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ABSTRACT Recent advances in deep reinforcement learning (RL) based techniques combined with training
in simulation have offered a new approach to developing robust controllers for legged robots. However,
the application of such approaches to real hardware has largely been limited to quadrupedal robots with
direct-drive actuators and light-weight bipedal robots with low gear-ratio transmission systems. Application
to real, life-sized humanoid robots has been less common arguably due to a large sim2real gap. In this paper,
we present an approach for effectively overcoming the sim2real gap issue for humanoid robots arising from
inaccurate torque-tracking at the actuator level. Our key idea is to utilize the current feedback from the
actuators on the real robot, after training the policy in a simulation environment artificially degraded with
poor torque-tracking. Our approach successfully trains a unified, end-to-end policy in simulation that can
be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion. Through ablations, we also
show that a feedforward policy architecture combined with targeted dynamics randomization is sufficient for
zero-shot sim2real success, thus eliminating the need for computationally expensive, memory-based network
architectures. Finally, we validate the robustness of the proposed RL policy by comparing its performance
against a conventional model-based controller for walking on uneven terrain with the real robot.

INDEX TERMS Bipedal locomotion, humanoid robots, reinforcement learning, sim2real.

I. INTRODUCTION
As conventional model-based approaches for humanoid loco-
motion continue to improve, such as those based on preview
control [1] or model predictive control (MPC) [2], their
robustness against unexpected disturbances and inaccurate
modeling is still an elusive research goal. On the other hand,
rapid advancements in RL-based control methods for legged
locomotion have shown outstanding performance in unstruc-
tured and uncontrolled environments for quadrupedal robots
[3], [4], [5], [6] and even bipedal robots [7], [8], [9]. It would
be appealing to apply similar methods to develop walking
controllers for larger and heavier humanoid robots, too.

Training a capable policy using deep RL is data intensive
and can be damaging to the hardware. Physics simulation
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environments offer a safe way to collect a large amount
of data, so policies are typically trained in simulation and
then transferred to the real system. However, the simulated
environment can fail to capture the richness of real-world
dynamics. This gives rise to the ‘‘reality gap’’, more com-
monly known as the sim2real gap. The sim2real gap can
cause the performance of a policy trained in simulation to
drop drastically when deployed on the real hardware. In the
case of life-sized humanoid robots such as the HRP-series
humanoids, this gap can have a more critical effect on the
robot’s stability during walking, compared to the quadrupedal
robots or lightweight bipedal robots that are used in most
of the recent works. Memory-based policy architectures that
can use temporal information to essentially perform online
system identification have previously been proposed to tackle
this issue [5], [10]. But such networks are generally more
computationally expensive than feedforward (FF) networks,
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FIGURE 1. HRP-5P humanoid robot trained to perform bipedal
locomotion via model-free reinforcement learning in MuJoCo (top); RL
policy transferred to the real robot (bottom). We make use of the
feedback from measured actuator current to account for the poor
torque-tracking on the real system.

which can be prohibitive for prototyping and deployment of
RL policies especially for learning tasks with high sample
complexity.

Previously, it has been reported that the simulated actuator
model has a major impact on the sim2real transfer compared
to other factors such as link masses and their center-of-mass
(CoM) positions [4], [11], [12]. We argue that within the
actuator model, themodelling of the torque-tracking behavior
forms a key source of discrepancy between the real and
simulated robots. In the simulation environment, the joint
torque desired by the RL policy is injected exactly into the
dynamics computation as the control input. However, in the
case of real robots such as the current-controlled HRP-5P,
the actual torque exerted by the motor on the link may be
significantly different from the desired torque due to imper-
fect current-control (and a nearly linear relationship between
torque and current for brushed DC motors). Since the robot
makes environmental interaction only by applying torques on
the links, the mismatch between the torque desired by the
policy and the actual torque applied on the link may have
consequential effects on the control.

In this paper, we develop a system to train bipedal
walking policies in simulation and deploy them on the
HRP-5P humanoid robot (Figure 1). HRP-5P is a high-power,
electrically-actuated, 53 degrees of freedom (DoF) humanoid

robot weighing 105kg, with a height of 182cm [13]. Our key
insight is that, on such robots, the sim2real gap is significantly
a result of imperfect current tracking on the real robot that
leads to a mismatch in the desired and applied torque. To this
end, we propose to simulate a degraded torque-tracking effect
during training and to incorporate current feedback from the
motors into the observation space. The resulting policy learns
to actively use the current feedback signal and compensate
for the inaccurate torque-tracking within the motor drivers.
Finally, the policy could be successfully deployed on a real
HRP-5P robot.

Specifically, our contributions in this work are as follows:

• By using the proposed sim2real approach, we show one
of the first demonstration of an end-to-end policy for
a real, current-controlled, humanoid robot to achieve
dynamic stability. Our policy can achieve forward walk-
ing, stepping and turning in-place, and quite standing,
by receiving user commands via a joystick.

• We perform ablation study on feedforward Multi-
Layered Perceptrons (MLPs) and Long Short Term
Memory (LSTMs) networks to show that it is pos-
sible to bridge the ‘‘reality gap’’ without relying
on memory-based policy architectures or resorting to
unreasonably wide randomization of dynamics param-
eters. This is necessary for the development of RL
policies within reasonable amount of computation
resources.

• We validate the robustness of the proposed policy on the
real robot and compare the qualitative performance of
the RL policy to an open-source model-based walking
controller for blind locomotion over small uneven and
compliant obstacles.

II. RELATED WORK
A. REINFORCEMENT LEARNING FOR LEGGED ROBOTS
Reinforcement Learning has become a powerful approach for
synthesizing controllers for legged robots. Control policies
are typically trained in simulation and then transferred to
the hardware, i.e., sim2real. A large number of such works
focus on quadrupedal robots, e.g., ANYmal [4], Laikago [14],
A1 [5], Jueying [15] and Mini-Cheetah [3]. There are also
successes in applying the same approach for bipedal robots,
e.g., on the Cassie [7], [10], [16], Digit [17], [18], [19] and
NimbRo-OP2X [20]. DeepWalk [20] demonstrates a single
learned policy for a real humanoid robot that can achieve
omnidirectional walking on a flat floor through the use of
Beta policies [21], albeit noting a need for more sophisticated
methods for improved transfer.

For the HRP-5P and JVRC-1 humanoids, end-to-end deep
RL policies have been previously been demonstrated for
walking on planned footsteps, but only in the simulation
environment [22]. The focus of this work, on the other
hand, is to solve the sim2real issues for achieving real robot
demonstrations.
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Recently, an impressive demonstration of torque-based
deep RL locomotion policy for the real TOCABI humanoid
robot has shown the advantage of using torque action-
space for improved sim2real transfer [23]. TOCABI is
a human-sized humanoid [24] that can achieve torque-
controlled compliance without the use of joint-level torque
sensor. Application of such an approach for the low back-
drivable joints of HRP-5P humanoid is a matter of future
research.

Again, implementing learned policies on the hardware of a
bulky humanoid robot, such as Valkyrie and the HRP-series
robots, presents significantly greater challenges than lighter
robots, especially due to heightened safety risks.

B. SIM2REAL APPROACHES
Important ingredients for successful sim2real include
(a) careful system identification, e.g, a learned actuator model
is incorporated in the simulator to account for hard-to-model
actuator dynamics [4], [11], (b) domain adaptation, where the
policy learns to adapt based on the history of observations
and actions [5], [6], [10], (c) dynamics randomization, where
simulation parameters such as mass, friction, inertia, CoM
positions are randomized to improve robustness of the pol-
icy [25]. While successful on several legged robot platforms,
we are yet to see such approaches being successfully applied
to life-size (e.g., more than 170cm) humanoid robots with
heavy limbs. This is not due to lack of attempt, prior work
has explored how to apply reinforcement learning to the
NASA Valkyrie robot, e.g., [26], but so far no sim2real is
demonstrated.

For the case of HRP-5P, end-to-end supervised learning of
actuator dynamics [4] is not readily applicable due to absence
of joint torque sensors which could provide the ground-truth
signal for such an actuator model. Further, search-based sys-
tem identification methods using real data [11], [12] may
be difficult for a large robot as they require multiple trial
runs (5)-(10) on the real robot. Domain adaptation and online
system identification methods through the use of memory-
based agents have been demonstrated successfully for biped
robots [5], [10]. However, training memory-based networks
(such as LSTMs) can be significantly more computationally
expensive and may prohibit real-time inference on the real
robot. Our experiments show that with the combination of
targetted dynamics randomization, we can bridge the ‘‘reality
gap’’ using light-weight FF networks (experimental results in
subsection V-F).

C. CONVENTIONAL CONTROL FOR HUMANOID
LOCOMOTION
Conventional model-based approaches for humanoid bipedal
locomotion consist of local feedback controllers to track
Zero-Moment-Point (ZMP) or Center-of-Mass (CoM) trajec-
tories precomputed in an offline process. Stabilization control
through the use of divergent component of motion (DCM)
has been extensively studied in prior works [27], [28] and

applied to real robots. It relies on the linear inverted pendulum
model [29], [30] of bipedal walking. Other recent works
such as [1], on the other hand, do not rely on biped-specific
dynamics and instead perform online generation of centroidal
trajectory based on preview control for impressive multi-
contact motion. The method uses a preview control scheme to
generate a centroidal trajectory and a stabilization scheme to
correct errors in tracking the trajectory. Since the trajectory is
generated online the robot can react robustly to environmental
disturbances.

Generally, the output of such controllers is in the form
of desired ZMP, CoM, and/or contact wrenches, which are
then fed to Quadratic programming (QP) solver to compute
desired joint positions. The desired joint positions are then
tracked by a local proportional-derivative (PD) controller
for stiff position control. This is in sharp contrast to RL
approaches mentioned above that use low PD gains to achieve
compliant tracking, and consequently, offer greater robust-
ness to uneven terrain.

To this end, we perform real robot experiments to compare
the robustness of our proposed RL policy to a com-
monly used, open-source model-based controller for loco-
motion over uneven terrain (details and results provided in
subsection V-E).

III. BACKGROUND
The motor control system on the HRP-5P robot (and gen-
erally, on most robot transmission systems) is shown in
Figure 2. The block structure consists of a PD controller
which computes the desired torque command given the
reference position from a higher-level controller and mea-
sured position from the joint encoder. The desired torque
command — or equivalently, the current command (assum-
ing a proportional relationship between torque and current
for a brushed-DC motor) is then sent to a proportional-
integral (PI) controller. The PI controller tries to track the
current command given the measured current from the cur-
rent sensor in the motor. The output of the PI controller is
fed to the motor power amplifier, which in turn drives the
motor.

The key observation here is that the PI controller is unable
to precisely track the torque commands, as desired by the
higher-level controller or policy, often leading to signifi-
cant torque-tracking errors. We suspect that such tracking
errors could be caused largely due to the effect of the back
electro-motive force (EMF). When the motor rotates, the
back-EMF creates a counter-voltage that opposes the applied
voltage, reducing the current flowing through the armature,
leading to tracking errors. This makes the real system vastly
different from simulation environments where the desired
torque command is applied exactly to the actuator without
errors. Other factors such as the battery voltage, resistance
of the transmission cables, changes in load, or poorly tuned
gains of the PI controller may also contribute to poor current
tracking.
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FIGURE 2. Overview of the proposed RL policy with block-diagram of motor control system in HRP-5P. Output of the RL policy in terms of ‘‘desired
joint positions’’ is summed with fixed motor-offets (corresponding to the robot’s nominal pose) and is fed to the joint PD controller. On the real robot,
the torque computed by the PD controller is tracked by a PI current controller, albeit, with significant tracking errors. These tracking errors form a crucial
component of the sim2real gap. To overcome this issue, we propose to (a) simulate a degraded torque-tracking environment during training and
(b) observe the applied motor torque, or equivalently, measured motor currents on the real robot (denoted by •).

IV. APPROACH
In this section, we detail each component involved in training
the RL policy (see Figure 2). The training is performed
in the MuJoCo simulator [31]. In particular, we describe
how we overcome the poor torque-tracking on the real robot
by simulating Back-EMF effect and using current feedback
for the policy. Since the current and torque on the robot’s
actuators are assumed to be proportional, we use the terms
interchangeably through the paper.

A. OBSERVATIONS AND ACTIONS
The input to our policy consists of the robot state, the external
state, and a clock signal. The robot state includes the joint
positions and joint velocities of each actuated joint (6 in each
leg), roll and pitch orientation and angular velocity of the root
(pelvis), similar to several related works [10], [22]. In this
work, we propose to also include the motor-level torque
signal for each actuator in the robot state tauobs. In simulation,
this signal is equal to the actual torque tauapplied applied to the
actuators in the previous timestep. On the real robot, tauobs
needs to be derived from the raw current measurements,
as explained in V-B. The external state vector comprises of a
3D one-hot encoding to denote the walking mode— [0, 0, 1]
for standing and [0, 1, 0] for stepping in-place and [1, 0, 0] for
walking forward. It also includes a 1D scalar which acts as a
reference value depending on the mode: If the active mode is
Stepping, the reference value denotes the turning speed; for
Walking it denotes forward walking speed; and is ignored for
the Standing mode.

The policy also observes a clock signal that depends on a
cyclic phase variable φ. This variable is also used to define
a periodic reward term in our reward function to generate

walking behaviors. We do a bijective projection of φ to a 2D
unit cycle:

Clock =

{
sin

(
2πφ

L

)
, cos

(
2πφ

L

)}
, (1)

where L is the cycle period. φ increments from 0 to 1 at each
control timestep and reset to 0 after every L timesteps. Clock
is then used as input to the policy.

The policy outputs desired positions of the actuated joints
in the robot’s legs. These predictions from the network are
added to fixed motor offsets corresponding to the robot’s
half-sitting posture. The desired positions are tracked using
a low-gain PD controller, which computes the desired joint
torque as follows:

taupd = Kp(qdes − q) + Kd (0 − q̇), (2)

where Kp and Kd denote the proprotional and derivate gain
factors respectively. qdes is the policy prediction summed
with the fixed motor offsets. q and q̇ denote the current joint
position and velocity.

B. REWARD FUNCTION
Our reward design ensures that a reference motion is not
needed. Instead, we rely on several hand-crafted reward terms
that promote the desired robot behavior in 3 modes: stand
in place, step in-place (including turning) and walk forward
given a reference speed. This requires the robot to develop a
periodic bipedal gait, follow the mode and reference velocity
command and maintain a fixed height. Further, we introduce
terms to develop a more realistic motion that will allow
sim2real transfer in a realistic and safe manner.
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1) BIPEDAL WALKING
We introduce reward terms for promoting a symmetrical
bipedal walking gait characterized by a periodic motion of the
legs, alternating between double-support (DS) phases, and the
single-support (SS) phases. Depending on the phase variable
φ and the desired mode (standing or walking), the rewards
for feet ground reaction forces (GRF) and body speeds are
computed.

For example, when φ lies in the first single-support region
of the gait cycle (the left foot is in the swing phase and the
right foot is in the support phase), larger values of GRF on
the left foot are rewarded negatively while larger values of
GRF on right foot lead to positive reward. Simultaneously,
higher speeds for the left foot are incentivized but penalized
for the right foot.

The definition of the bipedal walking terms — ground
reaction forces at the feet rgrf and the feet body speeds
rspd — are adopted exactly from [22]:

rgrf = Igrfleft (φ) · Fleft + Igrfright (φ) · Fright (3)

rspd = I spdleft (φ) · Sleft + I spdright (φ) · Sright (4)

where Fleft and Fright denote the GRF and Sleft and Sright
denote the body speeds on the left and right foot respectively.
We refer the reader to [22] for a detailed explaination of
the ‘‘phase indicator’’ functions Igrf∗ and I spd∗ for modulating
the reward coefficients for ground reaction forces and feet
speeds.

For standing, the DS phase is expanded to span the entire
gait cycle, and the policy is rewarded to maximize ground
reaction forces on both feet while minimizing the feet speeds.

2) ROOT VELOCITY, ORIENTATION AND HEIGHT
The root linear velocity reward term is a simple cost on global
speed xvroot of the root link of the robot in the x-direction.

rrv = exp(−10 · ∥
xvroot −

x v̂root∥2) (5)

The root yaw velocity term encourages the angular velocity
of the root ωroot to be close to the desired velocity ω̂root .

rav = exp(−10 · ∥ωroot − ω̂root∥
2) (6)

During training, the active mode is randomly selected
between Standing, Stepping, and Walking at the start of an
episode. Depending on the active mode, the scalar input for
the reference value is sampled from a uniform distribution,
i.e., x v̂root from a range of [0, 0.4]m s−1 if mode is Walk-
ing and ω̂root from a range of [−0.5, 0.5]rad s−1 if mode is
Standing.

We also reward the policy to maintain the root height hroot
at a desired value ĥroot = 0.79m:

rheight = exp(−40 · (hroot − ĥroot )2). (7)

3) SAFE AND REALISTIC MOTION
In addition to the above terms, we also try to create a motion
that remains close to the nominal posture of the robot to avoid

unnecessary sways. This is critical for safe deployment on the
real robot, which has a wide range of motion and significantly
strong actuators.

To encourage the robot to maintain an upright posture,
we use a reward term to minimize the distance between the
floor projection of the head position x,yphead and the root
position x,yproot . This prevents the robot from developing
a leaned-back behavior and excessively swaying the upper
body:

rupper = exp(−10 · ∥
x,yphead −

x,yproot∥2). (8)

We use a term to penalize the distance of the current joint
positions q from the nominal ‘‘half-sitting posture’’, qnominal:

rposture = exp(−∥q − qnominal∥
2). (9)

We also place a penalty on joint velocities q̇ above 50% of
the maximum joint velocity ˙qlim.

rjv = exp

−5 × 10−6
∑

q̇>k· ˙qlim

∥q̇∥
2

 . (10)

The full reward function is given by:

r = w1rgrf + w2rspd + w3rrv
+ . . .w4rav + w5rheight + w6rupper
+ . . .w7rposture + w8rjv, (11)

where, the weights w1, w2, w3, w4, w5, w6, w7, w8 are
set to 0.225, 0.225, 0.100, 0.100, 050, 0.100, 0.100, 0.100,
respectively.

C. DYNAMICS RANDOMIZATION
Since policies trained in simulation interact with an imperfect
representation of the world, they are prone to overfitting and
show brittleness on the hardware. A common approach to
overcome this is to randomize various robot model and envi-
ronment parameters, such as mass, intertia, motor strength,
latency, ground friction, etc [5], [10].
In our work, we carefully select the variables that are

needed to be randomized for a better transfer. Firstly, we can
expect the mass and position of the center of mass (CoM) of
each link to be different on the real system than in the sim-
ulation, due to the distribution of electronics and mechanical
parts within a link. We randomize the mass of each link by
5% and randomize the CoM positions by 5cm at the start of
each episode during training.
Secondly, prior work shows there exists a significant

amount of friction between the motor and the load [32] in
geared transimision systems. This frictional torque is difficult
to identify or even model in simulation. MuJoCo allows
the simulation of static friction and viscous friction. Hence,
we randomize the static friction magnitude in the uniform
range of (2, 8)Nm and coefficient for viscous friction in
the uniform range of (0.5, 5)Nm/rad s−1, based on coarse
identification performed in [32].
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Besides the mass, CoM positions, joint friction, we do
not randomize any other robot dynamics parameters during
training.

D. TERRAIN RANDOMIZATION
In order to enable the real robot to walk robustly over uneven
terrain, we expose the policy to randomized terrains during
training. In MuJoCo, the terrains are represented using a
height fields - a 2D matrix comprising of elevation data.
As generating new height fields online during the training
may cause slowness during training, instead, we generate
one random height field at the start of the training and then
randomize its relative position to the flat floor in each episode.
The flat ground plane and the height map are simulated simu-
latenously, so that the floor resembles a terrain with obstacles
of varying heights scattered randomly. In this way the robot
is explosed to unevennes of maximum height of 3.5 cm. The
introduction of terrain randomization in this work is done
uniformly through the training; but it could also be done
gradually according to a curriculum to promote smoother
learning.

E. SIMULATING BACK-EMF
In order to simulate the phenomenon of poor torque-tracking
(observed on the real system), during the training phase,
we introduce a modification to the applied torque for each
joint at each simulation timestep. The modification is imple-
mented by injecting a counter-torque that scales with the joint
velocity, specifically, by using the following equation:

tauapplied = taupd − kbemf · q̇, (12)

where, taupd denotes the torque at the output of the PD
controller, and q̇ represents the joint velocity. The damping
coefficient, kbemf , is unknown for the real system. During
training, we randomize kbemf to simulate different tracking
behavior. The coefficient for each joint is sampled uniformly
within [5, 40] at every 100ms. This range was determined
empirically by comparing the simulation environment and
logs from a real robot experiment.

During training, tauapplied is observed directly by the pol-
icy, i.e., tauobs = tauapplied .

V. EXPERIMENTS
A. RL POLICY
1) TRAINING DETAILS
As in [22], both the actor and critic policies are represented
byMLP architectures to parameterize the policy and the value
functions and use Proximal Policy Optimization (PPO) [33]
for training. Both MLP networks have 2 hidden layers of
size 256 each and use ReLU activations. Each episode rollout
spans a maximum of 400 control timesteps (equivalent to
10 s of simulated time), and may reset if a terminal condition
is met. Each training batch holds 64 of such rollouts. The
learning rate was set to 0.0001. We use the LOSSmethod [8],
which adds an auxiliary loss term (in addition to the original

FIGURE 3. Sim-to-sim validation. Simulating HRP-5P in Choreonoid (left)
and MuJoCo (right) using the mc-openrtm and mc-mujoco interfaces
respectively.

PPO loss term) to enforce symmetry. Training the FF policy
takes around 12 hours to collect a total of 120million samples
for learning all modes, on a AMD Ryzen Threadripper PRO
5975WX CPU with 32 cores.

B. IMPLEMENTATION ON REAL ROBOT
We propose to include the actual applied torque in the obser-
vation vector to our RL policy. As mentioned previously,
the applied torque on the real robot is extracted from the
measurements of the current sensors in the motor drivers. The
measured current Imeas is multiplied by the torque constant kT
and the gear ratio g corresponding to the joint and fed to the
policy, as follows:

taumot = Imeas · kT (13)

tauobs = g · taumot (14)

It is important to note that the applied torque here refers
to the torque applied at the level of the actuator scaled to the
joint space. The torque applied to the load (i.e. the robot link)
cannot be measured on the HRP-5P robot due to absence of
joint torque sensor. The difference between the scaled actua-
tor torque and the joint torque can in fact be quite significant
due to the presence of static friction and viscous friction.

The policy is executed on the control PC of the robot (spec-
ifications: Intel NUC5i7RYH i7-5557U CPU with 2 cores,
Ubuntu 18.04 LTS PREEMPT-RT kernel), and is imple-
mented as an mc-rtc,1 controller in C++. The inference is
done at 40Hz with the PD controller running at 1000Hz.
Policy inference is quite fast, taking only around 0.2ms. The
global run of the controller is around 1ms.

C. SIM-TO-SIM VALIDATION
While we use MuJoCo as the training environment, we per-
form thorough evaluations also in the Choreonoid simulator
before real robot deployment. Choreonoid is traditionally a
more popular choice for simulating humanoid robot con-
trollers [34]. We use the mc-rtc control framework for exe-
cuting the policy onboard the control PC of the robot.

1https://jrl-umi3218.github.io/mc_rtc/index.html
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FIGURE 4. Baseline (top) v. Proposed policy (bottom): Real experiment
logs for torque-tracking on the right hip roll joint. We observe that the
torque-tracking becomes unstable for the baseline policy (circled) when
the robot is turning and an audible noise can be heard from the joint.
Such effects are not observed with the proposed approach, and the
robot’s swing leg behaviour visually appears to be more stable.

This allows us to evaluate the same controller code
transparently in 3 different environment: (1) in MuJoCo
using the mc-mujoco interface [35], (2) in Choreonoid and
(3) on the real robot, both using the mc-openrtm interface for
communicating with OpenRTM middleware [36] used in the
HRP robots and Choreonoid simulator.

We found the contact modelling in Choreonoid to be
more stable than the contact modelling for height fields in
MuJoCo. Hence, Choreonoid forms an important part of our
pipeline for evaluating policies on uneven terrain before real
robot deployment. Nevertheless, besides some small differ-
ences, we did not observe any major discrepancies in the
policies behavior between MuJoCo and Choreonoid during
evaluation.

D. ABLATION STUDY
We perform ablation on the two main ingredients proposed
in this work for sim2real success - (1) training with simulated
poor torque-tracking and (2) providing torque feedback to the
policy.

Although real robot experiments are expensive and test-
ing of policies that are prone to failure can be dangerous,
developing a test environment in simulation is not a credible
alternative. We found that policies that succeed in simula-
tion even in very challenging circumstances (like degraded
torque-tracking, uneven terrain, external perturbations), can

still behave undesirably when deployed on the real robot;
indicative of a large and critical reality gap. Hence, it is
important to study the behaviour of the policies on the real
system. We train 3 different policies to analyze the impact of
the proposed approach:

1) Policy A forms the baseline policy. It is trained without
simulated poor torque-tracking and without observ-
ing the current feedback from the actuators. When
deployed on the real robot, this policy gives the
worst peformance. The robot is prone to self-collision
between the feet when the swing leg lands on the
ground. This points to the difficulty faced by the policy
in controlling the real robot’s leg swing motion. This
is because the policy is trained with perfect tracking in
the simulation environment but is exposed to degraded
tracking on the real robot. Further, we attempt to train
another policy with an additional termination condition
on the feet distance (d < 0.2m) to promote a wider
stance. In this case, self-collision is prevented on the
real robot but we can observe that the torque-tracking
becomes unstable in some regions of the motion with
an audible noise heard from the joints (see Figure 4).

2) Policy B is trained with poor torque-tracking but
without torque feedback. We replace the inputs cor-
responding to the torque-feedback with the 0 vector
during training and evaluation, while keeping all other
parameters the same. This policy appears robust in
the simulation environment. However, when deployed
on the real robot, we again observe the self-collision
between the feet. The speed of the swing leg is also con-
siderably higher, meaning that the policy finds it harder
to compensate for the changing discrepancy between
command and applied torque. From this observation,
we conclude that providing the torque feedback (from
the measured current) is vital for the policy to adapt to
the degraded torque-tracking environment.

3) Policy C is trained using the proposed approach of sim-
ulating poor torque-tracking plus providing feedback
from current measurements to the policy. This policy
appears significantly more stable on the real robot.
Self-collision is not observed and there is no audible
noise during any part of the motion. The robot could
successfully walk upto several meters, including turn-
ing, stepping in-place and standing. The robot could
also walk over uneven terrain consisting of rigid and
soft obstacles upto 2 cm high.

We further analyze the real robot experiment logs corre-
sponding to the 3 policies in Figure 5 for torque-tracking
on the ‘‘RKP’’ (right knee pitch) joint. The ‘‘RKP’’ joint is
chosen because the tracking errors are more noticeable for
this joint. And also because the knee joint is expected to
have a more consequential impact on the walking behavior
(than compared to the hip yaw joint, say). We observed
self-collision between the feet in case of Policy A and
Policy B, while Policy C can perform stable walking and
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FIGURE 5. Torque-tracking performance on the RKP joint for 3 policies.
Policy A is trained without back-emf effect in sim and without feedback.
Policy B is trained with back-emf but without feedback. Policy C is trained
with back-emf and with the torque (current) feedback. Policy A and B
both lead to self-collision between the feet (circled in red) while C is able
to perform stable walking.

handle uneven terrain well. The tracking for the ‘‘RKP’’
joint for A and C looks somewhat similar, however, in case
of Policy C, the feedback allows the policy to react to the
tracking error in the previous timestep and achieve better
control on the swing motion. For B, the tracking is observed
to be much worse. Tracking for ‘‘RCR’’ (right hip roll) joint
for Policy A (retrained for wider feet distance) and C are also
showng in Figure 4.

Notably, providing the torque feedback will not eliminate
tracking errors because it is difficult for the policy to antic-
ipate the errors in the future. We believe that incorporating
history data in the observation space will also be beneficial.

E. COMPARISON TO MODEL-BASED CONTROLLER
We compare the robustness of our policy for locomo-
tion on uneven terrain to an existing model-based con-
troller for humanoid locomotion. For the test, we use the
open-source BaselineWalkingController,2 which provides an

2https://github.com/isri-aist/BaselineWalkingController

implementation of walking control based on linear inverted
pendulum mode (LIPM). This method combines online CoM
trajectory generation based on preview control, ZMP feed-
back based on the divergent component of motion (DCM) of
LIPM, and foot contact force control based on the damping
control law [28], [29], [30].

Our test environment consists of a stack of padded carpet
tiles, each of thickness 0.6 cm, placed on a flat floor. The
robot starts from some distance ahead of the stack and needs
to go across while stepping on top of the stack. Since the tiles
are made from a soft material, the obstacle forms a compliant
support surface - which is more challenging from a balance
perspective. The BaselineWalkingController could succeed
on a stack of 3 tiles but failed on a stack of 4 tiles (nearly
2.4 cm in height)— the robot loses balance and falls when the
support leg is on the stacked carpets. On the other hand, the
RL policy trained with our approach could succeed on a stack
of 5 carpets (= 3 cm high) on 2 of 2 trials. The policy also
succeeds in making several partial contacts on the obstacle,
where the foot is placed partially on the stack. (The tests are
shown in the supplementary video.)

While there exist newer model-based approaches for
humanoid locomotion that may provide greater robust-
ness [1], [2], our test still provides valuable insights into the
robustness of model-free RL policies against LIPM-based
bipedal locomotion controllers. The critical factors responsi-
ble for the higher robustness in the case of controllers based
on deep RL is subject to debate, but we believe the low PD
gains, feedback nature of the policy, and the absence of strict
constraints on feet trajectories, may play an important role.

F. FEEDFORWARD vs. MEMORY-BASED POLICIES
In this subsection, we study the behavior of feedforward
(FF) MLP policies, without any information about historical
states, to that of memory-based policy architectures like Long
Short-Term Memory (LSTM) and FF policies with obser-
vation history using simulation and real robot experiments.
Specifically, we analyzed the following 3 types of network
architectures:

(a) FF policy (vanilla), consisting of aMLP observing only
the current observed state ot

(b) FF policy with history, which observes the current state
along the previous 3 states {ot , ot−1, ot−2, ot−3}

(c) LSTM policy with two hidden layers of 128 units each.

Both FF policies have 2 hidden layers of size 256 nodes.
The critic network for each policy had the same architecture
as the agent, except for the output layer. We trained each
architecture, with andwithout dynamics randomization (DR).
None of the policies were provided any information about the
dynamics disturbances. All experiments were performed on a
flat and rigid floor. The reward curves are plotted in Figure 6.

During training, we found the FF policies to slightly out-
perform the LSTM policies in terms of reward collection.
This is true even when policies were trained without dynam-
ics randomization, but unsurprisingly, all policies appeared
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FIGURE 6. Comparison of Training Rewards for different policy
architectures, Top: All policies trained with dynamics randomization.
FF policy without history (labeled FF (vanilla)) and FF policy with
observation history were found to have similar reward curves. LSTM
policy achieved the lowest rewards in the beginning, but appeared to
converge roughly to the same level. Both FF policies were tested on the
real robot, and FF (vanilla) was found to behave most favourably. Bottom:
Training without dynamics randomization leads to faster convergence
and, again, LSTM achieves the lowest reward. Policies without dynamics
randomization were not deployed on the real robot.

to converge faster with no DR. Vanilla FF policy and FF
policy with history had nearly overlapping rewards curves.
We stopped the training after 20000 iterations, but it is possi-
ble that the LSTM reward may eventually surpass FF policies
due to overfitting to the simulation dynamics.

FF policies trained without DR were not deployed on the
real robot after initial unfavorable results with prototype poli-
cies. The swing leg motion visually appeared to be different
from the simulated robot and the robot was prone to slight
instability. However, we did not observe shakiness or extreme
instability even with no DR. With DR, the FF policy with
observation history seemed to perform similar to the vanilla
FF policy for stepping in-place on the real robot. However,
while walking forward and turning we noticed the former to
suffer from gradual degradation— gait symmetricity appears
to break and body oscillations appear to grow. We hypothe-
size that this is due to the accumulation of sim2real errors
with time, that would otherwise not occur if the network only
observed the current state ot . We did not deploy the LSTM
policy on the hardware as its slower inference speeds may
prohibit real time execution. We expect it behave similar to
FF policy with history. The vanilla FF policy trained with DR
performed the best in all real robot experiments, and hence,
emerged as our preferred choice for policy architecture.

Our result appear to be somewhat in contrast to the
prior findings for Cassie [10] that report effectiveness of

memory-based networks for achieving sim2real success.
We believe this is due to the narrow range of randomization
performed during training for our robot, meaning that the
state-history compression ability of memory-based agents
provided no added benefit. Since training the LSTMs takes
nearly 3 times as long as the FF policies (36 hours compared
to 12 hours for FF), our results show the potential advantage
of using FF policies with targetted dynamics randomization
for sim2real methods. We also note the importance of an
accurate initial model of our robot for the same.

VI. DISCUSSION AND CONCLUSION
In this work, we developed a system to train control policies
for a life-sized humanoid robot HRP-5P. We identified that
the main sim2real gap for these types of large robots arises
from poor torque-tracking of themotor control systems due to
high gear-ratio. We simulated back-EMF and applied torque
feedback to the policy to combat the sim2real gap. Policies
were trained in simulation and directly transferred to the
hardware.

Our experiments show that providing the current feedback
is a key ingredient for reliable sim2real transfer. Without the
proposed feedback signal, the policy is prone to failure in
controlling the leg swing motion, often causing self-collision
between the legs. We could not achieve sim2real success
without simulating poor torque-tracking during training. For
robots with joint-level torque sensors, we believe our pro-
posed approach can yield better performance by accounting
for the frictional torque in the joints.

We also provide ablation analysis on the need for
memory-based policy architectures. Our results show that a
feedforward MLP could be sufficient for successful transfer
of policies learned in simulation, in cases where dynam-
ics randomization is performed in a narrow range. Since
memory-based networks like LSTMs can be more compu-
ationally expensive to train and are prone to overfitting, for
this work, we chose MLP policies for real robot deployment.

We could achieve zero-shot transfer without performing
aggressive manual tuning of the reward function or ran-
domizing dynamics variables to wide, unreasonable ranges
(an often omitted part from the literature). It points to the
potential effectiveness of an accurate robot model for training
as well as careful identification of key factors responsible in
overcoming the reality gap. However, the policy appears to
make large swaying motion of the swing leg, which could be
eliminated by reducing the PD gains of the hip roll joints and
relaxing the coefficient of the penalty on joint velocity reward
term.

We compared the RL policy to a conventional model-based
approach for bipedal locomotion on the real humanoid plat-
form and obtained encouraging results. The RL policy could
handle obstacles over 3 cm while the robot lost balance
and falls with the model-based controller for obstacles over
2 cm. Although there are newer model-based methods that
can tackle larger obstacles, our tests provide promising evi-
dence in the favor of compliant joint tracking, closed-loop
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control and relaxed trajectory constraints — offered by the
RL approach. Visually, the robot exhibits a cleaner and effi-
cient gait under the model-based controller as opposed to
a excessive sway under the RL policy. In the future, this
could be tackled through the use of reference motions and
fine-tuning of learning parameters.

We release the source code for RL training and evaluation
in MuJoCo for reproducibility.3

Future Work: In the future, we plan to expand the frame-
work for developing a policy for backwards locomotion and
tackle evenmore challenging terrain.We also hope to identify
and overcome other factors inhibiting better sim2real transfer.
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