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ABSTRACT This paper proposes a feasible anti-disturbance constrained control algorithm for a class
of typical permanent magnet synchronous motor (PMSM) driven-based single-joint flexible manipulator
systems with input saturation and angular velocity constraint. Firstly, by actuating with a surface-mounted
PMSM, and setting the d-axis current as zero, the single-joint flexible manipulator is converted into a
normal state space model. Secondly, compared with classical harmonic or linear disturbance, the exogenous
disturbance model with configurable parameters and the associated disturbance observer (DO) are continu-
ously introduced to dynamically estimate those unknown irregular disturbance. Moreover, by combining the
convex hull representation of the saturating input with the suggested adaptive law, an efficient adaptive active
anti-disturbance controller is designed to ensure the stability of closed-loop manipulator systems. By using
convex optimization technique, not only the dynamic tracking for the rotation position but also the angular
velocity constraint can be guaranteed simultaneously. Finally, simulation results for three different kinds of
disturbances are showed to demonstrate the superiority of the proposed method.

INDEX TERMS Anti-disturbance control, single-joint flexible manipulators, disturbance observer (DO),
permanent magnet synchronous motor (PMSM), input saturation.

I. INTRODUCTION
For the past few years, flexible manipulator systems have
increasingly become an indispensable part of the automa-
tion industry, such as intelligent manufacturing, aerospace,
medical industry, and so on [1], [2], [3], [4]. Compared
with generic rigid mechanical arms [5], [6], flexible manip-
ulators have the superiorities of lower energy consumption,
higher safety, lighter structure, and stronger adaptability in
the environment. However, most early results of manipulator
control are only focused on the open-loop control method.
In the process of control, the design and function of the
driver are also often ignored [7], [8]. PMSMs are commonly
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used as the driving equipment for robotic manipulator servo
control due to their high power factor, strong starting torque,
and highly efficient properties [9], [10]. Nowadays, the atti-
tude control issue of flexible manipulator systems driven
by PMSM is becoming increasingly prominent in modern
society [11], [12]. In [11], in order to achieve precise trajec-
tory tracking and position monitoring, a nonlinear controller
integrating adaptive Kalman filter load torque observer with
neural networks (NNs) was presented for the n-joint robot
system powered by PMSM. The famous H∞ and L2/L∞

methods were introduced to recede the influences of the
disturbances existing in an uncertain flexible manipulator
system [12]. However, during the movement of the manip-
ulator, it is inevitable to suffer from irregular disturbances
and state constraints, including input saturation and upper
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bound on angular velocity, which makes controller design
more complicated. How to explore a simple and feasible anti-
disturbance algorithm with different constraints is still an
open problem.

In the field of automatic control, the theory of anti-
disturbance control has received extensive attention in recent
years. Many advanced anti-interference methods have been
proposed to suppress or attenuate the effects of different
types of disturbance, including H∞ control [13], adaptive
control [14], output regulation theory [15] and disturbance-
observer-based control (DOBC) [16], [17]. Among them,
the DOBC method proposed in the 1980s is widely used
in linear and nonlinear systems [16]. As a kind of active
anti-disturbance method with a simple structure and easy to
implement, DOBC has been successfully applied to different
controlled systems and realized favorable anti-disturbance
performance. For example, stochastic jump systems, multi-
agent systems, and aerial vehicle systems. Notably, the
DOBC technique typically requires information on the fre-
quency and amplitude of unidentified disturbances, making
it simple to estimate and solve linear or regular distur-
bances, such as harmonic and constant disturbances [17].
When influenced by those nonlinear irregular disturbances,
the pre-existing disturbances modeling and estimation tech-
niques will be invalid. Thus, exploring more effective dis-
turbance modeling tools and methods is very important.
Dynamical neural networks (DNNs) have better memory
capabilities than other NN models, which allows them to be
especially well-suited for modeling those irregular dynam-
ics [18], [19], [20]. In [20], by conducting the exogenous
DNN disturbance models, a DOB adaptive control technique
with configurable parameters is proposed to achieve dynam-
ical estimation and attenuation of irregular disturbances.

As we all know, during the manipulator operation, the
phenomenon of constraints can not be avoided. In non-
linear constraints, actuator saturation can weaken almost
all control equipment and severely degrade system perfor-
mance [21], [22]. In response to this issue, many scholars
began to study saturation actuator control systems to cre-
ate effective saturation control algorithms [22], [23], [24].
In [22], the hyperbolic tangent function and the Nussbaum
function are applied to eliminate the nonlinear term result-
ing from input saturation. It has also been suggested to
employ bilinear matrix inequalities (BLMIs) or linear matrix
inequalities (LMIs) strategy to implement the polytopic tech-
niques for compressing saturation functions into convex
packages [23], [24]. Another typical constraint is the state
constraint problem, for example, the upper bound constraint
of angular velocity in flexible manipulator systems. In light
of this, a variety of solutions to work out the state constraint
problem have been put forward, including model predictive
control [25], reference governor [26], barrier Lyapunov func-
tions (BLFs) [27] and so on. However, when simultaneously
facing saturating actuator, state constraints, as well as differ-
ent types of disturbances, different degrees of couplings are
bound to occur. Under such circumstances, it is worth further

studying to find an effective controller with the requirement
for multiple objectives.

The aforementioned research served as the inspiration for
this paper. An effective DOB anti-disturbance tracking con-
trol is considered for PMSM-driven flexible manipulator sys-
tems with input saturation, unidentified disturbances, as well
as rotational velocity constraints. The proposed scheme has
the following characteristics. (i) By importing the exogenous
disturbance model with adjustable parameters, a new DO
algorithmwith adaptive law is proposed to realize the dynam-
ical estimation of irregular disturbances. In contrast with
linear or harmonic disturbances in [28] and [29], the adaptive
DO strategy broadens the variety of applications for distur-
bances. (ii) By using the convex hull representation of the
saturating input, the coupling issue in the control port is suc-
cessfully resolved. Then, an effective anti-disturbance anti-
windup controller can also developed along with the estimate
of unknown disturbances. (iii) Further, based on the designed
optimization algorithm, the multiple objective requirements,
including stability, robustness, dynamic tracking for the rota-
tion position, and the angular velocity constraint, can be
successfully realized. (iv) By modeling different attenuated
harmonic (AH), irregular triangular wave (ITW), and white
noise (WN) disturbances, respectively, the simulation results
for a single-joint flexible manipulator are shown to demon-
strate the viability of the suggested control algorithm.

Nomenclature. In this paper, 0 and I stand in for the zero
and identity matrices. With regard to a matrix ◦, the symbol
sym is described by sym(◦) = ◦ + ◦

T .

II. DESCRIPTION OF SINGLE-JOINT FLEXIBLE
MANIPULATOR ACTUATED BY PMSM
Consider the single-joint manipulator system actuated by
a surface-mounted PMSM, and the concrete form is
described as

Fq̈+ Hq̇+ G(q) = K (q− qm)
J q̈m + K (qm − q) = lpψ iq
Ls i̇d + Rsid − lpq̇mLsiq = sat (ud + σ1(t))
Ls i̇q + Rsiq + lpq̇mLsid + lpψ q̇m = sat

(
uq + σ2(t)

) (1)

where q, q̇, and q̈ are the rotation position, the rotation angular
velocity, and the angular acceleration of the joint. qm, q̇m,
and q̈m stand for the motor rotation angle, angular speed
vectors, and rotation angular acceleration separately. ud , uq,
id and iq are the stator voltages and the currents of d and
q-axes. Note that sat(⋆) stands for a saturation function with
sat(⋆) = [sat1(⋆), sat2(⋆), · · · , sats(⋆)], where sati(⋆) =

sign(⋆)min {1, ⋆} with the signum function sign(⋆). F , H ,
and G(q) = Mglsin(q) represent the moment of inertia, the
viscous frictional coefficient, and the gravity vector, respec-
tively. J and K represent the motor rotational inertia and the
spring elasticity coefficient, and both are positive constants.
lp is the number of pole pairs. Ls and Rs are the inductance
and resistance of a stator,ψ is the linkage for rotor flux. σi(t),
i = 1, 2 are unknown exogenous disturbances.
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In this case, the reference value of the d-axis current i∗d
is set to zero in order to obtain the highest torque-to-current
ratio. If the controller of id loop works well, one obtains
i̇d = i∗d = 0. In such a case, system (1) can be reduced as

Fq̈+ Hq̇+ G(q)K (q− qm)
J q̈m + K (qm − q) = lpψ iq
Ls i̇q + Rsiq + lpψ q̇m = sat

(
uq + σ2(t)

) (2)

Further, by defining x1 = q, x2 = q̇, x3 = qm, x4 = q̇m and
x5 = iq, the flexible manipulator system (2) is rewritten as

ẋ1 = x2

ẋ2 =
1
F
[K (x3 − x1)−Mglsin(x1) − Hx2]

ẋ3 = x4

ẋ4 =
K
J
(x1 − x3)+

lp
J
ψx5

ẋ5 =
1
Ls

[
−Rsx5 − lpψx4 + sat

(
uq + σ2(t)

)]
(3)

Suppose x(t) = [x1, x2, x3, x4, x5]T , then the system (3) is
described by the state-space model, that is{

ẋ(t) = Ax(t) + Bsat
(
uq(t) + σ2(t)

)
+ Ch(x(t), t)

y(t) = Dx(t) (4)

with

A =



0 1 0 0 0

−
K
F

−
H
F

K
F

0 0

0 0 0 1 0
K
J

0 −
K
J

0
lp
J
ψ

0 0 0 −lpψ −
Rs
L



B =


0
0
0
0
1
L

 , C =


0
1
F
0
0
0

 , DT
=


1
0
0
0
0


where x(t) ∈ R5×1, σ2(t), uq(t) and y(t) ∈ R5×1 denote the
state vector, the unknown disturbance, the controlled input,
and the system output, respectively. The constant matricesA,
B, C, and D as well as the nonlinear expression h(x(t), t) =

−Mglsin(x1) are known.
To better estimate unknown disturbances, σ2(t) is assumed

to be described by an exogenous model with adjustable
parameters as {

ϵ̇(t) = M1ϵ(t) + ℵ
∗9(ϵ(t))

σ2(t) = M2ϵ(t)
(5)

where ϵ(t) ∈ R5 is the middle state of the disturbance model,
andM1 andM2 are known coefficient matrices. Besides,ℵ∗

∈

R5×5 is the optimal parameter matrix, and9(⋆) is the activa-
tion function with 9(⋆) = [φ1(⋆), . . . , φ5(⋆)]T . By select-
ing different activation functions and adjusting dynamical
weights, the model (5) can be a useful identifier to depict
different types of disturbances.

Remark 1: It is necessary to note that nonlinear dis-
turbances often occur in practical engineering, including
attenuated harmonic disturbances, irregular triangular wave
disturbance, white noise disturbances, and so on. In this case,
it is essential to per-select the appropriate activation func-
tion 9(ϵ(t)). According to the properties and characteristics
of DNNs, the above DNN interference model can approxi-
mately describe any type of exogenous disturbances as long
as a suitable activation basis function is found. The detailed
discussion of this can also be presented in the simulation
example in Section V.
For further discussing the above multi-objective task,

an extended state variable is defined as

χ̄ (t) =

[
xT (t),

∫ t

0
eT (τ )dτ

]T
(6)

where yd represents the anticipated output and e(t) := y(t)−
yd defines the tracking error. According (4) with (6), the
extended system can be expressed by

˙̄χ (t) = A∗χ̄ (t) + B∗sat
(
uq(t) + σ2(t)

)
+C∗h̃ (χ̄ (t), t)+ C̄yd

y(t) = D∗χ̄ (t)

(7)

where

A∗
=

[
A 0
D 0

]
,B∗

=

[
B
0

]
, C∗

=

[
C
0

]
, C̄ =

[
0

−I

]
and h(x(t), t) = h̃(χ̄ (t), t) = −Mglsin(x1). The derivative
of h̃(χ̄ (t), t) with regard to x1 can easily be inferred to be
bounded. Moreover, the nonlinear function h̃(χ̄ (t), t) can be
assumed to satisfy the bounded condition described as Lip-
schitz form. For any x̄j(t) ∈ R5×1, j = 1, 2, the nonlinear
function h̃(χ̄ (t), t) satisfies{

h̃(0, t) = 0
||h̃(x̄1(t), t) − h̃(x̄2(t), t)|| ≤ ||5(x̄1(t) − x̄2(t))||

(8)

where 5 is a given constant weighting matrix.

III. DESIGN OF DISTURBANCE OBSERVER AND
ANTI-DISTURBANCE CONTROLLER
This section proposes a nonlinear DOwith adjustable weights
for dynamic estimation of the σ2(t), where the corresponding
form is
σ̂2(t) = M2ϵ̂(t)
ϵ̂(t) = ξ (t)−M2χ̄ (t)
ξ̇ (t) =

(
M1+LB∗M2

)
(ξ (t)−Lχ̄ (t))+L

(
A∗χ̄ (t)

+B∗uq(t)+C∗h̃(χ̄ (t), t)+C̄yd
)
−ℵ̂(t)9(ϵ̂(t))

(9)

where ξ (t) stands for the subsidiary variable, ℵ̂(t) is the
adjustable weight, σ̂2(t) represents the estimate of σ2(t), L
is the observer gain.

The composite controller is created with the dynamical
estimation of the disturbance as

u(t) = Kχ̄ (t) − σ̂2(t),K = [KP,KI ] (10)

where KP and KI represent desired controller gains.
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By using the polytopic bounding method, and selecting
G = [G1,M2] such that ϱ(t) ∈ L(G), the saturated input
term can be deduced as

sat
(
uq + σ2

)
=

2∑
i=1

ϑi
(
4i[K,M2]ϱ(t) +4−

i Gϱ(t)
)

=

2∑
i=1

(
ϑi(4iK +4−

i G1)
)
χ̄ (t) +M2eϵ(t)

(11)

where ϱ(t) =
[
χ̄T (t), eTϵ (t)

]T , eϵ(t) = ϵ(t) − ϵ̂(t). 4i is a
particular diagonal matrix in which each diagonal component
is either 0 or 1, and 4i + 4−

i = I . L(G) is a symmetric
polyhedron, that is L(G) = {χ̄ : |Gl χ̄ | ≤ 1}, Gl denotes the
lth row of matrix G. ϑi is known positive constants with
ϑ1 + ϑ2 = 1.

Substituting the saturated input (11) into the extended
system (7), one can be deduced as

˙̄χ (t) =

(
A∗

+

2∑
i=1

ϑiB∗
(
4iK +4−

i G1
))
χ̄ (t)

+ C∗h̃(χ̄ (t), t) + C̄yd (t) (12)

Define ℵ̃(t) = ℵ̂(t) − ℵ
∗. From (5), (9) and (10), we can

obtain

ėϵ(t) =
(
M1 + LB∗M2

)
eϵ(t) + LC∗h̃(χ̄ (t), t)

+

2∑
i=1

ϑiLB∗4−

i (G1 − K)χ̄ (t)

+ ℵ̃(t)9(ϵ̂(t)) + ℵ
∗
[
9(ϵ̂(t)) −9(ϵ(t))

]
(13)

Furthermore, by combing closed-loop system (12) with the
error dynamics (13), it is possible to be inferrd that

ϱ̇(t) =

[
011 B∗M2
021 M1 + LB∗M2

]
ϱ(t) +

[
C∗

LC∗

]
h̃(x(t), t)

+

[
0
I

]
×

{
ℵ̃(t)9(ϵ̂(t)) + ℵ

∗
[
9(ϵ̂(t)) −9(ϵ(t))

]}
+

[
C̄
0

]
yd (14)

where 
011 = A∗

+

2∑
i=1

ϑiB∗
(
4iK +4−

i G1
)

021 =

2∑
i=1

ϑiLB∗4−

i (G1 − K)

For the sake of achieving dynamical performance, some
assumptions are needed.
Assumption 1: The activation function 9(.) is assumed to

satisfy the following inequality(
9(ϵ) −9

(
ϵ̂
))T (

9(ϵ) −9
(
ϵ̂
))

≤ eTϵ (t)5
T
ϵ5ϵeϵ(t) (15)

where 5ϵ > 0 is a known matrix.
Assumption 2: The disturbance σ2(t) satisfies the inequal-

ity σ T2 (t)σ2(t) ≤ σ2h, where σ2h > 0 is a positive constant.

IV. DYNAMICAL PERFORMANCE ANALYSIS AND
ANGULAR VELOCITY CONSTRAINT
The next two theorems that follow in this part will cover the
dynamical characteristics of closed-loop systems (12) and the
estimate error system of disturbances (13).
Theorem 1: For the augmented closed-loop systems (12)

and the disturbance estimation error (13), assume that matri-
ces P2 > 0, Q1 = P−1

1 > 0 and Vi, i = 1, 2, 3 are found such
that the following inequality

811 812 C̄ V3C∗ 0 0
∗ 822 0 0 V3C∗ P2
∗ ∗ −ϖ 2

1 I 0 0 0
∗ ∗ ∗ −ϖ 2

2 I 0 0
∗ ∗ ∗ ∗ −ϖ 2

3 I 0
∗ ∗ ∗ ∗ ∗ −ℵ̄

−1

 < 0 (16)

with
811 = sym

(
A∗Q1 + ϑiB∗4iV1 + ϑiB∗4−

i V2
)
+ Q1

822 = sym (P2M1 + V3B∗M2)+ P2 +5T
ϵ5ϵ +ϖ−2

4 I

812 = B∗M2 +
(
ϑiV3B∗4−

i (V2 − V1)
)T

is solvable, where ϖi > 0, i = 1, 2, 3, 4 are designed
parameters.

Meanwhile, the adaptive adjustment rate of ℵ̂(t) is chosen
as

˙̂
ℵ(t) = ζP2ϵ̂(t)σ T (ϵ̂(t)) − ∥ϵ̂(t)∥ℵ̂(t) (17)

where ζ > 0 is a known constant. Then the augmented
system (14) can be guaranteed to be stable and the state ϱ(t)
converges into a compact set �ϱ(t), where

�ϱ(t) =

ϱ(t) : ∥ϱ(t)∥ ≤

√
ϖ 2

1 y
2
d +ϖ 2

2 +ϖ 2
3 + κ

λmin(P∗)


Further, the correspond gains are given by K = V1Q

−1
1 ,

L = P−1
2 V3 and G1 = V2Q

−1
1 .

Proof: Design the following Lyapunov functions as

21(χ̄ (t), t) = χ̄T (t)P1χ̄ (t)

+
1

λ21

∫ t

0

[
∥5χ̄∥

2
− ∥h̃(χ̄ , τ )∥2

]
dτ (18)

and

22(eϵ(t), t) = eTϵ (t)P2eϵ(t) + tr
{
ℵ̃
T (t)ℵ̃(t)

}
(19)

From (12), one can be inferred that

2̇1 = χ̄T (t)
(
sym

(
A∗TP1 + P1

2∑
i=1

ϑiB∗(4iK

+4−

i G1)
))
χ̄ (t) + 2χ̄T (t)P1C̄yd

+ 2χ̄T (t)P1C∗h̃(χ̄ (t)) + 2χ̄T (t)P1B∗M2eϵ(t)

+
1
λ1

[
∥5χ̄∥

2
− ∥h̃(χ̄ , τ )∥2

]
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≤ χ̄T (t)
(
sym

(
A∗TP1 +ϖ−2

1 P1C∗C∗TP1 + P1
2∑
i=1

ϑiB∗

×
(
4iK +4−

i G1
)
+ϖ−2

2 P1C̄C̄TP1
)

+
1

λ21

5T5

)
χ̄ (t) + 2χ̄T (t)P1B∗M2eϵ(t)

+ϖ 2
1 h̃

T (χ̄ (t))h̃(χ̄ (t)) +ϖ 2
2 y

2
d (t) (20)

Based on (13) and (17), we have

2̇2 ≤ eTϵ (t)
(
sym

(
P2M1 + P2LB∗M2

))
eϵ(t)

+ 2eTϵ (t)

(
P2

2∑
i=1

ϑiLB∗4−

i (G1 − K)

)
χ̄ (t)

+ 2ϵT (t)P2ℵ̃(t)σ (ϵ̂) − 2∥ϵ̂(t)∥tr
{
ℵ̃
T (t)ℵ̂(t)

}
+ eTϵ (t)

(
P2ℵ̄P25T

ϵ5ϵ

)
eϵ(t) (21)

Due to

2tr
{
ℵ̃
T (t)ℵ̂(t)

}
≥ ∥ℵ̃(t)∥2F − ∥ℵ

∗
∥
2
F , (22)

2ϵT (t)P2ℵ̃(t)σ (ϵ̂(t)) ≤

√
2θhnϵ

λmin(MT
2 M2)

∥P2∥

·

(
ζ
√
nϵ∥P2∥ +

√
tr(ℵ̄)

)
(23)

where ℵ̄ is the upper bound of optimal weight ℵ
∗ and meets

the inequality ℵ
∗T

ℵ
∗

≤ ℵ̄.
Then, (21) is deduced as

2̇2 ≤ eTϵ (t)
(
sym(P2M1 + P2LB∗M2)

)
eϵ(t)

+ 2eTϵ (t)

(
P2

2∑
i=1

ϑiLB∗4−

i (G1 − K)

)
χ̄ (t)

+ eTϵ (t)
(
P2ℵ̄P2 +5T

ϵ5ϵ

)
eϵ(t)

+

√
2θhnϵ

λmin(MT
2 M2)

∥P2∥
(
ζ
√
nϵ∥P2∥ +

√
tr(ℵ̄)

)
+ 2∥ϵ̂(t)∥∥ℵ∗

∥
2
F (24)

Notice that

2∥ϵ̂(t)∥ℵ∗
∥
2
F ≤ ϖ−2

4 eϵ(t)T eϵ(t)

+

√
4θh

λmin(MT
2 M2)

tr
{
ℵ̄
}

+ϖ 2
4
(
tr
{
ℵ̄
})2
(25)

By integrating (20) with (24), one has

2̇1 + 2̇2 = χ̄T (t)
(
sym

(
A∗TP1 + P1

2∑
i=1

ϑiB∗

×
(
4iK +4−

i G1
)
+ϖ−2

1 P1C∗C∗TP1

+ϖ−2
2 P1C̄C̄TP1

)
+

1

λ21

5T5

)
χ̄ (t)

+ eTϵ (t)
(
sym(P2M1 + P2LB∗M2) +5T

ϵ5ϵ

+P2ℵ̄P2 +ϖ−2
4 I

)
eϵ(t) + 2eTϵ (t)

×

(
MT

2 B
∗TP1 + P2

2∑
i=1

ϑiLB∗4−

i (G1 − K)

)
× χ̄ (t) +ϖ 2

1 y
2
d +ϖ 2

2 + κ

≤ max
i∈{1,2}

{
ϱT (t)

[
�11i �12i
∗ �22i

]
ϱ(t)

}
+ϖ 2

1 y
2
d

+ϖ 2
2 +ϖ 2

3 + κ (26)

where

κ =

√
2θhnw

λmin(MT
2 M2)

∥P2∥
(
ζ
√
nw∥P2∥

+

√
tr(ℵ̄)

)
+

√
4θh

λmin(MT
2 M2)

tr{ℵ̄} +ϖ 2
3
(
tr{ℵ̄}

)2
and

�11i = sym
(
A∗TP1 + P1

2∑
i=1

ϑiB∗
(
4iK +4−

i G1
)

+ϖ−2
1 P1C∗C∗TP1 +ϖ−2

2 P1C̄C̄TP1
)

+
1

λ21

5T5

�22i = sym(P2M1 + P2LB∗M2) +5T
w5w + P2ℵ̄P2

+ϖ−2
4 I

�21i =
(
ϑiP2LB∗4−

i (G1 − K)
)T

+ P1B∗M2

Based on the Schur complement, by pre- and post-
multiplying (16) with diag{Q−1

1 ; I ; I ; I ; I ; I }, and defining
V1 = KQ1, V2 = G1Q1 and V3 = P2L, it can be seen
that (21) implies

[�11i, �12i;�21i, �22i] < diag{−P1,−P2}

Then (26) is transformed as

2̇1 + 2̇2 ≤ −ϱT (t)P∗ϱ(t) +ϖ 2
1 y

2
d +ϖ 2

2 +ϖ 2
3 + κ (27)

where P∗
= diag{P1,P2}. It is easy to deduce that once

ϱT (t)P∗ϱ(t) > ϖ 2
1 y

2
d+ϖ 2

2 +ϖ 2
3 +κ is true, 2̇1+2̇2 < 0 can

be generated.
As a result, for any variables eϵ(t) and χ̄ (t), it is inferred

that

ϱT (t)P∗ϱ(t) ≤ max
{
ϱT (0)P∗ϱ(0),ϖ 2

1 y
2
d +ϖ 2

2 +ϖ 2
3 + κ

}
(28)

is valid for any t ≥ 0. It is further demonstrated that the
augmented system (14) is stable and that ϱ(t) will converge
towards the intended compact set �ϱ(t).
Theorem 2: Considering given parameters ϖi, i = 1, 2,

3, 4 and ζ > 0, For given parameters, if there are matrices
P2 > 0, Q1 = P−1

1 and Vi, i = 1, 2, 3 such that (16) and the
following inequalities
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[
Q1 Q1D∗T

1

∗
(
π−1y2d

)
I

]
≥ 0 (29)

and [
Q1 Q1NT

∗
(
π−1x22d

)
I

]
≥ 0 (30)

are solvable, the augmented closed-loop system (14) can
be proved as stability, and the dynamic tracking error will
converge to zero, that is limt→∞y(t) = yd . Meanwhile,
the angular velocity constraint |x2(t)| ≤ x2d can be guar-
anteed, even in the presence of exogenous disturbances.
Therein, N = [0 1 0 0 0 0], π = max

{
ϱT (0)P∗ϱ(0) ,

ϖ 2
1 y

2
d +ϖ 2

2 +ϖ 2
3 + κ

}
, x2d is the expected signal of angu-

lar velocity. In addition, the gain matrices are computed via
K = V1Q

−1
1 , L = P−1

2 V3 and G1 = V2Q
−1
1 .

Proof: The stability of the composite closed-loop sys-
tem (14) may be ensured by resolving (16) and (17), which
is analogous to the proof of Theorem 1. As for the system
output y(t) and the second component x2(t) of state variable,
we can get

y2(t) = χ̄T (t)D∗TD∗χ̄ (t)

x22 (t) = χ̄T (t)NTN χ̄ (t) (31)

From the equality (30) and (31), it is not difficult to deduce

D∗TD∗
≤ π−1y2dP1

NTN ≤ π−1x22dP1 (32)

Based on (32) and (33), we can achieve that

y2(t) ≤ π−1y2d χ̄
T (t)P1χ̄ (t) ≤ y2d

x22 (t) ≤ π−1x22d χ̄
T (t)P1χ̄ (t) ≤ x22d (33)

On one hand, notice that the item
∫ t
0 e(τ )dτ is a component

of ϱ(t), the variable
∫ t
0 e(τ )dτ necessarily converge into the

set �ϱ(t) when t → +∞. Meanwhile, due to the inequality
y2(t) ≤ y2d in (33), e(t) ≤ 0 can be guaranteed for any t ≥ 0.
So

∫ t
0 e(τ )dτ is monotone decreasing function. In short,

limt→∞

∫ t
0 e(τ )dτ must exist. On the other hand, based on

assumptions 1, 2 and (28), it is not hard to derive that x(t),
eϵ(t) and σ2(t) are bounded. Further, ė(t) is also bounded.
So the uniformly continuous of e(t) can be guaranteed. Based
on the Barbalat’s Lemma, the dynamical tracking satisfies
lim
t→∞

y(t) = yd . In addition, it is easy to induce from (33)
that the angular velocity x2(t) also can be compressed within
the limit of x2d , that is |x2(t)| ≤ x2d .
Remark 2: In this paper, it is assumed that irregular distur-

bances can be represented by an exogenous model (5), where
ℵ

∗
∈ R5×5 refers to the optimal weight vector and 9(⋆) is

the activation function. Please note that adjustable parameters
ℵ̂(t) in (9) are those parameters that can be tuned by using the
designed algorithm. That is, different parameter values can
be selected to optimize the performance of the model in dif-
ferent datasets or applications. These parameters are usually
not fixed but can be adjusted as required. Typical examples

include learning rates, weight decay coefficients, etc. In this
article, the parameters are adjusted by using the designed
adaptive algorithm (17).

V. SIMULATION RESULTS
In this section, the simulations of a typical single-link manip-
ulator system driven by PMSM are carried out. Concretely,
the following Figure 1 shows the flow diagram of the con-
troller design. The desired tracking signal and the angular
velocity constraint are yd = 25, x2d = 30, respectively.
Similarly with [9], the parameters of the system are given
in Table 1.

TABLE 1. Parameters and variables of the single-link flexible manipulator
drive.

From (4), the system matrices of the single-link manipula-
tors are easy to be inferred that

A =


0 1 0 0 0
50 −0.047 −50 0 0
0 0 0 1 0
150 0 −150 0 21.504
0 0 0 −0.486 −2400



B =


0
0
0
0
40

 , C =


0
1
0
0
0

 ,DT
=


1
0
0
0
0


In the following, as for different types of disturbances, sim-

ulation results are presented to verify the designed algorithm.
Model 1 (Attenuated Harmonic (AH) Disturbances): As

the signal is transmitted, the signal usually continues to be
attenuated and eventually remains at a smaller amplitude.
So the modeling of AH disturbances has great significance.
In this part, the parameters are chosen as

M1 =

[
−0.25 −1.3

1 −0.01

]
, M2 =

[
−3 2

]
ℵ

∗
=

[
−0.5 0.5

−0.004 0.45

]
, ϵ(t) =

[
tanh(t)
arctan(t)

]
and the candidate value of V3 is preselected as

V3 =

[
0 1.3547 11.2113 45.1257 0 0
0 0.0325 −43.4435 −30.2578 0 0

]
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FIGURE 1. The flow chart of controller design.

Then, by setting the parameters ϖ1 = ϖ2 = ϖ3 = 0.8,
the control gainKI andKP, the observer gain L as well as the
vector G1 are computed as

KI = 1.0412

KP =
[
11.8058 6.3810 8.4406 − 2.1992 5.4268

]
L = 10−4

[
0 0.0076 0.0789 0.0375 0 0
0 − 0.0038 − 0.1802 − 0.04721 0 0

]
G1 =

[
−0.3095 0.2943 0.2068 − 0.1175

0.0274 − 0.0871
]

Assume that the initial values of the augmented states are
displayed as x0 = [2,−2,−3, 0, 0]T and ϵ0 = [−0.2, 1]T ,
respectively. The trajectories of the system states are
described in Figure 2, which shows the favorable stability.
Figure 3 depicts the estimation value, the estimation error,
and the attenuated harmonic disturbances, demonstrating the
validity of the developed DO. Figure 4 and Figure 5 illustrate
the saturated input and the tracking trajectory of desired
signal yd , revealing that the input saturation and dynamical
tracking are adequate. Figure 6 shows the dynamic trajectory
of the neural network weight.

From the Figure 2 and 5, the curves have large fluctua-
tion in the simulation results of the system state and output
trajectory. On one hand, the selection of the initial values
and the step size leads to the large fluctuations in the sim-
ulation curve. By selecting more appropriate initial values,
the fluctuation will abate. On the other hand, due to the
presence of irregular disturbances in the controlled system,
the designed disturbance observer (see (9) for details) can not
track the irregular disturbances accurately, especially at the
beginning. So it will cause huge fluctuations in the system
state and output curves. After a period of time, the designed
disturbance observer can accurately estimate for unknown
disturbances, the system state and output curves will also be
smoothed out.

FIGURE 2. State trajectories of the single-link manipulator with AH
disturbances.

FIGURE 3. AH disturbances, its estimation and estimation error.

Model 2 (Irregular Triangular Wave (ITW) Disturbance):
ITW signals are usually caused by the change of the rat-
ing and characteristics of some parts with the applicable
conditions, and this disturbance is difficult to be described
by linear exogenous systems. So it is necessary to develop
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FIGURE 4. Dynamics of the saturated control input with AH disturbances.

FIGURE 5. Dynamics of the system output with AH disturbances and its
desired trajectory.

FIGURE 6. Dynamic trajectory of the DNN weight.

effective models to estimate such irregular disturbances. The
parameters are selected as

M1 =

[
−0.45 8
−10 0

]
, M2 =

[
0.43 −2

]
ℵ

∗
=

[
−0.3 5
−0.04 0.45

]

FIGURE 7. State trajectories of the single-link manipulator with ITW
disturbances.

ϵ(t) =


1

1 + e−0.2t

1
1 + e−0.2t

 t ≥ 0, ϵ(t) =

[
−2.5
−2.5

]
t < 0

The gainsKI,KP, L andG1 can be calculated via complet-
ing BLMIs (16) as long asϖ1 = ϖ2 = ϖ3 = 1.

KI = 0.2118

KP =
[
2.9548 1.7032 − 2.2306 − 0.7244 0.4502

]
L = 10−5

[
0 0.0889 0.3847 0.7526 0 0
0 − 0.4894 − 0.3337 − 0.5529 0 0

]
G1 =

[
−0.0112 0.0438 0.0105 − 0.0198

0.0046 −0.0110
]

Suppose that the initial values are set as x0 =

[5,−3, 2, 0, 0]T and ϵ0 = [−0.2, 1]T . The tracking signal
is designed as yd = 25. Figure 7 is the dynamics of the state
of the single-link manipulator system. The trajectory of ITW
disturbance and its estimates are demonstrated in Figure 8.
Figure 9 and Figure 10 reflect the saturated input and the
tracking result of desired signal yd , respectively. As shown
in Figure 9, it should be noted, the vertical coordinate takes
values in the range of −1 and 1. The system input signal
fluctuates from the range of −0.4 to 0.4. In general, such
input fluctuations have little effect on the motor. In Figure 11,
the trajectory of the neural network weight dynamics is pre-
sented.
Model 3 (White Noice (WN) Disturbances): It is well

known WN disturbances are one of the most common dis-
turbances in electronic products. Specifically, the parameters
are selected as

M1 =

[
0.25 0.1
−8 −0.5

]
, M2 =

[
5 −0.3

]
ℵ

∗
=

[
−0.5 0.8
3 0.5

]
,

ϵ(t) =


e0.2t − e−0.2t

e0.2t + e−0.2t

e0.2t − e−0.2t

e0.2t + e−0.2t


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FIGURE 8. ITW disturbances, its estimation and estimation error.

FIGURE 9. Dynamics of the saturated control input with ITW disturbances.

FIGURE 10. Dynamics of the system output with ITW disturbances and its
desired trajectory.

Select ϖ1 = ϖ2 = 1,ϖ3 = 0.8, the gains KI, KP and L
can be obtained from solving BLMIs (16) as

KI = 0.4813

KP =
[
11.5539 6.2645 −8.3510 −2.1939 0.9476

]
L = 10−3

[
0 0.0012 0.0036 0.0034 0 0
0 −0.0011 −0.1008 −0.0730 0 0

]

FIGURE 11. Dynamic trajectory of the DNN weight.

FIGURE 12. State trajectories of the single-link manipulator with WN
disturbances.

FIGURE 13. WN disturbances, its estimation and estimation error.

G1 =
[
−0.0422 0.1506 0.0664 −0.0687

0.0019 −0.0361
]

The initial values may be set as x0 = [2,−2,−3, 0, 0]T

and ϵ0 = [2, 1]T . The dynamics of the states are exhibited in
Figure 12. Figure 13 shows the tracks of WN disturbances
and their corresponding estimates. In addition, Figures. 14
and 15 plot the dynamics of the saturated input and the system
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FIGURE 14. Dynamics of the saturated control input with WN
disturbances.

FIGURE 15. Dynamics of the system output with WN disturbances and its
desired trajectory.

FIGURE 16. Dynamic trajectory of the DNN weight.

output, respectively, which further reveals the satisfactory
dynamic tracking performance and the rationality of the pro-
posed controller. The trajectory of the neural network weight
dynamics is revealed in Figure 16.

VI. CONCLUSION
This study successfully applies an efficient active anti-
disturbance control algorithm to the single-link manipulator

systems driven by PMSM. A novel DO-based adaptive feed-
back control input is proposed to monitor those irregular
disturbances. The polytopic description of input saturation is
utilized to construct a composite anti-disturbance controller
using the estimated value of disturbances. Based on convex
optimization theory, relevant proofs are given to guarantee
stability and disturbance suppression performance. Mean-
while, both the favorable dynamic tracking and the restric-
tion of angular velocity have also been realized. Ultimately,
it can be seen from the simulation results on a single-link
manipulator that the suggested strategy is efficient in terms
of the desired control performances. As a final note, when
dealing with multi-input multi-output systems suffering from
more types of unknown disturbances and faults, a multi-
source complex anti-disturbance control framework with bet-
ter performance will be considered in our further research.
Furthermore, the implementation and application of related
algorithms in more diverse practical scenarios will be an
interesting topic for our future work.

REFERENCES
[1] H. Gao,W. He, C. Zhou, and C. Sun, ‘‘Neural network control of a two-link

flexible robotic manipulator using assumed mode method,’’ IEEE Trans.
Ind. Informat., vol. 15, no. 2, pp. 755–765, Feb. 2019.

[2] B. Xu, ‘‘Composite learning control of flexible-link manipulator using
NN and DOB,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 11,
pp. 1979–1985, Nov. 2018.

[3] W. He, F. Kang, L. Kong, Y. Feng, G. Cheng, and C. Sun, ‘‘Vibration
control of a constrained two-link flexible robotic manipulator with fixed-
time convergence,’’ IEEE Trans. Cybern., vol. 52, no. 7, pp. 5973–5983,
Jul. 2022.

[4] F. Dong, B. Yu, X. Zhao, S. Chen, and H. Liu, ‘‘Constraint-following servo
control for the trajectory tracking of manipulator with flexible joints and
mismatched uncertainty,’’Machines, vol. 9, no. 9, p. 202, Sep. 2021.

[5] Z. Liu, X. Tang, and L. Wang, ‘‘Research on the dynamic coupling of
the rigid-flexible manipulator,’’ Robot. Comput.-Integr. Manuf., vol. 32,
pp. 72–82, Apr. 2015.

[6] Q. Meng, X. Lai, Z. Yan, and M. Wu, ‘‘Tip position control and
vibration suppression of a planar two-link rigid-flexible underactuated
manipulator,’’ IEEE Trans. Cybern., vol. 52, no. 7, pp. 6771–6783,
Jul. 2022.

[7] Y. Li, S. S. Ge, Q. Wei, T. Gan, and X. Tao, ‘‘An online trajectory planning
method of a flexible-link manipulator aiming at vibration suppression,’’
IEEE Access, vol. 8, pp. 130616–130632, 2020.

[8] J. S. Yeon and J. H. Park, ‘‘Practical robust control for flexible joint
robot manipulators,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2008,
pp. 3377–3382.

[9] Z. Zhang, X. Liu, J. Yu, and H. Yu, ‘‘Time-varying disturbance observer
based improved sliding mode single-loop control of PMSM drives with
a hybrid reaching law,’’ IEEE Trans. Energy Convers., vol. 14, no. 8,
pp. 1416–1426, May 2022.

[10] T. Li, X. Liu, and H. Yu, ‘‘Backstepping nonsingular terminal sliding mode
control for PMSM with finite-time disturbance observer,’’ IEEE Access,
vol. 9, pp. 135496–135507, 2021.

[11] Q. Yang, H. Yu, X. Meng, and Y. Shang, ‘‘Neural network dynamic surface
position control of n-joint robot driven by PMSM with unknown load
observer,’’ IET Control Theory Appl., vol. 16, no. 12, pp. 1208–1226,
2022.

[12] J. Daafouz, G. Garcia, and J. Bernussou, ‘‘Robust control of a flexible robot
arm using the quadratic d-stability approach,’’ IEEE Trans. Control Syst.
Technol., vol. 6, no. 4, pp. 524–533, Jul. 1998.

[13] C. Lin and T. Lin, ‘‘An H∞ design approach for neural net-based control
schemes,’’ IEEE Trans. Autom. Control, vol. 46, no. 10, pp. 1599–1605,
Oct. 2001.

[14] Y. Sun, S. Tong, and Y. Liu, ‘‘Adaptive backstepping sliding mode H∞

control of static var compensator,’’ IEEE Trans. Contr. Syst. Technol.,
vol. 19, no. 5, pp. 1178–1185, Sep. 2011.

82360 VOLUME 11, 2023



W. Zhou et al.: Anti-Disturbance Tracking Control

[15] Q. Wei, H. Li, and F.-Y. Wang, ‘‘A novel parallel control method
for continuous-time linear output regulation with disturbances,’’ IEEE
Trans. Cybern., vol. 53, no. 6, pp. 3760–3770, Jun. 2023, doi:
10.1109/TCYB.2021.3128231.

[16] W.-H. Chen, ‘‘Disturbance observer based control for nonlinear systems,’’
IEEE/ASME Trans. Mechatronics, vol. 9, no. 4, pp. 706–710, Dec. 2004.

[17] X. Yao, J. H. Park, L. Wu, and L. Guo, ‘‘Disturbance-observer-based com-
posite hierarchical antidisturbance control for singular Markovian jump
systems,’’ IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2875–2882,
Jul. 2019.

[18] Y. Yi, L. Guo, and H. Wang, ‘‘Constrained PI tracking control for output
probability distributions based on two-step neural networks,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 56, no. 7, pp. 1416–1426, Jul. 2009.

[19] Y. Yi, W. X. Zheng, and L. Guo, ‘‘Improved results on statistic information
control with a dynamic neural network identifier,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 816–820, Nov. 2013.

[20] Y. Yi, W. X. Zheng, and B. Liu, ‘‘Adaptive anti-disturbance control for
systems with saturating input via dynamic neural network disturbance
modeling,’’ IEEE Trans. Cybern., vol. 52, no. 6, pp. 5290–5300, Jun. 2022.

[21] Y. Zhang, J. Sun, H. Liang, and H. Li, ‘‘Event-triggered adaptive tracking
control for multiagent systems with unknown disturbances,’’ IEEE Trans.
Cybern., vol. 50, no. 3, pp. 890–901, Mar. 2020.

[22] H. Pan,W. Sun, H. Gao, andX. Jing, ‘‘Disturbance observer-based adaptive
tracking control with actuator saturation and its application,’’ IEEE Trans.
Autom. Sci. Eng., vol. 13, no. 2, pp. 868–875, Apr. 2016.

[23] J. Sun, J. Yi, and Z. Pu, ‘‘Fixed-time adaptive fuzzy control for uncertain
nonstrict-feedback systems with time-varying constraints and input satura-
tions,’’ IEEE Trans. Fuzzy Syst., vol. 30, no. 4, pp. 1114–1128, Apr. 2022.

[24] Y. Wei, W. X. Zheng, and S. Xu, ‘‘Anti-disturbance control for nonlinear
systems subject to input saturation via disturbance observer,’’ Syst. Control
Lett., vol. 85, pp. 61–69, Nov. 2015.

[25] M. Chen, H. Wang, and X. Liu, ‘‘Adaptive practical fixed-time tracking
control with prescribed boundary constraints,’’ IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 68, no. 4, pp. 1716–1726, Apr. 2021.

[26] A. Bemporad, ‘‘Reference governor for constrained nonlinear systems,’’
IEEE Trans. Autom. Control, vol. 43, no. 3, pp. 415–419, Mar. 1998.

[27] B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, ‘‘Adaptive neural control for
output feedback nonlinear systems using a barrier Lyapunov function,’’
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1339–1345, Aug. 2010.

[28] X. Yao, L. Wu, and L. Guo, ‘‘Disturbance-observer-based fault tolerant
control of high-speed trains: A Markovian jump system model approach,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 4, pp. 1476–1485,
Apr. 2020.

[29] J. Yang, H. Cui, S. Li, and A. Zolotas, ‘‘Optimized active disturbance
rejection control for DC–DC buck converters with uncertainties using a
reduced-order GPI observer,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 2, pp. 832–841, Feb. 2018.

WENYE ZHOU received the B.Sc. degree from the
Wenzheng College, Soochow University, Suzhou,
China, in 2017. He is currently pursuing the mas-
ter’s degree in control engineering with Yangzhou
University. His current research interests include
robust control, dynamic surface control, and anti-
disturbance control.

CHEN LIN received the B.Sc. degree from the
Guangzhou College, South China University of
Technology, Guangzhou, China, in 2017. He is
currently pursuing the master’s degree in control
engineeringwith YangzhouUniversity. His current
research interests include event-triggered control
and anti-disturbance control.

YANG YI received the M.Sc. degree in infor-
mation engineering from Yangzhou University,
Yangzhou, China, in 2005, and the Ph.D. degree
in automation from Southeast University, Nanjing,
China, in 2009. From 2012 to 2013, he was a
Visiting Scientist with the School of Comput-
ing, Engineering and Mathematics, University of
Western Sydney, Penrith, NSW, Australia. He is
currently a Professor with the College of Infor-
mation Engineering, Yangzhou University. He has

published more than 60 papers in journals and conferences. His current
research interests include stochastic systems, intelligent systems, and anti-
disturbance control.

VOLUME 11, 2023 82361

http://dx.doi.org/10.1109/TCYB.2021.3128231

