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ABSTRACT The work presented in this article seeks to address the fault-tolerant tracking control (FTTC)
problem for T-S fuzzy uncertain continuous nonlinear systems affected by sensor and actuator faults (SAFs).
The T-S fuzzy model is utilized to deal with nonlinearity and uncertainty of the system. Based on a novel
fuzzy observer which is constructed to estimate the values of immeasurable states and SAFs at the same time,
a novel PI-type fuzzy fault-tolerant control law is mentioned to deal with the effect of SAFs simultaneously.
By using Linear Matrix Inequalities (LMIs), the sufficient design conditions are converted to a convex
optimization problem. The gains of reference model, observer and fault tolerant control law are obtained
easily by solving the LMI conditions represented in the Theorems. The stability of the target system is
ensured by applying the quadratic Lyapunov function. Finally, simulations and comparisons are given to
show the validity and effectiveness of the proposed approach by two practical examples: Inverted Pendulum
on a Cart and Overhead Crane System. For instance, the results presented that the tracking performance was
enhanced by 23% when the faults occurred in Case 3 of Example 1, in which the comparisons are carried
out with the method in Bouarar et al., (2013). The estimation error of SAFs in all cases were not exceed 2%
at the steady stage of simulation.

INDEX TERMS Fault diagnosis (FD), fault-tolerant tracking control (FTTC), uncertain nonlinear systems,
tracking control, sensor and actuator faults (SAFs), linear matrix inequalities (LMIs).

I. INTRODUCTION
Due to the existence of sensor and actuator faults (SAFs) or
other defect within an actual system, ensuring stabilization
and obtain good control performance of the system are com-
plex and challenging issues. Therefore, in the past few years,
fault diagnosis (FD) and the fault-tolerant control (FTC) for
nonlinear systems have attracted a lot of attention [1], [2],
[3], [4], [5], [6], [7], [8]. Many methods have been studied to
address the effect of faults and the stability of thewhole states.
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Moreover, another important work is to track arbitrarily given
desired trajectories as accurately as possible. In the faulty
system, finding a effective method that is able to deal with the
effects of faults and also ensure good tracking performance
makes the control system more challenging. Therefore, how
to enhance the tracking performance of uncertain nonlinear
system affected by sensor and actuator faults has been an
issue of great interest and also the main motivation of the
present paper.

At present, many research on FD and FTC for uncer-
tain nonlinear systems have been carried out. Many kinds
of FD observers have been widely studied, such as,
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adaptive observer [9], [10], [11], [12], [13], sliding mode
observer [14], [15] and fuzzy descriptor approach [16], [17],
[18], [19]. A fault estimation (FE) and a new FTC method
is investigated to ensure the stability of the system affected
by input signal saturation, uncertainty, external disturbances
and actuator fault in [20]. In [21], a FE-based FTC method is
investigated to address the stability issue for a class of nonlin-
ear system that is affected by faults, external disturbances and
sector nonlinearity in the control input. In [22], a FE-based
FTC strategy were studied to guarantee the stability of system
and obtain satisfactory control performance for a 3-DOF
helicopter system subject to actuator drift, oscillation fault
and input saturation. A fault-tolerant tracking control(FTTC)
scheme for a discrete-time T-S fuzzy nonlinear systems only
affected by actuator fault is investigated to ensure the stability
and achieve desired tracking performance in [23]. In these
literatures, a single fault is only considered in the close-lop
systems or the faults are estimated in way of separation.
Whereas, SAFs of a system always coexist and occur within
the same time in many practical applications so that the
two different system faults may not be diagnosed which
can degrade the performance, increase maintenance cost and
reduce production efficiency. So, how to design an valid
observer to estimate SAFs simultaneously is an important
issue.

Actually, from the following recent works, it can be seen
that FTC approach for T-S fuzzy uncertain systems affected
by SAFs has not been completely studied. Authors in [24]
proposed an integral slide mode based control method to
address the cooperative tracking problem for a class of non-
linear systems with uncertainties, actuator faults and external
disturbances. However, only a specific kind of external dis-
turbance is considered and the chattering problem is not fully
settled. In [25], the states and actuator faults of doubly fed
induction generators are estimated by a PI-type observer, but
the actuator faults are regard as a bound signal which limits
this method to be spread and applied. In [26], an adaptive
sliding mode approach is proposed for a class of uncertain
fractional-order nonlinear systems which affected by actuator
faults and external disturbances to address the stability and
tracking problem. However, the sensor fault has not been
considered during the design process. Indeed, in [27], authors
have studied the adaptive fuzzy FTC method with unknown
control directions for a class of multi-input multi-output
(MIMO) uncertain nonlinear systems under the condition of
existence of time-varying asymmetric output constraints, but
only sensor faults are paid close attention to. In fact, com-
pared with single fault issue, the compensation of multiple
faults for a real system is more general and complex. In [28],
authors considered a kind of FTC method for a dynamic
nonlinear systems affected by both known and unknown
inputs to address the problem of SAFs estimation, but only
slow-varying fault signal is applied in the systems. Both SAFs
are compensated by an observer based FTC scheme in [29].
Authors in [30], [31], and [32] have also studied a series
of FTC methods for systems affected by SAFs to deal with

the stability problem. However, the tracking problem is not
considered in these works.

In order to solve the problems mentioned above, motivated
by [23] and [32], authors in this article have investigated
an observer-based FD and FTTC method for a class of T-S
fuzzy nonlinear systems subject to uncertainties and SAFs.
The T-S fuzzy model is applied to approximate the system
nonlinearity as accurate as possible. The states and faults are
assumed to be immeasurable that estimated by the proposed
novel fuzzy observer at the same time. Furthermore, a fault-
free system is regarded as a standard reference model by
which the tracking control law is designed. A new PI type
fuzzy FTTC scheme is proposed to deal with the effect of
SAFs and track the desired trajectories.

To sum up, the main contribution of the article is show as
follows:

1) A novel fuzzy observer is investigated to address the
problem of SAFs estimation for uncertain nonlinear system.
Whereas, only sensor fault [33], [34] or actuator fault [35],
[36] is considered in many researches.

2) A new PI type fuzzy FTTC scheme is proposed to deal
with the effect of SAFs simultaneously and track the desired
trajectories which is more complex and challenging than no
tracking issue as [33] and [37].

3) The tracking problem is addressed with more complex
actuator faults such as exponential actuator fault and time
varying actuator fault. Whereas, in many researches [38],
[39], [40], [41], only the constant actuator fault is studied.

The paper is organized as follows: Section II introduces
a class of T-S fuzzy uncertain system affected by sensor
and actuator faults. In Section III, the main results of the
mentioned scheme are designed including three contents:
fault-free case, post-fault case and novel FTC method. Two
practical examples are used in Section IV to explain the valid-
ity of the mentioned approach. Finally, some conclusions are
provided in Section V.

II. PROBLEM FORMULATION
Generally speaking, most of the actual systems are affected
by faults and uncertainties. Thus, these malfunctions should
be considered in one unified framework that is more helpful
for popularization and application. The following T-S fuzzy
uncertain system subject to SAFs with r rules is considered:
IF Rule i: ξ1 (t) isM1iand · · · andξp (t) isMpi
Then

ẋf1 (t) = (Ai11 + 1Ai11)xf1 (t) + (Ai12
+1Ai12)xf2 (t)
ẋf2 (t) = (Ai21 + 1Ai21)xf1 (t) + (Ai22 + 1Ai22)xf2 (t)
+Biuf (t) + Fifa(t)

yf = Ci

[
xf1 (t)
xf2 (t)

]
+ Eifs (t)

where xf = [xf1 (t) , xf2 (t)]T ∈ Rn is the state vec-
tor of the faulty system, uf (t) represents the control input
signal, yf is the output of the system that assumed be
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measured in this article. Fi and Ei are constant real matri-
ces. fa(t) ∈ Rr , fs(t) ∈ Rr represent sensor and actuator
fault. ξ (t) = [ξ1 (t) , · · · , ξp (t)] are the premise variables
assumed to be measurable; Mpi are the corresponding fuzzy
sets. hi (ξ (t)) = wi(ξ (t))/

∑r
i wi(ξ (t)) with wi (ξ (t)) =∏p

j=1Mji. It is noted that
∑r

i=1 hi (ξ (t)) = 1 for all t >

0 are the normalized weights, where hi (ξ (t)) ≥ 0, fori =

1, · · · , r .
By using a standard singleton fuzzifier, fuzzy inference

and weighted defuzzifier, the uncertain nonlinear system is
presented as the following equivalent T-S fuzzy model: ẋf (t) =

∑r

i=1
hi (ξ (t))

[
Āixf (t) + B̄iuf (t) + F̄ifa (t)

]
yf (t) =

∑r

i=1
hi (ξ (t))

[
Cixf (t) + Eifs (t)

]
(1)

where

Ai =

[
Ai11 A

i
12

Ai21 A
i
22

]
, 1Ai =

[
1Ai11 1Ai12
1Ai21 1Ai22

]
,

B̄i =

[
0
Bi

]
, F̄i =

[
0
Fi

]
, Āi = Ai + 1Ai,Ci = Ip

We defined the uncertainties of the fuzzy system as the
Lebesgue measurable form: 1Ai = H1aEa to describe
the system uncertainties with time-varying parameter. H and
Ea are specific constant matrices with appropriate dimen-
sions. 1a(t) represents a kind of unknown but bounded
time-varying matrix functions that contain Lebesgue measur-
able elements. Furthermore, the classical bounded conditions
1a(t)T1a(t) ≤ I , ∀t > 0 is satisfied.
Assumption 1: We assume that the matrixBi is full column

rank so that the corresponding matrix BTi Bi is invertible.
Assumption 2: For fault fa and fs, the condition is satisfied

∥fs∥ ≤ f̄s, ∥fa∥ ≤ f̄a with unknown positive scalars f̄s, f̄a,
respectively. Moreover, fa and fa have norm-bounded first
time derivatives
Remark 1: The type of model in Eq. (1) has been exten-

sively used in nonlinear control, filtering and stability anal-
ysis and can be always used to describe a class of actual
systems, such as missile system, servomotor system, a mass-
spring-damper system, a three-tank system, and chaotic sys-
tem and so on.

III. MAIN RESULTS
Tofind themain results, the following lemmas have been used
in this article.
Lemma 1 ([42]): For the matrices X , Y , and positive con-

stant α, the next inequalities satisfy:

XTY + Y TX ≤ αXTX + α−1Y TY

Lemma 2: [43] (Schur’s complement). For the following
symmetric matrix:

S =

[
S11 S12
ST12 S22

]

the next inequalities are equivalent:

(i) S < 0; (ii) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0;

(iii) S11 < 0, S22 − ST12S
−1
11 S12 < 0;

A. FAULT-FREE CASE
In this case, fa (t) = fs (t) = 0 satisfied, uf (t) is replaced by
u (t). The faulty system (1) can be expressed as a reference
model: ẋ (t) =

∑r

i=1
hi (ξ (t))

[
Āix (t) + B̄iu (t)

]
y (t) =

∑r

i=1
hi (ξ (t))Cix (t)

(2)

Then, the desired state vector is defined as xd = [xT1dx
T
2d ]

T ,
the error vector is e (t) = [e1 (t)T e2 (t)T ]T , where ei (t) =

xfi (t) − xid (t) , i = 1, 2. The corresponding error system is
given as:
ė1 (t) =

(
Ai11 + 1Ai11

)
e1 (t) +

(
Ai12 + 1Ai12

)
e2 (t) + ϑ1

ė2 (t) =

(
Ai21 + 1Ai21

)
e1 (t) +

(
Ai22 + 1Ai22

)
e2 (t)

+Biu (t) + ϑ2

(3)

where ϑ1(t) =
(
Ai11 + 1Ai11

)
x1d +

(
Ai12 + 1Ai12

)
x2d −

ẋ1d , ϑ2(t) =
(
Ai21 + 1Ai21

)
x1d +

(
Ai22 + 1Ai22

)
x2d − ẋ2d .

We define Ā11 =
(
Ai11 + 1Ai11

)
, Ā12 =

(
Ai12 + 1Ai12

)
,

Ā21 =
(
Ai21 + 1Ai21

)
, Ā22 =

(
Ai22 + 1Ai22

)
, Eq. (3) can be

rewritten as:{
ė1 (t) = Ā11e1 (t) + Ā12e2 (t) + ϑ1

ė2 (t) = Ā21e1 (t) + Ā22e2 (t) + Biu (t) + ϑ2
(4)

Now, we consider the follow PDC control law:

u (t) = Kϑiϑ2(t) + Khie(t) (5)

where Kϑi = −(BiTBi)−1BTi , By combining the control law
(5) with Eq. (4), the next closed-loop error model is obtained:

ė (t) =

[
Ā11 Ā12
Ā21 Ā22

]
e (t) +

[
0
Bi

]
Khie (t) +

[
I
0

]
ϑ1

=
(
Āi + B̄iKhi

)
e (t) + Īϑ1

= Aee (t) + Īϑ1 (6)

where Khi = [Ke1 ,Ke2 ]
The attenuation of the tracking error for desired trajectory

signal can be ensured by using the H∞ criterion with regard
to the disturbance error ϑ1 as:∫ tf

0
e(t)TQe(t)dt ≤ γ 2

∫ tf

0
ϑ1(t)Tϑ1(t)dt (7)

where tf is the integral final time, Q = QT > 0 is a posi-
tive definite weighting matrix that is chosen during specific
calculation process, and γ is the attenuation level.
Assumption 3: The desired trajectory signal xd (t) and its

derivative of time ẋd (t) are supposed to be known and
bounded.
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Theorem 1: For all t > 0, hi (ξ (t)) hj (ξ (t)) ̸= 0 with
Ai, B̄i defined by Eq. (6). If there exists N1 = NT

1 > 0, Yi,
a positive constant α1 and the attenuation level γ , the next
LMI conditions are hold:

T Ī H N1ETa N1
(∗) −γ 2I 0 0 0
(∗) (∗) −α−1

1 I 0 0
(∗) (∗) (∗) −α1I 0
(∗) (∗) (∗) (∗) −Q−1

 ≤ 0

where T = AiN1 + N1ATi + B̄iYi + Y Ti B̄
T
i , that means the

dynamic error system (6) is asymptotically stable and the
H∞ tracking performance (7) is ensured under the attenu-
ation level γ . Furthermore, if the conditions of LMIs can be
solved, the gain Khi can be calculated by Khi = YiN

−1
1 .

Proof.We consider the Lyapunov function candidate as:
V1 (t) = e (t)TP1e (t)withP1 = PT1 > 0. The corresponding
time derivative of V1 (t) is obtained as:

V̇1 (t) =

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t))

[
2e (t)TP1ė (t)

]
=

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2e (t)TP1

(
Aee (t)+ Īϑ1

)
]

(8)

According to Eq. (7), if Eq. (9) satisfies, the stability and
tracking issue of the error dynamic model (8) can be ensured
under the H∞ performance with an attenuation level γ :

V̇1 (t) + e (t)TQe (t) − γ 2ϑ1(t)Tϑ1(t) ≤ 0 (9)

Substituting Eq. (6) into Eq. (9), we obtain the following
inequality∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2e (t)TP1

(
Aee (t) + Īϑ1

)
+ e (t)TQe (t) − γ 2ϑ1 (t)Tϑ1 (t)] ≤ 0 (10)

Eq. (10) can be rewritten as:∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [e (t)T

(
P1Ae + ATe P1

)
e (t)

+ e (t)TP1 Īϑ1 + ϑT
1 Ī

TP1e (t) + e (t)TQe (t)

− γ 2ϑ1 (t)Tϑ1 (t)] ≤ 0

Obviously, the following inequality is obtained:[
e (t)
ϑ1(t)

]T [
P1Ae + ATe P1 + Q P1 Ī

(∗) −γ 2I

] [
e (t)
ϑ1(t)

]
≤ 0 (11)

Eq. (11) is equal to:[
P1Ae + ATe P1 + Q P1 Ī

(∗) −γ 2I

]
≤ 0 (12)

Combing Eq. (6) with Eq. (12), we have:[
U P1 Ī
(∗) −γ 2I

]
≤ 0 (13)

then Eq. (13) can be rewritten as: 4 + 14 ≤ 0 where

U = P1
(
Ai + 1Ai + B̄iKhi

)
+ (Ai + 1Ai + B̄iKhi )

TP1 + Q

4 =

[
P1

(
Ai + B̄iKhi

)
+ (Ai + B̄iKhi )

TP1 + Q P1 Ī
(∗) −γ 2I

]

14 =

[
P11Ai + 1ATi P1 0

0 0

]
Using Lemma 2 (Schur’s complement), the following condi-
tion holds:

P11Ai + 1ATi P1 = P1H1aEa + (H1aEa)T P1

≤ α1P1HHTP1 + α−1
1 ETa Ea

Eq. (13) then holds if:[
Ũ P1 Ī
(∗) −γ 2I

]
≤ 0 (14)

where Ũ = P1Ai + ATi P1 + P1B̄iKhi + (B̄iKhi )
TP1 +

α1P1HHTP1 + α−1
1 ETa Ea + Q

By utilizing Schur’s complement presented in Lemma 2
and Yi = KhiN1 to Eq. (14), the LMI conditions represented
in Theorem 1 is satisfied. These results illustrate that the
dynamic error system (6) is asymptotically stable and the
H∞ tracking performance (7) is ensured under the attenu-
ation level γ . The proof is complete.

B. FAULT DIAGNOSIS
A new state variable xs ∈ RP [44] is introduced to diagnose
the SAFs simultaneously that depends on the measured out-
put yf (t).

ẋs (t) = −Asxs(t) + Asyf (t) (15)

where −As is a Hurwitz matrix with compatible dimension.
By combining Eq. (1) with Eq. (15), the augmented system

for state and fault estimation can be written as:
˙̃xf (t) =

∑r

i=1
hi(ξ (t))[Ãix̃f (t) + B̃iuf (t)

+F̃ifa (t) + Ẽifs(t)]

ỹf (t) =

∑r

i=1
hi (ξ (t))

[
D̃ix̃f (t)

] (16)

where x̃f (t) =

[
xf (t)
xs (t)

]
, Ãi =

[
Āi 0
AsC i −As

]
,

B̃i =

[
B̄i
0

]
, F̃i =

[
F̄i
0

]
, Ẽi =

[
0

AsE i

]
, D̃i =

[
0
Ip

]
Based on the Eq. (16), in order to estimate the unmeasurable
states and SAFs at the same time, we construct the following
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fuzzy fault diagnosis observer:

˙̂x̃f (t) (t) =

∑r

i=1
hi(ξ (t))[Ãi ˆ̃xf (t) + B̃iuf (t)

+ F̃i f̂a (t) + Ẽi f̂s (t) + Liε(t)]

ε (t) = D̃i(x̃f (t) − ˆ̃xf (t))
˙̂fa (t) =

∑r

i=1
hi (ξ (t)) [−f̂a (t) − Lfa (yf (t) − ŷf (t))]

˙̂fs (t) =

∑r

i=1
hi(ξ (t))[−f̂s (t) − Lfsε(t)] (17)

where ˆ̃xf (t) is the estimate state, ε (t) is the estimate weight
vector, f̂a (t) and f̂s (t) represent the estimation of SAFs. Li,
Lfa , Lfs are the gain matrices with compatible dimension,
which need to be calculated later.

Now, we define: ẽx (t) = x̃f (t) − ˆ̃xf (t) is the state
estimation error, efa (t) = fa (t) − f̂a (t) and efs (t) = fs (t) −

f̂s (t) are faults error, respectively, χ (t) = [ẽTx e
T
fae

T
fs ]
T is a

comprehensive error matrix for calculation. Combing with
Eq. (16), the augmented error system of observation is given
as follows:

˙̃ex (t) = ˙̃xf (t) −
˙̂x̃f (t)

=

∑r

i=1,j=1
hi (ξ (t)) hj(ξ (t))[

(
Ãi − LiD̃i

)
ẽx (t)

+ F̃iefa (t) + Ẽiefs (t)] (18)

Similar to Theorem 1, we consider the H∞ performance of
the observation error augmented system. The attenuation of
the tracking error for desired trajectory signal can be ensured
by using theH∞ criterion with regard to the disturbance error
χ (t) as follow:∫ tf

0
χ (t)T Q̃χ (t) dt ≤ γ 2

∫ tf

0
21(t)T21(t)dt (19)

where tf denotes the final time, Q̃ = Q̃T =

diag[Q1,Q2,Q3] > 0 is a positive definite weighting matrix
that is chosen during specific calculation process, and γ is
the attenuation level.
Theorem 2: For all t > 0, hi (ξ (t)) hj (ξ (t)) ̸= 0 with ˜̄Ai,

C̃i, D̃i, Ẽi, Ei defined by Eq. (18). If there exists P2 = PT2 >

0, R1 > 0, R2 > 0, Z1, Z2, Z3, a positive constant α1 and
the attenuation level γ , the next LMI conditions are hold as
shown at the bottom of the page, whereW = P2 ˜̄Ai+ ˜̄ATi P2 −

Z1D̃i− D̃Ti Z1+Q1, that means the dynamic error system (18)
is asymptotically stable and the H∞ tracking performance
(19) is ensured under the attenuation level γ . Furthermore,

if the conditions of LMIs can be solved, the gains Li, Lfa , Lfs
can be obtained by using Li = P−1

2 Z1, Lfa = R−1
1 Z2, Lfs =

R−1
2 Z3.

Proof.The next candidate Lyapunov function is chosen:
V2 = ẽTx (t)P2ẽx (t)+eTfa (t)R1efa (t)+eTfs (t)R2efs (t)with

P2 = PT2 > 0, R1 > 0, R2 > 0.
According to Eq. (19), if the following inequality satisfies,

the stability of the dynamic error system can be ensured under
the H∞ performance with an specific attenuation level γ :

V̇2 (t) + χ (t)T Q̃χ (t) − γ 221(t)T21(t) ≤ 0 (20)

Eq. (20) can be rewritten as:

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2ẽTx (t)P2 ˙̃ex (t)

+ 2eTfa (t)R1ėfa (t) + 2eTfs (t)R2ėfs (t)

+ χ (t)T Q̃χ (t) − γ 221(t)T21(t)] ≤ 0 (21)

Substituting (18) into (21), we obtain the following
inequality:

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2ẽTx (t)P2((Ãi

− LiD̃i)ẽx (t) + F̃iefa (t) + Ẽiefs (t))

+ 2eTfa (t)R1
(
ḟa (t) −

˙̂fa (t)
)

+ 2eTfs (t)R2(ḟs (t) −
˙̂fs (t))] + χ (t)T Q̃χ (t)

− γ 221(t)T21(t) ≤ 0

Using Eq. (17), the next inequality can be given as:

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2ẽTx (t)P2((Ãi

− LiD̃i)ẽx (t) + F̃iefa (t) + Ẽiefs (t))

+ 2eTfa (t)R1(ḟs (t) + f̂a (t) + LfaC̃i(ẽx (t)

+ Eiefs (t))) + 2eTfs (t)R2(ḟs (t) + f̂s (t) + L fsD̃iẽx (t))]

+ χ (t)T Q̃χ (t) − γ 221(t)T21(t) ≤ 0 (22)



W P2F̃i +
(
Z2C̃i

)T
P2Ẽi +

(
Z3D̃i

)T
0 0 P2H̃ ẼTa

(∗) −2R1 + Q2 Z2Ei R1 0 0 0
(∗) (∗) −2R2 + Q3 0 R2 0 0
(∗) (∗) (∗) −γ 2I 0 0 0
(∗) (∗) (∗) (∗) −γ 2I 0 0
(∗) (∗) (∗) (∗) (∗) −α−1

2 I 0
(∗) (∗) (∗) (∗) (∗) (∗) −α2I


≤ 0
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Eq. (22), it can be rewritten as:∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [2ẽTx (t)P2(Ãi

− LiD̃i)ẽx (t) + 2ẽTx (t)P2F̃iefa (t) + ẽTx (t)P2Ẽiefs (t)

+ 2eTfa (t)R1
(
ḟa (t) + fa (t)

)
− 2eTfa (t)R1efa

+ 2eTfa (t)R1LfaC̃iẽx (t) + 2eTfa (t)R1LfaEiefs (t)

+ 2eTfs (t)R2(ḟs (t) + fs (t)) − 2eTfs (t)R2efs (t)

+ 2eTfs (t)R2LfsD̃iẽx (t)] + χ (t)T Q̃χ (t)

− γ 221(t)T21(t) ≤ 0

It can be further expressed as:∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [χT (t) (�1 + Q̃)χ (t)

+ 2χT (t) 21 − γ 221 (t)T21 (t)] ≤ 0

where as (23), shown at the bottom of the page. Then Eq. (23)
can be rewritten as:

0 + 10 ≤ 0 (24)

where as shown at the bottom of the next page. Using Lemma
2 (Schur’s complement), we obtain the following inequality:

P21Ãi + 1ÃTi P2 = P2H̃1aẼa +

(
H̃1aẼa

)T
P2

≤ α2P2H̃H̃TP2 + α−1
2 ẼTa Ẽa (25)

Using Eq. (25), Eq. (24) then holds if as (26), shown at
the bottom of the next page, where Ŵ = P2

(
˜̄Ai − LiD̃i

)
+(

˜̄Ai − LiD̃i
)T

P2

+α2P2H̃H̃TP2 + α−1
2 ẼTa Ẽa + Q1

By utilizing Schur’s complement presented in Lemma 2 and
Z1 = P2Li,Z2 = R1Lfa , Z3 = R2Lfs to Eq. (26), the LMI con-
ditions represented in Theorem 2 is satisfied. These results
illustrate that the dynamic error system (18) is asymptotically
stable and the H∞ tracking performance (19) is ensured
under the attenuation level γ . The proof is complete.

C. FTTC DESIGN
Up to present, the estimation of system states and SAFs have
been obtained by solving the LMIs proposed in Theorem 2.
The following important issue is to design an effective control
law to compensate the sensor and actuator fault so that the
states of the system can track desired trajectory precisely after
the sensor fault and actuator fault occur simultaneously.

We define ex (t) = x (t) − xf (t) , ey (t) = y (t) − yf (t)
as the error of the state with fault and without fault. Then,

we define a new state variable as: z (t) =

[
ex (t)∫ t

0 ey (t) dt

]
,

and ez (t) = z (t) − ẑ (t) represent the error of z (t) and its
estimation. The augmented system can be easily obtained as
follows:

ż (t) =

∑r

i=1
hi (ξ (t)) [Ǎiz (t) + B̌i

(
u (t) − uf (t)

)
+ F̌ifa (t) + Ěifs (t)] (27)

where Ǎi =

[
Āi 0
Ci 0

]
, B̌i =

[
B̄i
0

]
, F̌i =

[
−F̄i
0

]
, Ě =[

0
−E i

]
Now, we define a new fault tolerant control law:

u (t) − uf (t) = KPi
(
x (t) − x̂f (t)

)
+ KIi

∫ t

0

(
y (t) − yf (t)

)
dt − f̂a (t)

− f̂s (t) (28)

where KPI i = [KPi ,KIi ].
Then, substituting Eq. (28) into Eq. (27), the augmented

system can be expressed as:

ż (t) =

∑r

i=1
hi (ξ (t)) [

(
Ǎi + B̌iKPI i

)
z (t)

− B̌iKPI iez + B̌iefa + B̌iefs +

(
F̌i − B̌i

)
fa (t)

+ (Ěi − B̌i)fs (t)] (29)

Theorem 3: For all t > 0, hi (ξ (t)) hj (ξ (t)) ̸= 0 with ˇ̄Ai,
B̌i defined by Eq. (29). If there exists P3 = PT3 > 0, P4 =

�1 + Q̃ =


W̃ P2F̃i +

(
R1LfaC̃i

)T
P2Ẽi +

(
R2LfsD̃i

)T
0 0

(∗) −2R1 + Q2 R1LfaEi R1 0
(∗) (∗) −2R2 + Q3 0 R2
(∗) (∗) (∗) −γ 2I 0
(∗) (∗) (∗) (∗) −γ 2I

 ≤ 0

Ãi =
˜̄Ai + 1Ãi, 1Ãi =

[
1Ai 0
0 0

]
,

˜̄Ai =

[
Ai 0
AsDi −As

]
, 21 =

 0
R1(ḟa (t) + fa (t))
R2(ḟs (t) + fs (t))


W̃ = P2

(
Ãi − LiD̃i

)
+

(
Ãi − LiD̃i

)T
P2 + Q1 (23)
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PT4 > 0, and a positive constant α3, α4, β1, β2 and β3, such
that the next LMI conditions are held:[

0 5

(∗) 9

]
≤ 0 where

0

=


P3 ˇ̄Ai + ˇ̄ATi P3 0 P3

(
B̌iKPI i

)T
(∗) P4 ˇ̄Ai + ˇ̄ATi P4 0 0
(∗) (∗) −(β2 + β1)−1I 0
(∗) (∗) (∗) −β2I


5

=


P3Ȟ ĚTa 0 0 0 0

0 0 P4
(
B̌iKPI i

)T
P4Ȟ ĚTa

0 0 0 0 0 0
0 0 0 0 0 0


9

=



−α−1
3 I 0 0 0 0 0
(∗) −α3I 0 0 0 0
(∗) (∗) −β−1

3 I 0 0 0

(∗) (∗) (∗) −(β−1
3 + β−1

1 )
−1

0 0
(∗) (∗) (∗) (∗) −α−1

4 I 0
(∗) (∗) (∗) (∗) (∗) −α4I


that means the dynamic error system (29) is asymptotically
stable. Furthermore, if the conditions of LMIs can be solved,
the gains KPI i can be obtained.

Proof.The following Lyapunov function is chosen as:
V3(t) = zT (t)P3z (t) + eTz (t)P4ez (t) with P3 = PT3 >

0, P4 = PT4 > 0

The time-derivative of V3(t) is formulated as:

V̇3(t) =

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t))

×

[
2zT (t)P3ż (t) + 2eTz (t)P4ėz (t)

]
(30)

Substituting Eq. (29) into Eq. (30) and Using Lemma 1,
we have:

V̇3(t)≤
∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t)) [zT (t) (P3

(
Ǎi+B̌iKPI i

)
+

(
Ǎi + B̌iKPI i

)T
P3)z (t)

+ eTz (t)
(
P4

(
Ǎi + B̌iKPI i

)
+

(
Ǎi + B̌iKPI i

)T
P4

)
× ez (t) − 2zT (t)P3B̌iKPI iez + 2zT (t)P3B̌iefa

+ 2zT (t)P3B̌iefs

+ 2zT (t)P3
(
F̌i − B̌i

)
fa (t)

+ 2zT (t)P3
(
Ěi − B̌i

)
fs (t)]

≤

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t))

×

[
ςT (t) �2 (t) ς (t) + ςT (t) 22

]
≤

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t))

[−λmin(�2 (t)) ∥ς (t)∥2 + ∥22∥ ς (t)]

≤

∑r

i=1,j=1
hi (ξ (t)) hj (ξ (t))

× [−τ1(∥ς (t)∥ −
τ2

τ1
)
2
+

τ 22

τ1
]

where λmin(�2 (t)) denotes the smallest eigenvalue of �2 (t),
and τ1 = −λmin(�2 (t)), ς (t) = [z(t)ez(t)]T

22

0 =


W̃ P2F̃i +

(
R1LfaC̃i

)T
P2Ẽi +

(
R2LfsD̃i

)T
0 0

(∗) −2R1 + Q2 R1LfaEi R1 0
(∗) (∗) −2R2 + Q3 0 R2
(∗) (∗) (∗) −γ 2I 0
(∗) (∗) (∗) (∗) −γ 2I



10 =


P21Ãi + 1ÃTi P2 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Ŵ P2F̃i +

(
R1LfaC̃i

)T
P2Ẽi +

(
R2LfsD̃i

)T
0 0

(∗) −2R1 + Q2 R1LfaEi R1 0
(∗) (∗) −2R2 + Q3 0 R2
(∗) (∗) (∗) −γ 2I 0
(∗) (∗) (∗) (∗) −γ 2I

 ≤ 0 (26)
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=

[
2P3(B̌iefa+B̌iefs+

(
F̌i − B̌i

)
fa (t) +

(
Ěi − B̌i

)
fs (t))

0

]
(31)

Now, we aim to obtain the gain KPI i such that stability of
the augmented system (29) can be guaranteed. Therefore, the
Eq. (31) should be satisfied:

�2 (t) =

[
G −P3B̌iKPI i
(∗) J

]
≤ 0 (32)

where G = P3
(
Ǎi + B̌iKPI i

)
+

(
Ǎi + B̌iKPI i

)T
P3,

J = P4
(
Ǎi + B̌iKPI i

)
+

(
Ǎi + B̌iKPI i

)T
P4

Then, Eq. (32) can be given as:[
G̃ −P3B̌iKPI i
(∗) J̃

]
≤ 0 Where Ǎi =

ˇ̄Ai + 1Ǎi, ˇ̄Ai =[
Ai 0
Ci 0

]
, 1Ǎi =

[
1Ai 0
0 0

]
G̃ = P3

(
ˇ̄Ai + B̌iKPI i

)
+(

ˇ̄Ai + B̌iKPI i
)T

P3 + P31Ǎi + 1ǍTi P3

J̃ = P4
(

ˇ̄Ai + B̌iKPI i
)

+

(
ˇ̄Ai + B̌iKPI i

)T
P4 + P41Ǎi +

1ǍTi P4 Using Lemma 1, we have:[
311 0
0 322

]
≤ 0 (33)

where

311 = P3 ˇ̄Ai + ˇ̄ATi P3 + (β2 + β1)P3P3

+ β−1
2

(
B̌iKPI i

)T
B̌iKPI i + α3P3HHTP3

+ α−1
3 ETa Ea

322 = P4 ˇ̄Ai + ˇ̄ATi P4 + β3P4P4 + (β−1
3

+ β−1
1 )

(
B̌iKPI i

)T
B̌iKPI i + α4P4HHTP4

+ α−1
4 ETa Ea

By utilizing Schur’s complement presented in Lemma 2 to
Eq. (33), the LMI conditions represented in Theorem 3 is sat-
isfied. These results illustrate that the dynamic error system
(29) is asymptotically stable. Furthermore, if the conditions
of LMIs can be solved, the gains KPI i can be obtained. The
proof is complete.
Remark 2: The block scheme of FTTC is shown in

FIGURE 1. The FTTC is designed to estimate and compen-
sate the SAFs simultaneously which ensures the achievement
of a good tracking performance.Whereas, researches in many
articles are only investigated a single fault (sensor fault or
actuator fault).
Remark 3: All the states of the nonlinear system are

unmeasurable, the states of the reference model can be calcu-
lated. The output of the faulty system is measurable. Utilizing
the proposed method, all the states of the system can be esti-
mated by using the value of the output of the faulty system.

FIGURE 1. The block scheme of FTTC.

FIGURE 2. Inverted pendulum on a cart.

IV. EXAMPLE AND SIMULATION
The validity of the mentioned observer-based faults toler-
ant tracking controller is illustrated in this section by two
practical examples: Inverted Pendulum on a Cart (Figure 2)
and Overhead Crane System (Figure 12). Firstly, three differ-
ent types of actuator faults have been applied in a inverted
pendulum on a cart system to show the performance of
the compensation and tracking of our method. For further
explanation, an contrast work with the method investigated
in [45] have been carried out to illustrate the advantage of
our approach. Finally, an overhead crane system (Figure 3)
using our method is utilized to give the compared result with
non-FTC method.
Example 1 (Inverted Pendulum on a Cart): The angular

position tracking issue of an inverted pendulum system with
SAFs and uncertainty is considered to illustrate our proposed
FTTC approach. The dynamic system is represented as:

ẋf1 = xf2

ẋf2 =
(m+M)gsin

(
xf1

)
−mlx2f2

sin
(
xf1

)
cos

(
xf1

)
−cos

(
xf1

)
u

l( 13m+
4
3M+msin2(xf1 ))

+ fa

yf =

[
1 0
0 1

] [
xf1
xf2

]
+

[
0
1

]
fs

(34)

where x1 and x2 represent the angular position and velocity
of the inverted pendulum system, respectively. u(t) is control
input to the cart.

In this example, in order to meet real-world engineering
conditions, we choose the same parameters as [46]: m =

0.1kg and M = 1kg represent the masses of the inverted
pendulum and cart, respectively, 2l = 1m is the length of
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the pendulum, g = 9.8m/s2. In order to simplify the design
process, the angular position is assumed to be chosen as:
−π/6 ≤ xf1 ≤ π/6, and the angle velocity is selected as:
−0.5 ≤ xf1 ≤ 0.5. Note that msin2(xf1 ) is small regarding to
1
3m+

4
3M , it is assumed to be neglected. Moreover, angle xf1

is small such that lim t−0
sin

(
xf1

)
xf1

= 0 is satisfied. Therefore,
Eq. (34) can be expressed as follows:

[
ẋf1
ẋf2

]
=

 0 1
(m+M)g−mlx2f2

cos
(
xf1

)
l
(
1
3m+

4
3M

) 0

 [
x1
x2

]

+

[
0

− cos
(
xf1

)
l( 13m+

4
3M )

]
u+

[
0
1

]
fa

yf =

[
1 0
0 1

] [
xf1
xf2

]
+

[
0
1

]
fs

Considering the premise variables as ξ1 = x2f2 cos
(
xf1

)
and

ξ2 = cos
(
xf1

)
, for the region : −π/6 ≤ xf1 ≤ π/6 and

−0.5 ≤ xf2 ≤ 0.5, we have:
ξ1 = M1a1 + M2a2, ξ2 = N1b1 + N2b2, M1 =

a1−ξ1
a1−a2

,
M2 = 1 −M1, a1 = maxξ1 = 0.25, a2 = minξ1 = 0,
N1 =

b1−ξ1
b1−b2

, N2 = 1 − N1, b1 = maxξ2 = 1, a2 =

minξ2 =
√
3/2.

Thus, the inverted pendulum system (34) is expressed as
the next T-S fuzzy model:

Rule i: if ξ1 (t) is M1iandξ2 (t) isN2i

then
{
ẋf (t) = Āixf (t) + B̄iuf (t) + F̄ifa (t)
yf (t) = Cixf (t) + Eifs(t)

for i =

1, 2, 3, 4 where Āi =

[
0 1

(m+M)g−mlξ1
l( 13m+

4
3M )

0

]
, B̄i =[

0
−ξ2

l( 13m+
4
3M )

]
,

F̄i = Ei =

[
0
1

]
, Ci =

[
1 0
0 1

]
.

Uncertain matrix is chosen as: H =

[
0
2

]
,Ea =

[10] , H̃ = Ȟ = [0 2 0 0]T , Ẽa = Ěa = [1 0 0 0] .
In the fault free case, parameters in Theorem 1 are chosen

as: Q = 10−3
× I2×2, α1 = 0.1. We can obtain the feedback

gains Khi for i = 1, 2, 3, 4 by solving the LMI conditions
represented in Theorem 1.

Kh1 = [431.4511 99.0019]

Kh2 = [382.2937 82.7523]

Kh3 = [550.9974 123.8027]

Kh4 = [339.5736 74.3023]

In the post-fault case, for the purpose of the design of the
fuzzy faults and states observer according to Theorem 2, cor-
responding parameters is first selected as:Q1 = 10−3

× I4×4,
Q2 = Q3 = 10−3, α2 = 1. In the sequel, by solving the LMI
conditions in Theorem 2, the observer gains Li, Lfai , Lfsi for

i = 1, 2, 3, 4 are calculated.

L1 = L2 = 103 ×


−0.1132 0.8039
−0.5006 3.2391
−0.0115 0.0799
−0.0053 0.0174

 ,

Lfa1 = Lfa2 = 109 × [2.6678 − 0.7118],

Lfs1 = Lfs2 = 1011 × [0.4286 − 1.6296]

L3 = L4 = 103 ×


−0.1615 1.0986
−0.6998 4.4673
−0.0170 0.1138
−0.0063 0.0223

 ,

Lfa3 = Lfa4 = 108 × [8.0108 − 2.1173],

Lfs3 = Lfs4 = 1010 × [1.5323 − 6.6513]

In Theorem 3, we choose the parameters as: α3 = α4 =

0.1, β1 = β2 = β3 = 1. Then, the control gains KPI i for
i = 1, 2, 3, 4 are computed.

KPI i1 = [159.634893.911615.8814 − 1.1147]

KPI2 = [144.338490.287313.23630.6195]

KPI3 = [152.5033113.095513.53690.0187]

KPI4 = [134.7337110.612712.7018 − 0.1958]

The initial system states x (0) = [0.10], x̂ (0) = [0.050]
and the reference trajectory xd (t) = [0.15 sin (1.5t)0.15 ×

1.5cos(1.5t)] are used in this example.
Aiming to evaluate our proposed scheme, two different

sensor and actuator faults are chosen in Case 1 and Case 2 to
explain the effectiveness of the proposed approach in fault
diagnosis and tolerant. And, in Case 3, the control approach
in Bouarar et al. [45] is utilized as a comparison to explain
the advantage of the mentioned approach.

Case 1. Exponential actuator fault
In this Case, we select the SAFs signal as following:

fs =

{
1.5 sin (t − 1) 5 ≤ t < 12
0 else

fa =

{
52(1 − 1.5sin(t − 8))exp(−0.5t)8 ≤ t < 20
0 else

According to Theorem 1-3 and observer (17) based control
law (28), not only converge the states to the reference trajec-
tories but also estimate the SAFs vectors at the same time.

Figure 3. represents the reference states, faulty system
states and their estimates. The control input of reference
model and fault tolerant tracking control signal are illustrated
in Figure 4. Sensor fault fs, actuator fault fa, and its estimate
are given in Figure 5. It is noted that the mentioned fuzzy
observer is not only able to estimate SAFs accurately, but
also estimate the states of the faulty system precisly. Despite
the time-varying bounded uncertainties, a desired estimate
quality can be obtained.

Furthermore, the simulation process can be divided into
three key areas. In the first parts, at 5 ≤ t < 8, only sensor

VOLUME 11, 2023 82175



C. Li, Y. Xia: Observer-Based FD and FTTC for T-S Fuzzy Uncertain System Affected by Simultaneous SAFs

FIGURE 3. Reference states, states of faulty system and their estimates.
Black dashed lines show reference signals, blue solid lines represent the
real states obtained by the mentioned scheme, red dashed lines give the
observed states. (a) angular position. (b) angular velocity.

FIGURE 4. Reference and FTTC control signals. blue solid line show the
control input signal of nominal system, red solid line show the control
input signal with FTTC.

fault is applied in the system. After that, at 8 ≤ t < 12,
both SAFs apply in the system. At last, at 12 ≤ t < 20,
the actuator fault is considered. It is obviously observed that,
despite in the presence of both sensor and actuator faults,
the mentioned fuzzy observer estimates unmeasurable states
and faults precisely in Figure 3 and Figure 5, the FTTC
law compensates the SAFs simultaneously and ensures the
tracking performance of the faulty system. Figure 5(b) and
Figure 5(d) shows that the error between the estimated value
and the actual value are not exceed 2% at the steady stage of
simulation.

Case 2. Time-varying actuator fault
In [39] and [45], only constant actuator fault is considered.

In order to show the advantage of our method, the time

FIGURE 5. Sensor fault fs, actuator fault fa, its estimate and the error.
Black dashed lines show reference faults signal, red solid lines represent
the observed faults. (a) sensor fault fs and its estimate. (b) the error of fs
and its estimate. (c) actuator fault fa, and its estimate. (d) the error of fa
and its estimate.

varying actuator fault signal is considered in this case. The
sensor and actuator faults are chosen as:

fs =

{
2 sin (t − 10) 10 ≤ t < 20
0, else

fa =

 0.7 +

(
0.05
5

)
t14 ≤ t < 25

0, else
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FIGURE 6. Reference states, states of faulty system and their estimates.
Black dashed lines show reference signal, blue solid lines represent the
real states of the faulty system obtained by the proposed approach, red
dashed lines give the observed states. (a) angular position. (b) angular
velocity.

FIGURE 7. Reference and FTC signals. blue solid line show the control
input signal of reference model, red solid line show the control input
signal with FTC.

The simulation results are given in Figure 6 - Figure 8.
Despite the time varying actuator fault signal is applied in the
dynamic system, a satisfied estimate quality can be obtained
and the FTTC method compensates the sensor and actuator
fault effect and ensures the states of the faulty system conver-
gence to the reference signal.

Case 3. Comparison results
The actuator and sensor faults have the following form in

this case:

fs =

{
2 sin (t − 6) 10 ≤ t < 17
0, else

FIGURE 8. Sensor fault fs, actuator fault fa, and its estimate. Black
dashed lines show the reference signal of faults, red solid lines represent
the observed faults. (a) sensor fault fs and its estimate. (b) actuator fault
fa and its estimate.

fa =

{
0.15sin(1.5(t − 10)) 10 ≤ t < 20
0, else

To explain the effectiveness of the proposed FTTC
approach, comparisons have been made between the pro-
posed method in this article and the proposed one in [45].
By solving the LMI conditions (55) represented in [45],
we obtain the observer and tracking control gains as
following:

L11 = [104.3249 96.1468] ,

L12 = [134.8041 71.4872] ,

L13 = [115.1214 86.3114] ,

L14 = [126.2125 73.5021]

L21 = 85.4412,L22 = 88.7540,

L23 = 81.0140,L24 = 86.3201

K1 = [1.2015 − 0.8143] ,

K2 = [1.3325 − 0.7430] ,

K3 = [0.9910 − 0.7723] ,

K4 = [1.1809 − 0.8137]

K f
1 = 0.0130,K f

2 = −0.0083,

K f
3 = 0.0251,K f

4 = −0.0061.

The method in [45] is applied into the faulty system to
compare our fault estimation and fault tolerant tracking
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FIGURE 9. Reference states, states of faulty system, estimation and states
of [45]. Black dashed lines show the reference signal, blue solid lines
represent the real states obtained by the mentioned approach, red
dashed lines show the observed states, green solid lines give the real
states obtained by the method mentioned in [45]. (a) angular position.
(b) error of angular position. (c) angular velocity. (d) error of angular
velocity position.

control scheme. The simulation results are shown in Figure 9-
Figure12. The comparison results of states tracking are pre-
sented in Figure 9. From Figure 9(b) and Figure 9(d), it can

FIGURE 10. Reference, FTC signals and the method in [45]. blue solid line
show the control input signal of reference model, red solid line show the
control input signal with FTC, green solid line show the control signal of
the method in [45].

FIGURE 11. The comparison of actuator fault estimation. Black dashed
line represent the reference of actuator fault, red solid line show the
observed actuator fault obtained by the proposed approach, blue solid
line give the observed actuator fault obtained by the approach proposed
in [45].

FIGURE 12. Sensor fault fs and its estimate. Black dashed line represent
the reference of sensor fault, red solid line show the observed sensor
fault obtained by the proposed method.

be noted that the tracking performance of the states were
enhanced by 26%when the faults occurred. The control input
of reference model, fault tolerant tracking control signal and
the control signal of the method in [45] are illustrated in
Figure 10. The comparison of actuator fault estimation is
represented in Figure 11. Figure 12 gives the result of the
sensor fault fs and its estimate using our approach.
It is worth pointing out that the performance of FTTC

depends on the faults estimate quality. From Figure 9, it is
obviously noted that the proposed FTTCmethod can not only
compensate the sensor and actuator faults simultaneously but
also achieve good tracking performance of the faulty system.
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FIGURE 13. The schematics of two-dimensional overhead crane dynamic
system.

TABLE 1. MSE comparison of the two controllers in different estimations.

In Figure 11, it is obviously noted that the mentioned fuzzy
observer can obtain better estimate quality for the actuator
fault signal than the mentioned observer in [45]. Table 1 gives
a general overview of the comparison results from the two
methods based on MSE. It can be seen that all the MSE of
the proposed method are smaller than the observer in [45] in
the estimation of unmeasured states and SAFs.
Remark 4: Our objective is to find more relaxed and more

accurate results. Therefore, the fault-free system is used as a
standard reference model by which the tracking control law
is designed. Then, we constructed the novel fuzzy observer to
estimate the unmeasured state and SAFs. Moreover, we have
obtained a good estimation quality of state and both sensor
and actuator fault. Indeed, the fault tolerant control track
state to the desired trajectories. As conclusion, we prove
the efficiency of our method and we can conclude that our
method upgrade the result given in [45]. The tracking prob-
lem is addressed with more complex actuator faults such as
exponential actuator fault and time varying actuator fault.
Whereas, in many researches [38], [39], [40], [41], only the
constant actuator fault is studied.
Example 2 (The Overhead Crane System): The dynami-

cal 2-D model of the overhead crane system is shown in
Figure 13 [47], the nonlinear dynamic system is represented
as follows:{

(M + m) ẍ + ml
(
θ̈cosθ − θ̇sinθ

)
= u− Ct ẋ

mẍcosθ + mlθ̈ + mgsinθ = 0

In order to give the state space equations of the overhead
crane system, the state vector x = [x1x2x3x4]T = [xθ ẋθ̇]T

is selected, u represents control input signal. The state-space
expression of the dynamic system is given as the following
form:

ẋ1
ẋ2
ẋ3
ẋ4



=


0 0 1
0 0 0
0 mgcosx2sinx2(

M+msin2x2
)
x2

−Ct
M+msin2x2

0
1

mlx4sinx2
M+msin2x2

0 −(M+m)gsinx2
l
(
M+msin2x2

)
x2

Ctcosx2
l
(
M+msin2x2

) −mx4sinx2cosx2
M+msin2x2



+


0
0
1

M+msin2x2
−cosx2

l(M+msin2x2)

 u

Since actuator fault in the dynamic nonlinear system is
an important subject of interest here, we define Fi = Bi,
i = 1, · · ·, r . The common approach is always used to
model any change in the system parameters with additive
form or any fault which is regarded as an offset in an actuator
[48,2]. Moreover, the angle θ in overhead crane system is
always small so that the expression lim

t−0

sinx2
x2

= 1 satisfies, the

overhead crane system with sensor and actuator faults can be
written as:

ẋf1
ẋf2
ẋf3
ẋf4



=


0 0 1
0 0 0
0

mgcosxf2
M+msin2xf2

−Ct
M+msin2xf2

0
1

mlxf4 sinxf2
M+msin2xf2

0 −(M+m)g
l
(
M+msin2xf2

) Ctcosxf2
l
(
M+msin2xf2

) −mx4sinxf2cosxf2
M+msin2xf2



xf1
xf2
xf3
xf4



+


0
0
1

M+msin2xf2
−cosxf2

l
(
M+msin2xf2

)

 (u+ fa)

yf =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



xf1
xf2
xf3
xf4

 +


0
0
0
1

 fs (35)

Similarly with example 1, tomeet the situations of practical
application, the same crane parameters are chosen as [47]:
M = 10kg,m = 4kg,l = 0.5m,Ct = 0.1Ns/m, and g =

9.8m/s2.
The same crane parameters are chosen as [47]: M =

10kg,m = 4kg,l = 0.5m,Ct = 0.1Ns/m, and g =

9.8m/s2. The payload angle position is chosen as: −π/12 ≤
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FIGURE 14. Results of the overhead crane system applied FTTC without
faults, FTTC with faults and non-FTC with faults, respectively. Black
dashed lines show the desired signal, green solid lines represent the real
states obtained by FTTC without faults, red dashed lines give the
observed state obtained by FTTC with faults, blue solid lines represent the
real state by non-FTC with faults. (a) position. (b) swing angle.

FIGURE 15. FTTC control signals with faults and FTTC control signals
without faults. Blue solid line show the control input signal of FTTC
control signals with faults, red solid line show the control input signal of
FTTC control signals without faults.

θ (t) ≤ π/12, and the angle velocity is chosen as: −π/4 ≤

θ̇ (t) ≤ π/4. Furthermore, ξ1 (t) =
1

M+msinx2
, ξ2 (t) =

cosx2, ξ3 (t) = x4sinx2 are premise variables; also, ξ1,max =

1/M , ξ1,min = 1/(M + msin2(π/12), ξ2,max = 1, ξ2,min =

cos(π/12), ξ3,max =
π
4 sin(π/12), ξ3,min = −

π
4 sin(π/12).

Therefore, the Eq. (35) is rewritten as:
Rule i: if ξ1 (t) isF1iandξ2 (t) isF2iandξ3 (t) isF3i then{
ẋf (t) = Āixf (t) + B̄i(uf (t) + fa(t))
yf (t) = D̄ixf (t) + Eifs(t)

for i = 1, · · · , 8.

FIGURE 16. Sensor fault fs, actuator fault fa, and its estimate. Black
dashed lines show reference signal of faults, red solid lines represent the
observed faults. (a) sensor fault fs and its estimate. (b) actuator fault fa
and its estimate.

where

Āi =


0 0 1
0 0 0
0 mgξ2ξ1 −Ctξ1

0
1

mlξ3ξ1
0 −(M+m)gξ1

l
Ct ξ2ξ1
l −mξ3ξ2ξ1

 ,

B̄i =


0
0
ξ1

−ξ2ξ1
l

 , D̄i =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,Ei =


0
0
0
1


Uncertain matrix is chosen as: H = [000.20.5]T ,Ea =

[0 2 0 0] , H̃ = Ȟ = [000.20.50000]T ,

Ẽa = Ěa = [0 2 0 0 0 0 0 0] .

The SAFs are chosen as:

fs =

{
1.5sin(t − 10) 5 ≤ t < 15
0 else

fa =


1.5 5 ≤ t < 8

2sin(t − 11) 11 ≤ t < 16
0 else

In the fault free case, we choose the parameter as: Q =

10−2
× I4×4, α1 = 0.1, we can obtain the feedback gains

Khi for i = 1, 2, 3, 4 by solving the LMIs conditions given in
Theorem 1. For the purpose of the design of the fuzzy faults
and states observer according to Theorem 2, we choose the
design parameters as Q1 = 10−2

× I8×8, Q2 = Q3 = 10−2,
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α2 = 1. then, by solving the LMIs conditions in Theorem
2, the observer gains Li, Lfai , Lfsi for i = 1, · · · , 8 can be
obtained. In Theorem 3, we chosen the parameters as: α3 =

α4 = 0.01, β1 = β2 = β3 = 10. Then, the control gains KPI i
for i = 1, 2, 3, 4 can be computed.

Besides, the initial system states x (0) = x̂ (0) = [0 0 0 0]
and the reference trajectory xd (t) = [0.6 0 0 0] are used.
Aiming to evaluate the proposed method, the comparison

was carried out to illustrate the effectiveness of the proposed
control method. Now, comparison was provided in three dif-
ferent cases: 1) the FTTC method was utilized without any
sensor and actuator faults; 2) the FTTC method was utilized
with sensor and actuator faults; 3) non- FTTC method was
used when sensor and actuator faults happened.

Figure 14. and Figure 16. represent the performance of
the proposed FTTC method. From Figure 14, it is observed
that the trolley is driven from the initial point to the desired
position with satisfied tracking performance when no faults
occur. However, when we have applied the faults but no FTC
in the system, the position of the trolley can not converge
to the desired point and the big angle oscillation occurs.
By comparison, the proposed FTTC method can compensate
the faults effectively and ensure the better tracking perfor-
mance between the reference signal and the states of faulty
system. It can be obviously seen that, despite the existence
of faults and uncertainty, the degradation of tracking con-
trol performance is not remarkable since the faults applied
in the system are well estimated and compensated by the
proposed FTTC method. The control input of FTTC control
signals with faults and FTTC control signals without faults
are illustrated in Figure 15.The considered fault signals and
their estimate are given in Figure 16.
Remark 5: Theoretically, it should be noted that any type

of bounded sensor and actuator faults can be attenuated by the
proposed method in Example 1 and Example 2. The design
parameter values, such as attenuation coefficient γ , should be
chosen properly to deal with larger faults.

V. CONCLUSION
In this paper, a new fuzzy observer-based FD and FTTC
approach have been proposed for a T-S fuzzy uncertain sys-
tem affected by SAFs. The mentioned observer can estimate
unmeasurable states and SAFs of the faulty system simultane-
ously.Meanwhile, the developed PI-type control law achieves
satisfactory control performance including the stability and
tracking issue in spite the presence of faults and uncertainties.
The fault diagnosis and tracking conditions are formulated in
terms of LMIs using an appropriate Lyapunov function. For
investigating the advantage of the proposed FTTC method,
it is used to control an Inverted Pendulum system and an
Overhead Crane system. Simulation results show that the sta-
bility and favorable tracking performance can be achieved by
using the proposed FTTC method. The results presented that
the tracking performance was enhanced by 23% compared
with the method in [45] when the faults occurred in Case 3 of
Example 1. The estimation error of SAFs in all cases were

not exceed 2% at the steady stage when the proposed method
was utilized. It is important to extend the proposed FTTC
method to the fuzzy uncertain nonlinear systems affected by
time-delay and disturbances and try other observers to oba-
tian better performance in diferenct cases, such as: adaptive
adjustable dimension observer [49] and integrated observer
[50], which would be considered as the further work.
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