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ABSTRACT In the last decade, the computer vision field has seen significant progress in multimodal data
fusion and learning, where multiple sensors, including depth, infrared, and visual, are used to capture the
environment across diverse spectral ranges. Despite these advancements, there has been no systematic and
comprehensive evaluation of fusing RGB-D and thermal modalities to date. While autonomous driving using
LiDAR, radar, RGB, and other sensors has garnered substantial research interest, along with the fusion of
RGB and depth modalities, the integration of thermal cameras and, specifically, the fusion of RGB-D and
thermal data, has received comparatively less attention. This might be partly due to the limited number of
publicly available datasets for such applications. This paper provides a comprehensive review of both, state-
of-the-art and traditional methods used in fusing RGB-D and thermal camera data for various applications,
such as site inspection, human tracking, fault detection, and others. The reviewed literature has been
categorised into technical areas, such as 3D reconstruction, segmentation, object detection, available datasets,
and other related topics. Following a brief introduction and an overview of the methodology, the study delves
into calibration and registration techniques, then examines thermal visualisation and 3D reconstruction,
before discussing the application of classic feature-based techniques and modern deep learning approaches.
The paper concludes with a discourse on current limitations and potential future research directions. It is
hoped that this survey will serve as a valuable reference for researchers looking to familiarise themselves
with the latest advancements and contribute to the RGB-DT research field.

INDEX TERMS Multimodal, RGB-D, RGB-DT, RGB-T, sensor fusion, thermal.

I. INTRODUCTION
The extraction and analysis of features from RGB images
have become a widely used processing technique in computer
vision, finding its way into a diverse array of industrial, com-
mercial, and everyday applications. However, this technique
exhibits limitations, primarily from its confinement to the
visible spectrum. As illustrated in Fig. 1, the visible imaging
range is notably narrower compared to other spectra, which
underscores the potential benefits of exploring alternative
non-visible spectral regions to overcome these restrictions.
The most significant constraint is that it only operates effec-
tively under good lighting conditions and clear visibility.
This has prompted researchers to explore using RGB-D and
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thermal cameras for multi-spectral perception in recent years
as shown in Fig. 2.

The increasing application of depth cameras can largely
be attributed to the release of the Microsoft Kinect sensor
in 2010. This sensor utilises an infrared (IR) structured light
system, operating in the Near Infra Red (NIR) band, to cap-
ture depth information in addition to RGB colour data, and
was the first depth camera to be widely available for the
consumer market. Thermal cameras on the other hand capture
temperature information and have been available for many
years. Despite a drop in price, the cost of thermal cameras
is still considerably high and the possible resolution of the
sensors is low compared to RGB cameras due to the larger
pixel pitch required for the Long-Wave Infrared(LWIR) band.
With the introduction of the first microbolometric array cam-
era in 1997, detector cooling in thermal cameras became
unnecessary [1], as non-cooled thermal imagers now feature
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FIGURE 1. Depiction of the electromagnetic spectrum, with a focus on the various infrared (IR) bands. The thermal IR
range, which is radiation-based, is specifically indicated.

FIGURE 2. Number of publications with RGB-DT, RGB-T and RGB-D
from 2012 to 2022. Source: Data from Google Scholar keyword search:
(‘‘RGB-DT’’ OR ‘‘RGB-DT’’); (‘‘rgb-t’’ OR ‘‘rgbt’’ OR ‘‘RGB-Thermal’’);
(‘‘rgb-d’’ OR ‘‘rgbd’’ OR ‘‘RGB-Depth’’ OR ‘‘RGB+Depth’’)[peer reviewed
articles only].

electronic stabilisation. While non-cooled cameras offer
advantages such as being lighter, faster, more affordable, and
more reliable, cooled cameras still have the edge in terms of
greater sensitivity [2].

In the context of sensor fusion, each sensor modality -
RGB, Depth (D), and Thermal (T) - brings its own set of
advantages and disadvantages.

RGB cameras, being ubiquitous and economical, offer
high-resolution colour images that are readily interpreted by
both human observers and computer vision algorithms. They
excel in tasks such as object recognition, scene understand-
ing, and texture analysis. However, their efficacy is heavily
dependent on good lighting conditions.

Conversely, depth sensors, integral to RGB-D cameras,
operate relatively independently of visible light, allowing
them to function effectively under a variety of lighting con-
ditions. Nevertheless, their range is typically limited, and
they can be affected by factors such as sunlight interference
(in the case of Time of Flight sensors) or low texture areas and
lighting conditions (in the case of stereo vision). Despite these

limitations, depth sensors offer valuable 3D environmental
information, proving advantageous for tasks such as object
detection, localisation, and navigation.

Thermal infrared sensors, in contrast to the visible and
depth modalities, can sense slight temperature differences
between objects and their surroundings. This capability is
not hindered by low-light conditions or complete darkness,
as these sensors operate based on thermal radiation, inde-
pendent of any light source. This unique capability makes
thermal sensing a valuable modality for object detection
under challenging conditions. However, thermal sensors typ-
ically offer lower resolution than RGB cameras and are more
expensive.

The overarching aim of sensor fusion is to harmonise the
strengths of each sensor modality to mitigate their individ-
ual limitations. However, achieving effective fusion requires
careful calibration and alignment of the sensors, along with
sophisticated algorithms to integrate the different types of
data.

The field of surveillance has shown significant inter-
est in the integration of RGB and Thermal (RGB-T) data.
Similarly, the combination of LiDAR sensors or stereo depth
cameras with RGB, polarised images, and radar is a well-
explored area in autonomous vehicles and robotics. However,
the fusion of RGB-D and thermal data has not been studied as
extensively in comparison. Fusion of these three modalities
has the potential to provide more robust and accurate per-
ception in various applications, such as object recognition,
tracking, and localisation for applications where no long-
range detection is required or the detection of endotherms is
beneficial.

LiDAR and RGB-D cameras are both used for captur-
ing 3D data, but they have different characteristics. LiDAR
produces a sparser 3D point cloud with decreasing resolu-
tion over distance, while RGB-D cameras produce a more
densely packed depth map that is limited to a few metres
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of distance. RGB-D sensors that rely on IR Time Of Flight
(ToF) technology are not suitable for outdoor applications
due to interference from sunlight, but devices based on stereo
vision can overcome this issue.

In order to achieve an effective fusion of the differ-
ent modalities, it is essential to calibrate each sensor and
align them in the same coordinate system, which involves
determining the intrinsic and extrinsic parameters using
the pin-hole camera model. Aligning the modalities cor-
rectly is crucial for achieving precise data fusion. Although
descriptor-based methods utilising feature point matching
algorithms can accomplish registration, they are often not
suitable for real-time applications involving moving cameras.
This is due to their high computational complexity and the
challenges in implementing them with thermal data, which
displays distinct characteristics compared to visual data.

FIGURE 3. The overall structure of this paper.

Overall, the fusion of multiple modalities is an important
area of research with many potential applications in various
fields. With the advancements in deep learning, it is now
possible to construct more advanced systems that can perform
complex tasks using fused RGB-DT data.

A. CONTRIBUTION
The primary aim of this survey is to provide a comprehensive
and all-encompassing overview of the use of thermal cameras
in combination with RGB and depth data. At the time of
writing, the authors were unaware of comparable surveys
specifically focusing on these technologies. While there are
numerous reviews on sensor fusion, they predominantly focus
on the amalgamation of LiDAR, Radar, RGB and other

sensors, particularly within the realm of autonomous driving.
These reviews often delve into the integration of these various
sensor modalities and their specific challenges, yet they do
not explore the specific tri-modal fusion of RGB, Depth (D),
and Thermal (T) sensors. Our review uniquely situates itself
at this intersection of sensor fusion, thereby distinguishing it
from the broader landscape of sensor fusion literature.

The primary contributions of this review paper are
designed to inform researchers working in this field by:

• Presenting a summary of various traditional and current
methodologies being utilised.

• Identifying available datasets for furthering this
research.

• Highlighting the current research trajectories and vari-
ous application areas.

The ultimate goal is to provide a comprehensive resource that
will ease the entry of interested researchers into this field
while identifying trends for others.

As illustrated in Fig. 3, the paper’s structure begins with
an introduction followed by a brief background to provide
further context. Camera calibration and image registration
are reviewed first since they are prerequisites for most
approaches and fields of application. The discussion then
shifts to modality fusion in general before examining the
overlaying of thermal data onto visual data or 3D models for
visual inspection or the extraction of thermal data from spe-
cific regions of interest. The use of one modality to support
another in preprocessing is briefly addressed, followed by the
exploration of RGB-DT applications in 3D reconstruction.
Subsequently, the paper delves into manual descriptor-based
methods and deep learning-based methods. Lastly, available
datasets, limitations, and conclusions are presented.

II. METHODOLOGY AND RESEARCH DESCRIPTION
The systematic literature review (SLR) for this study
employed the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) methodology [3],
which is a widely-used approach that involves a structured
process for conducting a comprehensive literature search,
applying eligibility criteria, extracting data, synthesising
findings, and ensuring the search is reproducible with the
same steps, keywords, and tags. The review began by defining
the research topic of: RGB-D And Thermal Sensor Fusion.
This was then followed by the definition of keywords and
search tags used to search scientific databases via Google
Scholar as listed in Table 1.
A comprehensive search resulted in the identification of
70 research papers related to the chosen topic. These papers
were further refined by utilising exclusion criteria, such as
language, repeated papers, and eliminating papers that were
not relevant to the techniques under review, as depicted in
the PRISMA flow diagram in Fig. 4. Following the imple-
mentation of the exclusion criteria, 31 papers were reviewed
in detail. Additionally, 16 more relevant documents were
added after analysing the references of the initially identified
papers, bringing the total number of papers reviewed to 47.
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FIGURE 4. PRISMA flow diagram illustrating the search strategy and providing the phases of article identification and selection, which
resulted in the identification of 47 papers that were deemed eligible for inclusion in the review. Prepared in accordance with Tricco AC,
et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR) [3].

TABLE 1. Literature searches on Google Scholar.

Further studies that did not precisely match the three modal-
ities, but were considered relevant to support the topic, were
also included in this review. A list of the studies that have
been included in the analysis can be found in Table 2, along
with additional details such as the type of sensors used,
their resolution, the frequency of data acquisition, the fusion
method employed, and whether or not the system is capable
of real-time processing.

A. REVIEW QUESTIONS
In this work, the aim is to answer the following review
questions:

• What datasets are currently available for RGB-DT and
what scenarios do they cover?

• What are the different methods for fusing the
modalities?

• How are modalities weighted during fusion?
• What are the most suitable fusion and detection methods
for real-time applications?

• What are the potential application areas for this
technology?

• What are the limitations and future prospects?

III. BACKGROUND
The initial research papers that concentrated on fusing RGB,
Depth, and Thermal data (RGB-DT) using RGB-D cam-
eras emerged in 2011. Early works in this field investigated
medical scans [2], while later in 2013, research expanded
to include 3D thermal mapping of building interiors [45],
sensor fusion for people tracking [46], and tri-modal person
re-identification [47].
Some earlier works proposed systems using different tech-

nologies, such as a terrestrial laser scanner and thermal
infrared camera [48], or a Structure from Motion (SfM)
or MultiView Stereo (MVS) pipeline to generate a dense,
coloured point cloud with optional thermal data overlay [49].

Over the last decade then, the fusion of multiple modali-
ties has been increasingly researched as combining different
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TABLE 2. Overview of reviewed studies.

modalities, such as RGB-DT data, has been recognised
to provide a richer and more comprehensive represen-
tation of the environment or scene. This has resulted

in achieving a more accurate and robust performance in
a wide range of applications, including building map-
ping [45], person re-identification [47], 3D salient object
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FIGURE 5. Overview of methods and areas of application of the reviewed documents.

detection [5], autonomous driving [6], [50], activity recog-
nition [34], robotics [5], surveillance [12], 3D reconstruction
[10], [43], defect detection [29], gas leak detection [42] and
many others. For example, in robotics, the combination of
RGB-DT data can enable robots to perceive and navigate
through complex environments with greater accuracy and
efficiency [5] or to interact with humans better by interpreting
their emotions [24] and activities [34]. In surveillance, the
fusion of RGB-DT data has been shown to improve the
detection and recognition of objects, people, and activities in
a monitored area [38] under difficult light conditions, and in
autonomous driving, the fusion of multi-modal data can pro-
vide a more comprehensive understanding of the surround-
ing environment, enabling safer and more reliable driving
[6], [50]. The temperature characteristics of maize under
water stress, which serves as an example of multi-modal sens-
ing in agriculture, has been investigated [11], which has the
benefit of developing more efficient and sustainable agricul-
tural practices. In the field of industrial maintenance, an Aug-
mented Reality(AR) system, that visualises components and
their temperature in real-time has been proposed [16], helping
to identify faults and problems. It is also worth noting that
in some cases, a single modality can indirectly improve the
quality of anothermodality. This has been demonstrated in [6]
by using the thermal data, and the extracted monodepth [51]
data from the thermal data, in an algorithm used to dehaze
the RGB image so that it can be used for object detection
further down in the processing pipeline. Fig. 5 offers a sum-
mary of the methods and application areas covered in the
reviewed documents. This figure highlights the wide range of
approaches and techniques employed in the research papers,
as well as the diverse fields where these methods have been
implemented.

While early works employed traditional computer vision
techniques, the field has evolved alongside advancements
in deep learning. Although the fusion of modalities has
been shown to outperform single-modality systems, only a
limited number of researchers have tackled the topic of het-
erogeneous sensor fusion involving stereo vision or depth
cameras with thermal cameras. This is despite the growing
need to meet evolving requirements and develop more robust
decision-making systems by integrating features from various
sensors. The potential for improved performance in a range
of applications highlights the importance of continuing to
explore and develop these multi-modal fusion approaches.
Figure 2 shows the evolving trends for RGB-D, RGB-T and
RGB-DT research by depicting the number of studies pub-
lished over the past 10 years.

IV. CAMERA CALIBRATION AND REGISTRATION
For successful multimodal environmental sensing using
RGB, depth, and thermal data, it is crucial to acquire the data
from these modalities in a properly aligned manner. This can
pose a challenge since the sensors used for each modality
may have varying fields of view (FOV), resolutions, and
sensing capabilities. To facilitate data fusion, the systemmust
be calibrated by determining the intrinsic (pin-hole camera
model parameter matrix) and extrinsic (estimation of the
relative sensor poses) parameters of each camera, which can
then be used to align the data. This calibration, based on the
pinhole camera model, has been simplified by using a stereo
calibration process [52], which can be applied using these
and similar modalities. This method has been implemented in
numerous studies in different ways. Fig. 6 shows the pattern
matching using stereo calibration.

VOLUME 11, 2023 82415



M. Brenner et al.: RGB-D and Thermal Sensor Fusion: A Systematic Literature Review

FIGURE 6. Stereo calibration of RGB and Thermal cameras. The left image
shows a heated bi-material calibration checkerboard captured by an RGB
camera, while the right image presents the same board as seen by a
thermal camera. The overlaid lines illustrate the pattern recognition
process of the stereo calibration.

A. CALIBRATION BOARDS
The most popular approach for the geometric calibration
of thermal cameras used to be a printed chessboard heated
by a flood lamp which was comparatively inaccurate and
difficult to execute [53] as the temperature difference was
fading quickly and the pattern was blurry. To address this a
novel geometricmaskwith high thermal contrast that does not
require a flood lamp has been proposed [53] as an alternative
calibration pattern. This approach involves cutting a mask out
of a thin material and holding it in front of a backdrop with
a different level of thermal radiance. Building on this idea,
various constructions have been developed in recent years,
all based on the same principle.

FIGURE 7. RGB-DT calibration board made of a glass substrate and
Alumina panel [5].

The multi-material calibration boards, which are essential
for cross-calibrating thermal and visual modalities, with their
distinct geometric patterns visible in all calibrated modal-
ities, are used in the calibration process [52]. A checker-
board with 12 × 9 (30 mm for every square grid) with
the pattern printed onto an alumina plate has been used [5]
which is then mounted on a glass substrate as illustrated in
Fig. 7. The board is heated from the back, while the white
reflects the heat, the black conducts it to produce the pat-
tern in the thermal modality. These boards are commercially
available. The authors in [54] constructed a board where the

calibration pattern comprises a line-based grid with regularly
sized square patterns. The pattern consists of thin copper lines
milled onto a printed circuit board (PCB) with a width of
2 mm and a spacing of 40 mm, and it has six/seven intersec-
tions along the shorter/longer axis. Compared to conventional
calibration patterns, the line-grid pattern is more robust in
maintaining high contrast in thermal images due to the good
conductivity of the copper lines, which ensures a uniform
thermal distribution. Additionally, the proposed pattern has
the same geometric relations as the conventional chessboard
pattern, allowing for the use of existing algorithms for camera
calibration.

However, calibration boards can be constructed simpler
as demonstrated in [22] where an 11 × 11 checkerboard
pattern made of cardboard paper and highly reflective metal
squares was used. Alternatively, [39] constructed the cali-
bration board using an A3-sized 10mm polystyrene foam
board as a backdrop and a board of the same size with cut-
out squares as the checkerboard. This is similar to [2] where
a solid board was used that had rectangular holes cut out,
as shown in Fig. 8(d), whereas [13] used fabric for the black
pattern. In addition to using squares, circles can also be used,
as demonstrated in [8] where the authors utilised amaskmade
of 3mm thin Depron® material with an asymmetric circle
pattern, as shown in Fig. 8(a), while [40] proposed using 3D
printed boards in their study, as shown in Fig. 8(g).

FIGURE 8. Calibration boards used in studies [2], [8], and [40] from top to
bottom respectively: (a) RGB (b) Thermal (c) Depth (d) RGB (e) Thermal
(f) Depth (g) Heating of lower plate (h) Thermal.

A distinct approach was adopted in [20] and [25], where
resistors were placed onto the calibration board and heated
up electrically, enabling a prolonged calibration process.
Similarly, [23] and [32] employed incandescent light bulbs
embedded at every other corner of the grid to emit heat.
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In [55], a method was proposed for calibrating a UV camera
with RGB-D and thermal cameras using a rectangular alu-
minium plate with evenly distributed circle holes. A heater
strip is placed behind the plate to create sufficient contrast
for the thermal camera. To ensure that all cameras can be cal-
ibrated together, a black box is used, which absorbs most of
the light while allowing light to pass through the holes on the
aluminium board. The white paper covering the board reflects
visible and UV light, which can be detected by the RGB and
UV cameras. Once the calibration tool’s features are detected,
the centre of each circle is marked, and OpenCV’s [56]
camera calibration function is used to obtain intrinsic and
transformation matrices for each camera coordinate system.
The proposed method allows for the accurate calibration of
multiple cameras, including a UV camera, which can be
beneficial in various applications. Reference [10] used this
approach to calibrate RGB-D and thermal modalities.

The combination of thermal images and colour images
typically involves the use of methods that require complex
calculations. However, in [57], a 2-point approach was pro-
posed that outperformed commonly used 8-point and 7-point
approaches for equalising the epipolar geometries of different
images. The study proposes a method for effectively combin-
ing images by determining two points on the epipolar plane.
This technique was also employed in [9] for the calibration
process. In order to find calibration points in both thermal
and optical data, the method used in the study involves sev-
eral operations. Firstly, the Canny Edge detection method
is applied to the thermal image to determine the calibration
points. Next, in the optical image, the Hough circle finding
method is used to locate the circles containing the calibration
points, and the centres of these circles are determined as
calibration points. It is important to note that the calibration
mechanism design consists of two black circle drawings on
a white background with incandescent bulbs at the centre of
these circles. This setup allows for the creation of distinguish-
able common points in both the thermal and optical data,
which are essential for the calibration process. Following this,
line segments are extracted and plotted on both thermal and
optical data. The lengths of these segments are determined by
the Euclidean distance, and the slopes of the lines between the
points are calculated using the slope formula and are stored
for the combining process. The rotation of the thermal image
is based on the difference in the calculated slopes of the lines,
followed by resizing the thermal imagewith respect to the line
length ratio. The midpoints and distances between them are
obtained from thermal and optical images to achieve precise
alignment in the same plane. This allows the determination
of the position of the thermal image relative to the optical
image [9].

In some RGB-D sensors, like the Microsoft Kinect series,
the depth stream originates from a time-of-flight camera that
also generates an additional IR stream from amplitude infor-
mation. Since both streams originate from the same sensor,
it is referred to as the Depth/IR sensor. The IR stream can

be utilised for calibration purposes, eliminating the need for
any 3D elements on a board and can provide supplemental
data that may be beneficial in applications for object detection
or tracking in low-light conditions. This IR stream senses
the 850nm (NWIR) spectral band and does not contain any
thermal data. It is important to clarify that this stream should
not be mistaken for the stream from a thermal camera, which
is based on wavelengths of roughly 8 − 14µm (LWIR).
An overview of the spectral range is given in Fig. 1.

B. REGISTRATION
RGB-D cameras, including models like Microsoft Kinect
(V1, V2, and Azure) and Intel RealSense (D415, D435, etc.),
are engineered to simultaneously capture both visual and
depth modalities. As a result, they inherently register and
output both data types. To align the thermal data, the stereo
calibration process can be used to register it against the visual
data.

In earlier works, before calibration using geometric pat-
terns was applied, researchers used the Hough Parameter
Space to register modalities as demonstrated in [52]. This
process involved detecting edges with the Canny edge detec-
tor, resulting in binary edge images. These images were then
processed by the Hough transform, which extracted all lin-
ear image segments. The rotation and translation differences
could be calculated using line correspondence analysis [58].
Nonetheless, considering the two modalities as a stereo pair
and employing stereo calibration techniques simplifies this
process. The algorithm [52] has since been conveniently inte-
grated into various tools such as OpenCV [56], Matlab [59],
and other tools and frameworks, facilitating the acquisi-
tion of the translation vector, rotation matrix, and distortion
coefficients.

The calibration of multi-camera systems, each charac-
terised by a unique field of view (FOV), can be a challenging
task, particularly when it involves a variety of modalities
and resolutions. RGB and RGB-D cameras typically offer
higher resolutions and distinct FOVs compared to thermal
cameras. For accurate sensor fusion, optimising the overlap
between the RGB, depth, and thermal modalities is crucial.
In RGB-D cameras, the RGB component is usually internally
pre-adjusted to match the overlapping FOV of the depth data.
In sensor fusion processes that are designed for subsequent
analysis and necessitate overlapping data from all modalities
for real-time processing, it is necessary to modify the RGB-D
data through cropping or clipping to match the resolution and
FOV of the thermal camera. This requires careful consider-
ation of the FOV of each camera during system design to
ensure maximum overlap. When aligning a lower-resolution
image with a smaller FOV to a higher-resolution image with
a larger FOV, a homography is typically used to transform the
lower-resolution image to align with the corresponding part
of the higher-resolution image. This approach, which allows
for the incorporation of additional information from the
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lower-resolution image while preserving the high-resolution
data, is employed in the study [40]. In this study, the authors
effectively align and fuse data from sensors with different
FOVs and resolutions. They further address the challenges
of occlusions and significant differences in the FOVs of
the cameras, demonstrating the versatility and robustness of
this approach in handling complex sensor fusion scenarios.
In offline processing scenarios, more intricate techniques can
be employed for alignment. For instance, the paper [14]
utilises a combination of Scale-Invariant Feature Transform
(SIFT) for keypoints computation and matching, Random
Sample Consensus (RANSAC) for eliminating geometrically
inconsistent matches, and Bundle Block Adjustment (BBA)
for optimising camera parameters and producing an initial
3D structure of aligned images. Although these methods
are computationally demanding, they offer superior accuracy
and robustness, making them ideal for applications where
precision is crucial.

While the stereo calibration approach is effective,
it encounters a significant challenge from the different FOVs
of the modalities, which can result in a parallax effect that
varies at different depths. This phenomenon is due to the
difference in viewing angles between the cameras, causing
objects at various depths to appear at different positions in
the different cameras. As a result, using a single homography,
a transformation that maps points in one image to corre-
sponding points in another image, only functions effectively
on a specific plane. This variation in perspective leads to
misalignment in the fused data.

One approach to overcoming this problem is presented
in [39]. Firstly, a thermal-visible calibration device is used to
establish the correspondences between the points extracted
from the thermal and RGB modalities. Using a Microsoft
Kinect camera, the depth sensor is already factory registered
to the RGB camera; therefore, registration is focused only on
the RGB to thermal data. Registration is performed using a
weighted sum of multiple homographies. Multiple views of
the calibration device scattered throughout the exploratory
scene were used to generate homographies relating RGB and
thermal modalities. Each homography is calculated using a
RANSAC-based method, taking into account the approxi-
mate distance to the view of the calibration device represented
by the homography. This strategy effectively compensates
for parallax at different depths. The rationale behind the
approach is that registration based on each homography is
only accurate for points on the plane that are spanned by the
particular view of the calibration device. Therefore, to register
an arbitrary point in the scene, the 8 closest homographies are
weighted and then summed up. It was observed that registra-
tion accuracy is primarily dependent on 3 factors: the distance
in space to the nearest homography, the synchronisation of
RGB and thermal cameras, as well as the accuracy of the
depth estimate.

In photogrammetry-based 3D reconstruction, as demon-
strated in [14], the registration process depends on the iden-
tification and matching of keypoints, which is followed by

Bundle Block Adjustment (BBA) [60]. Keypoint computa-
tion involves the detection and description of features using
the SIFT [61] algorithm.Keypoints are unique locations in the
image that correspond to the same real-world object across
different images. The matching step entails finding matching
keypoints across overlapping images. Subsequently, BBA is
used to optimise the camera parameters, both internal and
external, for each image, ensuring accurate calculation of ray
paths inside and outside the camera for precise 3D recon-
struction. These keypoint computations, matching, and BBA
algorithms have been extensively studied and integrated into
various software packages and frameworks for photogram-
metric applications.

1) AUTOMATIC REGISTRATION
A different approach was taken by the authors in [11] by
extracting edge images. To register, feature points were
detected and matched. Common feature descriptors used
for image registration include SIFT [61], SURF [62], and
BRISK [63]. However, these methods often involve the use of
a Gaussian filter, which can cause the loss of image details.
To address this issue, [64] proposed a new feature descriptor
called KAZE, which can detect image features in nonlinear
scale spaces and obtain more feature points. The KAZE
feature descriptor was utilised to register thermal and colour
images of maize. The KAZE features and key points were
detected from extracted edge images, and their descriptors
were built. Feature points were then matched using the near-
est neighbour distance ratio strategy, with outliers removed
using the M-estimator Sample Consensus (MSC) algorithm,
a variant of the RANSAC algorithm. This approach is akin
to [29], which is elaborated in more detail in section X-F. The
study proposed a feature-based registration method for align-
ing thermal and RGB-D images using the Shape Constrained
SIFT Descriptor (SCSIFT).

A similar auto registration approach was taken in [42],
Edge-Based Mutual Information (EMI). However, they
encountered issues when utilising the thermal images because
of the Automatic Gain Control (AGC) employed in the ther-
mal video stream. This AGC results in a variable colour range,
as depicted in Fig. 19, which shows an example from the
VDT-2048 dataset. Their proposed method combines mutual
information (MI), edge detection, and image separation to
achieve image registration with the following steps:

Image filtering: The input images are first filtered using a
Gaussian filter to reduce noise. This is donewith a 9×9 kernel
size and a standard deviation (σ ) of 1.85.

Edge detection: A Canny edge detector is applied to both
filtered images to generate edge images.

Region separation: After obtaining the edge images,
region separation is performed. The primary goal of this
step is to constrain the mutual information (MI) optimisation
functions to focus on grey values that are in the vicinity of
edges. This approach helps to ensure that the MI optimisation
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process is more accurate and robust, as it considers only the
most relevant information in the image.

When software tools are used for the 3D reconstruction,
as in [18] and [22], the registration algorithms are applied by
those software packages and are mainly based on a combina-
tion of feature detection, feature matching, and bundle block
adjustment:

Feature detection: Identifies keypoints or features in each
image. These features are typically distinct and easily recog-
nisable patterns, such as corners, edges, or textures. The
software employs SIFT (Scale-Invariant Feature Transform)
or similar algorithms to extract features from the images.

Featurematching:After detecting features in each image,
match corresponding features across multiple overlapping
images. The software uses a matching algorithm, such as
approximate nearest neighbour matching, to find the best
matches between the features detected in different images.

Bundle block adjustment: Once the matching features
have been identified, employ a bundle block adjustment
technique to optimise the camera positions and orientations,
as well as the 3D coordinates of the keypoints. This process
involves minimising the reprojection error, which measures
the discrepancy between the observed image coordinates and
the projected coordinates of the keypoints in 3D space. Bun-
dle block adjustment refines the initial estimates of camera
parameters and 3D points to improve the overall accuracy of
the reconstructed scene.

By combining these techniques, the software registers the
images, ultimately creating a consistent and accurate 3D
representation of the surveyed area.

V. THERMAL DATA VISUALISATION
TheAutomatic Gain Control (AGC) technique is a histogram-
based processing method that transforms raw data formats
into 8-bit image data. However, this processing results in
data compression, leading to a significant loss of information.
In the case of 16-bit data, with a possible value range of
0 to 65,535, the resulting image is represented with values
in the 0 to 255 interval, further decreasing detail. To address
this issue, AGC algorithms are designed to enhance image
contrast and brightness, thereby emphasising the contextual
details of the scene [65].
Most LWIR cameras produce a grayscale or colour-range

image stream with 8-bit per pixel. They typically use an AGC
algorithm to generate the 8-bit image with high contrast. The
8-bit data represents gain-controlled values that depend on the
temperature of objects in the scene and are more appropriate
for human vision. However, the 8-bit representation results
in a lower thermal resolution and the algorithm causes colour
changes based on minimum and maximum measurements.

VI. HOW AND WHAT TO FUSE
In multimodal sensor fusion, deciding how and what to
fuse depends on the specific application, the data modali-
ties involved, and the desired outcome. The fusion of fea-
tures or decisions can be achieved in many ways, such as

concatenating feature vectors, averaging or weighted aver-
ages of data or decisions, weighted voting schemes to com-
bine decisions, or applying machine learning techniques
such as neural networks, decision trees, or support vector
machines. However, the fast and massive data collection
capabilities of the sensors and the representation of the
obtained large data in the memory, possibly with different
data types, are one of the challenges of real-time sensor
fusion [9].

Alongside the fusion of different modalities, another
important aspect to consider is the methodology of sen-
sor fusion implementation. Two primary approaches dom-
inate this field: model-based and data-driven techniques.
Model-based methods, as explored in study [66], utilise pre-
established models to interpret and integrate sensor data.
These methods often exhibit robustness and interpretability,
but their effectiveness can be constrained by the accuracy of
the models they employ. In contrast, data-driven techniques,
as outlined in the research [67], learn to merge sensor data
directly from the data itself, typically employing machine
learning techniques. These methods can potentially achieve
superior performance, but they may require substantial data
quantities and may be less interpretable.

A. FUSION STAGES
Features of multiple modalities can be fused at different
points in a process, and these fusion points are generally
categorised into three levels: Data level, Feature level, and
Decision level. These levels can also be referred to as low,
mid, and high or early, middle, and late fusion. Each level of
fusion has its advantages and disadvantages so it is essential
to consider the specific context when selecting the fusion
point. The three levels can be categorised as:

1) Data level(early) fusion: At the data level, the fusion
of different modalities involves combining raw data
from all modalities to create an integrated dataset, often
by concatenating or averaging. This approach is useful
when the raw data from different modalities are directly
comparable and compatible. For RGB-DT data, often
multi-channel images are created by blending and com-
bining the data, primarily for deep learning purposes
[9], [12], [21].

2) Feature level(middle) fusion: In this approach, fea-
tures are extracted separately from each modality and
then combined before being fed into a classifier or
a learning algorithm. Feature-level fusion can involve
concatenating the feature vectors or using other meth-
ods to merge the extracted features. This method often
results in a more compact and informative representa-
tion of the data, as the features from each modality are
combined after being extracted, retaining information
specific to each modality. In manually crafted feature-
based approaches, this is a common approach while in
deep learning, this method usually enhances accuracy
but has higher computational requirements. There are
many variations of middle fusion depending on the
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processing pipeline. The authors of [38] propose an
algorithm optimised for human tracking based on an
enhanced Bhattacharyya coefficient, and in [39] fea-
tures are fused for body segmentation using stacked
learning and Random Forest while in [41] features are
combined by applying landmark-based energy filters
for pain level recognition.

3) Decision level(late) fusion: At this stage, eachmodality
is processed separately, with features extracted and
then classified or analysed independently. The results
or decisions from each modality are then combined
to produce a final decision or output. This approach
is suitable when the modalities are diverse and diffi-
cult to compare directly, or when separate classifiers
have been optimised for each modality. Decision-level
fusion can involve using majority voting [19], [47],
weighted voting [8], or other decision-fusion tech-
niques like a Support Vector Machine(SVM) [34].

The performance of a fusion method is highly dependent
on the sensing modalities, data, and network architectures
being used. This rough categorisation also holds true when
applying Deep Neural Networks(DNN), which is discussed
in more detail in section XI and in section X for the feature-
based approach. The fusion of the modalities however is not
limited to a single stage but can be applied at multiple stages
in a processing pipeline. Besides the listed fusion methods,
it is also worth mentioning that the direct fusion of multiple
modalities is not the only way to enhance the quality of data.
A single modality can also indirectly enhance the quality of
another modality. In [6] for example, the authors used the
thermal data, together with the monodepth [51] data extracted
from it, to improve the quality of RGB images by applying a
dehazing algorithm.

B. FUSION METHODOLOGIES
Sensor data fusion methodologies can be broadly categorised
into two main approaches: model-based and data-driven.

• Model-Based Approaches These methods rely on pre-
defined models to interpret and combine sensor data.
They are often robust and interpretable but may be
limited by the accuracy of the models they use. Some
common techniques under this category include:
– Kalman Filters These are utilised in linear sys-

tems characterised by Gaussian noise, offering opti-
mal performance in terms of minimising the mean
squared error. As demonstrated in the study by
the authors of [46], a Kalman filter, when com-
bined with a probabilistic model of a leg shape, can
ensure robust tracking in scenarios such as person-
following.

– Particle Filters These are used for non-linear
and non-Gaussian systems. They are more flexible
than Kalman filters but require more computational
resources. In the context of person tracking, the
authors of [38] employed a simple particle filter
approach, which estimates the target’s probability

distribution using a set of weighted particles while
study [20] presents an adaptive human tracking
method using. The method incorporates adaptive
weighting based on velocity and head position,
allowing it to handle fast motion, partial occulta-
tion, and scale variation. The fusion of depth and
thermal data enhances the robustness and accuracy
of the tracking process, as demonstrated in various
challenging scenarios.

– Bayesian Networks These models are utilised
in probabilistic modelling to represent the proba-
bilistic connections between a group of variables.
They are particularly beneficial when the rela-
tionships between the sensors are either known
or can be learned. In the domain of Presen-
tation Attack Detection (PAD), the authors of
study [68] employed Bayesian Networks to differ-
entiate between a genuine face and a fraudulent
attack. Their approach involved designing an attack
detector module based on Bayesian principles, with
the decision boundary set at a log-likelihood ratio
of attack to bona fide equal to 0. This design
choice ensures that the classifier operates indepen-
dently and maximises the confidence score in its
classification.

• Data-Driven Approaches These methods learn to com-
bine sensor data directly from the data itself, often using
machine learning techniques. They can achieve higher
performance but require large amounts of data and can
be less interpretable. Some common techniques under
this category include:
– Support VectorMachines (SVMs)These are pow-

erful supervised learning models that perform well
in high-dimensional spaces and can be customised
with different Kernel functions for the decision
function. However, their effectiveness can be sur-
passed by more complex models such as CNNs in
certain contexts, as shown in [69] for fall detec-
tion systems. In the context of activity recognition
and emotion classification, SVMs have demon-
strated promising results when combined with var-
ious types of features. For example, the authors
of [34] utilised an SVM model trained with depth
and skeleton features in conjunction with thermal
sensor data to enhance activity recognition accu-
racy. Similarly, [24] used an SVM model with both
gait Power Spectral Density (PSD) and thermal
features, achieving an offline testing accuracy of
70% in emotion classification while the authors
of [39] compared their human body segmenta-
tion, based on Random Forest, with one using
HOG + SVM. Despite the HOG + SVM approach
being trained on larger, varied datasets, the study’s
proposed method significantly outperformed it.
Further, the authors of [27], in the context of Pre-
sentation Attach Detection (PAD), noted that the
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SVM baseline generally performed worse than the
other approaches, suggesting that the local, pixel-
wise classification approach may not be as effective
as the more holistic view provided by CNN models
in their evaluation.

– Decision Trees These flowchart-like structures are
used for decision-making, where each internal node
signifies a test on an attribute, each branch repre-
sents the outcome of the test, and each leaf node
holds a class label. They are valued for their sim-
plicity and interpretability. For instance, the authors
of [67] utilised a decision tree-based algorithm in a
novel data association approach. This method used
polar rays to find correspondences between trifocal
camera objects and fused hypothesis, or super-
sensor objects. The decision tree gradually elimi-
nated unwanted associations by considering object
characteristics such as area, visible façade, dimen-
sion ratio, and relative position in different coordi-
nate systems.

– Random Forest This ensemble learning method
constructs multiple decision trees during training
and outputs the class that is the mode of the classes
of the individual trees. A practical application of
this technique is demonstrated in [19], where a
Random Forest was used to predict the conditional
probabilities of different class labels based on point
descriptors. The Random Forest, an ensemble of
decision trees, was trained on randomly sampled
subsets of training data. This approach resulted in
decorrelated trees that enhanced the generalisation
and robustness of the classification. The final point
label was determined by majority voting across all
decision trees in the Random Forest.

– Neural Networks and Deep Learning Models
Neural networks excel at discerning complex pat-
terns within high-dimensional data, such as images.
Deep learning, a subset of neural networks, utilises
multiple hidden layers to automatically learn and
extract features from raw data, proving highly effec-
tive for RGB-D and Thermal sensor fusion tasks.
A more comprehensive discussion on this topic can
be found in section XI.

It’s important to note that these categories are not mutually
exclusive, and sensor fusion systems may use a combination
of these approaches. The choice of methodology, similar
to the selection of fusion methods, depends on the specific
requirements of the task, the available data, and the compu-
tational resources.

VII. ROI & OVERLAY
In some applications, thermal data serves as supplementary
information for analysis purposes, such as site [14], [22]
and building [18], [19], [43] inspections, medical exami-
nations [23], or human thermal comfort assessments [28].
Large-area inspections for sites and buildings are generally

not performed in real-time or with RGB-D sensors. Instead,
photogrammetry [60] is employed, either with custom-built
processing pipelines as in [14] or established tools like
Pix4Dmapper, 3DFZephyr, Context Capture, PhotoScan, and
others as in [18] and [22], to generate point clouds offline.
By aligning thermal images, the point clouds are enriched
with thermal data for offline analysis. In contrast, [35] used
mobile devices and proposed image-based modelling (IBM),
a passive mapping technique that uses image datasets with
multiple fields of view (FOV) to reconstruct 3D models.
This study employed a low-cost thermal camera and two
smartphones to capture visible and thermal images. The work
established that the proposed method is cost-effective and
achieves a temperature precision of 2◦C in the 3D thermal
models, albeit at a slower pace. Since these approaches are not
the primary focus of this study, they are not pursued further
but are mentioned for completion as they also represent a type
of fusion of these modalities. However, the modalities are not
fused to enhance a process but merely for post-analysis.

In [4], the authors utilised stereo vision and trained a neu-
ral network for disparity estimation to generate depth data.
They also applied semantic segmentation, further discussed
in section XI-D, using depth and RGB data to define the ROI
for extracting thermal data and producing a 3D reconstruction
for post-processing. Meanwhile, [23] identified a region of
interest(ROI) in the RGB modality also by segmentation
but did this by classic methodologies not involving neural
networks and extracting the thermal data by applying the
ROI to the aligned thermal modality. In certain applications,
such as those previously mentioned, the actual temperature
values are relevant. However, in other studies like [13], the
focus was on using the visual information derived from the
thermal image rather than the actual temperature values.
In these cases, transformations like stretching the bright-
ness histogram values are applied to enhance the contrast,
and additional denoising techniques are used to improve the
image quality.

Unlike the previously discussed studies, the authors of [33]
configured a system in which ROIs are identified in the RGB
modality based on the facial landmark points detected using
the CLM Face Tracker [70], and their coordinates are con-
verted to thermal frame coordinates. Key regions of interest
include the facial area, ocular and periocular areas, and nose
area, and evaluated parameters include position, orientation,
green colour component, depth (distance), and temperature.
The average values of each variable are computed for each
region of interest, and the relative positions and temperatures
are computed with respect to the average values computed for
the entire face. Finally, each computed value is logged to an
individual stamped CSV file for post-experimental process-
ing and analysis.

Similarly, in [25], face detection and extraction of land-
mark points from RGB images are accomplished by using
the Dlib [71] machine learning toolkit based on histogram-of-
oriented-gradient (HOG) features. The authors assumed that
the target person does not move significantly between two
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FIGURE 9. Depiction of the image dehazing process using GoogLeNet, a CNN-based classification model, to learn about weather
conditions and select an appropriate atmospheric scattering coefficient based on the level of haze. The model performs depth estimation
between the object and the camera using Monodepth and the thermal image. With the selected atmospheric scattering coefficient and
depth information, a transmission map is estimated and a haze-free image is produced [6].

consecutive frames and limited consecutive detection to the
previously identified area to increase the processing speed.
The facial ROIs in the thermal image are located using cali-
brated landmark points. The forehead centre is computed as
the middle of the two eyebrow corner points, and the average
temperature in the forehead area is taken as the body tem-
perature. The mean temperatures in the nose and cheek areas
are used for the measurement of the respective respiration
and heartbeat rates through harmonic analysis. The dominant
frequency in the temperature signal’s spectrum is identified
by Fast Fourier Transform (FFT), and thenmultiplied by 60 to
obtain the respiration or heartbeat rate in cycles per minute.

For the purpose of thermal comfort of humans, the authors
in [28] used algorithms implemented in OpenCV [56] for
facial tracking, but unlike in [25], there was no guaran-
tee that a face faces the camera why the thermal images
used for facial skin temperature measurements contain var-
ious types of noise, such as false detection of background
as faces and interference from high-temperature objects in
the environment, which are represented as sudden spikes in
measurements. To remove such noise, the median filter was
applied before data analysis. Unlike previous studies, that
segmented the frontal face into several regions and collected
skin temperature from each region, this study used global skin
temperature features, including the highest, lowest, first quar-
tile, third quartile, and average temperature measurements of
all pixels in the detected facial region. These features provide
an overall description of the distribution of skin temperature
over a detected face, including both frontal and profile faces.

The authors in [8] adopted a different approach for process-
ing aligned modalities. They applied background substitution
and evaluated the size of connected pixel areas from the delta
image to determine whether a living being was detected or
not. This study fused these regions of thermal and depth data
at different levels to determine the optimal result. The study
did not find any significant differences in the results based on

the different fusion methods used. The evaluation resulted in
an accuracy of 90.1%. However, since the authors used their
own data, no comparison with other methods was possible.

Numerous other studies [24], [33], [34], [41] have
employed various detection methods to identify ROIs for
extracting feature data to be used in decision systems or
deep learning algorithms. For example, the average face
temperature or the nostril area can be tracked to predict
human behaviour. Further details on studies that extract data
based on ROIs but process them further are presented in
sections X and XI.

VIII. PROCESS SUPPORT
As briefly mentioned in the Fusion StagesVI-A section, there
is also an indirect way of using a modality to improve the
quality of the data of another modality. In [6] the authors pro-
posed a dehazing network with RGB and thermal depth (DN-
RTD). To effectively remove haze, the DN-RTD dehazing
network is designed to estimate β, the atmospheric scattering
coefficient for the current atmospheric conditions, and d(x),
the depth between the camera and the object, using both RGB
and thermal images. This network is shown in Fig. 9.

In essence, the dehazing algorithm utilises GoogLeNet,
a CNN-based classification model, to categorise captured
hazy images Ih (x) into four haze levels: haze-free, light haze,
moderate haze, and dense hazy. The model then selects β

that corresponds to the classified weather condition. Addi-
tionally, the algorithm estimates depth information d (x) from
a thermal image H (x) using Monodepth, rather than an
RGB image. The transmission map t (x), which expresses
the level of atmospheric light transmission, is derived from
an Equation using the estimated β and d (x). Finally, the
clear image Ihf (x) is extracted through the image restoration
process. The authors then used two You Only Look Once
(YOLO) [72] detectors for both, the thermal and dehazed
RGB image, and fused using late fusion. However, the
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dehazing process takes 659.1ms to compute why it is not
suitable for real-time applications yet.

IX. 3D RECONSTRUCTION
3D thermal mapping reconstruction is a crucial application
area for RGB-DT images. Based on the type of 3D recon-
struction equipment used, 3D thermal mapping reconstruc-
tion methods can be categorised into five groups: RGB-D
(ToF or Stereo Vision), Laser Scanning, binocular stereo-
structured light encoding, Photogrammetry and Structure
from Motion.

The first depth camera employed to aid in 3D thermal
mapping reconstruction was the Kinect v1, which has been
used in various studies [40], [44], [45]. The authors in [43]
developed a handheld 3D thermal mapping system using the
Xtion Pro camera, and more recently, Kinect v2 and Intel
RealSense [10], [37] have emerged as the most commonly
used cameras for 3D thermal mapping reconstruction [17],
[31], [36].

The most commonly used technique for large-scale 3D
geometrical reconstruction is however Structure fromMotion
(SfM) [73] which was utilised in [18], [35], [48], and [49].
SfM-based 3D reconstruction approaches typically extract
and track robust visual features (e.g. SIFT or SURF) on
2D images captured from different viewpoints and only
work well under good illumination conditions (e.g. during
daytime). Feature extraction and matching, which involves
the detection of SIFT features, SURF features, ORB fea-
tures, and AKAZE features, is a crucial part of the SFM
algorithm. However, it only produces sparse 3D point clouds,
and the generated 3D models lack absolute scale informa-
tion, which is not ideal for thermal diagnosis applications.
To overcome these limitations, RGB-D-based 3D modelling
approaches nowadays utilise depth sensors to acquire depth
data of 3D objects/scenes from different viewpoints and apply
3D point cloud registration techniques, such as the iterative
closest point algorithm, to align the current view with the
global model [74], [75], [76], [77]. Besides the better quality,
it is also worth noting that binocular stereo-structured light,
as used by [78] and [79], or time-of-flight depth sensors, can
acquire 3D geometrical information in darkness.

Recently, the authors in [78] introduced a fast and reli-
able 3D thermographic reconstruction method using stereo
vision. The system features adjustable measurement fields
and distances, based on the chosen optics for the cameras and
projector. It can reach frame rates of up to 12.5 kHz for VIS
cameras and 1 kHz for the LWIR camera at full resolution.
By lowering the resolution, even higher frame rates can be
attained.

Meanwhile, researchers in [48] utilised terrestrial laser
scanners (TLS) to acquire dense 3D point clouds, and temper-
ature information obtained by an infrared camera is mapped
onto 3D surfaces. To improve the mobility of 3D thermal
imaging systems, a multi-sensor system consisting of a ther-
mal camera and a depth sensor was built to generate 3D

models with both visual and temperature information to be
used for building energy efficiency monitoring [45].

Another method proposed was a thermal-guided 3D point
cloud registration method (T-ICP) that improves the robust-
ness and accuracy of 3D thermal reconstruction by inte-
grating complementary information captured by thermal and
depth sensors [36], but the method requires high computing
resources to calculate several feature points. A set of exper-
iments were performed to analyse how the key factors, such
as sensing distance, specularity of the target, and scanning
speed, affect the performance of high-fidelity 3D thermo-
graphic reconstruction. The authors in [10] implemented a
similar idea but the localisation method combines the ORB-
SLAM2with the thermal direct method, and the entire system
runs on the Robot Operation System (ROS).

Based on the Thermal-guided Iterative Closest Point
(T-ICP) algorithm presented in [36], the authors of [17] devel-
oped a multi-sensor system that consists of a thermal camera,
an RGB-D camera, and a digital projector. This method
utilises an effective coarse-to-fine approach to enhance the
robustness of pose estimation, allowing it to handle sig-
nificant camera motion during large-scale thermal scanning
processes. This system enables multimodal data acquisition,
real-time 3D thermographic reconstruction, and spatial aug-
mented reality through projection.

A new dataset consisting of objects and their correspond-
ing thermal imprints resulting from grasping was proposed
in [31]. To generate a coherent contact map of an object, the
object is placed on a turntable which rotates as RGB-D and
thermal images are captured from multiple viewpoints. The
thermal images are texture-mapped onto the object’s 3Dmesh
using a data processing technique. The steps involved in this
process include extracting corresponding turntable angle and
RGB, depth, and thermal images at nine locations where the
turntable pauses, converting the depth maps to point clouds,
estimating the turntable plane and segmenting the object
using white colour segmentation, estimating the full 6D pose
of the object in the nine segmented point clouds using the
Iterative Closest Point (ICP) algorithm implemented in PCL,
obtaining a least squares estimate of the 3D circle described
by the moving object using the object origins in the nine
views, and interpolating the object poses for views that are
unsuitable for the ICP step. Finally, the 3D mesh along with
the nine pose estimates and thermal images are input into a
colourmap optimisation algorithm, which is implemented in
Open3D [80], to minimise the photometric texture projection
error and generate a mesh that is coherently textured with
contact maps. Examples of the resulting contact maps are
shown in Fig. 10.

X. MANUAL DESCRIPTOR-BASED METHODS
In contrast to deep learningmethods where the feature extrac-
tion is done by the Neural Network(NN), like by convo-
lutional layers in Convolutional Neural Networks (CNN),
handcrafted descriptors are manually designed features
extracted from the input data. These include histogram of
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FIGURE 10. Examples from ContactDB, constructed from multiple 2D
thermal images of hand-object contact resulting from human grasps [31].

oriented gradients (HOG), Histogram of Optical Flow (HOF),
scale-invariant feature transform (SIFT), local binary patterns
(LBP), histograms of thermal intensities, oriented gradients
(HIOG), and others. These techniques are considered to be
the traditional methods that have been mostly replaced by
CNNs, andmore recently by transformer networks, inmodern
detection pipelines [6]. The authors in [14] noted that the
SIFT algorithm is robust and accurate for matching features
in RGB images, but it only computes low-level features and
cannot recognise high-level representations.

A. VISUAL MODALITY (V)
The authors in [39] employed a combination of HOG, HOF,
and HIOG to extract features. HOGs and HOFs are used to
extract features from the RGB and depth data, while HIOG
is used for thermal data. These features are then combined
into a single feature vector and fed into a Random Forest
classifier for body segmentation. The classic implementa-
tion of HOG was used for the RGB data but with a lower
descriptor dimension than the original by not overlapping the
HOG blocks. No gamma correction was used for the gradient
computations and the Sobel kernel was applied. This means
that for each pixel, the gradient orientation is determined by
looking at the dominant colour channel (red, green, or blue)
of that pixel, and then quantising it into a histogram over each
HOG-cell [39].

HOF is a feature extraction method used to obtain motion
information from an image. It works by computing dense
optical flow and describing the distribution of the resul-
tant vectors. The optical flow vectors are computed using
the luminaries information of image pairs with the Gunnar
Farnebäck’s [81] algorithm. In [39], the authors used the
implementation in OpenCV [56]. The resulting motion vec-
tors are then masked and quantised to produce weighted votes
for localmotion based on their magnitude, taking into account
only those motion vectors that fall inside the colour grids.
The votes are locally accumulated into a v-bin histogram
over each grid cell according to the signed (0◦–360◦) vector
orientations. Unlike HOG, HOF uses signed optical flow
as the orientation information provides more discriminative
power [39].

Similarly [38] also used histogram-based descriptors but to
process the colour modality, the RGB image is converted to a
normalised colour space denoted as rgb, where r = R/(R +

G+B), g = G/(R+G+B), and b = B/(R+G+B). The colour

normalisation approach is used to eliminate the illumination
information in order to achieve robustness against lighting
variations. Due to the fact that two components are adequate
for describing the normalised colour space, with r+g+b = 1,
a 2D histogram HC is computed using the pair (r, g).

B. DEPTH MODALITY (D)
For depth, the authors in [39] used Histogram of Oriented
Depth Normals (HON) to describe points in a point cloud.
The depth modality contains a depth-dense map that rep-
resents a planar image of pixels measuring depth values in
millimetres. The intrinsic parameters of the depth sensor can
be used to obtain the actual coordinates from this depth rep-
resentation, which can be seen as a 3D point cloud structure.
This new representation allows measuring actual Euclidean
distances that reflect the real world. After converting the
depth modality, the surface normals for each point in the
point cloud are computed, and their distribution of angles
is summarised in an α-bin histogram. Then a histogram
describing the distribution of the normal vectors’ orientations
is built. A normal vector is expressed in spherical coordinates
using three parameters: the radius, the inclination θ , and the
azimuth ϕ. In this case, the radius is a constant value, so this
parameter can be omitted.

For θ and ϕ the calculation of the cartesian-to-spherical
coordinate transformation is:

θ = arctan
(
nz
ny

)
, ϕ = arccos

√
n2y + n2z

nx
(1)

Thus, a 3D normal vector can be represented by a pair of
angles (θ, ϕ), and the depth description comprises two his-
tograms for δθ -bin and δϕ-bin, which are L1-normalised and
combined. These histograms describe the angular distribu-
tions of the surface normals on the body.

Similarly, [38] used an approach where a 3D normal vector
is computed for each data point by fitting a 3D plane to a pre-
defined local neighbourhood. Using the corresponding polar
angle θ and azimuthal angle φ information, a 2D histogram
HD is computed.
The authors in [46] used a Leg Detection method proposed

in an earlier work [82] which utilises a probabilistic leg
pattern. The leg model is implemented as a sequence of maxi-
mum, minimum, maximum, minimum, and maximum values
based on the laser readings, as in [83]. Various measures
are defined, such as the distance between the legs and the
distance between the legs and background based on these five
points. Besides the laser, the depth data of an RGB-D sensor is
used to detect a particular emergency vest of a person. After
detecting the corners, the Lucas-Kanade method is used to
calculate the optical flow. The optical flow is computed for
each corner, and in each frame, the centroid of the corners
is then extracted, providing an estimation of the target’s
position.
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C. THERMAL MODALITY (T)
Reference [39] used the Histogram of Thermal Intensities
and Oriented Gradients (HIOG) descriptor derived from the
thermal cue. This descriptor is a concatenation of two his-
tograms. The first histogram provides a summary of thermal
intensities, which are distributed over the range [0, 255].
The second histogram represents the orientations of thermal
gradients. These gradients are calculated by convolving a first
derivative kernel in both directions and then binned into a
histogram, with their magnitude serving as a weighting factor.
The two histograms are L1-normalised and concatenated. For
the intensities, αi bins, and for the gradient orientations αg
bins are used.

In a similar way, but solely relying on summarising the dis-
tribution of thermal intensities, the authors in [38] proposed
a method to generate a one-dimensional histogram for the
thermal modality by directly utilising the intensity values of
the thermal image.

Meanwhile, [46] proposed a method to generate a
32-dimensional vector from a thermal image, where each
element of the vector corresponds to the estimated probability
of a person being present in a particular column of the image.
This approach was chosen as the used thermal sensor had a
resolution of 32 × 31 pixels. The computation of the vector
involves three steps: firstly, a likelihood of a pixel correspond-
ing to a person is assigned based on the assumption that the
temperature of a person follows a normal distribution with
mean and standard deviation values of 36 and 2, respectively,
which are determined from several thermal images of people.
Secondly, the likelihood matrix is smoothed by convolving
it with a Gaussian kernel of a width of five pixels. Finally,
the maximum value in each column of the likelihood matrix
is used to determine the corresponding element of the output
vector. The computation is based on established techniques
such as the Lucas-Kanade optical flow method and Gaussian
smoothing.

D. GENERAL FEATURE EXTRACTION
The authors in [41] studied the detection of pain levels
in faces and used the same feature extraction for all three
modalities as a descriptor that considers both, spatial and tem-
poral domains. This is needed to capture the spatiotemporal
phenomena of changes due to pain in a facial expression.
To achieve this, a steerable separable spatiotemporal filter
has been selected, which utilises the second derivative of a
Gaussian filter and their corresponding Hilbert transforms
to measure the orientation and level of energy in the 3D
space of x, y, and t . The filter provides information on the
spatial texture of the face through its spatial responses and
the dynamic of the features such as velocity through its
temporal responses. The filter is applied independently to all
three modalities, and for each pixel, the energy is calculated
and normalised to improve comparability in different facial
expressions. Finally, to improve localisation, the normalised
energy is weighted using histograms of directions, and

pixel-based energies are combined into region-based ener-
gies. For each pixel, the energy is calculated by:

E(x, y, t, θ, γ ) = [G2(θ, γ ) ∗ I (x, y, t)]2 (2)

The convolution operator ’*’ is used to denote the operation
in which (x, y, t) represents the pixel value located at position
(x, y) of the tth frame (temporal domain) in the aligned video
sequence I . E(x, y, t, θ, γ ) represents the energy released by
this pixel in the direction θ and scale γ . To ensure that the
obtained energymeasure is comparable across different facial
expressions, normalisation is performed using:

Ê(x, y, t, θ, γ ) =
E(x, y, t, θ, γ )∑
E (x, y, t, θi, γ ) + ϵ

, (3)

After considering all directions θi, where i considers all direc-
tions and ϵ is a small bias to prevent numerical instability
when the overall estimated energy is too small, the normalised
energy is weighted to improve localisation using the method
proposed in [84]:

Ė(x, y, t, θ, γ ) = Ê(x, y, t, θ, γ ) · z(x, y, t, θ) (4)

where:

z(x, y, t, θ) =

{
1

∑
γi
Ê (x, y, t, θ, γi) > Zθ

0 Otherwise
(5)

The resulting weighted normalised energy obtained in
equation 4 assigns a value to each pixel based on the level
of energy released by that pixel, corresponding to the chosen
directions of θ = 0, 90, 180, and 270. To combine these
pixel-based energies into region-based energies, the authors
follow study [85], by using their histograms of directions:

HRi (t, θi, γ ) =

∑
Ri

Ė (x, y, t, θi, γ ) , (6)

The histogram HRi represents the directions of the i-th region
of the face, where i = 1, 2 or 3, and is used to com-
bine regional histograms that are directly related to each
other during the pain process. This is necessary because
the muscles return to their original locations after being
moved due to pain. In accordance with [85], two directions of
up-down (UD) and left-right (LR) are used to combine these
histograms. The directional histograms are obtained for each
modality of RGB, depth, and thermal, and are subsequently
used separately to determine the level of pain.

E. SEGMENTATION
This section explores various methods of basic segmentation
using multiple modalities from the reviewed studies.

In [23] the authors isolate the abdominal region of new-
borns. The regions of interest are extracted using depth
information, followed by the refinement of the human body
area using the colour information to remove the background
and isolate the individual. First, a dynamic depth threshold is
applied to separate the body from the flat bedding surface.
The distance threshold is automatically determined based
on the histogram of the depth map and the first significant
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observed cluster according to the imaging conditions, which
involve imaging the subject from above. The second step
involves utilising a skin colour model that is encoded in
the YCbCr space to improve the segmentation of exposed
body regions from other objects in the field of view, such as
probes, tubes, or clothes. The method includes multiple steps
using Canny edge detection and polygonal approximation
algorithms. Then, an additional refinement step is introduced
in the form of a skeleton recognition method based on the
depth image. This method utilises depth data to recognise
various skeleton points and describe different parts of the
human body.

The authors in [37] proposed a multimodal egocen-
tric SLAM(Simultaneous Localisation and Mapping) system
based on ORB-SLAM [86] which faces a significant chal-
lenge in segmenting the input frame into left-hand, right-
hand, object in interaction, and static environment classes.
This segmentation is crucial for two reasons: first, removing
dynamic points from the input frame is essential for suc-
cessful SLAM operation, and second, these labels provide
the necessary structure for proper scene understanding. The
semantic segmentation algorithm the authors proposed is
based on priors for the hands, including their colour model,
temperature, and shape. Hand location is also a prior for
the object in interaction. The segmentation is performed in
two steps, first segmenting the left and right hands and then
the object in interaction. The right and left hands are dis-
tinguished using the prior that the right hand is at the right
side of the image frame and the left hand is at the left side.
CRF-based image segmentation is used to segment the hands,
defining an energy minimisation problem:

min
αti

∑
i

U
(
αti , y

t
i
)
+

∑
i

∑
j∈N (i)

V
(
yti , y

t
j

)
1

[
αti ̸= αtj

]
(7)

In this equation, αti represents a binary value of 1 if pixel i
is classified as part of the hand at time t , and 0 otherwise. The
neighbouring set of i is represented byN (i), and the indicator
function is represented by 1(·). The concatenated vector of
z, c, d, τ is represented by y. The unary energy function,
U

(
αti , y

t
i

)
, expresses the likelihood of pixel i being part of the

hand, and it is a weighted combination of the probabilities of
temperature (T ), colour (C), hand-detector outputs (S), and
history over time (H ).

U
(
αti , y

t
i
)

= wTUT (
αti , y

t
i
)
+ wCUC (

αti , y
t
i
)

+ wSUS (
αti , y

t
i
)

+ wH
∑
i

U
(
αt−1
i , yt−1

i

)
e
−1

(
yti ,y

t−1
i

)
(8)

where 1(·, ·) calculates the geodesic distance over RGB-
thermal space between two voxels. V (·, ·) is a binary consis-
tency term that is defined over neighbouring pixels and takes

the following form:

V
(
yti , y

t
j

)
= exp

−

∣∣∣yti − ytj
∣∣∣
2

γ

 (9)

where γ =
1
N

∑
i

1
|N (i)|

∑
j∈N (i)

∣∣∣yti − ytj
∣∣∣
2
, and N is the total

number of pixels.
They defined each component of the unary energy as:

UT (
αti , y

t
i
)

= τ ti 1
[
αti = 1

]
+

(
1 − τ ti

)
1

[
αti = 0

]
UC (

αti , y
t
i
)

= p
(
cti | αti

)
US (

αti , z
t
i
)

=

∑
k∈H

pke−1(yti ,yk)1
[
αti = 1

]
(10)

where the RGB-colour model p(cti |α
t
i ) is represented using

a Gaussian Mixture Model (GMM) with five components
and is learned separately for the hand and static scene from
training data. H is a collection of hand detections, where
each detection is represented by a centroid ck and a detection
likelihood pk · yk which includes colour, position, depth, and
temperature of the centroid of the detected hand.

All components of this energy function can be computed
using bi-linear filters in log-linear time and minimised using
the min-cut/max-flow framework as explained in [87]. The
authors used the open-source code released by the authors
of [87] and the original paper provides further details.
After segmenting the hands, the process continues to seg-

ment the remaining part of the image into static and dynamic
object components. The same energy minimisation frame-
work is used, with an additional motion prior and the removal
of the colour prior. Themotion prior accounts for the disparity
between themotion of the object in interaction and the camera
motion, and is defined as:

UM (
αti , y

t
i
)

= ρ
(∣∣∣zti − zt−1

π(Rtxti+tt)

∣∣∣) (11)

In the above equation, ρ denotes the Huber function, π is the
pinhole projection,R and t are the estimated camera pose, and
Xi represents the 3D position of the ith point in homogeneous
coordinates. Here, αi is a binary variable, which is equal
to 1 if the ith pixel belongs to the object in interaction and
0 otherwise. The tradeoff parameters ωT , ωS , ωH , ωM were
learned by cross validation.

F. FUSION & EVALUATION
In this section, we examine the various approaches adopted
for fusing the extracted features and the evaluation processes
of the reviewed studies.

While [39] applied a background removal algorithm based
on V and D for segmentation purposes to define the Ground
Truth(GT), the authors in [20] used background removal
based only onD for their body segmentation in a fixed camera
set-up. The paper proposes a modality fusionmethod for head
tracking using D and T information for fall detection. This
approach uses a particle filter to estimate the head position
based on both, the D and T data. A Silhouette is constructed
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FIGURE 11. Structure of proposed feature matching algorithm [29].

based on D and basic body shape assumptions, while the ther-
mal data is used to distinguish the head from the background.
The fusion is performed by combining and weighting D and
T based on their reliability. The authors evaluated 4 different
models and concluded that the D and T data was improving
the results. However, the method was limited to 8 FPS and
the authors further concluded to use Deep Learning models
for future refinements of this application. In [39], the authors
evaluated uni-modal classification and a multi-modal fusion
based on a Random Forest classifier to achieve a human
body segmentation with the extracted features discussed in
section X-B, X-A, and X-C.
Reference [38] proposed a simple person-tracking

algorithm that combines the parameters of the three modal-
ities in a way that gives less weight to modalities where
camouflaging occurs. The tracker’s ability to resist significant
radial motions was demonstrated using the Jaccard index.
The target model was modelled using a single histogram for
each data source and a histogram of 3D normals was used as
the depth descriptor. This did not significantly improve the
tracker’s accuracy compared to the same approach without
depth descriptors but the authors argued it could improve its
robustness in more complicated sequences.

The People tracking system proposed in [46] used four
modalities and is based on a laser sensor, a thermal sensor and

an RGB-D camera in a mobile setup. These sensors supply
input to three detection units: Leg detection, Vest Detection,
and Thermal Detection, which have been discussed previ-
ously. Once their individual likelihoods are calculated, the
final likelihood is calculated using coefficients to weigh the
three likelihoods. The inclusion of these coefficients enables
assigning more importance to one of the information sources
if desired, and the authors determined these values during the
evaluation process.

The researchers in [29] propose a feature-based registration
method to register thermal and RGB-D images using the
Shape Constrained SIFT Descriptor (SCSIFT). The registra-
tion process involves three steps: feature detection, feature
description, and feature matching. In the first step, SIFT
detector is applied to extract SIFT features from both visible
and thermal images. In the second step, the proposed SCSIFT
descriptor is constructed by combining the traditional SIFT
descriptor with the shape descriptor extracted from the ther-
mal image. In the third step, feature matching is performed
by calculating the Euclidean distance between each shape
descriptor vector and each SIFT descriptor vector, followed
by normalisation and RANSAC to eliminate outlier matches.
A detailed explanation of each this step can be found in the
original study, Fig. 11 depicts the proposed algorithm.
Shape Feature Description: Global descriptors to support

local descriptors are added in multi-modality image fea-
ture matching. As the thermal image is noisy, anisotropic
diffusion is applied for effective smoothing before edge
extraction. The canny edge operator is used to extract edges,
but contour-based methods alone are insufficient for correct
feature matching. A circular template is generated around
each feature point, with evenly plotted bins for edge point
fitting. To describe the global position of the feature point
and construct the shape descriptor, a spiral of Theodorus is
applied to build the weighting function. The weighting of
close region pixels is enhanced while the weighting of far
region pixels is suppressed. The proposed SCSIFT descriptor
is constructed from the entire image and adds a global shape
constraint to the traditional SIFT descriptor which uses only
local neighbourhood information.
Feature Matching Scenario Based on SCSIFT Descriptor:

Normalisation is necessary before implementing RANSAC
because the global shape descriptor vectors and local SIFT
descriptor vectors are the statistical analysis of different infor-
mation. For each feature i in the source image f iS with the
descriptor denoted as d iS , the Euclidean distance of the global
descriptor d iS(G) and local descriptor d iS(L) to all global and

local features descriptors Dallref (G) and D
all
ref(L) in the reference

image are calculated respectively, denoted as set EiG and set
EiL shown in Eq. 12 and 13.

EiG =

√(
Dallref (G) − d iS(G)

)22
(12)

EiL =

√(
Dallref(L) − d iS(l)

)22
(13)
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The ratio of themaximumvalue of setsEiG andEiL in Eq. 14
represents the scaling factor S i. As the process of calculating
Euclidean distances for descriptors is already an integral part
of feature matching, this normalisation step does not add to
the computational complexity.

S i =
max

(
E iL

)
max

(
E iG

) (14)

And the normalisation process is done by the Eq. 15

Ei = E iG ∪
E iL
S i

(15)

The unified distance set Ei is used to determine the most
likely match for f iS to all features in the reference image, with
the minimum value in Ei indicating the best match. Based
on the maximum global and local distances, an appropriate
scaling value is calculated for each feature to improve the
matching accuracy. RANSAC is then employed to eliminate
any outlier matches and refine the image transformation.

XI. DEEP LEARNING-BASED METHODS
Deep learning-based approaches for multi-modal sensor
fusion have gained increasing attention due to their ability to
learn complex relationships between the different modalities
and effectively fuse the information from multiple sensors.
However, despite that images frommultiple modalities can be
beneficial in highlighting salient regions and providing more
comprehensive information, they can also introduce interfer-
ence between the different modalities [5]. The application
of Deep Neural Networks(DNN) can be categorised into
semantic segmentation and object detection. In contrast to
semantic segmentation, where multi-modal features are fused
at various stages within the Fully Convolutional Network
(FCN), object detection involves a wider range of network
architectures and fusion variants. This diversity allows for
greater flexibility and adaptability in addressing specific chal-
lenges related to object detection tasks [50].

Convolutional Neural Networks (CNN) have long been the
dominant architecture for image processing tasks. However,
recent developments in applying transformer networks [88] to
Computer Vision (CV), known as Vision Transformers (ViT)
[89], have demonstrated high performance in segmentation,
recognition, and detection tasks. These advances indicate the
growing potential for transformer-based approaches in the
field of CV.

Within the realm of multimodal object detection and seg-
mentation, a considerable amount of research is directed
towards autonomous driving applications, where the fusion
of LiDAR point cloud data and RGB camera data is crucial.
However, this paper focuses on RGB-D sensor data, which
incorporates pre-aligned depth data or can be aligned using
stereo calibration techniques. As a result, the methods for
aligning point clouds with RGB data will not be discussed in
this paper. However, once the RGB-D data is transformed into
a point cloud, the succeeding methods for object recognition
and detection can still be utilised. Although, papers using

RGB stereo vision applying disparity prediction, briefly dis-
cussed in Section XI-A, are included as this method generates
similar data as RGB-D sensors.

A. DISPARITY PREDICTION
To obtain depth data from a stereo image the disparity
can either be computed, like in OpenCV which implements
the block matching algorithm for calculating disparity with
stereo calibration, or by training Neural Networks like AAnet
(Atrous Adaptive Network) [90]. AANet is a deep learning
approach for stereo matching that can provide more accurate
results than traditional methods such as block matching or
simple disparity calculation. It can handle occlusions, tex-
tureless regions, and large baselines better than traditional
methods. AANet is also more robust to lighting changes
and can handle different camera configurations. Additionally,
it can learn from large amounts of data, making it more adapt-
able to a wide range of scenarios. Overall, AANet provides
a more flexible and accurate solution for stereo matching
compared to traditional methods. Similar techniques can be
applied to monocular vision to produce depth data as applied
in [6] using monodepth [51].

Reference [4] utilised AANet for disparity prediction of
chicken images for feather damage analysis. The network
extracts the down-sampled feature pyramid and constructs
multi-scale 3D cost volumes [91]. The cost volumes are then
aggregated with six stacked Adaptive Aggregation Modules
(AAModules). EachAAModule consists of three Intra-Scale
Aggregation (ISA) and a Cross-Scale Aggregation (CSA).
The multi-scale disparity predictions are regressed by the
soft argmin mechanism and hierarchically up-sampled and
refined to the original resolution. The pre-trained AANet
model for the Scene Flow dataset was used for direct infer-
ence on the dataset. The dataset was augmented by random
colour augmentations and vertical flipping. The initial learn-
ing rate of the pre-trained AANet model was set to 0.001 and
decreased by half at 400th, 600th, 800th and 900th epochs.
Adam was used to optimise the parameters of the network to
minimise the average loss of the model on the training data.
The disparity range was from 0 to 192 pixels.

B. FUSION METHODS (DL)
1) DATA LEVEL FUSION (DL)
In study [50], two primary advantages of early fusion were
identified. Firstly, the network learns the joint features of
multiple modalities at an early stage, allowing it to fully
utilise the information present in the raw data. Secondly, early
fusion has lower computational demands and requires less
memory, as it processes multiple sensing modalities together.
However, these benefits come at the cost of reduced model
flexibility. For instance, when an input is replaced with a new
sensing modality or the input channels are extended, the early
fused network must be completely retrained which was also
noted by authors in [12]. This study created a two-channel
image out of the two modalities for training a Faster R-CNN
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architecture with a ResNet-50 backbone. On the same dataset,
IPHD, the authors in [21] created a three-channel image by
concatenating two duplicated thermal images and one depth
image similar to a three-channel RGB image to make use
of the ImageNet pre-trained weights for initialisation. They
achieved similar results on the AP50 metric compared to [12].
In [9] the authors fused the data into a 3-channel image,
combining the grey channel of each modality per channel and
applying different weights to the thermal and optical channels
by applying the addWeighted method of OpenCV [56]. This
process involved a manual search to determine the optimal
weighting scheme for the given data. To perform these unifi-
cations, the intensity values of the pixels from both images
are multiplied by the desired weights and then added to
compute the pixel intensity values of the resulting image.
In thismethod, the thermal image pixel values are added to the
optical image pixel values using weights ranging from 0.1 to
0.9 with a step size of 0.1.

The way a colour scheme is applied to translate the thermal
to visual data plays a significant role, which is discussed
in section XIII-B and XI-E. Further, the method is sensitive
to spatial-temporal data misalignment among sensors, which
can be caused by calibration errors, different sampling rates,
or sensor defects. This sensitivity further highlights the limi-
tations of early fusion in certain scenarios [50].

2) FEATURE LEVEL FUSION (DL)
Middle fusion can be seen as a compromise between early and
late fusion. By combining feature representations from differ-
ent sensing modalities at intermediate layers, this approach
allows the network to learn cross-modal information with
varying feature representations and depths. Authors in [50]
argued that middle fusion is quite flexible, but that finding
the ‘‘optimal’’ way to fuse intermediate layers for a spe-
cific network architecture can be challenging. This difficulty
arises from the intricate interactions between features and
the potentially vast array of possible fusion configurations.
Nevertheless, merging feature representations from different
sensing modalities at intermediate layers enables the network
to learn cross-modalities with varying feature representations
and depths. This fusion can occur at a specific layer only once
or can be hierarchically fused, as depicted in Fig. 12, such as
through deep fusion or ‘short-cut fusion’. Based on [50], this
figure further illustrates the intricate nature of middle fusion
and the variety of approaches that can be taken to combine
information from different sensing modalities.

Shortcut Fusion, as discussed in detail in the paper [92],
is a technique employed in deep neural networks that involves
creating additional pathways within the network. This allows
early layers to directly contribute to later layers, aiming
to combine the advantages of both early and late fusion.
By utilising low-level feature fusion and high-level decision
fusion, shortcut fusion has the potential to enhance accu-
racy. It preserves detailed information from earlier stages and
incorporates it into the final decision stages. However, it’s

worth noting that this method may increase the complexity of
the network, potentially requiring additional computational
resources.

Deep Fusion, on the other hand, operates hierarchically
at multiple levels within the network. This is beneficial in
capturing intricate interactions between different modalities
at an intermediate stage. The authors of [93] emphasise
the importance of deep feature alignment for multi-modal
object detection and how Deep Fusion improves detection
accuracy and robustness against input corruptions and out-
of-distribution data. Deep fusion allows for a more compre-
hensive understanding of the data, as it integrates information
from various stages of processing. Furthermore, deep middle
fusion is often favoured over late fusion due to its superior
feature integration capabilities. By combining features at a
deeper level, it can lead to a more robust and reliable model,
thereby enhancing the overall performance.

The complexity of middle fusion is further illustrated by
the variety of techniques that can be implemented, as identi-
fied by the authors in [94]. These techniques include:

• Additive Fusion: Individual networks or branches pro-
cess each sensing modality up to a designated interme-
diate layer. The feature maps from these intermediate
layers are either added element-wise or concatenated.
The resulting feature maps are further processed by the
network to produce the final output.

• Multiplicative Fusion: Separate networks or branches
handle each sensing modality up to a specific interme-
diate layer. The feature maps from these intermediate
layers are multiplied element-wise. The combined fea-
ture maps undergo further processing within the network
to generate the final output.

• Skip Connections: Separate networks or branches pro-
cess each sensing modality. Feature representations
from intermediate layers are combined via skip connec-
tions. The combined feature maps are further processed
by the network to produce the final output.

Drawing on the insights from the authors of [50] and [94],
it can be stated that Shortcut Fusion and Deep Fusion serve as
overarching frameworks for integrating features from diverse
modalities. Within these frameworks, specific techniques
such as Additive Fusion, Multiplicative Fusion, and Skip
Connections can be employed. Each of these methods brings
its own unique strengths and potential challenges to the table.
Additive Fusion, Multiplicative Fusion, and Skip Connec-
tions are distinct techniques that can be utilised to realise
these fusion strategies. The choice between them depends on
the specific requirements of the task at hand.

In [34], CNNs were used for feature extraction on the
visual input of two modalities. In addition, hand-crafted fea-
ture extractionwas applied to the thermal data for fusing these
features in a Support Vector Machine (SVM) model. In their
study, the authors asserted that face temperature variation
contains significant differences between different actions,
and thus can enhance the accuracy of activity recognition.
They utilised synchronised thermal images to extract the face
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FIGURE 12. A depiction of architectures of different fusion schemes: early fusion, late fusion, and various middle fusion techniques employed in deep
learning environments based on [50].

temperature variation of participants while they performed
the actions. To achieve this, they manually selected the face
region in the first frame and tracked it across frames using a
KCF tracker [95]. Outliers in face temperature were removed
when the movement was sudden or when the person was par-
tially out of the frame. They divided the temperature values
into 25 intervals and computed the average temperature for
each interval. Then, they calculated the difference between
every two consecutive intervals (ti− ti−1), resulting in 24 fea-
tures that were added to the SVM model.

The authors in [24] extracted regions of interest (ROI) on
the face using the Dlib [71] library to obtain the mean and
variance of the temperatures in the ROIs as thermal features.
The gait data of lower limbs were combined with these
features for emotion detection, as lower limbs have more
repeatable movements than the upper body. Joint angles and
angular velocities were chosen as the features to characterize
gait, including eight gait features based on the angle and
velocity of the knees and hip. Convolutional Neural Networks
(CNN), Hidden Markov Models (HMM), Support Vector
Machines (SVM), and Random Forest (RF) models were
employed to train and test the gait and thermal data. CNN and
HMM models were trained with time series, whereas SVM
and RF models were trained with static features such as the
Power Spectral Density (PSD) of time series and the average
temperatures of thermal image time series.

3) DECISION LEVEL FUSION (DL)
Late fusion on the other hand offers high flexibility and
modularity. When a new sensing modality is introduced,

only the network associated with that modality needs to be
trained, leaving the other networks unaffected. However, late
fusion comes with drawbacks, such as increased computation
costs and memory requirements. Additionally, it discards
rich intermediate features that could be highly beneficial if
fused, potentially limiting the performance of the overall
system [50]. Late fusion in DL is commonly realised by
the application of different versions of the non-maximum
suppression algorithm (NMS) which works by first selecting
the bounding box with the highest object detection score.
Then, it compares the remaining bounding boxes and removes
the ones that have a high degree of overlap as applied in [6].
Reference [12] investigated the NMS method further and
compared the Dual-NMS with the simple method and con-
cluded that the Dual-NMS had a better performance. The
Dual-NMS involves sorting two lists of detection boxes based
on their confidence scores and collecting pairs from them.
Similar to the basic NMS method, the boxes with the highest
scores from each list are selected one by one and compared
with the boxes from the other list. If a sufficient intersection
over union (IOU) is found, the detection box is paired with
the candidate with the highest score from the other list. The
paired boxes are then merged into a single result, and the
final detection box coordinates are updated through weighted
averaging of the coordinates of the components [12].
A depiction of various fusion types is shown in Fig. 12.

C. FUSION
The authors in [50] noted that they did not find definitive
evidence that one fusion method would be superior to others
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based on their review of various methods using different
stages. However, [12] and [21] conducted a comparison of the
performance between the early middle and late fusion tech-
niques and concluded that early fusion yielded better results
in their use cases. These studies focused on the fusion of depth
and thermal data for human detection, and it was discovered
in [12] that using only depth data did not produce satisfac-
tory detection outcomes. While the late fusion approach was
slightly superior to using only depth data, it was inferior to
using only the thermal data in comparison. However, [21]
further argued that early fusion outperforms the other fusion
methods in both the final detection results and computa-
tional complexity. Unlike late fusion, which only merges the
detected boxes, early fusion enables cooperation between
the depth and thermal information during feature extraction,
allowing the model to extract and combine useful information
from both modalities. It should be noted that while interme-
diate fusion also merges feature maps, the merging in early
fusion is accomplished by a deep backbone network, leading
to more effective cooperation between the depth and thermal
information. In their study, they also demonstrate that the use
of a Receptive Enhancement Module (REM) improves AP
by 0.4, 0.9, and 2.3 at IOU thresholds of 0.25, 0.5, and 0.75,
respectively. These findings suggest that the REM module
enhances the accuracy of bounding box localisation but [12]
achieved slightly better scores without it, which could be due
to the slightly different fusion and training approach. In [21],
the authors used a ResNet-50 backbone that was initialised
with pre-trained parameters from ImageNet. However, the
REM module and box prediction module were trained from
scratch. Reference [12] used the same backbone but models
that were pre-trained using the Common Objects in Context
dataset (COCO).

Besides constructing custom networks, some studies, such
as [32], have utilised deep learning-based algorithms like
OpenPose [96] to detect the pose of human occupants in
a vehicle. Based on the derived bounding boxes this study
applied late fusion. However, because OpenPose can only be
applied to visual and thermal data, the authors did not utilise
depth data. Other studies like [34] use CNNs for the feature
extraction on the visual input of two modalities and apply a
hand-crafted feature extraction for the thermal data to fuse
these in a Support Vector Machine(SVM) model. However,
they dropped the thermal feature in their experiments due to
too much noise in the data.

D. SEMANTIC SEGMENTATION
Image semantic segmentation is a crucial task in computer
vision, serving as an ideal perception solution for transform-
ing image inputs into semantically meaningful regions and
enabling pixel-wise dense scene understanding. Networks
that rely solely on RGB information may face limitations in
segmentation performance in complex environments or under
challenging conditions. To enhance input information and
improve performance, researchers have extensively explored

multimodal sensor data fusion, which integrates additional
data sources to provide a more comprehensive understanding
of the scene. Various approaches have been proposed, such
as FuseNet [94], which incorporates depth information, and
HeatNet [97], which leverages thermal data for improved
performance at night. Polarisation information has also been
integrated into models, as seen in EAFNet [98]. Event data
has been utilised in dense-to-sparse fusion to capture dynamic
context information and improve segmentation performance,
as in ISSAFE [99]. Furthermore, there are specialised meth-
ods for RGB-D [100], [101], [102], RGB-T [103], [104],
[105], [106] and RGB-P [15] semantic segmentation [15].
The authors in [107] argue that recently, vision trans-

formers [89] have gained attention as they handle inputs as
sequences and can acquire long-range correlations, providing
a unified framework for diverse multi-modal tasks. But that
multi-modal data often contain noisy measurements in differ-
ent sensing modalities, such as low-quality distance estima-
tion regions caused by limited effective depth ranges [108]
and that compared to existing multi-modal fusion modules
based on Convolutional Neural Networks (CNNs), it is not
yet clear whether vision transformers can lead to significant
improvements in RGB-X, where X stands for a different
modality than RGB, semantic segmentation. Importantly,
while some previous works like [108] and [109] use a simple
global multi-modal interaction strategy, it may not generalise
well across different sensing data combinations [106]. This
is why the authors in [107] hypothesise that for RGB-X
semantic segmentation with various supplements and uncer-
tainties, comprehensive cross-modal interactions should be
provided to fully exploit the potential of cross-modal comple-
mentary features why they propose CMX, a method designed
to enhance semantic segmentation by incorporating diverse
and complementary information from multiple modalities.
CMX is a transformer-based cross-modal fusion framework
that uses two streams to extract features from RGB images
and the X-modality and includes a Cross-Modal Feature
Rectification Module (CM-FRM) in each feature extraction
stage to calibrate the feature of the current modality by
combining the feature from the other modality. A Feature
FusionModule (FFM) is then used tomix the rectified feature
pairs for the final semantic prediction. FFM includes a cross-
attention mechanism, enabling the exchange of long-range
contexts, and enhancing bi-modal features globally. Using a
SegFormer-B2 backbone to visualise the segmentation results
demonstrated that CMX improves the semantic segmentation
of RGB-D data and identifies objects correctly, which are
misclassified by the RGB-only model. For RGB-T segmen-
tation, CMX provides clearer boundary distinctions between
persons and unlabeled backgrounds in low illumination con-
ditions. For RGB-P, CMX accurately segments specular glass
areas, cars with polarisation cues, and pedestrians. For RGB-
Event, CMX enhances the segmentation of moving objects.
For RGB-LiDAR, CMXcorrectly segments the scene as com-
pared to the RGB-only method. The results show that CMX
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is a suitable approach for multi-modal sensing combinations,
providing robust semantic scene understanding [107]. The
proposed CMX framework achieves state-of-the-art perfor-
mances in different benchmarks but is limited to two simul-
taneous modalities at the time of writing.

Similar to [107], the authors in [15] put the focus on
developing a generalisable multimodal perception system
for various image modalities with an attention-based fusion
architecture for outdoor scene understanding called NLFNet.
This network is designed to effectively address the chal-
lenges of object segmentation in various complex scenarios.
The NLF (Non-Local Fusion) module, a key component of
the network, is capable of adaptively extracting and fus-
ing complementary information from different modal input
images. It also leverages dependence information along with
long-range contextual and positional priors to enhance the
accuracy of semantic segmentation and applies a weighting
mechanism based on a sigmoid activation function for fusing
the modalities. By addressing these challenges, NLFNet aims
to improve the performance of outdoor scene understanding
across a range of conditions and input modalities. The net-
work architecture is inspired by efficient networks such as
SwiftNet [110] and RFNet [111]. NLFNet uses an encoder-
decoder structure and adopts a ResNet-18 [112] backbone for
each of its two independent branches. The encoder extracts
latent features from RGB and other modal images, which
are then merged using fusion operations. The Spatial Pyra-
mid Pool (SPP) module [111], [113] is employed to expand
effective receptive fields and generate featuremapswithmore
global contextual information.

NLFNet incorporates efficient upsampling modules from
SwiftNet [110] and merges RGB branch information through
skip connections, improving segmentation accuracy. The
Non-Local Fusion (NLF) module, inspired by Non-Local
block [114] and NANet [101], integrates complementary
information from RGB and other branches for the multi-level
fusion of feature maps. The NLF module consists of two sub-
modules: the Spatial Dependency Module (SDM) and the
Channel Dependency Module (CDM).

The SDM establishes long-range contextual dependency
between RGB and other modal branches in space, using
global average pooling and convolutions to expand recep-
tive fields. The CDM concatenates outputs from the SDM
module along the channel dimension, obtaining a merged
feature map, and performs global average pooling to obtain
a squeezed feature map. It then adaptively transforms these
embeddings into dependencyweights via a sigmoid activation
layer. This process establishes non-local contextual depen-
dencies between different modalities and extracts nonlinear
interactions between cross-modal channels.

The authors of the study demonstrate the effectiveness and
generalisation ability of NLFNet across various multimodal
sensor combinations. By conducting experiments with differ-
ent sensor data, such as RGB-Depth, RGB-Polarisation, and
RGB-Thermal images, they showcase the ability of NLFNet

to handle diverse modalities and effectively fuse the com-
plementary information. The results indicate that NLFNet
is capable of providing accurate semantic segmentation in
various challenging scenarios, proving its potential as a
robust solution for outdoor scene understanding. But like
CMX [107], the solution is bi-modal only.
In [4] applied the Residual Encoder-Decoder Network

(RedNet) [102], which is a high-performing semantic seg-
mentation network proposed in [102] that improves seg-
mentation results by incorporating depth information into
RGB signals. RedNet utilises an encoder-decoder network
structure [115] with residual blocks as building modules,
as well as a pyramid supervision training scheme to opti-
mise the network. The encoder structure includes two con-
volutional branches, one for RGB and one for depth, that
have the same configuration except for the feature chan-
nel number of the convolution kernel, and feature fusion is
achieved through element-wise summation. During training,
the dataset was augmented and stochastic gradient descent
(SGD) was used to optimise the network parameters with
an initial learning rate of 0.002. The model is capable of
segmenting target mask images from the background through
inference. The authors augmented the training dataset by
applying random scale and crop, followed by random hue,
brightness, and saturation adjustment, which increased the
dataset from 600 to 60,000 groups. Their model converged
after approximately 100 epochs of training.

E. OBJECT DETECTION
There are two main types of object detection algorithms
that utilise convolutional neural networks (CNNs): two-stage
detectors and single-stage detectors. The R-CNN family is a
popular example of two-stage detectors, which typically use
region-based methods. One such version is Faster R-CNN,
used in [12], which introduced the region proposal network
(RPN). The RPN can predict both the bounding box and the
score at each position simultaneously, leading to a significant
decrease in prediction time. An example of a popular single-
stage network is YOLO [72]. Most studies, [6], [9], [37],
utilise these networks with slight adjustments and perform
early data level fusion for RGB-DT or just RGB-D or RGB-T
object detection.

Only a single study, [5], focused on RGB-DT data
fusion for Salient Object Detection (SOD) and implemented
feature-level fusion with a CNN. In this work, the VGG16
classification network is used as a backbone for feature
extraction. The tri-modal images are encoded separately
using a three-stream encoding network, which extracts five-
level features with varying resolutions. The authors proposed
a hierarchical weighted suppress interference(HWSI) method
to achieve an effective fusion of cross-modal information
while also suppressing interference. The approach taken can
be classified as a middle fusion with skip connections. This
method involves assigning weights to each modality based
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FIGURE 13. The overall architecture of the deep multimodal detection strategy. Object detection using YOLO from clear RGB images with
rich colour information and thermal images with clear object bounding lines. The model detects the object with the highest probability
through late fusion [6].

on their importance for the given task and then using these
weights to selectively suppress the interference introduced
by each modality. By hierarchical weighting and selectively
suppressing interference, the HWSI method can effectively
fuse the cross-modal information but comes with a high
computational cost which makes it less suitable for real-time
applications. The HWSImethod is composed of three distinct
modules: the dual-modal attention fusionmodule (DMAFM),
the triple-modal interactive weighting module (TMIWM),
and the global attention-weighted fusion module (GAWFM).
Each module is specifically designed to employ cross-modal
information weighting to emphasize the salient regions and
suppress interference effectively. The feature extraction is
achieved by applying atrous convolutions with different dila-
tion rates which can improve the performance of the network
in tasks such as image segmentation and object detection.
This approach, however, relies on the visual representation
of the thermal and depth modality and some of the limitations
that affect them are discussed in Section XIII-B. The dataset
created by the authors of [5] limits the thermal and depth
representation to 256 values and a dynamic colour AGC
algorithm is applied to the thermal data, as shown in Fig. 19
and no gain control is applied to the depth data as shown in
Fig. 21. This can reduce the performance of object detection.

In contrast to the previous study, the authors of [6] utilised
late fusion with two separate YOLO [72] models, following
the thermal data dehazing process discussed in the Process
SupportVIII section. The overall system architecture is illus-
trated in Figure 13. After completing the dehazing process,
the resulting Ihf (x) and H (x) are fed into two YOLO models,
denoted as YOLOR and YOLOT , which use the image of their
respective modality. Non-maximum suppression (NMS) is

then employed to achieve late fusion. Their proposed model
also allows for an RGB image with improved quality, as some
of the haze removal can be performed using the haze level
estimates.Moreover, by using late fusion and thermal images,
the proposed model can process the rich colour and clear
boundary information from both the RGB and thermal images
simultaneously.

Reference [9] investigated using a pre-trained YOLOv4
network on the COCOdataset, as well as trainingYOLOv4 on
their own dataset. They limited the scope to human detection
only but investigated different ways of fusing the images in an
early fusion as discussed here XI-B1. As their proposed data
level fusion comes at a lower computational cost (average
of 20ms. per frame) and the single-stage object detectors are
fast, this system could be applied to real-time problems such
as surveillance similar to study [12]. However, neither study
published data related to the inference speed, and while [12]
used a public dataset that was temporally aligned, [9] did not
discuss temporal sensor alignment and used a thermal camera
that was limited to 8 FPS.

In [37], the authors employed all three modalities, RGB,
depth, and thermal data, to detect hands using a YOLO-based
object detection algorithm [72] for real-time performance.
Their analysis of the results suggested that using 2D bounding
box detection with all three modalities led to higher accuracy
compared to state-of-the-art model-based RGB-D hand pose
detection algorithms. Additionally, the authors found that
RGB and thermal data were the most crucial modalities for
this task. To train the YOLO detector, pre-trained features
on ImageNet [116] were used, and the annotated bound-
ing boxes in the dataset were employed for training. Since
pre-training is only available for RGB images, knowledge
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FIGURE 14. The CNN architecture is trained with two losses, the proposed One Class Contrastive Loss (OCCL) and Binary Cross Entropy
(BCE), and then used as a fixed feature extractor with frozen weights. The one-class Gaussian Mixture Model (GMM) is trained using the
embeddings obtained from the bona fide class alone [26].

FIGURE 15. Preprocessed images resulting from a rigid mask attack [26].

distillation [117] was used to transfer pre-trained features to
the thermal and depth modalities.

Overall, deep learning-based approaches for multi-modal
sensor fusion have shown promising results in various appli-
cations, and their continued development is expected to
significantly advance the capabilities of multi-modal sensing
systems in the future.

F. PRESENTATION ATTACK DETECTION (PAD)
Biometrics provides a secure and convenient method for
access control. Among various biometric modalities, face
biometrics is one of themost preferred due to its non-intrusive
nature. Despite the high performance of systems in iden-
tifying individuals in many challenging datasets, they are
still vulnerable to presentation attacks (PA). It was identified
that PAD in visual spectra alone is insufficient for security-
critical applications. This area has seen a lot of attention in
recent years and PAD systems are another area where fused
RGB-DT data was applied. A multi-channel PAD framework
called the Multi-Channel Convolutional Neural Network
(MCCNN) was proposed in [30]. The MCCNN architecture
is an extended version of the LightCNN model [118] adapted
specifically for multi-channel PAD tasks and was then also
applied in [26]. The main idea behind the MCCNN archi-
tecture is to leverage the joint representation from multiple
channels for PAD tasks, using a pre-trained face recogni-
tion network. In this approach, a pre-trained LightCNN face

recognition model is extended to accept multiple channels,
and the embeddings from all channels are concatenated. Two
fully connected layers are added on top of this joint represen-
tation layer for the PAD task. The first fully connected layer
has ten nodes, and the second layer has only one output node.
The higher-level features in the LightCNN part are shared
among all modalities. The advantage of this architecture is
that only lower layer features, known as Domain Specific
Units (DSUs) [26], and higher-level fully connected layers
are adapted in the training phase. This approach has two main
advantages: first, a smaller number of parameters since the
high-level features are shared across modalities, and second,
adapting only DSUs and the final fully connected layers
reduces possible over-fitting since PAD databases are typi-
cally small in size. An optimal set of layers to be adapted was
obtained empirically and was used in the baseline MCCNN
and the proposed approach. Fig. 15 shows a set of prepro-
cessed images and Fig. 14 the Schematic diagram of the
proposed system found in [26].

In [26], the authors proposed a framework that utilises a
one-class classifier along with a novel loss function, which
encourages the CNN to learn a compact yet discriminative
representation for face images.

As part of study [30], a publicly available dataset called
The Wide Multi-Channel Presentation Attack (WMCA)
database, was released. Reference [27] made a similar dataset
with higher quality and more modalities available which was
called HQ-WCMA.

Three studies [26], [27], [30] were co-written by some of
the same authors who further developed their ideas in [27].
The data was collected using a custom-made sensor suite that
enabled the recording of both genuine faces and presenta-
tion attacks across five different image modalities, including
RGB, NIR, SWIR, thermal, and depth. Moreover, four banks
of six LED modules were employed for illumination, pro-
viding coverage in 10 different wavelengths ranging from
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TABLE 3. Publicly available Bi-Modal datasets used in studies.

TABLE 4. Publicly available Bi-Modal datasets used in studies.

735nm to 1650nm, encompassing the NIR and SWIR spectra.
Sequential switching of these infrared emitters, synchronised
with camera exposure periods, yielded multi-spectral reflec-
tivity data across the sample. These wavelengths were chosen
to provide the best possible multi-spectral coverage given
market availability, resulting in 14 different modalities in
each recording, including four NIR and seven SWIR wave-
lengths. The cameras were co-registered using a calibration
procedure, enabling the captured data to be aligned in each
modality. Experimental results showed that the investigated
CNN models with SWIR outperformed baselines when a
wide variety of attacks was considered, with almost per-
fect detection of all impersonation attacks while maintaining
a low BPCER. However, the generalisation ability of the
models using SWIR data was assessed on a cross-database
experiment, revealing a noticeable difference on bona fide
attempts, suggesting future research directions.

The proposed database 3 and code for studies [26]1

and [27]2 for reproducing the experiments are freely available
for research purposes.

XII. DATASETS
The majority of studies examined in this paper faced a
scarcity of publicly available datasets, leading them to
develop their own. Although some studies claimed to make
their datasets public, like the TriModal Face Detection
dataset(TMFD) [7], it could not be found during thewriting of
this survey. However, subsequent to the preprint release of our
paper, we were contacted by the authors of the TMFD, who
have now made their dataset publicly available. This dataset
is a comprehensive resource that encompasses awide range of
variations, including different numbers of people in the scene,
various backgrounds and distances. The dataset is categorised

1https://gitlab.idiap.ch/bob/bob.paper.oneclass_mccnn_2019
2https://gitlab.idiap.ch/bob/bob.paper.pad_mccnns_swirdiff

into three separate groups based on the complexity and dif-
ficulty level of face detection. Other studies, including [5]
and [39], created and made their datasets available and a list
of all available tri-modal datasets can be found in Table 3.
Public bi-modal datasets used by some reviewed papers are
listed in Table 4. As this paper is centred on RGB-DT tri-
modal fusion, only datasets used by the studies included in
this review are presented.

XIII. LIMITATIONS
A. SENSORS
One of the limitations of using thermal cameras in con-
junction with RGB-D cameras is the potential mismatch
in their respective field of view (FOV) and focal length,
which can restrict the effective distance between objects or
subjects being monitored. This discrepancy can result in
inconsistencies in the size, position, and orientation of objects
in the captured images, which can impact the accuracy of
object detection and tracking algorithms. Another thermal
sensor limitation is the need for Non-Uniformity Correction
(NUC). NUC compensates for inconsistencies in the sen-
sor’s response to temperature changes, which can lead to
inaccuracies in temperature measurements. This correction
is required periodically and involves a mechanical shutter
operation that blocks the imaging sensor with a material of
uniform temperature for a short time up to a second.

The authors in [119] identified limitations with the tem-
poral alignment in capturing images simultaneously using
multiple devices. Despite the use of a signal generator to
match the shutter times between devices, there can still be
drift due to differences in exposure times. This can lead to
an asynchronous phenomenon, especially during excessive
movement of a vehicle or object.

It is important to note that temporal alignment is a critical
factor in multi-camera systems, as it ensures that the images
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captured by different cameras are synchronised and can be
properly used in applications such as 3D reconstruction or
object detection.

B. MODALITIES
In [5], the authors identified that visual perception systems
that rely solely on RGB cameras face challenges such as:

1) The objects to be recognised in indoor environments
are often small, numerous, dense, and vulnerable to
background interference.

2) In low-light conditions, the ability to detect objects is
greatly reduced, as illustrated in Fig. 16.

To overcome the above problems, thermal and depth
modalities can be introduced but despite that those sensors
improve the detection of salient objects, they also introduce
interference challenges and have their own individual chal-
lenges as can be seen in Fig. 17 and Fig. 18.

FIGURE 16. RGB modality challenges. (a) Similar appearance. (b) Small
salient object. (c) Low illumination [5].

Fig. 17(a) illustrates that the background of the depth
image without any salient objects is very cluttered, which
can distract the detection of salient object detection algo-
rithms. Also, the depth information of a salient object can
be incomplete when there is no distance difference between
it and the surrounding objects, or when the difference is
minimal. Furthermore, depth sensing can still be challenging
for detecting some small objects.

FIGURE 17. Difficult challenges of depth images. (a) Background messy.
(b) Depth information is incomplete. (c) Small salient objects [5].

Thermal sensors also present several challenges that need
to be addressed, including thermal crossover, thermal radia-
tion dispersion, and heat reflection. Thermal crossover occurs
when the temperature of a salient object is the same as
that of a portion of the background, as illustrated in 18(a),
greatly increasing the difficulty of object detection. Fig. 18(b)
demonstrates an example of thermal radiation dispersion,
where a portion of a salient object appears more salient than
the rest of the object, causing interference to detection. Addi-
tionally, some objects exhibit heat reflection phenomena,
as shown in 18(c), which is another important interference
that needs to be addressed.

Accurate assignment of thermal values, as identified
in [45], requires careful attention due to the nature of thermal-
infrared sensors. As regular NUCs are required, real-time
systems must be able to cope with thermal data interrup-
tion. If the correctly measured temperature is of importance,
it should be considered that the thermal value can also be
affected by the incident angle between the sensor and radi-
ation emitted from the surface. Minimising this angle is
considered best practice. The authors of [45] suggested three
possible strategies to mitigate this:

• Perform Non-Uniformity Corrections (NUCs) more fre-
quently, approximately every minute.

• Disregard frames obtained from the camera while a
NUC is in progress.

• Assign temperatures only to rays with an incident angle
of less than 30 degrees.

XIV. SYNTHESIS
This section is intended to synthesise the key findings
from our extensive review of the literature on the fusion
of RGB-DT sensor modalities. It encapsulates the current
state of the art, summarising the significant advancements
and methodologies in this field across various applications.
Before we transition into discussing the challenges, future
work, and conclusion, this synthesis serves as a succinct
recapitulation of the key points, including some insightful
observations.

The traditional approach for the geometric calibration of
thermal cameras, using a printed chessboard and a flood
lamp, was inaccurate and difficult to execute. Geometric
masks with high thermal contrast were introduced as an
alternative calibration pattern, and multi-material calibra-
tion boards made of two materials with different emissivi-
ties have been developed for cross-calibrating thermal and
visual modalities which have proven to be reliable and accu-
rate. The registration of the modalities is applied based
on the processing requirements, with offline approaches
utilising computationally intensive feature-point matching
algorithms. One widely used technique, especially for large-
scale 3D reconstruction, is the Bundle Block Adjustment
(BBA) with current advancements and improvements to
the basic approach, such as using more advanced optimi-
sation algorithms (e.g. Levenberg-Marquardt [129], Gauss-
Newton [130]) [10]. In real-time 3D reconstruction, thermal
data was added to the back-end of SLAM systems to enhance
the robustness under unstable illumination environments and
research in this area focuses on improving real-time perfor-
mance by further reducing computational time and offering
better model quality. In contrast, real-time processing for
semantic segmentation and object detection requires per-
forming geometric image rectification and alignment as a
preprocessing step to ensure correct feature extraction. While
studies for multi-modal semantic segmentation of RGB,
depth and thermal data based on recent transformer networks
were found [15], [107], those works only processed two
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FIGURE 18. Taken from the VDT-2048 dataset, demonstrating the three identified thermal challenges: (a) Thermal crossover, (b) Thermal radiation
dispersion, (c) Heat reflection [5].

modalities at a time and future research is aimed at processing
more modalities simultaneously. However, the two studies
demonstrate how to fuse bi-modal in real-time successfully
and [15] used an adaptive weighting of modalities with a
sigmoid activation layer to limit interference. The majority of
the reviewed papers on multi-modal object detection utilised
early fusion to generate a fused 8-bit three-channel image.
Common object detectors such as YOLO were employed
for the detection task, and some studies incorporated late
fusion with the bounding boxes acquired from individual
streams. A single study, [5], was identified that fused all three
modalities (RGB, depth, and thermal) in a neural network
using VGG16 as the feature extraction backbone. The study
incorporated an interference suppression module to weigh
the feature information across different modalities, mitigating
interference from a single modality and compensating for
potential information gaps in certain modalities. However,
the computational requirements of this approach rendered it
unsuitable for real-time processing. This study additionally
created a publicly available, generic tri-modal dataset. Apart
from this dataset, there are only three other RGB-DT datasets,
which are specialised in presentation attack detection(PAD)
and human detection applications. Another area that attracted
a lot of attention is PAD where researchers focused on the
problem of generalisation of the system. The challenge was
addressed in [26] by building upon the Multi-Channel CNN
(MCCNN) originally proposed in [30]. The authors devel-
oped a one-class classifier framework that employs learned
features and a new loss function. This innovative loss func-
tion compels the CNN to acquire a concise and discrim-
inative representation of face images, which enhances the
overall performance even when used with the RGB modal-
ity alone. The authors showcased that their CNN method
surpasses existing state-of-the-art feature-based techniques,
while future research will focus on addressing the issue of
potential attackers attempting to impersonate others.

XV. CHALLENGES AND FUTURE WORK
A. DATA FUSION
When it comes to fusing different modalities, one of
the main challenges is sensor calibration and registration,

especially when the sensors have different fields of view
(FOV) that can cause parallax. To address this, techniques
such as geometric calibration and image registration can be
used to align the data from different sensors and reduce the
effects of parallax. However, these techniques can be complex
and time-consuming and still not produce perfect results,
which can affect the accuracy of the fused data. Aside from
employing software solutions to rectify parallax, another
alternative involves using a beam-splitter, which enables two
cameras to view the scene from the same point and utilise
similar lenses to minimise parallax effects. Eliminating mis-
alignment between modalities is vital in early fusion, which
is why sensor calibration and registration continue to be
significant research topics in this domain.

FIGURE 19. The image on the left shows a hot bottle on a table and the
image on the right shows a cold bottle on the same table. Taken from the
VDT-2048 dataset demonstrating the AGC colour shift of the same
object(table) due to the application of a dynamic colour range based on
the global minimum and maximum temperature in the frame.

B. THERMAL DATA
The mapping of colours for the display of thermal data is a
crucial element for systems that utilise thermal data in a visual
form. However, there appears to be a shortage of discussion
on this topic in the reviewed literature. Most cameras apply
automatic gain control (AGC) which is based on the lowest
and highest temperature at any given time, causing the colours
to shift. Besides that, grayscale or colour images limited to
256 values are being used but it is not specified over what
range of temperatures it is used for e.g. when monitoring
a range of -20 to 120◦C, the resolution would be 0.55◦C.
However, thermal cameras have a sensitivity expressed as
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FIGURE 20. Taken from the VDT-2048 dataset, the image on the left
shows an overlay of Visual(V) and Thermal(T) with some objects in T
outlined in yellow and the same objects outlined in red in V. A parallax
and distortion between the modalities can be observed. The images on
the top right and on the bottom right are T and V respectively.

Noise Equivalent Delta Temperature (NEdT), which can
range from 0.020◦C up to 0.075◦C. It is crucial to con-
sider both aspects when analysing thermal images as limiting
the data to 8-bit discards detail. For example, the VDT-
2048 dataset uses 256-colour thermal images with a dynamic
thermal-to-colour range association, as shown in Fig.19. The
adaptive AGC algorithm may be appropriate for some appli-
cations; however, it could lead to difficulties if the intensity
or colour information is essential for feature extraction or
used for network training. Furthermore, the dataset exhibits
some distortion and parallax between the visual and thermal
modalities, as illustrated in Fig. 20. Notably, the KAIST [119]
driving dataset features raw 14-bit thermal data; conversely,
the pedestrian dataset only includes 8-bit data. It is important
to mention that while a 14-bit sensor can represent values
up to 16,383, in environments with ambient temperatures
around 20◦C, the raw data captured falls within a narrow
band of the full range. As a result, compression and contrast
enhancement is crucial for encoding thermal images. How-
ever, it is essential to recognise that enhancement operations
in thermal images can artificially distort the data, causing the
loss of the physical correlation between the radiant flux from
infrared radiation and pixel intensity [65]. Besides the data
preprocessing, authors in [5] identified thermal crossover,
thermal radiation dispersion, and heat reflection as challenges
when processing thermal data. It is believed that a thorough
preprocessing of thermal data and addressing the identified
challenges in the field of multi-modal fusion constitutes a
relevant future research direction.

C. DEPTH DATA
Similar to thermal data, depth data is initially captured with a
16-bit resolution, but it is later converted to an 8-bit format
when used as a depth map unlike point clouds, which are
usually generated from the raw values. This conversion from
16-bit to 8-bit can lead to a loss of depth resolution and infor-
mation due to the reduction in detail. Although this process
can result in significant information loss, no studies in the
reviewed literature have addressed this issue. It is essential to

conduct thorough preprocessing of this modality when using
it in the form of an 8-bit depth map. While the dynamically
applied AGC algorithm in thermal images could cause issues,
applying no processing at all will result in a loss of details.
Figure 21 shows image 18 taken from the VDT-2048 dataset,
in the original image on the left, it can be noted that visually
almost nothing can be recognised as the observed depth is
limited to a narrow band in the 16-bit data that was converted
to 8-bit. On the right the same image with adjusted tonal
balance by redistributing its brightness values. This is done by
mapping the brightest and darkest pixel values in the image
to white and black, respectively, and redistributing all the
intermediate values evenly across the entire range.

FIGURE 21. A comparative display of the original (left) and equalised
(right) version of image 18 from the VTD-2048 dataset. The stark contrast
between the two images accentuates the pivotal role of pre-processing in
enhancing feature visibility, a critical step for the effective application of
convolutional neural networks.

D. DATASETS
The research potential in the field of tri-modal RGB-DT
object detection is currently limited due to the lack of publicly
available datasets. Apart from the VDT-2048 dataset men-
tioned earlier, there are no other tri-modal datasets suitable
for general object detection, highlighting the need for more
comprehensive datasets to advance research in this area.

E. DEEP LEARNING
Integrating multiple modalities can improve object detection
or segmentation accuracy, but it also increases computational
requirements and makes real-time processing difficult. In the
literature, studies show that early and late fusion of data has
a relatively small impact on real-time performance; however,
the potential for more sophisticated enhancements remains to
be a challenge. More complex processing techniques applied
in middle fusion, as demonstrated in [5] and [6], can result in
frame rates dropping below 5 FPS. Even with the advances
in Deep Neural Networks (DNNs) and hardware technology,
achieving real-time object detection or segmentation with
RGB-DT data still remains a challenge. While transformer-
based architectures, as demonstrated in [107], and CNN-
based architectures with non-local blocks, as demonstrated
in [15], have shown promising results, they were limited
to two concurrent modalities at the time of writing. Thus,
further research is required to develop efficient and accurate
fusion algorithms that can utilise three modalities and meet
the requirements of real-time processing.
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F. PAD
Currently, research in the field of PAD (Presentation Attack
Detection) algorithms is centred on devising new methods
capable of accurately detecting both known and unknown
attacks. A major challenge for existing PAD algorithms is
generalisation, as they often exhibit bias towards the train-
ing data. In [27], the authors recognised the SWIR (Short-
Wave Infrared) spectrum, typically defined as light in the
0.9 – 1.7µm wavelength range but can also range from
0.7 – 2.5µm, as complementary and valuable. However,
InGaAs (IndiumGalliumArsenide) sensor-based cameras for
this spectrum are costly and reserved for specific applica-
tions. Meanwhile, in [26] the researchers tackled the gen-
eralisation issue by building upon the Multi-Channel CNN
(MCCNN) initially proposed in [30]. Their CNN approach
with an innovative loss function outperformed all other meth-
ods. Future research will concentrate on addressing the chal-
lenge of potential attackers attempting to impersonate others.

XVI. CONCLUSION
This paper presents a comprehensive overview of the fusion
between RGB-D and thermal modalities, exploring their
applications, and the techniques employed. Over the past
decade, there has been a surge of interest in fusing these
modalities, demonstrating their considerable potential across
diverse fields, including robotics, surveillance, medical imag-
ing, and maintenance systems. Combining these modalities
has proven to enhance the accuracy, robustness, and relia-
bility of computer vision systems, contributing to the overall
effectiveness of the technology. To systematically summarise
the findings, a search strategy based on the PRISMA frame-
work was used. The literature review has revealed several
approaches for integrating RGB-D and thermal data, includ-
ing feature-level fusion, decision-level fusion, and data-level
fusion. Furthermore, the use of deep learning techniques has
emerged as a popular approach for effectively combining
RGB-D and thermal data, surpassing traditional feature-
based approaches. Overall, the reviewed literature suggests
that the fusion of RGB-D and thermal modalities holds great
potential for enhancing the performance of computer vision
systems in diverse applications and even creating new ones.

It was observed that researchers have primarily focused
on the higher-level architecture of neural networks when
conducting sensor fusion with deep learning while over-
looking the importance of preprocessing steps. While Visual
Transformers have shown promising results in sensor fusion,
no existing tri-modal RGB-DT fusion has been developed
thus far. Therefore, further research is necessary to develop
advanced fusion techniques that can enhance the accuracy
and reliability of the results while operating in real-time,
thereby unlocking the full potential of this approach andmak-
ing it applicable for various practical applications. In conclu-
sion, this study aims to serve as a supplementary resource for
researchers in the field of RGB-DT sensor fusion, providing
a robust foundation and guidance for ongoing investigation
and advancements.
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