.
d) The set of seeds: 10 real numbers.
Cumulatively, there are 9 integer values, 23 real numbers,
in addition to 15 real numbers for each S-box. Hence, for
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TABLE 13. NPCR and UACI of various images.

TABLE 15. NIST analysis of the data bit-stream of an encrypted Lena
image of dimensions 256 x 256.

Metric Image Result
Lena 99.6272 Test Name p-value Remarks
Peppers 99.5967 Frequency 0.301427 Success
NPCR Mandrill 99.6231 Block Frequency 0.444596 Success
House 99.6089 Runs 0.971420 Success
House2 99.6206 Longest run of ones 0.286803 Success
Sailboat 99.586 Rank 0.686914 Success
Tree 99.6094 Spectral FFT 0.575147 Success
Girl 99.5977 Non overlapping T.M. 0.719975 Success
Average 99.6087 Overlapping T.M. 0.429492 Success
Lena 30.3258 Maurer’s Universal 0.253374 Success
Peppers 32.1276 Linear complexity 0.379766 Success
Mandrill 29.4504 Serial 0.655061 Success
UACI House 29.433 Approx. entropy 0.221568 Success
House?2 30.6862 Cum. sums forward 0.369008 Success
Sailboat 32.0633 Cum. sums reverse 0.496751 Success
Tree 31.9328 Random ex. 1 0.282195 Success
Girl 35.3936 Random ex. 2 0.444486 Success
Average 31.4266 Random ex. 3 0.837840 Success
Random ex. 4 0.729269 Success
Random ex. 5 0.671262 Success
Random ex. 6 0.809745 Success
TABLE 14. Comparison of the average NPCR and UACI of the Lena image Random ex. 7 0.553379 Success
among various schemes from the literature. Random ex. 8 0.527259 Success
Random ex. var. 1 0.900795 Success
Random ex. var. 2 0.731239 Success
Scheme NPCR UACI Random ex. var. 3 0.756366 Success
Proposed 99.6272 30.3258 Random ex. var. 4 0.674977 Success
(2] 99'5555 30'?’873 Random ex. var. 5 0.518936 Success
5] 99.63 30.3432 Random ex. var. 6 0.599128 Success
[15] 99.62463 30.56810 Random ex. var. 7 0.588620 Success
[21] 99.65 30.4567 Random ex. var. 8 0.564595 Success
[33] 99.61 33.5160 Random ex. var. 9 0.545396 Success
[36] 99.52 26.7933 Random ex. var. 10 0.449744 Success
Random ex. var. 11 0.834085 Success
Random ex. var. 12 0.871108 Success
Random ex. var. 13 0.890930 Success
. . . Random ex. var 14 0.903743 Success
a single S-box: 9 integers and 38 real numbers. This means Random ex. var. 15 0.862494 Success
that for 10 S-boxes (as in Section VI): 9 integers and 173 real gangom ex. var. }g S.Z%ggg guccess
. . . e andom €x. var. . uccess
numbers. In theory, this translates into an infinite key space. Random ex. var. 18 0.713889 Stocess
For comparative purposes, Table 16 provides key space val-
ues .fo.r Varloqs glgorlthms from the 11ter§1ture. The only work TABLE 16. Key space values comparison.
attaining a similarly large key space is that of [34]. The
attained key space effectively means that the proposed image Scheme ey space
encryption technique is resistant to brute-force attacks. Proposed S
[2] 10499 ~ 21658
[5] 10128 ~ 2425
K. HISTOGRAM DEPENDENCY TESTS [7] 10244 g o744
. . . [15] 10167 ~ 2554
On the histogram level, correlation between a plain and an 1] 10112 ~ 2372
encrypted image is evaluated by applying a linear depen- [26] 1035 A 9116
dency test between the histograms of the images before (30] 1066 & 2219
and after encryption [20]. For a dependency coefficient Eé} 1 030002 9996
ranging between —1 and 1, O is the preferred value for [54] 1056 ~ 9187

a well-performing encryption technique. The main cause
of preferring O as a result is that a O signifies no depen-
dency, a while 1 signifies a strong dependency. On the other
hand, a —1 signifies strong inverse dependency. To per-
form this evaluation, 5 different linear correlation evaluation
techniques are applied in this research work: Blomqvist 8,
Goodman-Kruskal y, Kendall t, Spearman p, and Pearson
correlation r.

With respect to the medians of the distributions, Blomqvist
assesses the correlation between 2 histogram distributions (X
and Y) as a medial correlation coefficient (for medians x and
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¥). Blomgqvist correlation is equated as follows:
B={X-0F -y)>0} —{X -0 —y) <0}. (45)

The assessment of the Goodman-Kruskal, which presents
a pairwise measure of monotonic association, is based on
the relative order of consecutive elements in a given pair
of histograms. Pairs of elements of both distributions are
either promoting or inhibiting the linear correlation, which
are counted. Next, the overall evaluation is based upon these
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TABLE 17. Histogram dependency tests for various images, in separate color channels and combined RGB.

Tmage Color B (45) ~ (46) T (&7) p (48) r (49)
R 0.0275056 0.0662174 0.064069 0.0949286 0.075699
Lena G —0.0625 —0.0451215 —0.0445375 —0.0637035 —0.0798137
B —0.0078745 —0.0044192 —0.0041629 —0.0025057 0.0213273
RGB 0.0510818 0.00377896 0.00375828 0.0015246 0.00769476
R 0.0320204 0.0377274 0.0369005 0.0540886 0.0515456
Peppers G 0.019725 —0.0078883 —0.007803 —0.0099396 0.0328761
B —0.0514905 —0.0300921 —0.0296082 —0.0438476 —0.0400148
RGB —0.0629941 —0.0266129 —0.026449 —0.0369429 —0.0195293
R —0.015625 —0.0649895 —0.0643068 —0.0987726 —0.0987726
Mandrill G —0.047247 —0.0237717 —0.02334 —0.0343666 —0.0248794
B 0.0199727 0.00275138 0.00272362 0.0022772 0.00243885
RGB 0.0236235 —0.0461824 —0.0459304 —0.0674272 —0.0627675
R 0.0866195 0.125008 0.121654 0.180534 0.0575833
House G —0.109375 —0.0986904 —0.0975915 —0.140344 —0.153031
) B 0.00789068 0.03845 0.0368305 0.0574686 0.0672775
RGB 0.141178 0.0637533 0.0633851 0.0973743 0.011198
R —0.046875 —0.0356827 —0.0351172 —0.0526773 —0.0550206
House?2 G —0.03125 —0.0364932 —0.0361378 —0.0528161 —0.0307434
B 0.00410356 0.0323847 0.0318583 0.0486502 0.0488306
RGB —0.0555783 —0.0265048 —0.026365 —0.0365267 —0.0160983
R —0.0196469 —0.0097551 —0.0093728 —0.0125805 0.0084438
Sailboat G 0 0.0106499 0.0105482 0.0144764 0.0376543
B —0.03125 0.00512595 0.00505942 0.0104705 0.0820164
RGB —0.015625 —0.0708974 —0.0704962 —0.106562 —0.0929196
R 0.071149 0.0316351 0.0310719 0.0479491 0.0189841
Tree G 0.00396081 0.0182702 0.0180021 0.0261575 0.0281026
B 0.158795 0.167422 0.161098 0.232229 0.165729
RGB 0.09375 0.125613 0.124842 0.185802 0.21756
R —0.0013045 —0.0065005 —0.0054828 —0.0073383 —0.0279095
Girl G —0.0152091 0.0250861 0.0207607 0.0268033 0.02566
B —0.0655474 —0.0753534 —0.0609495 —0.0842475 —0.100816
RGB 0 —0.0535714 —0.0511755 —0.0762662 —0.0656636
TABLE 18. Execution time of the proposed image encryption technique, correlation as:
at various image dimensions.
ne —nyg
U= a7
Image tEne [s] tpec [8] tAdaq [s] -5
Dimensions
64 x 64 0.04 0.05 0.09 Spearman, as a rank correlation test, compares the sorted
128 x 128 0.15 0.14 0.29 positions of elements forming the histogram to the mean rank.
256 X 256 0.44 0.48 0.92 .
512 x 512 1.65 1.63 3.98 Spearman rank correlation is equated as:
1024 x 1024 6.28 6.24 12.52 - -
Z(Rix - Rx)(Riy - Ry)
p= . (48)

TABLE 19. Encryption time comparison of the Lena image of dimensions
256 x 256.

Scheme Time [s] Machine specifications (CPU and RAM)
Proposed 0.44 3.3 GHz AMD® Ryzen 9 5900HX, 32 GB
AES 0.71 3.3 GHz AMD® Ryzen 9 5900HX, 32 GB
[5] 2.582389 2.9 GHz Intel® Core™ i9, 32 GB
[21] 1.42545 2.9 GHz Intel® Core™ i9, 32 GB
[22] 1.1168 3.4 GHz Intel® Core™ i7, 8 GB
[30] 3.45 N/A
[64] 1.112 3.4 GHz Intel® Core™ i3, 4 GB
[15] 3.0019 3.4 GHz Intel® Core™ i7, 8 GB

2 counts (namely n. and ng). Goodman-Kruskal correlation
is equated as:
ne — ng
y =—. (46)
ne + ng
Kendall correlation evaluation relates the sample size to the
counts of concordant pairs and discordant pairs, equating the
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Last but not least, as the most common evaluation mech-
anism, Pearson correlation simply compares values of the
distributions to the mean averages of these distributions. It is
equated as:

. SXi—-X)Y;—7) .
JE X X2 S -7

The evaluation results of the 5 tests for various test images
are displayed in Table 17. Since all scores are approaching
0, there is a clear lack of correlation between the input and
encrypted versions of the images in terms of histograms for
all colour channels.

(49)

L. EXECUTION TIME ANALYSIS

Table 18 shows the execution time of the proposed image
encryption technique at various image dimensions. While the
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(a) Corner occlusion of 12.5% of I'.

1

(d) Corner occlusion of 12.5% of I..

(b) Corner occlusion of 25% of I'.

(e) Corner occlusion of 25% of I..

(c) Center occlusion of 50% of I'.

Lt 2 "

(f) Center occlusion of 50% of I..

FIGURE 20. Three instances of occlusion attacks on encrypted images {(a) ,(b),(c)}, and their decrypted versions {(d),(e),(f)}.

time increases in relation to increases in image dimensions.
The proposed image encryption technique is shown to be very
efficient, encrypting images at a rate of 4.01 Mbps. Table 19
carries out a comparative analysis among a number of image
encryption algorithms from the literature, as well as the AES,
and the proposed image encryption technique. It is clear that
the proposed technique outperforms its counterparts, includ-
ing the AES, irrespective of the computing environment. This
in turn makes it a favorable technique of choice for small
portable devices of limited computing abilities.

M. FURTHER TESTS ON RESISTIVITY TO ATTACKS

This subsection attempts to showcase the ability of the pro-
posed image encryption technique to resist various types of
attacks, including occlusion attacks, salt and pepper attacks,
as well as Gaussian noise attacks. Furthermore, it provides
a short discussion on linear attacks and the resistivity of the
proposed technique to them.

An occlusion attack on an encrypted image involves an
adversary blocking out or obscuring a contiguous region
of the encrypted image before decryption by setting those
pixel values to black or a uniform value. This effectively
erases the original pixel values in that area, resulting in
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loss of image content when decrypted. The location, shape,
and size of the occluded region can vary depending on the
acceptable degradation aimed for by the attacker. Occlusion
destroys the pixel values in the blocked area, unlike noise
addition which just distorts the values. This attack is effective
against spatial encryption schemes that shuffle or scramble
pixels, while frequency domain encryption has some inherent
occlusion resistance. Countermeasures include redundancy,
encryption diffusion techniques, reconstruction algorithms,
and authentication to detect tampering. Since the proposed
algorithm involves multiple stages of confusion and diffusion,
such an attack is shown in Fig. 20 to be ineffective. It is
clear in Fig. 20 that even by increasing the occluded area
to be 50% of the encrypted image, its decrypted versions
are nevertheless still identifiable as those of the Mandrill
image.

Salt and pepper attacks are a type of image manipulation
attack that can be performed on encrypted images. In this type
of attack, the attacker adds random pixels to the encrypted
image (salt) or removes pixels from the encrypted image
(pepper) in order to modify the image in a way that is not
detectable by the encryption algorithm. This can result in
the image being distorted or corrupted, making it difficult
or impossible to decipher. Salt and pepper attacks can be
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d) 1%.

(e) 6%.

(c) 10%. _

(f) 10%.

FIGURE 21. The effect of various instances of salt and pepper noise attacks on encrypted images {(a) ,(b).(c)}, and their decrypted

counterparts {(d),(e),(f)}.

particularly effective against weak encryption algorithms or
when the encryption key is compromised. To prevent salt and
pepper attacks, stronger encryption algorithms and secure key
management practices should be used. It is clear in Fig. 21
that even by increasing the strength of the attack from 1% to
10% the decrypted images are still identifiable as the Mandrill
image.

Gaussian noise attacks are another type of image manip-
ulation attack that can be performed on encrypted images.
In this type of attack, the attacker adds random noise to
the encrypted image, following a Gaussian distribution. The
noise added to the image can be subtle and difficult to detect,
but can significantly impact the quality and integrity of the
image. Gaussian noise attacks can also be used to weaken
the encryption algorithm, making it easier for the attacker to
decipher the image. To prevent Gaussian noise attacks, secure
encryption algorithms with strong key management practices
should be used. Additionally, image processing techniques
such as denoising can be used to remove any noise added
to the encrypted image. It is clear in Fig. 22 that even by
increasing the strength of the attack from o = 0.0001 to
o = 0.001 the decrypted images are still identifiable as the
Mandrill image.
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Linear attacks on image encryption algorithms are a class
of attacks that exploit the linear properties of an encryption
algorithm to recover the original image or the encryption
key. In a linear attack, the attacker constructs a set of linear
equations using the plaintext and ciphertext pairs, and then
solves for the encryption key. This type of attack is particu-
larly effective against weak encryption algorithms that have
linear properties.

One example of a linear attack is the known-plaintext
attack, in which the attacker has access to both the original
image and its encrypted version. The attacker then constructs
a set of linear equations using the plaintext and ciphertext
pairs and solves for the encryption key. Another example is
the chosen-plaintext attack, in which the attacker can choose
the plaintext to be encrypted and obtain the corresponding
ciphertext. The attacker can then use these pairs to construct
linear equations and solve for the encryption key.

To prevent linear attacks, encryption algorithms should
be designed to have strong non-linear properties. Non-linear
encryption algorithms make it difficult for attackers to con-
struct linear equations and solve for the encryption key.
Since the proposed image encryption technique involves the
construction and application of S-boxes, which are highly
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() o = 0.0001.

(d) o = 0.0001.

(b) o = 0.0007.

(c) o = 0.001.

w2ty
(e) o = 0.0007.

(f) o = 0.001.

FIGURE 22. The effect of zero-mean Gaussian noise attacks on different standard deviations ¢ on encrypted images as well as the effect on

their decrypted counterparts.

non-linear in nature, it becomes impossible for any sort of
cryptanalysis effort utilizing linear attacks to be successful.

VIl. CONCLUSION AND FUTURE WORK

This research work identified the prime importance of both
key and S-box generation from PRNGs, then capitalized
on this knowledge by proposing a multi-stage symmetric
image encryption technique. Solutions of the Chen, Chua
and Memristor hyperchaotic systems of fractional-order were
employed to generate the needed PRNGs for this research
work. In the first and third stages, an encryption key is
generated and employed to carry out data diffusion. However,
unlike conventional image cryptosystems, multiple logical
and arithmetic operations were made use of while applying
the key to the image data. In the second encryption stage,
multiple S-boxes of various dimensions were generated and
employed in a parallel fashion to carry out data confusion.
This is unlike conventional image cryptosystems where a
single S-box, in most cases of dimensions 16 x 16 is made use
of. Next, a large number of performance evaluation metrics
were computed and their values compared to the state-of-
the-art. For many of the metrics, the achieved values were
shown to be superior to their counterparts. The adoption of
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fractional-order systems was shown to be most beneficial in
relation to the key space. Since having a very large number
of control variables allows for a key space of theoretically
infinite length.

A limitation of this work is that since the generated S-boxes
were of various dimensions, traditional S-box evaluation met-
rics were no longer viable to apply in such a novel case.
A future work could make use of the ideas proposed in
this research work, still applying various S-boxes in a par-
allel fashion, however, utilizing only S-boxes of standard
dimensions. This would allow for the computation of S-box
performance evaluation metrics, as in [7], [20], and [45],
as well as for comparison with other well-established S-boxes
in the literature.
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