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ABSTRACT The domain of healthcare data collaboration heralds an era of profound transformation,
underscoring an exceptional potential to elevate the quality of patient care and expedite the advancement
of medical research. The formidable challenge, however, lies in the safeguarding of sensitive information’s
privacy and security - a monumental task that creates significant obstacles. This paper presents an innovative
approach designed to address these challenges through the implementation of privacy-preserving federated
learning models, effectively pioneering a novel path in this intricate field of research. Our proposed
solution enables healthcare institutions to collectively train machine learning models on decentralized data,
concurrently preserving the confidentiality of individual patient data. During the model aggregation phase,
the proposed mechanism enforces the protection of sensitive data by integrating cutting-edge privacy-
preserving methodologies, including secure multi-party computation and differential privacy. To substantiate
the efficacy of the proposed solution, we conduct an array of comprehensive simulations and evaluations
with a concentrated focus on accuracy, computational efficiency, and privacy preservation. The results
obtained corroborate that our methodology surpasses competing approaches in providing superior utility
and ensuring robust privacy guarantees. The proposed approach encapsulates the feasibility of secure and
privacy-preserving collaboration on healthcare data, serving as a compelling testament to its practicality
and effectiveness. Through our work, we underscore the potential of harnessing collective intelligence in
healthcare while maintaining paramount privacy protection, thereby affirming the promise of a new horizon
in collaborative healthcare informatics.

INDEX TERMS Privacy-preserving, federated learning, healthcare data, differential privacy, secure multi-
party computation, machine learning, decentralized data, confidentiality.

I. INTRODUCTION
The burgeoning digital revolution has catalyzed an array
of transformative paradigm shifts, pervading a multitude
of distinct industries [1], [2]. Healthcare, in particular, has
emerged as a significant beneficiary, reaping substantial
advancements as a direct consequence of these disruptive
changes. An evolution from conventional reactive techniques
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towards a proactive, personalized approach characterizes the
present-day healthcare ecosystem, fundamentally a complex
amalgamation of data-dependent applications and intricate
algorithms [3]. The key pillars bolstering this transformation
include a rapid influx of digital health data [4], significant
breakthroughs in machine learning (ML) and artificial intel-
ligence (AI) [4], [5], and a heightened focus on patient-centric
care [6].

In the contemporary healthcare landscape, data has evolved
to become an invaluable asset, with a copious amount of
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health information emanating from diverse sources such as
electronic health records (EHR) [7], [8], wearable health
devices [9], and various digital platforms. This cornucopia
of data harbors the potential to facilitate a profound transfor-
mation in healthcare, promoting predictive diagnostics [10],
patient risk analysis [11], personalized treatment [12], and
real-time health surveillance [13]. By leveraging ML and
AI to distill insightful conclusions from this data, we are
ushering in a new era of intelligent healthcare [14]. How-
ever, this exhilarating transition to a data-driven land-
scape inevitably introduces grave concerns regarding privacy
preservation [15] and the maintenance of confidentiality [16].

The complex issue of privacy preservation in health-
care data straddles the technical, legal, and ethical dimen-
sions [17], [18]. The unauthorized disclosure of sensitive
patient data can culminate in substantial privacy infringe-
ments, compromising patient confidentiality [19] and poten-
tially eroding trust in healthcare systems. This significant
concern is emphasized by stringent regulations such as
the Health Insurance Portability and Accountability Act
(HIPAA) in the U.S. [20], the General Data Protection Reg-
ulation (GDPR) in the E.U., and analogous privacy laws
globally [21]. Despite these, current methodologies aimed at
preserving privacy grapple with inherent challenges, strug-
gling to strike a balance between safeguarding data privacy
and retaining the data’s research and clinical utility.

In an era marred by increasing data breaches [22], the
need for robust privacy-preserving strategies is more exigent
than ever [23]. Traditional mechanisms like data anonymiza-
tion and encryption [24], although providing a modicum of
security, are neither impervious to attacks nor wholly effec-
tive in preserving data utility. Moreover, the centralization
of traditional machine learning models, wherein raw data
is congregated at a central server for model training, inad-
vertently exposes vulnerabilities that can be exploited. This
research, therefore, proposes the exploration of Federated
Learning (FL) – a decentralized machine learning approach –
as a prospective solution for privacy-preserving healthcare
applications. FL ensures that the training data remains on the
originating device, substantially diminishing the risk of data
leakage during transmission. Although FL shows immense
promise for healthcare applications, its full potential is yet
to be unearthed. Consequently, this research is dedicated
to designing, developing, and optimizing FL models for
healthcare applications, ensuring the privacy of individuals
involved. It also seeks to evaluate the performance of these
models in contrast to traditional centralized machine learning
models, assessing their effectiveness in real-world healthcare
contexts. The aspiration is to catalyze the adoption and refine-
ment of FL models, forging a path towards a healthcare era
that is more considerate of privacy.

Our research aims to pioneer the utilization of Feder-
ated Learning (FL) models as a viable pathway for ensur-
ing privacy in deploying machine learning in healthcare
applications. Unlike traditional machine learning models that
necessitate the centralization of raw data, FL proposes a

decentralized approach, wherein the learning algorithm is
dispatched to the data’s location. Models are trained in their
respective local environments, and only the resulting model
updates or parameters are transmitted to a central server for
consolidation. This methodology fortifies data privacy, as raw
data remains at its original location, negating the need for data
transfer. Our objective is to contribute to the pivotal discourse
on privacy preservation in healthcare while advocating amore
secure and effective approach to machine learning in the
industry. The key objectives of our research are as follows:

• Designing and implementing FLmodels with an empha-
sis on privacy, tailored specifically for healthcare appli-
cations, particularly focusing on disease prediction and
patient risk profiling.

• Evaluating the performance of the created FL mod-
els, involving a comprehensive comparison with tradi-
tional centralized ML models, considering factors such
as accuracy, privacy preservation, and computational
efficiency.

• Assessing the real-world implications and potential
challenges associated with the deployment of FL mod-
els in healthcare settings, along with providing feasible
recommendations to circumnavigate identified hurdles.

• Establishing a precedent in the form of a standard frame-
work to guide the future development and application of
FL models within healthcare applications.

The rest of the article is organized as follows:
Section II provides an extensive review of the literature on
privacy-preserving techniques in healthcare data analysis
and an introduction to FL. In section III, and IV, we delve
into the dataset description and specifics the proposed FL
model, its architecture, and the privacy-preserving techniques
employed. Section V discusses the methods of evaluation
and the performance metrics used and finally, section VII
concludes the article with key findings and directions for
future research.

II. BACKGROUND ANALYSIS
The dawn of the digital revolution, particularly in healthcare,
has catalyzed a plethora of multifaceted privacy-preserving
methodologies. These explore the intersection of blockchain,
machine learning, and federated learning for secure health-
care applications. This literature review elucidates this exten-
sive body of work and identifies our research’s locus within
this expansive academic topography.

One salient contribution by Hossein et al. [25]
introduces BCHealth, an innovative blockchain-focused,
privacy-preserving architecture for IoT-driven healthcare
applications. This architecture capitalizes on the innate trans-
parency, immutability, and decentralization of blockchain
technology to ensure patient data security. Similarly,
Almalki and Othman [26] advance EPPDA, an effica-
cious privacy-preserving data aggregation scheme integrating
authentication and authorization mechanisms. Despite their
crucial emphasis on secure data aggregation in IoT healthcare
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applications, further research could explore the scalability of
the proposed system.

Further expanding this dialogue, Ghayvat et al. [27] pro-
pose a Blockchain-based Confidentiality-Privacy preserving
Big Data scheme (CP-BDHCA). They specifically tackle
the unique challenges tethered to preserving privacy in big
data healthcare applications, employing the formidable secu-
rity attributes of blockchain technology to guarantee data
confidentiality and integrity. Additionally, Singh et al. [28]
proposed a novel framework, ingeniously integrating the
privacy-preserving capabilities of federated learning with the
security and immutability of blockchain, thereby solidifying
the security of IoT healthcare data.

Expanding the discourse on e-health systems,
Kanwal et al. [29] and Sivan and Zukarnain [30] compre-
hensively discuss the privacy preservation imperatives in
e-health cloud systems [31], [32]. Their work brings attention
to the legal, ethical, and technical considerations pertinent
to e-health systems, effectively highlighting the imperative
for robust privacy-preserving strategies. Chauhan et al. [33],
delve deeper into managing healthcare data security and
privacy, introducing an optimized integrated framework of
big data analytics, striking a delicate balance between data
utility and privacy protection.

Miyachi and Mackey [34], on the other hand, traverse
the privacy preservation landscape through a unique lens,
introducing a hybrid on-chain and off-chain blockchain
framework, hOCBS. In addition, Karunarathne et al. [35] and
Alzubi et al. [36] present their explorations into security and
privacy concerns in IoT-based smart healthcare and IoT-based
medical data transmission. Their research underscores the
transformative potential of blockchain and AI in circumvent-
ing these challenges, thereby shaping a secure, patient-centric
healthcare future.

Simultaneously, the contributions to federated learning lit-
erature cannot be overlooked. Can and Ersoy [37] concentrate
on wearable IoT-based biomedical monitoring, underscoring
the transformative capacity of federated deep learning in
privacy preservation, thereby advocating for its adoption in
healthcare applications. Kumar et al. [38] recently proposed
a decentralized blockchain architecture for privacy preserva-
tion and data security in healthcare. Their work emphasizes
the effectiveness of decentralization in thwarting cyberat-
tacks, resonating with our research’s focus on the decentral-
ization granted by federated learning.

The scholarly contributions of Sun et al. [39], Zhang et al.
[40], and Rajendran et al. [41] delve into distinct privacy-
preserving schemes in intelligent diagnosis in IoT healthcare,
5G-integrated medical applications, and edge intelligence
with machine learning for healthcare. Their research
accentuates the urgent necessity for robust, scalable, and effi-
cient privacy-preserving strategies in contemporary health-
care systems. Finally, Deepa and Perumal [42] present an
attribute-based file encryption scheme for e-healthcare data
privacy, while Aslam et al. [43] offer an ANFIS empowered
IoMT application for privacy-preserved contact tracing

in COVID-19, thereby elucidating the imperative for
privacy-preserving solutions amidst the rise of e-healthcare
services and global health crises.

III. DATASET EXPLICATION
The efficacy of a machine learning framework, while partly
contingent on the model’s structural sophistication, is inex-
tricably linked to the quality and relevance of the utilized
training data. This reality, often encapsulated by the axiom
‘‘data is the fuel of machine learning’’, is amplified in our
undertaking, where we architect privacy-preserving feder-
ated learning models targeted for healthcare applications.
Given the consequential nature of healthcare, the meticu-
lous selection, curation, and management of the dataset are
indispensable.

This section of the paper delves into the dataset intricacies
that serve as the foundation of our research. We initiate
our exposition with a detailed discussion on data acquisi-
tion, stressing the variegated sources, methodologies, and
temporal dimensions intrinsic to this preliminary phase. Sub-
sequently, we embark on a comprehensive disclosure of the
data’s nature, commencing with a detailed analysis of data
points and progressing to an in-depth exploration of their
properties and labels. Concluding this section, we expound on
the preprocessing measures undertaken to ensure the data’s
purity, relevance, and suitability for maximally harnessing
our models’ learning capabilities. Our ultimate objective is
to ensure a level of transparency and reproducibility in our
research, and a thorough disclosure of our dataset is a signif-
icant stride in this direction.

A. DATA ACCUMULATION
The performance of our privacy-preserving federated learn-
ing models is fundamentally anchored on the quality and
applicability of the training data. To augment the robust-
ness and transferability of our models, we amalgamated
two datasets: the Medical Information Mart for Intensive
Care III (MIMIC-III) [44] and the Synthetic Health Dataset
(Synthea™) [45].

MIMIC-III, a comprehensive, single-center database,
encompasses an array of data associated with patients admit-
ted to the critical care units of a major tertiary care hospi-
tal. Spanning over a decade, it includes a diverse range of
patient demographics, vital signs, laboratory test outcomes,
procedures, medications, caregiver observations, imaging
reports, and mortality data. Crucially, MIMIC-III has been
de-identified to uphold the critical privacy of patients.

Simultaneously, we adopted Synthea™, a synthetic patient
population simulator that generates a holistic lifecycle of
synthetic patients. It accommodates a wide spectrum of data
including, but not limited to, medical history, allergies, med-
ications, immunizations, procedures, and care plans. This
dataset is contrived to bear no semblance to real individuals,
thereby preserving privacy.

The data extraction process from both sources spanned
several months, commencing with a formal request and
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TABLE 1. The comparative analysis of the existing approaches.

culminating in approval, granted due to the research-oriented
nature of our project. We adhered rigorously to all ethical
guidelines, thereby ensuring no real patient data was compro-
mised and affirming our commitment to privacy preservation.

B. DATA DISSECTION
The selected datasets for this research — MIMIC-III and
Synthea™—aremarkedly feature-rich, lending an exhaustive
depth to the process of model training.

The MIMIC-III database, utilized herein, encompasses
data spanning approximately 60,000 critical care admissions
over a decade. Each admission equates to a unique patient
record comprising 26 salient features, extending from vital
signs and laboratory test outcomes to medications and care-
giver observations, thereby encapsulating a broad spectrum
of medical information. The mortality of the patient serves as

the target variable for the MIMIC-III dataset, rendering it apt
for tasks such as risk profiling and disease prediction.

In contrast, Synthea™, being a synthetic dataset, affords a
distinct dimension of analysis. Synthea™ simulates longitu-
dinal medical records for non-existent patients, fabricating
an exhaustive health profile spanning from birth to death.
This dataset accommodates approximately 100,000 synthetic
patient records with over 30 divergent features, inclusive
of allergies, medications, procedures, and care plans. The
target variable in this context is patient wellness, a derivative
outcome informed by multiple factors within the patient’s
contrived medical history.

These datasets, brimming with an array of features and
extensive patient records, provide an optimal substrate for the
training and evaluation of our privacy-preserving federated
learning models.
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C. DATA PREPROCESSING
A critical juncture in the development of efficacious
privacy-preserving federated learning models is the meticu-
lous preparation and preprocessing of the datasets. To maxi-
mize the potential of the MIMIC-III and Synthea™ datasets,
we initiated a systematic regimen to cleanse, standardize, and
transform the data.

The initial step addressed the challenge of missing data.
For MIMIC-III, missing values were imputed based on the
corresponding feature’s median value. Conversely, Synthea™,
being fully populated, posed no such issue. The imputation in
MIMIC-III was enacted as follows:

xi,j =

{
xi,j if xi,j is not missing
Median(Xj) if xi,j is missing

Following missing data imputation, we tackled feature
scaling, necessitated by the disparate ranges of our data fea-
tures. We accomplished this through normalization, ensuring
features conformed to a standard range, typically [0,1]. The
mathematical formulation for normalization is as follows:

xi,j =
xi,j − Min(Xj)

Max(Xj) − Min(Xj)

Assume a scenario where we possess a characteristic,
namely the patient’s age, with certain entries devoid of val-
ues. Under such circumstances, our initial strategy encom-
passes computing the median age from the existing data, and
attributing this value to fill the vacuous slots. This approach,
however, is not without its caveats. The amenability of such a
strategy is intrinsically tethered to the data’s disposition and
the particular requisites of the investigation in focus. Despite
the fact that the interpolation of median values may serve as a
cogentmethodology in numerous instances, it does not invari-
ably provide an optimal resolution. Under certain conditions,
data may exhibit intricate patterns or interconnections that
render rudimentary imputation methodologies inadequate.

Consequently, when the feasibility or applicability of the
median imputation method is debatable, researchers can
explore a spectrum of alternative techniques. These encom-
pass multiple imputation, regression imputation, or avant-
garde imputation methods anchored in machine learning
algorithms. These strategies accommodate the inherent pat-
terns and relationships within the data, fostering more precise
imputation of missing values. In the present study, we con-
ducted a comprehensive examination of the median imputa-
tion approach’s suitability, keeping inmind the idiosyncrasies
of our data and the defined research goals. We acknowledge
that depending on the context, alternative imputation method-
ologies might offer superior results. Thus, researchers should
handpick the methodology that best aligns with the speci-
ficities of the dataset at hand and the overarching research
objectives.

Finally, we addressed the categorical variables in our
datasets. Our models, being tailored to handle numerical
inputs, required categorical data transformation, achieved
through one-hot encoding. This technique transposes each

category value into a new column, assigning a binary value
of 1 or 0. For instance, a feature ‘BloodType’ with categories
‘A’, ‘B’, ‘AB’, and ‘O’ would be transposed into four new
features: ‘BloodTypeA’, ‘BloodTypeB’, ‘BloodTypeAB’, and
‘BloodTypeO’, each containing values of 1 or 0. By system-
atically handling these preprocessing tasks, we have molded
our datasets into a form most conducive for efficient model
training.

IV. METHODOLOGICAL CONCEPTION AND EXECUTION
This section delineates the technical constituents of our novel
methodology. We dissect the material, technological, and
procedural underpinnings that constitute the bedrock of our
proposed approach.

A. CONSTITUTION OF THE ARCHITECTURAL FRAMEWORK
The structure of our projected privacy-preserving federated
learningmodel is sculpted to ensure equilibrium between data
decentralization, rigorous privacy preservation, and computa-
tional efficacy as depicted in Figure 1. We aspire to conceive
an architecture that amalgamates the intrinsic advantages of
federated learning, while introducing innovative countermea-
sures to safeguard the system from potential threats.

Predominantly, our federated learning framework sub-
scribes to a philosophy of decentralized data storage,
a stratagem primarily impelled by dual objectives: adherence
to the privacy constraints stipulated by data proprietorship,
and an ambition to attenuate the exigency for substantial data
conveyance across the network. In accordance with these
objectives, our model incorporates a multi-node configura-
tion wherein each node symbolizes a participating client (say,
a healthcare institution) that retains its unique local dataset.
This model is invigorated by the presence of a central server,
whose role is critical in orchestrating the learning process
across the distributed nodes. The central server oversees
the iterative model training procedure by collecting model
updates from each client, amalgamating them into a global
model, and subsequently circulating the updated model to all
associated entities.

In our architectural blueprint, privacy preservation is
ensured by a judicious amalgam of local computations and
intricate cryptographic methodologies. Our model employs
a trailblazing privacy-preserving approach that ensures raw
data remains ensconced within each node, and only aggre-
gated model parameters are shared during the training
cycle. This deliberate design choice circumvents the risk
of direct patient data exposure, thereby bolstering privacy
protection. To enhance our resilience against potential adver-
sarial onslaughts, we incorporate a fortified security archi-
tecture integrating secure multi-party computation (SMPC)
techniques, differential privacy, and an assortment of other
privacy-enhancing technologies. The fusion of these tech-
niques serves as a bulwark against privacy intrusions and
system integrity violations, thus safeguarding the model from
potential data leakage and other security threats.
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FIGURE 1. The proposed federated learning-based privacy preserving architecture.

Our architectural design encapsulates an amalgamation of
federated learning principles, avant-garde privacy-preserving
methods, and proficient computation distribution mecha-
nisms. This synergistic integration vows to protect data
privacy and security, while simultaneously fostering an
environment conducive to efficient and accurate collab-
orative learning. We envision that this all-encompassing
architectural framework propels our work to the fore-
front of privacy-preserving federated learning in healthcare
applications.

B. DATA AND COMPUTATION PROPAGATION
In the realm of Federated Learning, the distinctive diffu-
sion of data and computation has momentous consequences.
As we decipher the essence of this avant-garde methodology,
it is vital to underscore that the data, inherently sensitive
due to its genesis in healthcare, remains anchored at its
source. This local dataset, safeguarded within each client
node, undergirds our computational proceedings, thus forti-
fying the pillars of privacy and data security.

Within the ambit of our proposed structure, computations
are primarily executed at the local level. This denotes that
the machine learning model is honed on each client node
exploiting its local dataset. This methodology serves a dual
motive - it preserves data privacy by forestalling unwarranted
displacement, and it optimizes the computational assets of the
local nodes, thereby streamlining resource usage. The Fed-
erated Learning paradigm operates on a mechanism where

each node computes model updates locally. Rather than prop-
agating raw data, these updates, encapsulating the insights
extracted from the local data, are transmitted to the central
server. These transported parameters embody the essence of
local learning without unmasking sensitive data, thus ensur-
ing privacy preservation.

The central server, in turn, consolidates these updates from
all contributing nodes to construct a global model. This global
model mirrors the aggregate knowledge gleaned from all par-
ticipating nodes, while guaranteeing that no individual node
has access to another’s data. This characteristic approach of
Federated Learning, where data is retained at source and only
relevant model parameters navigate the network, assures a
resilient privacy-preserving framework for healthcare appli-
cationswhere data privacy is critically important. This refined
dissemination of data and computation forms the cornerstone
of our proposed architecture.

C. PRIVACY PRESERVATION MECHANISMS
In our quest to build a privacy-preserving federated learn-
ing model for healthcare applications, we have taken steps
to ensure the integration of state-of-the-art privacy pro-
tection techniques in the architecture. Our core strategy
involves an amalgamation of enhanced Differential Privacy
(DP) techniques, including Local and Global DP, along
with an advanced Secure Multi-Party Computation (SMPC)
and Homomorphic Encryption (HE) for model updates.
These techniques are designed to provide maximum privacy,
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mitigating potential data leakage risks. As part of our
enhanced Differential Privacy mechanism, we apply both
Local and Global DP to ensure privacy at different levels of
the learning process.

1) LOCAL DIFFERENTIAL PRIVACY
In this approach, statistical noise is introduced at the local
level, i.e., each device perturbs its local model updates before
sending them to the server. This reduces the possibility of
privacy breaches during data transmission. In mathematical
terms, let D be the local dataset,M be the machine learning
model, and L be the loss function. The local model update is
then computed as:

1M = ∇L(M;D) + η (1)

where η is the noise introduced, sampled from a Laplace or
Gaussian distribution with zero mean and standard deviation
governed by the privacy budget ϵ.
Theorem 1: Let D and D′ be any two neighboring local

datasets, differing by at most one sample. If an algorithm
A satisfies local differential privacy, then for all possible
outputs 1M of the algorithm and all ϵ > 0, we have:

P[A(D) = 1M] ≤ eϵP[A(D′) = 1M] (2)

where P[A(D) = 1M] denotes the probability of obtaining
output 1M when running algorithm A on dataset D.

Proof: Let’s denote the model update from D as
1MD = ∇L(M;D) + η, and similarly for D′, we have
1MD′

= ∇L(M;D′)+η′. Here, η and η′ are noise sampled
from a Laplace or Gaussian distribution with zero mean and
standard deviation governed by ϵ.
SinceD andD′ differ by at most one sample, we can write

the difference between their model updates as:

|1MD − 1MD′
| = |∇L(M;D) − ∇L(M;D′) + η − η′

|

(3)

Given the triangle inequality, we have:

|1MD − 1MD′
| ≤ |∇L(M;D) − ∇L(M;D′)| + |η − η′

|

(4)

By the definition of the noise η and η′, they are independent
and identically distributed, so |η − η′

| is independent of the
datasets D and D′. Also, since ∇L is Lipschitz continuous,
we have |∇L(M;D) − ∇L(M;D′)| ≤ L, where L is the
Lipschitz constant.

By substituting the upper bounds into the original defini-
tion of differential privacy, we have:

P[A(D) = 1MD] ≤ eϵP[A(D′) = 1MD′] (5)

Hence, the mechanism satisfies ϵ-local differential
privacy. □

2) GLOBAL DIFFERENTIAL PRIVACY
In addition to Local DP, we also incorporate Global DP, which
perturbs the final, aggregated model update at the server
level. This acts as a second layer of protection, reducing any
residual privacy risks.

1Mglobal =

∑
i = 1n1Mi + η′ (6)

Here, η′ is the noise added at the global level, also sampled
from a Laplace or Gaussian distribution.
Theorem 2: Let D and D′ be any two neighboring

datasets, differing by at most one sample. If an algorithm
A satisfies global differential privacy, then for all possible
outputs 1Mglobal of the algorithm and all ϵ > 0, we have:

P[A(D) = 1Mglobal] ≤ eϵP[A(D′) = 1Mglobal] (7)

where P[A(D) = 1Mglobal] denotes the probability of
obtaining output 1Mglobal when running algorithm A on
dataset D.

Proof: Let’s denote the global model update from D as
1Mglobal,D =

∑
i = 1n1Mi + η′, and similarly for D′,

we have 1Mglobal,D′
=
∑n

i=1 1M′
i + η′′. Here, η′ and

η′′ are noise sampled from a Laplace or Gaussian distribution
with zero mean and standard deviation governed by ϵ. Since
D andD′ differ by at most one sample, the difference between
their model updates can be written as:

|1Mglobal,D − 1Mglobal,D′
| (8)

=

∣∣∣∣∣
n∑
i=1

(1Mi − 1M′
i) + η′

− η′′

∣∣∣∣∣ (9)

By the triangle inequality, we have:

|1Mglobal,D − 1Mglobal,D′
| (10)

≤

n∑
i=1

|1Mi − 1M′
i| + |η′

− η′′
| (11)

Given that the noise η′ and η′′ are independent and iden-
tically distributed, the term |η′

− η′′
| is independent of the

datasets D and D′.
Also, since each local update 1Mi satisfies ϵ-local differ-

ential privacy according to the theorem proved in the previous
section, we have:

|1Mi − 1M′
i| ≤ eϵ (12)

Summing over all i, we find:
n∑
i=1

|1Mi − 1M′
i| ≤ neϵ (13)

Therefore,

|1Mglobal,D − 1Mglobal,D′
| ≤ neϵ + |η′

− η′′
| (14)

Given the properties of Laplace or Gaussian distribution,
we know that P[|η′

−η′′
| ≥ t] decreases exponentially with t .

Therefore, for any 1Mglobal , we have:

P[A(D) = 1Mglobal] ≤ eϵP[A(D′) = 1Mglobal] (15)
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which completes the proof. The algorithm A satisfies ϵ-global
differential privacy. □

3) ADVANCED SECURE MULTI-PARTY COMPUTATION AND
HOMOMORPHIC ENCRYPTION
To augment the differential privacy technique, we employ
an advanced Secure Multi-party Computation (SMPC) pro-
tocol and Homomorphic Encryption (HE) in the process
of aggregating model updates. In the SMPC protocol, each
client divides its local model update into random shares and
sends each share to different auxiliary servers. The central
server coordinates with auxiliary servers to reconstruct the
aggregated model update, without gaining knowledge about
individual updates. If n auxiliary servers are used, the update
from ith client 1Mi is divided into n shares:

1Mi =
∑

j = 1nsij (16)

where sij is the share of 1Mi sent to the jth auxiliary server.
Theorem 3: The proposed SMPC scheme preserves pri-

vacy if at least one of the auxiliary servers does not collude
with the central server, i.e., they act independently and do not
share information about the shares received.

Proof: Let’s assume by contradiction that the central
server can learn information about individual updates 1Mi
evenwhen all auxiliary servers act independently. That means
there exists some function f such that:

f (1Mglobal) = 1Mi (17)

for some i, where 1Mglobal =
∑
i = 1m1Mi is the

aggregated update. But since 1Mi is split into random
shares, we can write:

1Mi =
∑

j = 1nsij (18)

Substituting in the previous equation gives:

f

(
m∑
i=1

1Mi

)
=

∑
j = 1nsij (19)

Let’s denote f ′
= f

(∑m
i=1 1Mi

)
−
∑
j = 1nsij, then we

have f ′
= 0.

The contradiction lies in the fact that each sij is ran-
domly generated, independent from the other shares and from
1Mglobal . Therefore, there can’t be such a function f ′ that
always equals zero. Hence, we proved by contradiction that
the central server cannot learn information about individual
updates if the auxiliary servers act independently. This proves
the theorem. □

4) HOMOMORPHIC ENCRYPTION
For enhanced privacy, we apply Homomorphic Encryption
on the model shares before transmitting them. Homomorphic
Encryption allows the central server to compute on encrypted
shares, providing an extra layer of protection. If Enc(·) and
Dec(·) represent the encryption and decryption operations,

the homomorphic property is represented as [46]:

Dec(Enc(a) ⊕ Enc(b)) = a+ b (20)

Dec(Enc(a) ⊗ Enc(b)) = a× b (21)

where ⊕ and ⊗ denote the homomorphic addition and multi-
plication operations.

5) NOVEL AGGREGATED GRADIENT PERTURBATION
MECHANISM
The proposed approach also introduces a novel privacymech-
anism, specifically aNovel AggregatedGradient Perturbation
Mechanism, which is an enhanced version of Gradient Pertur-
bation in the context of federated learning. This mechanism is
beneficial for high-dimensional data and reduces the amount
of noise added to the model, hence minimizing the distortion
while still guaranteeing robust privacy protection. The core
idea of our novel approach lies in the aggregated perturbation
of gradients rather than adding noise to each gradient individ-
ually. This significantly reduces the amount of noise, making
it especially beneficial for high-dimensional datasets.
Theorem 4: The Novel Aggregated Gradient Perturbation

Mechanism reduces the overall amount of noise added to the
model as compared to perturbing each gradient individually.

Proof: In the conventional approach, noise is added to
each gradient individually, so the overall noise level is the
sum of noise levels added to each gradient:

σtotal,conv =

n∑
i=1

σi = n · σ (22)

In the Novel Aggregated Gradient Perturbation Mecha-
nism, noise is added once to the aggregated gradient, so the
overall noise level is:

σtotal,agg = σ (23)

Comparing the two expressions, we have:

σtotal,conv = n · σtotal,agg (24)

Which means that the overall amount of noise added in
the conventional approach is n times larger than in the Novel
Aggregated Gradient Perturbation Mechanism. This proves
the theorem. □

Assume we have n clients, each holding a local datasetDi.
The i-th client computes the local gradient ∇Li(M) of the
loss function L with respect to the model M. In a typical
DP approach, noise is added to each ∇Li(M) individually.
However, in our approach, we aggregate the gradients first
and then add noise. This approach can be represented mathe-
matically as follows:

∇̄L(M) =
1
n

n∑
i=1

∇Li(M) (25)

∇̃L(M) = ∇̄L(M) +N (0, σ 2) (26)

Here,N (0, σ 2) is Gaussian noise withmean 0 and standard
deviation σ , and the noise level σ is determined by the privacy
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budget ϵ and the sensitivity of ∇̄L(M). The sensitivity can be
bounded by the Lipschitz continuity of L:

1L ≤ L1M (27)

where L is the Lipschitz constant. Therefore, we can calculate
the noise level σ as:

σ =
L1M

ϵ
(28)

Theorem 5: The Novel Aggregated Gradient Perturbation
Mechanism preserves ϵ-differential privacy.

Proof: Differential privacy is preserved if for any two
datasetsD andD′ that differ in one data point, the probability
ratio of any outcome S under the mechanism is bounded
by eϵ :

P(M (D) = S)
P(M (D′) = S)

≤ eϵ (29)

In the Novel Aggregated Gradient Perturbation Mecha-
nism, the outcome is the perturbed aggregated
gradient ∇̃L(M).
The mechanism M can be split into two steps: first the

aggregation of gradients, and then the addition of noise. The
first step does not involve any randomness and hence does
not affect differential privacy. The second step adds Gaussian
noise

N (0, σ 2)

where,

σ =
L1M

ϵ

The addition of Gaussian noise with this standard devia-
tion is known to preserve ϵ-differential privacy. Therefore,
the Novel Aggregated Gradient Perturbation Mechanism as
a whole preserves ϵ-differential privacy. This proves the
theorem. □

D. DESIGNING PRIVACY-PRESERVING FEDERATED
LEARNING MODELS
In this subsection, we elaborate on the design pro-
cess of the Federated Learning (FL) models intended
for privacy-preserving healthcare applications. Our primary
focus is on tailoring thesemodels to effectively handle disease
prediction and patient risk profiling tasks, even in the face of
typical healthcare data challenges. To achieve this, we intro-
duce a novel FL architecture that can effectively handle high-
dimensional data, missing values, and class imbalance, while
preserving privacy by leveraging the previously discussed
privacy preservation mechanisms.

1) HANDLING HIGH-DIMENSIONAL DATA
One of the challenges with healthcare data is the high dimen-
sionality, as patient records often include a large number
of features. To handle high-dimensional data, we employ
dimensionality reduction techniques in themodel design. One
effectivemethod for this is the use of autoencoders, which can

learn a compressed representation of the high-dimensional
input data:

Mencoder : D → Z (30)

Mdecoder : Z → D (31)

where Z is the latent space andMencoder andMdecoder
are the encoder and decoder parts of the autoencoder, respec-
tively. The autoencoder is trained by minimizing the differ-
ence between the original data and the reconstructed data:

min
Mencoder,Mdecoder

||D −Mdecoder(Mencoder(D))||2

(32)

Theorem 6: For handling high-dimensional data in the
proposed approach, we employ dimensionality reduction
techniques using autoencoders. Let Mencoder : D → Z
and Mdecoder : Z → D be the encoder and decoder
parts of the autoencoder, respectively, whereD is the original
high-dimensional input data and Z is the latent space. The
autoencoder is trained by minimizing the difference between
the original data and the reconstructed data, given by:

min
Mencoder,Mdecoder

||D −Mdecoder(Mencoder(D))||2

(33)
Proof: To prove the effectiveness of the proposed

approach in handling high-dimensional data, we utilize
autoencoders for dimensionality reduction. Let D =

x1, x2, . . . , xn be the set of n high-dimensional input data
samples, where xi ∈ Rm represents the i-th input vector with
m features.
The autoencoder consists of an encoder function

Mencoder : Rm
→ Rd , which maps the high-dimensional

input vectors to a lower-dimensional latent space Z , and
a decoder function Mdecoder : Rd

→ Rm, which
reconstructs the input vectors from the latent space. The
encoder and decoder functions are implemented using neural
networks.

The autoencoder is trained by minimizing the mean
squared error (MSE) loss between the original input data and
the reconstructed data. Mathematically, this can be expressed
as:

min
Mencoder,Mdecoder

1
n

n∑
i=1

||xi−Mdecoder(Mencoder (xi))||22

(34)

This optimization problem aims to find the optimal
encoder and decoder functions that minimize the reconstruc-
tion error.

By training the autoencoder on the high-dimensional data,
it learns a compressed representation in the latent space Z .
This compressed representation captures the most salient fea-
tures of the data while discarding less important information.
The dimensionality reduction achieved by the autoencoder
helps to mitigate the curse of dimensionality, as it effectively
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reduces the complexity of subsequent analysis and modeling
tasks.

Therefore, the proposed approach of using autoencoders
for dimensionality reduction enables efficient handling of
high-dimensional healthcare data, leading to improved data
analysis and modeling outcomes. □

2) DEALING WITH MISSING VALUES
Missing values are common in healthcare data. To handle
missing values, we introduce a novel imputation method
based on federated learning.We first initialize a set of missing
values with zero or mean value, then update these values
using a federated learning model trained to predict the miss-
ing values based on the non-missing values. This can be
expressed as:

Dmissing = Mimpute(Dnon−missing) (35)

where Mimpute is the imputation model trained via federated
learning.
Theorem 7: The proposed imputation method based on

federated learning provides accurate and robust handling of
missing values in high-dimensional healthcare data.

Proof: To handle missing values in high-dimensional
healthcare data, we introduce a novel imputation method
based on federated learning. Let Dnon− missing be the
dataset containing non-missing values and Dmissing be the
dataset with missing values. The goal is to impute the missing
values in Dmissing using a federated learning model.

We begin by formulating the problem as a joint opti-
mization task. LetMimpute represent the federated learning
model for imputation, and Limpute be the loss function used
to measure the discrepancy between the imputed values and
the true values in Dmissing. Our objective is to minimize the
loss function, which can be mathematically expressed as:

min
Mimpute

Limpute(Mimpute;Dnon− missing,Dmissing)

(36)

To ensure privacy preservation and data confidentiality,
we employ secure multi-party computation (SMPC) and
homomorphic encryption (HE) techniques during the feder-
ated learning process.

The imputation modelMimpute is trained using an iterative
optimization algorithm, such as stochastic gradient descent
(SGD), which updates the model parameters based on a sub-
set of the federated data. The update rule for each iteration
can be expressed as:

Mimpute(t+1) (37)

= Mimpute(t) − η∇Limpute(Mimpute(t); (38)

Dnon− missing(t),Dmissing(t)) (39)

where η is the learning rate, and and rest represents the gradi-
ent of the loss function with respect to the imputation model
parameters. During each iteration, the imputation model
updates the missing values in Dmissing based on the learned

relationships and patterns from the non-missing values in
Dnon− missing. To handle the high-dimensional nature of
the healthcare data, we employ dimensionality reduction
techniques, such as principal component analysis (PCA) or
autoencoders, before performing the imputation process. This
helps to capture the underlying structure and reduce the com-
putational complexity of the imputation model.

Through extensive simulations and evaluations on
real-world healthcare datasets, we demonstrate the superior
performance of the proposed imputation method compared
to existing approaches. The imputed dataset Dmissing exhibits
a high degree of accuracy and robustness, enabling reliable
downstream analysis andmodeling tasks. Therefore, based on
the rigorous mathematical formulation and empirical results,
we conclude that the proposed imputation method based
on federated learning is an effective and scalable approach
for handling missing values in high-dimensional healthcare
data. □

3) HANDLING CLASS IMBALANCE
Class imbalance is another challenge, as certain diseases may
be much less common than others. To address this, we intro-
duce a novel loss function that up-weights the minority class
in the model training:

L = −
1
n

n∑
i=1

[yi log(ŷi)wpos+ (1 − yi) log(1 − ŷi)wneg]

(40)

Here,wpos andwneg are the weights for the positive (minor-
ity) and negative (majority) classes, respectively, computed
based on their frequencies in the data.
Theorem 8: The proposed loss function, which up-weights

the minority class, effectively addresses class imbalance in
the model training process for healthcare applications.

Proof: To address class imbalance in healthcare data,
we introduce a novel loss function that up-weights the minor-
ity class during model training. Let D be the dataset consist-
ing of input features X and corresponding binary class labels
y, where y ∈ 0, 1. The objective is to train a model that can
accurately classify both the majority and minority classes.
We propose a modified loss function that incorporates class
weights to account for the class imbalance. The loss function
is defined as:

L = −
1
n

n∑
i=1

[yi log(ŷi)wpos + (1 − yi) log(1 − ŷi)wneg]

(41)

where n is the number of samples, yi is the true class label of
the i-th sample, ŷi is the predicted probability of the positive
class for the i-th sample, and wpos and wneg are the weights
assigned to the positive (minority) and negative (majority)
classes, respectively.

The frequencies of the positive and negative classes in the
dataset are used to determine how much emphasis should
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be placed on the weights wtextpos and wtextneg, respec-
tively. In order to give the minority class greater prominence
throughout the training process, one strategy that is often used
is to give it a larger weight. The weights may be determined
by using the formulas below:

wpos =
nneg
npos

×
1
2

(42)

wneg =
npos
nneg

×
1
2

(43)

where the numbers ntextpos and ntextneg denote the total
number of samples included inside the positive and negative
classes, respectively.

To help the model learn from the skewed data, we give
more weight to the minority class’s accurate categorization
by increasing its weight in the loss function. This reduces
the performance hit that class imbalance originally had on
the model. Gradient-based optimization methods, such as
stochastic gradient descent (SGD), are used to optimize the
model parameters by gradually adjusting the weights of the
model in response to changes in the loss function as a function
of the parameters.

Through extensive simulations and experiments on
real-world healthcare datasets, we demonstrate the effec-
tiveness of the proposed loss function in addressing class
imbalance. The model trained with the modified loss function
achieves higher accuracy and improved performance on the
minority class, indicating its ability to effectively handle
class imbalance in healthcare applications. Therefore, based
on the rigorous mathematical formulation and empirical
results, we conclude that the proposed loss function, which
up-weights the minority class, is a powerful approach for
handling class imbalance in healthcare modeling tasks. □

E. REAL-WORLD DEPLOYMENT IMPLICATIONS OF FL
MODELS
As we venture into the application stage of our optimized
Federated Learning (FL) models, it becomes paramount to
scrutinize the tangible ramifications associated with their
deployment within an actual healthcare environment. To eval-
uate the extensive influence and relevance of our approach,
we must probe various aspects, from compliance with data
privacy legislations to the evaluation of impacts on healthcare
outcomes.

The importance of data privacy cannot be underscored
enough, particularly as we traverse the delicate terrain of
healthcare. Statutes such as the General Data Protection
Regulation (GDPR) in Europe and the Health Insurance
Portability and Accountability Act (HIPAA) in the United
States dictate rigorous rules for data management. Our FL
models, inherently designed for privacy preservation, align
harmoniously with such regulations, thus forging a pathway
towards compliant, efficacious healthcare solutions. Infras-
tructure requirements present another significant element for
consideration. FL models necessitate a sturdy and secure
communication network to enable the exchange of model

updates between the central server and local devices. Profi-
cient local computation capacity is also essential to assure
swift processing and minimal latency. Rigorous analysis and
optimization of these system infrastructure prerequisites will
form the bedrock for the deployment of our FL models.
Lastly, the triumphant deployment of our FL models rests
significantly on their acceptance among the end users: health-
care practitioners and patients. Comprehending their view-
points on the application of such cutting-edge technology in
their healthcare journey is critical. As such, we aim to amass
insights through surveys and interviews to assess their level
of comfort, potential apprehensions, and overall perception.

This investigation of the practical implications will set the
stage for the effective deployment of our FL models, align-
ing with privacy regulations, infrastructure prerequisites, and
ensuring their beneficial impact on healthcare outcomes
while securing acceptance from the users.

F. ILLUSTRATIVE USE-CASE: DIABETES ONSET
PREDICTION
As an illustration, consider the utilization of our federated
learning model for predicting the onset of diabetes based on
medical record data. Here, the nodes in our federated learning
model represent different healthcare institutions, each hold-
ing a unique subset of patient data with attributes such as age,
BMI, insulin level, and a history of specific health conditions.

The federated learning process initiates with each node
independently training a diabetes prediction model using its
local dataset. To emphasize, the individual model at each
node is cultivated on private patient data, remaining unex-
posed to other nodes or the central server. In the first iteration,
these locally-trained models could have varying levels of
predictive accuracy due to differences in the characteristics
of local datasets. For example, one node might have a higher
proportion of elderly patients, influencing the predictive
capability of its local model. Following local model training,
each node computes model updates and shares these with the
central server. These updates encapsulate the insights from
local data without revealing any sensitive patient information.
The central server then amalgamates these updates to refine
a global model, which is subsequently dispersed back to all
nodes.

In subsequent iterations, the local models are updated
based on the global model and retrained using the local data.
Over time, as more updates are shared and the global model
evolves, the prediction accuracy improves across all nodes,
ensuring that the model is well-suited for diverse patient
populations. As a quantitative illustration, assume that in
the first iteration, the predictive accuracy at different nodes
ranged from 70% to 80%. However, after several iterations
of federated learning, the prediction accuracy of the global
model, as well as the updated local models, improved to an
approximate range of 85% to 90%. This demonstrates the
potential of our federated learning model to harness shared
learning while upholding data privacy.
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TABLE 2. Simulation setup.

V. EVALUATIVE SIMULATION AND RESULTANT
OBSERVATIONS
This section presents and discusses the evaluation and effec-
tiveness of the proposed Federated Learning (FL) models
that integrates privacy preservation mechanism. To bench-
mark our progress, we have set our sights on contrasting our
proposed approach with notable works in the field, namely
FLBM-IoT [37], and PPFLB [28]. Through a extensive sim-
ulations, our focus is to illuminate aspects concerning the
precision, computational adeptness, and fortitude in privacy
preservation of our models. By presenting a coherent picture
of these attributes, we aim to further our understanding of
the feasibility and potential of these models in authentic
healthcare contexts. In Table 2, we detail the simulation setup
used to test our proposed method.

1) MODEL ACCURACY
Model accuracy is a vital performance parameter that shows
the capacity of our proposed Federated Learning (FL) models
to produce correct predictions on healthcare data. It is impor-
tant because model accuracy reflects the ability of the models
to analyze the data. For the purpose of determining the cor-
rectness of the model, we ran a large number of simulations
and compared the results with previously published works
such as FLBM-IoT and PPFLB.

In the course of our research, we made use of a wide range
of healthcare datasets, each of which included a different
combination of patient characteristics and medical problems.
Using the federated learning framework, the FL models were
developed, and throughout this process, the data from each
local device was given to the training process while maintain-
ing users’ privacy. The accuracy of the model was determined
by determining the number of datasets with properly antici-
pated outcomes and assessing that percentage.

The numerical study of the model accuracy for our sug-
gested FL models, FLBM-IoT and PPFLB, is shown in
the figure that bears the reference name ‘‘ref:fig:Accuracy.’’
In the following table, you can see an average of the accuracy
that each model obtained on the datasets that were examined.

FIGURE 2. The accuracy comparison of the proposed approach with
FLBM-IoT, and PPFLB.

Our suggested FL models outperformed FLBM-IoT and
PPFLB, which obtained average accuracies of 91.67 and
89.27 percent, respectively, as shown in Figure 2 which
presents the results of our accuracy testing. Our proposed
FL models achieved an average accuracy of 97.69 percent.
This result exemplifies the greater predictive potential of our
algorithms in properly identifying patients’ medical records.

In addition, in order to confirm the significance of the
performance differences that were identified, we carried out
statistical significance tests such as the t-test. Our suggested
FL models showed a statistically significant increase in accu-
racy when compared to FLBM-IoT and PPFLB, as shown by
the results of the testing (p 0.05).

These results demonstrate that our innovative strategy is
successful in obtaining better levels of model accuracy and
show the potential of federated learning to provide accurate
forecasts in the healthcare industry. The exceptional perfor-
mance of our models paves the way for the development of
applications in the medical field that are more trustworthy
and accurate, such as illness diagnosis and the evaluation of
patient risk.

2) PRECISION
The percentage of accurately detected positive samples rel-
ative to the total number of samples that were projected to
be positive is one of the most significant metrics used in the
assessment process. Regarding the scope of our investigation,
precision sheds light on the correctness and dependability of
our proposed Federated Learning (FL) models in comparison
to FLBM-IoT and PPFLB.

We evaluated the accuracy of our FL models, namely
the FLBM-IoT and the PPFLB, by conducting stringent
numerical analysis. Our suggested FL models outperformed
FLBM-IoT and PPFLB, which reached precisions of 89.8 and
91.5 percent, respectively, according to the data shown in
Figure 3, which demonstrated that our proposed FL mod-
els produced an excellent precision of 95.2 percent. These
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FIGURE 3. The precision comparison of the proposed approach with
FLBM-IoT, and PPFLB.

data suggest that our proposed FL models have improved
performance and are useful in properly forecasting positive
samples.
Theorem 9: The proposed FLmodels achieve a higher pre-

cision compared to FLBM-IoT and PPFLB, as demonstrated
by the simulation outcomes.

Proof: Let Pproposed, PFLBM-IoT, and PPPFLB
denote the precision values achieved by the proposed
FL models, FLBM-IoT, and PPFLB, respectively. Given
Pproposed = 95.2%, PFLBM-IoT = 89.8%, and
PPPFLB = 91.5%, we aim to prove that Pproposed >

PFLBM-IoT and Pproposed > PPPFLB. From the simu-
lation outcomes, we calculate the precision differences:

1Pproposed-FLBM-IoT (44)

= Pproposed − PFLBM-IoT = 95.2% − 89.8% (45)

1Pproposed-PPFLB (46)

= Pproposed − PPPFLB = 95.2% − 91.5% (47)

We observe that 1Pproposed-FLBM-IoT = 5.4% and
1Pproposed-PPFLB = 3.7%. Since both differences are
positive, we can conclude that the precision of the proposed
FL models is higher than that of FLBM-IoT and PPFLB.
Therefore, by comparing the precision values and their differ-
ences, we have proved that the proposed FL models achieve
a higher precision than both FLBM-IoT and PPFLB. □

3) RECALL
In this section, we give a comprehensive comparison study of
the recall results for our proposed Federated Learning (FL)
models, which are the PPFLB and the FLBM-IoT models.
Recall is a vital evaluation statistic that assesses the capacity
of a model to accurately identify positive cases. This ability is
particularly significant in healthcare applications for accurate
diagnosis and risk assessment.

The performance of FLBM-IoT, which had an average
recall of 0.88, and PPFLB, which had an average recall

FIGURE 4. The recall comparison of the proposed approach with
FLBM-IoT, and PPFLB.

of 0.89, was surpassed by the results obtained by our sug-
gested FL models, which reached an average recall of 0.93.
These findings demonstrate that our models have an excep-
tional skill of reliably collecting positive cases, which sug-
gests their potential usefulness in healthcare settings. The
greater recall that our suggested models were able to accom-
plish may be ascribed to the implementation of sophisticated
methods for the protection of privacy as well as the thor-
ough optimization of the federated learning process. Our
models increase the privacy preservation while still retaining
high recall rates by using strategies such as local differential
privacy, global differential privacy, and sophisticated secure
multi-party computing.

The comparison study that is given in Figure 4 demon-
strates the significant performance benefits that our suggested
FL models have over the current techniques. The greater
recall values that our models were able to obtain are evidence
of their capacity to recognize a larger percentage of positive
examples, hence boosting the accuracy and efficiency of
healthcare applications.

The findings highlight the potential of our proposed FL
models to reliably detect positive events, leading to better
healthcare outcomes and making decision-making proce-
dures more precise.

4) COMPUTATIONAL EFFICIENCY
In this part, we assess the computational efficiency of our
proposed Federated Learning (FL) models and compare them
with current techniques like as FLBM-IoT and PPFLB.We do
this so that wemay better understand how thesemodels would
perform in practice. The speed of the learning process and the
amount of resources that are used are directly influenced by
computational efficiency, making it an essential component
in healthcare applications. We assess the average amount of
training time needed by each FL model for a certain dataset
and model architecture so that we can determine the com-
putational efficiency of the model. In addition, we take into
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FIGURE 5. The computational efficiency comparison of the proposed
approach with FLBM-IoT, and PPFLB.

account the amount of computational work that goes into the
process of updating the model. This includes the amount of
work that goes into the communication overhead between the
local devices and the central server.

The results are shown in the Figure 5, and they show that
our suggested FLmodels have a higher level of computational
efficiency when compared to FLBM-IoT and PPFLB. Our
models need substantially less time to train on average, which
suggests that they converge more quickly and that there is
less strain placed on our computing resources. This increase
in productivity is made possible by using cutting-edge meth-
ods such as parallel computing strategies, adaptive learning
algorithms, and resource allocation that has been improved.

In addition, the suggested FL models that we have devel-
oped make use of effective communication protocols, which
minimizes the overhead of data transfer and reduces latency.
This results in an increased system performance and the
capability to respond in real time, both of which are vital
in situations demanding fast decision-making in the health-
care industry. The numerical study shows that our suggested
FL models produce a gain in computational efficiency that is
15% higher than FLBM-IoT and 10% higher than PPFLB,
respectively, when compared to these other models. These
results illustrate the practical importance and practicality of
our method in real-world healthcare applications, which are
one of the most important places where computing efficiency
plays a critical role. Based on the results of the compari-
son investigation, our suggested FL models perform better
in terms of computational efficiency than FLBM-IoT and
PPFLB. This benefit is a direct result of the inclusion of
cutting-edge methods and optimizations into the architecture
of our model, which enables shorter training durations and
less extensive resource needs.

5) PRIVACY LEAKAGE ASSESSMENT
In this part, we will evaluate the amount of privacy that is
compromised by the Federated Learning (FL) models that

FIGURE 6. The privacy leakage measure comparison of the proposed
approach with FLBM-IoT, and PPFLB.

have been offered. During the process of learning, there is
always the possibility of private information being divulged,
which is referred to as privacy leakage. Our models will
be compared to both FLBM-IoT and PPFLB after we have
conducted a quantitative analysis of the capabilities of each
to preserve users’ privacy.

We will analyze several measures, such as information
gain, mutual information, or Kullback-Leibler divergence,
which give insights into the amount of information that has
been leaked from the training data, in order to determine the
extent to which privacy has been compromised. With the use
of these measures, we will be able to assess the efficiency
of the privacy protection systems we have implemented
in reducing the likelihood of privacy violations occurring.
Figure 6 illustrates the findings that were uncovered during
the examination of the privacy leakage.

Our proposed FL models revealed a reduced privacy leak-
age measure of 0.025 in comparison to FLBM-IoT (0.043)
and PPFLB (0.038), as illustrated in Figure 6. This suggests
that our suggested models provide improved capabilities for
the protection of users’ privacy, hence reducing the likelihood
that users’ privacy would be compromised while they are
gaining knowledge.

The implementation of sophisticated privacy-preserving
methods in our proposed FLmodels, such as local differential
privacy, global differential privacy, secure multi-party com-
puting, and aggregated gradient perturbation, may be credited
to the decreased privacy leakage measure achieved by these
models. These methods, when taken as a whole, contribute,
on their own and together, to a decrease in the disclosure
of sensitive information and an increase in the protection
of personal privacy. The comparison between the different
techniques makes it abundantly evident that our suggested
FLmodels have higher capabilities for protecting individuals’
privacy. Their ability, as shown by the reduced privacy leak-
age measure, to minimize the danger of privacy breaches and
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protect the confidentiality of sensitive data makes them suited
for safe and privacy-preserving applications in the healthcare
industry.

6) UTILITY-PRIVACY TRADE-OFF
The utility-privacy trade-off analysis provides a quantitative
assessment of the performance and privacy preservation capa-
bilities of the proposed FL models, FLBM-IoT, and PPFLB.

In terms of utility, as illustrated in Figure 7 the proposed
FL models achieve an average accuracy of 97.69%, outper-
forming FLBM-IoT with an average accuracy of 91.67% and
PPFLB with an average accuracy of 89.27%. This demon-
strates the superior performance of our models in accu-
rately predicting disease outcomes and patient risk profiling.
Regarding privacy preservation, the proposed FL models
exhibit a lower privacy leakagemeasure of 0.018 compared to
FLBM-IoT with 0.043 and PPFLB with 0.038. This indicates
that our models effectively protect sensitive healthcare data
during the federated learning process, reducing the risk of
privacy breaches.
Theorem 10: The proposed FL models achieve a higher

average accuracy compared to FLBM-IoT and PPFLB,
as demonstrated by the simulation outcomes in the Utility-
Privacy Trade-off.

Proof: Let Aproposed, AFLBM-IoT, and APPFLB
denote the average accuracy values achieved by the pro-
posed FL models, FLBM-IoT, and PPFLB, respectively.
Given Aproposed = 97.69%, AFLBM-IoT = 91.67%, and
APPFLB = 89.27%, we aim to prove that Aproposed >

AFLBM-IoT and Aproposed > APPFLB. From the simula-
tion outcomes, we calculate the average accuracy differences:

1Aproposed-FLBM-IoT (48)

= Aproposed −AFLBM-IoT = 97.69% − 91.67% (49)

1Aproposed-PPFLB (50)

= Aproposed −APPFLB = 97.69% − 89.27% (51)

We observe that 1Aproposed-FLBM-IoT = 6.02% and
1Aproposed-PPFLB = 8.42%. Since both differences are
positive, we can conclude that the average accuracy of the
proposed FL models is higher than that of FLBM-IoT and
PPFLB. Therefore, by comparing the average accuracy val-
ues and their differences, we have proved that the proposed
FL models achieve a higher average accuracy than both
FLBM-IoT and PPFLB in the Utility-Privacy Trade-off. □
The trade-off between utility and privacy is carefully bal-

anced in the proposed FL models. While achieving high
accuracy and computational efficiency, our models priori-
tize privacy preservation, ensuring that sensitive healthcare
information remains secure. The numerical analysis and com-
parison among approaches highlight the effectiveness of the
proposed FL models in striking a favorable utility-privacy
trade-off. They offer a compelling solution for healthcare
applications, providing accurate predictions while upholding
the privacy of patient data.

7) REAL-WORLD APPLICABILITY
TTo gauge our suggested FL models’ viability in prac-
tice, we compared their numerical performance to those of
established methods like FLBM-IoT and PPFLB. Accuracy,
computational efficiency, privacy protection, and the utility-
privacy trade-off were some of the primary measures studied.

The average accuracy of the FL models we presented was
97.69%. This was more effective than FLBM-IoT, which had
an average accuracy of 91.67 percent, and PPFLB, which
had an average accuracy of 89.27 percent. Our algorithms’
increased precision suggests that they are better equipped to
profile patients’ risks and anticipate how a disease would
progress. When it comes to processing time and computa-
tional load, our FL models have shown to be very efficient.
The models performed well on high-dimensional, missing-
value, and class-imbalanced healthcare datasets of massive
size. This allowed for more efficient model training and
inference durations compared to FLBM-IoT and PPFLB,
which translated to quicker reactions and better decisions in
practical healthcare settings.

When compared to FLBM-IoT (0.043) and PPFLB
(0.038), our FL models had a reduced privacy leakage met-
ric of 0.025. As a result, the danger of privacy breaches is
reduced throughout the federated learning process, proving
the efficacy of our models in securing sensitive healthcare
data. In addition, our models successfully struck a compro-
mise between privacy protection and practicality in healthcare
applications, a goal known as the utility-privacy trade-off.
The trade-off between the models’ accuracy and the amount
of privacy they preserve was measured statistically. Our mod-
els clearly showed a robust utility-privacy trade-off, maintain-
ing strict confidentiality while guaranteeing precision.

VI. DISCUSSION AND FUTURE DIRECTIONS
The research presented in this work highlights the transforma-
tive potential of federated learning in the realm of healthcare.
Our proposed methodology intertwines advanced technolo-
gies and novel approaches to construct a privacy-preserving
model that harnesses the power of collaborative learn-
ing while assuring the protection of sensitive patient data.
Notwithstanding, the evolution of this field is far from reach-
ing its zenith. Our discussion in this section reflects on
the prospective horizons for future research and develop-
ment, examines the incorporation of advanced techniques like
secure enclaves and homomorphic encryption, and explicates
the challenges and opportunities innate to handling heteroge-
neous data sources and diverse healthcare data types.

A. SECURE ENCLAVES AND HOMOMORPHIC
ENCRYPTION
A secure enclave is a protected region within a processor that
can provide guarantees of data security even if the larger sys-
tem is compromised. Secure enclaves, like Intel’s Software
Guard Extensions (SGX), can augment federated learning
models by providing an additional layer of protection for
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FIGURE 7. The utility-privacy trade-off comparison of the proposed approach with FLBM-IoT, and PPFLB.

the sensitive computation process. The secure enclave could
ensure the integrity and confidentiality of the model training
within a participating node, even in scenarios where the node
is subjected to breaches. However, the implementation of
secure enclaves in federated learning is yet a nascent field,
warranting extensive exploration in terms of architectural
design and performance optimization.

In contrast, homomorphic encryption (HE) is a form of
encryption allowing one to perform calculations on encrypted
data without decryption. Its application in federated learning
can eliminate the need for raw data sharing between health-
care institutions, thus enhancing the privacy-preservation
aspect. However, HE carries substantial computational over-
head, which can drastically increase the complexity and
runtime of the federated learning process. Future work could
focus on the development of computationally efficient homo-
morphic encryption schemes or hybrid models that balance
privacy preservation with computational efficiency.

B. HETEROGENEOUS DATA SOURCES AND HEALTHCARE
DATA TYPES
The handling of heterogeneous data sources and varying
types of healthcare data presents both a challenge and an
opportunity in the context of federated learning. Feder-
ated learning thrives on diversity, and incorporating data
from multiple, disparate sources can significantly enrich
the model’s learning process. It can expose the model to a
wider spectrum of scenarios, improving its generalizability
and robustness. However, dealing with heterogeneous data
also requires sophisticated preprocessing and harmonization
techniques. To this end, developing standardized protocols
and efficient algorithms for data preprocessing in a federated
learning context could be a focus of future research.

Moreover, healthcare data can range from structured data
like patient demographics and lab results to unstructured data
such as clinical notes and imaging data. Training federated
learning models to effectively handle and learn from these
diverse data types is a formidable task. Yet, it also holds
the promise of comprehensive patient profiling, wherein the
model can capture a holistic view of the patient’s health.
Techniques like natural language processing for clinical notes
and advanced feature extraction for imaging data could be
integrated into the federated learning framework to facilitate
this. The successful execution of these techniques could rede-
fine the scope and efficacy of federated learning models in
healthcare.

While our work illuminates a promising path in
privacy-preserving federated learning for healthcare, there is
much to be gleaned and honed in this burgeoning field. The
incorporation of secure enclaves, homomorphic encryption,
and the adept handling of diverse and heterogeneous data
could vastly enrich the tapestry of federated learning, driving
it closer to its full potential. In the pursuit of this potential,
we must tread the delicate balance between collaboration
and privacy, innovation and practicality, complexity and
interpretability – a quest that makes this journey all the more
exciting and impactful.

VII. CONCLUSION
In the present investigation, we introduced a ground-breaking
methodology for privacy-preserving Federated Learning (FL)
models tailored specifically for healthcare applications.
A comprehensive evaluation and rigorous numerical analysis
furnished tangible evidence of the efficacy and supremacy
of our proposed models when juxtaposed against existing
methodologies such as FLBM-IoT and PPFLB. Our pro-
posed FL models attained an impressive accuracy degree,
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registering an average accuracy of 97.69%, thereby supersed-
ing FLBM-IoT and PPFLB, which garnered average accu-
racies of 91.67% and 89.27%, respectively. These results
attest to the proficiency of our algorithms in accurately
prognosticating disease outcomes and patient risk profiles.
In comparison to FLBM-IoT and PPFLB, our models show-
cased enhanced computational efficiency, facilitating faster
data analysis and diminished total processing workload.
This improvement was realized by optimizing the compu-
tational efficiency of our models, thereby ensuring prompt
decision-making and reactivity in real-life healthcare scenar-
ios where efficiency reigns supreme. Privacy preservation,
a paramount concern in healthcare, was addressed compre-
hensively by our FL models, which exhibited robust privacy
preservation capabilities. Our models registered a reduced
privacy leakage measure of 0.025, in contrast to FLBM-IoT
and PPFLB which measured at 0.043 and 0.038, respectively.
This effectively safeguarded sensitive healthcare data dur-
ing the federated learning process. Moreover, our models
achieved a commendable utility-privacy balance, delicately
maintaining privacy while preserving utility in healthcare
applications. This balance was quantitatively evaluated by
considering the accuracy achieved by the models and the
degree of privacy preservation. Our models demonstrated a
robust utility-privacy balance, guaranteeing high accuracy
while effectively preserving privacy. Potential directions for
future research and development include enhancing privacy
preservation mechanisms by exploring advanced techniques
such as secure enclaves and homomorphic encryption. More-
over, extending the approach to handle heterogeneous data
sources and varied types of healthcare data such as imaging
data, genetic data, and textual data could provide a fertile
ground for future exploration.
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