
Received 30 May 2023, accepted 29 July 2023, date of publication 2 August 2023, date of current version 14 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3301128

Two New Lightweight Cryptographic Hash
Functions Based on Saturnin and Beetle
for the Internet of Things
SUSILA WINDARTA 1, (Member, IEEE), SURYADI SURYADI2,
KALAMULLAH RAMLI 1, (Member, IEEE), ANDRIANI ADI LESTARI3, (Member, IEEE),
WILDAN WILDAN4, BERNARDI PRANGGONO 5, (Senior Member, IEEE),
AND RINI WISNU WARDHANI6, (Graduate Student Member, IEEE)
1Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
2Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
3Cryptographic Hardware Engineering Study Program, Cryptography Department, Politeknik Siber dan Sandi Negara, Ciseeng, Bogor, Jawa Barat 16120,
Indonesia
4Cybersecurity and Cryptography Technology Research and Development Center, National Cyber and Crypto Agency, Depok, Jawa Barat 16516, Indonesia
5School of Computing and Information Science, Anglia Ruskin University, CB1 1PT Cambridge, U.K.
6School of Computer Science and Engineering, Pusan National University, Busan 609735, South Korea

Corresponding author: Kalamullah Ramli (kalamullah.ramli@ui.ac.id)

This work was supported by Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Q2 2023 Scheme
under Contract NKB-820/UN2.RST/HKP.05.00/2023. The work of Susila Windarta was supported in part by Lembaga Pengelola
Dana Pendidikan (LPDP), Ministry of Finance of the Republic of Indonesia under Contract 20194210114181.

ABSTRACT With the enormous growth in Internet of Things (IoT) applications, the volume of data shared
among IoT devices is vastly increasing. Extensive IoT device connectivity and substantial data transmission
have made information integrity susceptible to various assaults. Therefore, hash functions are required to
ensure data integrity in IoT networks. IoT systems are constrained by their complexity, necessitating the
consumption of minimal computational power. As a result, lightweight hash functions have been selected
as the solution for the IoT data integrity issue. We present two lightweight hash functions, ALIT-Hash
and TJUILIK-Hash, based on the SATURNIN block cipher and the Beetle mode of operation. In particular,
we created TJUILIK-Hash by modifying the SATURNIN block cipher. The strength of the proposed hash
functions is evaluated through security analysis and performance testing. ALIT-Hash and TJUILIK-Hash
both show reasonably good resistance to differential and linear cryptanalysis. Hardware implementations
on a cost-effective and low-power microcontroller board (ATmega2560) demonstrate an average execution
time of 0.746 microseconds for the TJUILIK-Hash algorithm. Performance evaluations on a 64-bit personal
computer indicate that the ALIT-Hash and TJUILIK-Hash implementations exhibit comparable speed and
throughput to seven other evaluated hash functions. Simulation experiments employing Contiki-NG and the
Cooja simulator confirm the good performance of these two hash functions relative to PHOTON-Beetle-Hash,
PHOTON, and SPONGENT across five metrics. The hash functions pass seven cryptographic randomness tests
and pass all tests in the National Institute of Standards and Technology (NIST) Statistical Test Suite (STS).
Therefore, the implementation of both proposed hash functions should be considered, as they are both cost-
effective and provide an adequate level of security, which is essential for IoT devices with limited resources.

INDEX TERMS Lightweight cryptographic hash function, sponge construction, SATURNIN block cipher,
Beetle mode of operation, ALIT-Hash, TJUILIK-Hash, the Internet of Things.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

I. INTRODUCTION
The rate at which devices around us are achieving internet
connectivity is accelerating. According to a current Statista

84074
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-1234-9870
https://orcid.org/0000-0002-0374-4465
https://orcid.org/0000-0002-2992-697X
https://orcid.org/0000-0002-6502-472X

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

study, the number of Internet of Things (IoT) devices in
operation will more than double between 2020 and 2030,
increasing from 9.7 billion to over 29 billion [1]. China will
have the most IoT devices in 2030, including over 5 billion
consumer devices. This expansion is establishing the IoT as
a promising emerging market that could be a pillar of the
growing digital economy. After reaching USD 4.5 trillion
in 2021, the IoT market is expected to grow to over USD
5 trillion by 2025 [2].
The massive connectivity of IoT devices and the exchange

of large amounts of data present numerous security chal-
lenges. Researchers [3], [4] have identified seven security
challenges in IoT systems: authentication, authorization,
integrity, confidentiality, nonrepudiation, availability, and
privacy. Figure 1 summarizes the attacks, issues, and
requirements relevant to each layer of the IoT architecture.
The reference IoT architecture used in this study has three
layers: the application layer, the network layer, and the
perception layer. In Fig. 1, security requirements that demand
lightweight hash functions are highlighted in bold. The
multitude of security requirements demanding lightweight
hash functions underscores the importance of employing hash
functions in IoT systems.

In IoT systems, cryptographic hash functions are among
the most frequently employed cryptographic primitives [5],
[6], [7], [8]. Cryptographic hash functions have been
implemented in the contexts of cybersecurity and information
security applications, such as data integrity [7], [8], entity
authentication [7], [8], digital signatures [5], [6], [9],
cryptographic protocols [10], [11], pseudorandom number
generation [7], cryptographic key derivation [7], [9], [10],
cryptographic key generation [9], password security, and
blockchain applications [12], [13], [14].
Accordingly, governments, the private sector, and aca-

demic institutions have all endeavored to build and analyze
cryptographic hash algorithms. A hash function designer
must consider both performance and security issues [15],
[16], [17]. As a lightweight cryptography (LWC) devel-
opment initiative, the National Institute of Standards and
Technology (NIST) launched a project in 2017 to standardize
LWC. LWC is a vital part of the cryptographic field that
seeks to provide energy- and memory-efficient cryptographic
algorithms for devices with limited resources. An LWC
report published by NIST [18] recognizes this initiative.
In August 2018, NIST announced a ‘‘request for algorithms’’
to participate in the LWC standardization process [19]. After
more than two years of competition, on March 29, 2021,
NIST announced the ten finalists competing in the final
round. Six candidates, namely, ASCON [20], Elephant [21],
ISAP [22], PHOTON-Beetle [23], Sparkle (SCHWAEMM
and ESCH) [24], and Xoodyak [25], used sponge-based
construction. Two candidates employed block ciphers, GIFT-
COFB [26] and TinyJAMBU [27]. Romulus [28] was the
sole candidate based on a tweakable block cipher. Grain-
128AEAD was the only candidate in the final round
based on a stream cipher algorithm [29]. On February

20, 2023, NIST declared ASCON the LWC competition
winner.

Given the considerations mentioned earlier, the design
trend of LWC is built on permutations as cryptographic
components. The majority of the variants used involve
sponge construction or expansions. Sponge-constructed per-
mutations are preferred since they are relatively easy to
transform into different cryptographic primitives. Examples
include hash functions [30], authenticated encryption with
associated data (AEAD) [31], message authentication code
(MAC) [32], and pseudorandom bit generators (PRBGs) [33].
Notably, the software and hardware performance of the
previously mentioned alternatives varies due to their distinct
structures. Feistel networks and substitution-permutation
networks (SPNs) are employed for the round function, and the
number of rounds utilized during construction significantly
impacts an algorithm’s performance.

The contributions of this study are summarized as follows.
1) We develop the ALIT and TJUILIK lightweight hash

function algorithms, which are based on the SATURNIN
block cipher algorithm and the sponge-based Beetle
mode of operation.

2) We modify the super S-box of SATURNIN and ana-
lyze the security aspects of the modified super S-
box. The modified super S-box offers an adequate
level of security in terms of differential and linear
cryptanalysis.

3) We elucidate a cost-effective hardware implementa-
tion for implementing lightweight hash functions on
resource-constrained devices with low power con-
sumption.

4) We present average speed and throughput performance
evaluations for hash function algorithms that employ
the same mode of operation.

5) We simulate and evaluate the two proposed hash func-
tions in comparison with seven other hash functions in
Contiki-NG [34] and the Cooja simulator, measuring
performance based on five metrics: throughput (bits/s),
energy consumption (mJ), power consumption (mW),
ROM (bytes), and RAM (bytes).

6) We perform a randomness property assessment of all
proposed hash algorithms using seven cryptographic
randomness tests and fifteen tests from the NIST
Statistical Test Suite (STS).

The remaining sections of this paper are organized
as follows. Section II presents a review of the relevant
literature. Section III addresses the specifications and security
aspects of the SATURNIN block cipher. Section IV introduces
the Beetle mode of operation. The design rationale for
our proposals is presented in Section V. In Section VI,
we propose two lightweight cryptographic hash functions
(LWCHFs). Section VII presents a security analysis of
the proposed LWCHFs. In Section VIII, three performance
analyses and two randomness analyses of the proposed hash
functions are presented. The paper is concluded in the final
section.

VOLUME 11, 2023 84075

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

FIGURE 1. Three-layer IoT architecture: attacks, issues and security requirements.

FIGURE 2. LWCHFs found in the literature.

II. RELATED WORKS
To our knowledge, the development of lightweight hash
functions began with the proposal of dM-PRESENT by
Bogdanov et al. [35]. Since then, researchers have developed
various lightweight hash functions or families of such
functions, resulting in a total of thirty-eight hash functions
or families, each with unique characteristics and properties.
Figure 2 summarizes the LWCHFs found in the literature.

This section focuses on seven algorithms. The first
three, SPONGENT [36], [37], PHOTON [38], and LESAMNTA-
LW [39], are recognized as following the ISO/IEC 29192-
5:2016 standard [40]. The other four algorithms, namely,
PHOTON-Beetle-Hash [23], ASCON-Hash [20], XOODYAK-
Hash [41], and ESCH256 [24], were finalists in theNISTLWC
competition. This competition aimed to identify the most
suitable LWC algorithms for widespread deployment on IoT
devices. ASCON-Hash emerged as the victor in theNISTLWC

competition, solidifying its position as a leading lightweight
hash function.

The SPONGENT family of hash functions was designed by
Bogdanov et al. and presented at CHES 2011 [36]. This
family is designed to provide hash values of 88, 128, 160,
224, and 256 bits in length to resist preimage attacks. The
authors claim that the algorithm resists attacks targeting the
hash function.

Guo et al. proposed PHOTON in their research paper [38].
This algorithm utilizes a sponge-like construction approach
and the Advanced Encryption Standard (AES) and is a
compact hash function requiring only 1120 gate equivalents
(GE) to provide 64-bit security. Its speed is claimed to be
competitive compared to similar algorithms.

The designers of LESAMNTA-LW claim that it is a secure
and lightweight hash function with a 256-bit hash length [39].
The primary objective of its design is to achieve a small-
scale hardware and software implementation. The algorithm
employs Merkle–Damgård (MD) construction and an AES-
based block builder. A 4-branch generalized Feistel network
(GFN) and AES components (SubBytes and MixColumn)
are used in the hash function. The MixColumn operation
employs maximum distance separable (MDS) AES matrix
multiplication specified via GF

(
28

)
.

PHOTON-Beetle-Hash [23] utilizes the PHOTON256 per-
mutations [38] as building blocks and the Beetle sponge
mode [42]. This hash function accepts any input mes-
sage M ∈ {0, 1}∗ and returns a 256-bit hash value
H(M) ∈ {0, 1}256.
XOODYAK [41] is a cryptographic primitive intended

for hash functions, PRBGs, authentication, encryption,
or authenticated encryption (AE). XOODYAK uses the 384-bit
XOODOO permutations [43], [44]. XOODOO is a family of

84076 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

FIGURE 3. Different parts of SATURNIN’s state.

permutations inspired by KECCAK-p [30], [45]. XOODYAK-
Hash has a hash value length of 256 bits.

ESCHHash [24] has two variants: ESCH256 and ESCH384.
These hash functions accept input of an arbitrary bit length
and return hash values of 256 bits and 384 bits, respectively.
The main proposal for these hash functions is based on the
SPARKLE [46] permutation group, with rate r and capacity c.

ASCON-Hash [20] is a member of the ASCON family
of cryptographic algorithms proposed for the NIST LWC
competition. Indeed, ASCON was the winner of the NIST
LWC competition. Previously, ASCON was the winner of
the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR) [47], which was
hosted by NIST for the standardization of an AE algorithm.
The ASCON hash function is a variant of the ASCON algorithm
designed for hash function purposes. It uses a permutation-
based design similar to that of AES, employing a 64-bit nonce
and a 128-bit key to provide security. The algorithm operates
on 32-bit words and consists of several operations, including
bit manipulation, substitution, and permutation. To obtain
the final hash value, the algorithm truncates the output of
the last permutation. The designers of ASCON-Hash aimed to
create a hash function that could be implemented efficiently
in hardware and software. To this end, they ensured that the
algorithm would have a low gate count, making it feasible to
implement on devices with limited resources, such as low-
power microcontrollers and IoT devices. Additionally, the
hash function has a fixed output size of 256 bits.

III. SATURNIN BLOCK CIPHER
This section describes the design of the SATURNIN block
cipher algorithm, a building block of the proposed hash
functions.

SATURNIN [48] operates on 256-bit message blocks and
256-bit keys to generate 256-bit ciphertext blocks. The
algorithm utilizes a 256-bit internal state known as a cube.
The three subsets of the cube (see Fig. 3) are labeled
according to the same nomenclature used for the Keccak-f
state components in SHA-3 [49].

SATURNIN is an even-round SPN cipher. Following the
definition of Canteaut et al., a super-round is a combination of
two consecutive rounds. SATURNIN employs a 256-bit internal
state (X) and a 256-bit key state (K), each structured as a

nibble (4 × 4 × 4) cube. The following round constants
are generated using two 16-bit words, RC0 and RC1. The
encryption process of the SATURNIN block cipher is described
in Algorithm 1.

ALGORITHM 1: SATURNIN State Encryption

Input: State X ∈ (F16
2), Key K∈ (F16

2), R ∈ N,
D ∈ {0, 1, . . . 8}

Output: State X ∈ (F16
2)

1: X← X ⊕K;
2: RC0← 0xfe00|(R≪ 4)|D;RC1← RC0;
3: for r = 0 to R− 1 do
4: X← S(X);
5: X←M(X);
6: X← S(X);
7: if r mod 2 ≡ 1 then
8: X← SRslice(X);
9: X←M(X);
10: X← SR−1slice(X);
11: X0← X0 ⊕ RC0;
12: X8← X8 ⊕ RC1;
13: X← X ⊕ rot(K);
14: else
15: X← SRsheet(X);
16: X←M(X);
17: X← SR−1sheet(X);
18: X0← X0 ⊕ RC0;
19: X8← X8 ⊕ RC1;
20: X← X ⊕K;
21: end
22: for j = 0 to 15 do
23: RC0← clockLFSR0(RC0);
24: RC1← clockLFSR1(RC1);
25: end
26: end

Parameters. SATURNIN has two parameters. The first
parameter is R, which is the number of super-rounds, i.e.,
number of rounds

2 . The proposed hash functions use R = 16.
The second parameter is D, a 4-bit value called the domain
separator.

Initialization. The input message is set to X, and the main
key is set to K. RC0 and RC1 are filled with bit strings of the
following form:

1 . . . 1︸ ︷︷ ︸
7 ones

R4 . . .R0︸ ︷︷ ︸
R

D3 . . .D0︸ ︷︷ ︸
D

such that the least significant bit is on the right. The first four
bits denote the domain separator D, whereas the second five
specify R. The initial operation of Round 0 is to XOR the
internal state with the value K.
Round function. Beginning with Round 0, the following

internal state transformations are consecutively applied:
1) An S-box layer that implements S-box σ0 for even-

numbered nibbles and S-box σ1 for odd-numbered

VOLUME 11, 2023 84077

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 1. S-boxes σ0 and σ1 of SATURNIN.

nibbles. Table 1 is the lookup table used to determine
the contents of these two S-boxes.

2) A nibble permutation SRr that is dependent on the
integer r .

3) A linear layer MC that applies sixteen duplicates of
M over (F4

2)
4 simultaneously to every column of the

internal state. The definition ofM is as follows:

M :

a
b
c
d

 7→

α2(a)⊕ α2(b)⊕ α(c)⊕ d
a⊕ α(b)⊕ b⊕ α2(c)⊕ c⊕ α2(d)⊕ d

a⊕ b⊕ α2(c)⊕ α2(d)⊕ α(d)
α2(a)⊕ a⊕ α2(b)⊕ α(b)⊕ b⊕ c⊕ α(d)⊕ d

where a is the smallest nibble index and α modifies
(x0, . . . , x3) according to the following formula:

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

x0
x1
x2
x3

4) SR−1r , the nibble permutation inverse.
5) A subkey addition performed just after every super-

round. The subkey is the XOR of the round constant
and the main key or a rotational form of the main key.

Round constant. RC0 and RC1 are modified by executing
the following procedure 16 times: when the most significant
bit of RCi, 0 ≤ i ≤ 15, is 0, RCi is replaced by RCi ≪ 1;
otherwise, it is replaced by (RCi ≪ 1)∧polyi, with
poly0 = 0× 1002d and poly1 = 0× 10053. RC0 and
RC1 are then XORed with the internal state. Bit i in RC0 is
added to Bit 0 of the nibble at position 4i. Similarly, Bit i
in RC1 is XORed with Bit 0 of the nibble with the index
(4i+ 2).
Round key. The main key K is XORed with the

internal state if the round index R is even; otherwise,
the rotated version of the main key is XORed. The key
nibble at location (i + 20) mod 64 is accepted by the i-th
nibble.

IV. BEETLE, A SPONGE-BASED MODE OF OPERATION
Beetle is a sponge-based mode of operation proposed
by Chakraborti et al. [42], [50]. The researchers initially
proposed Beetle for the AEAD algorithm. In the LWC
competition, the authors ofBeetle, workingwith the designer
of the PHOTON hash function, proposed the PHOTON-Beetle
family [23]. Thus, in addition to the AEAD algorithm,
PHOTON-Beetle-Hash has also been proposed.

According to [42], in conventional sponge-based modes,
the ciphertext is generated by XORing the plain text with
the rate portion of the permutation output. The system

then feeds this same value into itself as the input rate for
the next iteration of permutation. However, in the Beetle
construction process, a combined feedback approach is used
such that the ciphertext block and the rate portion of the
subsequent feedback differ from each other; this contrasts
with a conventional sponge, in which these values are
identical. This change enhances the mode’s security without
requiring extra storage space. Figure 4 shows the Beetle
construction process.

V. DESIGN RATIONALE
This section explains why we chose to implement specific
design elements. The rationale includes the choices that must
be made when using the SATURNIN block cipher and the
Beetle mode of operation.

A. CHOICE OF SATURNIN
When developing the proposed hash functions, we chose to
use a 256-bit permutation from the available literature, and
for this purpose, we selected the SATURNIN block cipher.
Among the factors that led to the selection of SATURNIN is
its design, which is based on a 20-year-long examination of
AES. Because of this design approach, SATURNIN inherits
the security features of AES while allowing efficient
implementation and thorough security analyses considering
both classical and quantum adversaries.

A comprehensive security analysis of SATURNIN is
described in the work of Canteaut et al. [48]. The first part
of the analysis concentrates on classical attacks: differen-
tial cryptanalysis, linear cryptanalysis, algebraic degrees,
bicliques, impossible differential attacks, and subspace trails.
The second part focuses on a Demirci–Selçuk meet-in-
the-middle attack in 7.5-round SATURNIN. The final exam-
ination concerns the resistance of SATURNIN to quantum
attacks.

Several researchers have investigated attacks on the
SATURNIN block cipher or SATURNIN-Hash. According to
Bao et al. [51], the likelihood of usable differential paths
might be as low as 2−n. This leads to more targeted rounds
than all quantum collision attacks and conventional multi-
collision distinguishers. These authors applied their attack
model to AES, Rijndael, and SATURNIN to demonstrate its
effectiveness. Distinguishing attacks were made on all rounds
of Rijndael-128-160, Rijndael-128-224, AES-192, and AES-
256. Other results include those for 10-round SATURNIN-
256, 12-round Rijndael-160-256, and 11-round AES-128.
Using a mixed-integer linear programming-based technique,
Dong et al. [52], [53] used the related-key differentials of the
underlying block cipher to automate the procedure of looking
for configurations that could be used for rebound attacks.
Their model directs searches in the quantum context toward
features that reduce the cost and complexity of subsequent
rebound attacks. They applied their strategy to SATURNIN-
Hash, SKINNY, and Whirlpool and obtained good results.
Dong et al. [54] employed a triangulating rebound attack on
multiple AES-like hash algorithms to identify classical or

84078 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

FIGURE 4. Beetle construction.

FIGURE 5. ALIT hash function employing m message blocks. |M1| = 128 and |Mi | = 32 for i = 2, . . . , |Mm| ≤ 32. The hash value H is computed as
T1 || T ′

2, where T ′ = Trunc(Ti , 128).

quantum collisions. The attacked round number of targets
such as AES-128, SKINNY, SATURNIN-Hash, and Grostl-512
increased by one to five. Because these attacks have a
higher cost than the security target we aim to achieve, these
distinguishers do not affect the security of ALIT-Hash or
TJUILIK-Hash. In addition, SATURNIN can be utilized in the
Beetle mode of operation without modifying the existing
parameters.

B. CHOICE OF BEETLE
Since its introduction in 2007 by Bertoni et al. [55], sponge
construction has become a common method for constructing
lightweight cryptographic primitives. Beetle is one of the

proposed modes of operation for sponge construction. The
main novelty of the Beetle sponge mode [42] is its use
of the permutation output and ciphertext block as feedback
to produce the subsequent permutation input. The Beetle
sponge mode prevents attackers from processing multiple
blocks of data simultaneously, making it more difficult
for them to find weaknesses in the cryptographic system
and launch attacks. When a cryptographic system processes
multiple data blocks simultaneously, attackers can often
discover patterns or relationships between blocks. This
situation can facilitate various attacks, such as collision
attacks, in which the attacker tries to find two inputs that
produce the same output. Therefore, the Beetle mode raises

VOLUME 11, 2023 84079

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

the level of security, reduces the size of the state, and finally
leads to low state implementation. This security upgrade
ensures that even with a state size of only 256 bits, we can
meet the desired security requirements.

VI. PROPOSED LWCHFs
A. ALIT LWCHF
The first contribution of this research is highlighted in this
section. To design a lightweight hash function, whichwe refer
to as the ALIT LWCHF, we propose combining the SATURNIN
block cipher with theBeetlemode of operation. As described
in [48], we apply SATURNINwith 16 super-rounds to make the
compression function immune to related-key attacks. As a
result, the developed hash function algorithm is expected
to have strong cryptographic immunity in both linear and
differential cryptanalysis.

The ALIT hash function converts a messageM ∈ {0, 1}∗ of
arbitrary length into a fixed-length hash valueH ∈ {0, 1}256.
The first 128 bits of the input message are designated for
the first processing block, and the remainder of the input
message is partitioned into 32-bit blocks. We set the main
key to a 256-bit 0, written as 0256. If the length of the input
is not a multiple of 32 bits, it is padded with 10∗. In this
procedure, the output of each permutation is XORed with the
next 32-bit message block, which is concatenated with zeros,
to determine the input for the subsequent permutation call.
This initial state is assigned to the permutation’s initial call.
During the domain separation process for the last message
block, a small constant is XORed into the capacity portion,
depending on whether the last message block is complete or
partial. A 256-bit hash valueH is produced by combining the
128-bit values T1 and T2. Figure 5 illustrates the ALIT hash
function, and the detailed procedure used to obtain the hash
value is shown in Algorithms 2, 3, and 4.
Table 2 presents a set of test vectors for ALIT. The

algorithm’s input and output data are presented in hexadec-
imal notation. The first row of Table 2 shows the result
obtained with an empty input message.

B. TJUILIK LWCHF
To obtain our second proposed LWCHF, we modify the super
S-box of the SATURNIN block cipher. In this modification,
the σ0 and σ1 S-boxes are replaced with 4-bit S-boxes
from the literature [56], [57], [58], [59], [60]. The smallest
differential uniformity value obtained for the resulting super
S-box is 80, while the smallest linearity value is 3,072,
as described in [48]. Our objective is to minimize the
differential values of uniformity and linearity to provide
differential and linear security superior to that of the initial
concept. After investigation, we have found that the best S-
box combination consists of the Serpent S-box S3 [61] and
the S-boxG3 proposed by Leander and Poschmann [56]. Both
S-boxes are optimal. Serpent’s block cipher algorithm was a
finalist in the 2001 AES competition. Table 3 presents the
S3 and G3 S-boxes.

ALGORITHM 2: ALIT-Hash[32](M)

Input: MessageM ∈ {0, 1}∗

Output: Hash valueH ∈ {0, 1}256
1: if M = λ then
2: IV← 0 || 0;
3: H← TAG256(IV⊕ 1);
4: returnH;
5: end
6: if |M | ≤ 128 then
7: c0← (|M | < 128)?1 : 2;
8: IV← Pad128(M) || 0;
9: H← TAG256(IV⊕ c0);

10: returnH;
11: end

12: M1 ∥ M ′
(128,|M |−128)
←−−−−−−−− M ;

13: c0← (32||M ′| < 128)?1 : 2;
14: IV← M1 || 0;
15: IV← HASH32(IV,M ′, c0);
16: H← TAG256(IV);
17: returnH;

ALGORITHM 3: HASH32(IV,D, c0)

Input: IV,D, c0
Output: IV

1: D1 ∥ D2 ∥ · · · ∥ Dd
32
← Pad (D);

2: for i = 1 to d do

3: Y ∥ Z
(32,224)
←−−−− SATURNIN (IV);

4: W ← Y ⊕ Di;
5: IV← W ∥ Z ;
6: end
7: IV← IV⊕ c0;
8: return IV;

ALGORITHM 4: TAG256(T0)

Input: T0
Output:H

1: for i = 1 to 2 do
2: Ti← SATURNIN (Ti−1);
3: end
4: H← Trunc(T1, 128) ∥ Trunc(T2, 128);
5: returnH;

Table 4 compares the uniformity of the original and
modified super S-box differentials. With the modification,
the differential uniformity value decreases from 80 to 74,
as shown in Table 4. Due to this reduction, the improved
super S-box-based method is anticipated to be more secure
than the original proposal. According to the AES design,
there are always at least 25 functioning super S-boxes
in play during any sequence of four successive super-
rounds. For TJUILIK-Hash, which uses 16 super-rounds, the

84080 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 2. Test vectors for ALIT.

TABLE 3. S3 and G3.

best 16-round differential characteristic probability is now
2−9.79×100 = 2−979.

Notably, the linearity of the modified super S-box is called
into question by this change. When computing the linearity
value, we obtain a maximum value of 3,200. This differs
from the maximum linearity value of the original super S-box
of SATURNIN, equal to 3,072, by 128 points. The maximum
squared correlation of the linear relations equals 3, 2002 ×
2−32 ≈ 2−8.713. Using the same reasoning used for the
differential uniformity above, we find that the maximum
squared correlation values for the 4-super-round and 8-super-
round linear paths are no greater than 2−217.825 and 2−435.65,
respectively, corresponding to reductions of 2220.7 and 2441.5

relative to 4 and 8 super-rounds of the original SATURNIN.
We argue that this decrease does not affect the security against
linear cryptanalysis for two reasons. First, the probability
reduction is small, and second, the number of rounds used in
the hash function is increased to 16 super-rounds (32 rounds).
These two factors combine to ensure that the security against
linear cryptanalysis remains robust, even with a moderate
decrease in probability.

We call the above modification SATURNIN-Mod. We assert
that all security analyses that apply to the SATURNIN block
cipher also apply to SATURNIN-Mod. We use SATURNIN-
Mod as a permutation to build TJUILIK-Hash. Figure 6
presents TJUILIK-Hash. Test vectors for TJUILIK-Hash are
listed in Table 5. The input messages are the same as the test

vectors used for ALIT-Hash. Tables 2 and 5 show the major
differences in the generated hash values.

VII. SECURITY ANALYSIS
This section presents a security analysis of the ALIT and
TJUILIK hash functions. The analysis covers collision resis-
tance, preimage security, and the security of the block cipher
algorithm as a permutation function. Table 6 summarizes the
security claims regarding the ALIT and TJUILIK lightweight
hash functions.

A. COLLISION SECURITY
Collision security is related to the computational difficulty of
finding two distinct input values that produce the same hash
value. A collision-resistant hash function is distinguished by
its collision security. NIST requires that an LWCHF have
112-bit collision security.

To conduct a collision attack against ALIT-Hash[32] (also
TJUILIK-Hash[32]), the attacker must perform p permutation
calls. It is assumed that all states are accessible via
permutation from the initial state. A bit sequence of 0256 is the
initial state in this instance. An attacker can organize queries
to make all query inputs or outputs accessible. Furthermore,
if there is a collision in the output capacity components of
two permutation calls, then the rate section of the message
can be adjusted to cause state collisions, which can then be
used to generate collisions in the hashes. Let Probcoll be the
probability of this occurrence. The value of (1) determines
the upper limit on Probcoll:

Probcoll =
p2

2256−r−1
. (1)

The extra bit originates from the addition of a constant
to the capacity part. For r = 32, the query complexity for
collision attacks is 111.5 bits.

B. PREIMAGE SECURITY
Preimage security is associated with the ability of a hash
function to withstand preimage attacks, namely, searches
for an input message value given a hash value. In ALIT-
Hash[r] and TJUILIK-Hash[r], the hash value size is defined
as 256 bits, and the squeezing level is 128 bits. In the case of
ALIT, the attacker must identify Z such that SATURNIN(T1 ∥
Z1) = T2 ∥ ∗ or SATURNIN−1(T2 ∥ Z) = T1 to discover the
preimage hash value of T1 ∥ T2. In the case of TJUILIK, the
underlying permutation is SATURNIN-Mod. The probability
of this occurrence, called Probpre, is restricted to within the
upper limit given in (2):

Probpre =
p

2128
. (2)

VIII. PERFORMANCE AND RANDOMNESS TESTS
This section describes performance and randomness tests
of the two proposed lightweight hash functions. The per-
formance evaluations consist of a hardware performance

VOLUME 11, 2023 84081

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 4. Super S-box differential uniformity.

FIGURE 6. TJUILIK hash function employing m message blocks. |M1| = 128 and |Mi | = 32 for i = 2, . . . , |Mm| ≤ 32. The hash value H is computed as
T1 || T ′

2, where T ′ = Trunc(Ti , 128).

evaluation, a software performance evaluation, and sim-
ulations on Contiki-NG [34] and the Cooja simulator.
The randomness testing includes both cryptographic and
statistical randomness tests. Fast NIST STS [62], a more
efficient version of the NIST STS [63], is used for the
statistical randomness tests.

A. HARDWARE PERFORMANCE
We implemented one of the proposed hash functions in
a low-cost environment to achieve a reasonable average
hash rate for hardware-specific IoT applications using the
ATmega328P microcontroller. We performed a single hash
operation with a 256-bit hash length and a 128-bit squeeze
rate. This operation is a standard measurement for typical
IoT sensor data in sensor nodes based on RAM-constrained
devices. This investigation focused solely on TJUILIK-Hash.
We assert that the hardware implementation performance of
ALIT-Hash is comparable to that of TJUILIK-Hash due to their
similar structures.

Experiments were carried out by optimizing the hash
function for performance or memory consumption and
then translating it into the required headers and function
calls. We then generated test vectors with varying input
sizes and compared the hash values obtained with the
optimized hash function to the known hash values. These
implementations prioritized efficient 16-byte, 128-byte, and
1024-byte embedded architectures, specifically AVR.

To compare its performance onAVRwith that of other hash
algorithms from [64] in an identical manner, we implemented
TJUILIK-Hash in anATmega2560 processor environment with
a maximum CPU speed of 16 MHz. The ATmega2560 serves
as the base for the ArduinoMega 2560microcontroller board,
which includes 54 digital I/O pins, 16 analog inputs, 4 UARTs
(hardware serial ports), a 16 MHz crystal oscillator, and an
ICSP header. Fifteen of the digital I/O pins can function as
PWM outputs. Table 7 lists all results, and Fig. 7 depicts
the average speed analysis for TJUILIK-Hash in this 16-bit
ATmega implementation. Accordingly, we can compare the

84082 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 5. Test vectors for TJUILIK.

TABLE 6. Security of ALIT-Hash and TJUILIK-Hash.

FIGURE 7. Hash algorithm performance comparison in a 16-bit AVR
ATmega2560 implementation. We implement TJUILIK-Hash in 16-byte,
128-byte, and 1024-byte versions and then compare its average
performance with that of other hash algorithms.

speeds of different hash algorithms and conduct a test vector
analysis to compare the hash values obtained from the
hardware implementation with the expected results.

Among the evaluated algorithms, TJUILIK-Hash stands
out with an average execution time of 0.746 microseconds,
indicating its superior efficiency and speed in generating
hash values compared to other algorithms. TJUILIK-Hash
outperforms most algorithms in the 128-byte and 16-byte
input categories, with significantly shorter average execution
times. For 1024-byte inputs, although it takes slightly

longer than some other algorithms, the proposed algorithm
nevertheless achieves a notably short average execution time.

Upon comparing the average execution times of all
algorithms, it is evident that TJUILIK-Hash consistently
demonstrates good performance across different input sizes.
It outperforms several well-known hash algorithms, such
as ESCH256 (Sparkle), GIMLI-24-Hash, ESCH384 (Sparkle),
XOODYAK-Hash, SATURNIN-Hash, and DryGASCON128-
Hash. These findings emphasize the efficiency and effective-
ness of TJUILIK-Hash as a hashing algorithm, particularly on
an AVR platform. The superior performance of TJUILIK-Hash
in terms of average execution time makes it a good choice
for applications in which speed and efficiency are crucial
considerations.

B. SOFTWARE PERFORMANCE
In the software performance evaluation, we compared
ALIT-Hash and TJUILIK-Hash with seven lightweight hash
function algorithms: PHOTON, SPONGENT, LESAMNTA-LW,
PHOTON-Beetle-Hash, ASCON-Hash, XOODYAK-Hash, and
ESCH256. The first three of these hash functions follow
the ISO/IEC 29192-5:2016 standard, and the remaining four
were finalists in the NIST LWC competition. All lightweight
hash functions have a hash value length of 256 bits. All
algorithms were integrated into a C implementation and
tested on a system with a 3.30 GHz AMD Ryzen 9 5900HX
processor with Radeon Graphics and 32 GB of RAM running
Windows 11 Pro. Our aim was to evaluate each algorithm’s
performance in terms of speed and efficiency through the
integration process. We chose to implement all algorithms
under identical conditions and specifications and not to refer
to other researchers’ implementation results to ensure fair
comparisons.

We performed a speed test by calculating the hash value
of input with a size equivalent to the longest LoRaWAN
payload, that is, 242 bytes [65]. We focused on the time
taken to process the data message and used the results to
evaluate the impact of the hash function design on overall
throughput. We present the speed test results to provide
insight into the performance of hash function algorithms and
their impact on overall throughput. These results can guide
future improvements and optimizations of such algorithms to
enhance their performance. Table 8 presents the speed and
throughput performance results.

Among the algorithms in Table 8, ASCON-Hash exhibited
the fastest performance, with a recorded processing time of
0.00031 ms. The achieved throughput of 819,462.228 bits/ms
is significant. The Sparkle algorithm, also known as
ESCH256, demonstrated a fast processing time of 0.00047 ms
and a high throughput of 543,524.416 bits/ms.

The ALIT-Hash algorithm also showed noteworthy per-
formance features, with a processing time of 0.00063 ms
and a throughput of 409,600.000 bits/ms. The XOODYAK-
Hash algorithm achieved a processing time of 0.00157 ms,
resulting in a throughput of 163,265.306 bits/ms.

VOLUME 11, 2023 84083

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 7. Performance comparison of TJUILIK-Hash with other hash algorithms on AVR.

The cryptographic algorithm LESAMNTA-LW showed a
processing time of 0.01100ms and a correspondingly reduced
throughput of 23,272.727 bits/ms compared to the other
algorithms. For TJUILIK-Hash, this study found a slight
increase in processing time to 0.01571 ms, leading to a
throughput of 16,296.391 bits/ms.

The PHOTON-Beetle-Hash algorithm displayed reduced
operational efficiency, as evidenced by its longer pro-
cessing time of 0.10147 ms and resulting throughput of
2,522.839 bits/ms. The PHOTON system achieved a processing
time of 0.26100ms, yielding a throughput of 980.843 bits/ms.
The SPONGENT algorithm had the lowest efficiency, with
a processing time of 1.51300 ms and a throughput of
169.200 bits/ms.

C. PERFORMANCE IN RESOURCE-CONSTRAINED
ENVIRONMENTS: CONTIKI-NG AND COOJA SIMULATIONS
We simulated ALIT-Hash, TJUILIK-Hash, and seven other
algorithms using the Contiki-NG operating system [34]
and the Cooja simulator. Our simulation setup consisted
of the Ubuntu 20.04.6 LTS operating system with 16 GB
of RAM running on Windows Subsystem for Linux 2 on
Windows 11 Pro. The simulation involved a wireless network
platform in which Z1 motes from Zolertia acted as both

TABLE 8. Comparison of software performance.

senders and receivers. The Z1 mote has a second-generation
MSP430F2617 low-power microcontroller featuring a 16-bit
RISC CPU clocked at 16 MHz, a calibrated clock generator,
8 kB of RAM, and 92 kB of flash memory. It includes the
popular CC2420 transceiver, which is compliant with the
IEEE 802.15.4 standard and operates at 2.4 GHz with a data
rate of 250 kbps [66]. The sending and receiving motes were
responsible for calculating each hash function. We evaluated
the algorithms based on five metrics: throughput (bits/s),

84084 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

TABLE 9. Performance of ALIT-Hash and TJUILIK-Hash in the Contiki-NG and Cooja simulators compared to other hash functions.

energy consumption (mJ), power consumption (mW), ROM
(bytes), and RAM (bytes). Table 9 presents the complete
results of the simulations.

The algorithms enumerated in Table 9 possess unique char-
acteristics. The ESCH256 (Sparkle) algorithm is recognized
for its exceptional data processing speed, with its maximum
throughput of 11,037.64 bits/s rendering it the most efficient
algorithm. The LESAMNTA-LWhash function achieves a note-
worthy throughput of 7,921.25 bits/s while simultaneously
maintaining low levels of energy and power consumption
of 1.87 mJ and 57.90 mW, respectively. The ASCON-
Hash and XOODYAK-Hash algorithms produce intermediate
throughput rates of 6,523.02 bits/s and 3,658.35 bits/s,
respectively. These values are accompanied by energy and
power consumption levels that are relatively balanced.
PHOTON-Beetle-Hash, PHOTON, and SPONGENT demonstrate
lower throughputs, implying slower data processing rates.
Nevertheless, they offset this limitation by exhibiting diverse
energy and power consumption rates, with PHOTON-Beetle-
Hash consuming 42.84 mJ, PHOTON consuming 47.60 mJ,
and SPONGENT demanding 294.97 mJ. The algorithms under
consideration also exhibit variations in their respective ROM
and RAM requirements. PHOTON-Beetle-Hash occupies
1,379 bytes of ROM and 26 bytes of RAM, PHOTON
occupies 1,798 bytes of ROM and 266 bytes of RAM, and
SPONGENT occupies 1,125 bytes of ROM and 544 bytes
of RAM.

ALIT-Hash has a throughput of 3,536.51 bits/s, demonstrat-
ing its ability to process data efficiently. Although it utilizes
more energy than other algorithms, its power consumption
remains constant at 57.92mW.ALIT-Hash’s relativelymodest
RAM usage of 64 bytes demonstrates its efficient utilization
of memory resources. In addition, its 12,012-byte ROM
requirement achieves a balance between storage demand and
performance.

FIGURE 8. Results of cryptographic randomness tests.

Despite its lower throughput of 957.17 bits/s, TJUILIK-
Hash also possesses distinctive advantages. Like ALIT-
Hash, TJUILIK-Hash uses only 64 bytes of RAM, demon-
strating its memory efficiency. The memory efficiency of
TJUILIK-Hash makes it suitable for resource-constrained
environments.

D. CRYPTOGRAPHIC RANDOMNESS TESTS
A cryptographic randomness test is a statistical test that
examines a function’s cryptographic characteristics [67].
We conducted seven tests for cryptographic randomness
testing: affine constant, algebraic normal form d-monomial,
linear span, strict avalanche criterion, collision, coverage, and
saturation point tests. Filiol [68] in 2002 introduced a novel
statistical testing methodology for assessing the quality of
symmetric ciphers and hash functions. An assessment of the
statistical aspects of a cryptographic algorithm’s output, such
as the value distribution and the presence of correlations,
forms the basis of this methodology. First, the algebraic
normal forms (ANFs) of random Boolean functions are

VOLUME 11, 2023 84085

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

completely characterized employing the Möbius transform.
Then, output bits from the cryptosystem under test are
described using sets of Boolean functions and compared
with those from purely random Boolean functions. These
tests are called the affine constant and ANF d-monomial
tests. Doğanaksoy et al. [67] proposed the next four
tests to address corresponding cryptographic properties,
as follows:
• For optimal diffusion, each output bit should change
with a probability of 50 percent whenever an input
bit changes. This requirement is known as the strict
avalanche criterion (SAC). The SAC test aims to
determine whether an algorithm satisfies the SAC
property.

• A Boolean function should be far from the set of all
affine functions. This attribute is measured in terms
of nonlinearity and relates to confusion. The3 linear
span test examines an algorithm by assessing the linear
dependence of outputs generated from a set of firmly
linearly dependent inputs.

• Finding two different inputs that produce the same
output should be challenging; this property is known
as collision resistance. The collision test consists of
determining the number of collisions in a random subset
of outputs corresponding to the input set.

• Block ciphers with a fixed plaintext and hash function
are one-way functions that must act as random map-
pings. The coverage test checks the size of the output
set corresponding to a subset of the input set.

The last test is the saturation point test, which was
proposed by Sulak [69]. The saturation point test measures
the randomness of the output of a hash function algorithm
based on the saturation point, which is the index value of the
integer at which all possible numbers have appeared in the
sequence. This index is found by evaluating the appearance
of all possible integer numbers in the sequence.

ALIT-Hash and TJUILIK-Hash were subjected to several
different security evaluations, and Fig. 8 presents a com-
parison of the outcomes of these evaluations. A p value
of 0.01 is considered to indicate a meaningful significance
level when analyzing the results. The tests performed include
the affine constant, ANF 1-monomial, ANF 2-monomial,
ANF 3-monomial, linear span, SAC, collision, coverage, and
saturation point tests. According to the findings, in most
tests, TJUILIK-Hash has a lower p value than ALIT-Hash.
This suggests that TJUILIK-Hash may have a higher level of
security than ALIT-Hash does. However, it is important to
interpret these findings within the context of the particular
tests that were performed and the circumstances under which
they were performed.

E. NIST RANDOMNESS TESTS
A hash function is expected to output random sequences,
making it difficult to identify the algorithm based on an
inspection of its output. The algorithm output must appear
identical to that of random permutations and mappings.

FIGURE 9. The proportion of sequences passing the NIST STS evaluation.

Therefore, it is crucial to evaluate the unpredictability of a
hash function’s output through statistical randomness tests.
The NIST STS, as described in SP 800 22 rev 1a, is utilized
for this purpose in this work.

The NIST STS consists of 15 statistical tests. This open-
source randomness test application seeks to uncover nonran-
dom features in output sequences. The tests are divided into
two categories: parameterized and nonparameterized. The
eight nonparameterized tests are designed to reveal patterns,
biases, or anomalies in random data that may indicate that
they are not truly random. These tests are the binary matrix
rank, frequency, runs, spectral DFT, longest runs of ones,
cumulative sums, random excursion, and random excursion
variant tests. The remaining seven tests are classified as
parameterized tests. These tests are the linear complexity,
approximate entropy, block frequency, overlapping tem-
plates, Maurer’s universal, serial, and nonoverlapping tests.
Each of these tests necessitates the introduction of parameter
values.

Twomethods are used to interpret the test results: assessing
the percentage of bit sequences that pass each test and
examining the resultant p value distribution for uniformity
using the chi-square (χ2) test and the Kolmogorov–Smirnov
(K-S) test. The probability of a random sequence passing a
test is equal to 1 − α, the complement of the significance
level. For a large number of random sequences, the pro-
portion of sequences that pass a test will vary but will be
approximately (1− α).

In these experiments, the randomness of a cryptographic
method was determined based on the proportion of test
samples passing each test, as expressed in (3):

pα = (1− α)− 2, 6

√
α (1− α)

s
, (3)

where the significance level α is 0.01 and the sample size s is
3,900 sequences of hash values. Utilizing the χ2 goodness-
of-fit test and the K-S test, we determined whether the p
values resulting from each test were uniformly distributed
on the interval (0, 1). For the χ2 goodness-of-fit test, the
p value interval (0, 1) was divided into ten subintervals to
determine whether the p value frequency in each subinterval
was approximately equal to the predicted frequency for a

84086 VOLUME 11, 2023

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

FIGURE 10. P value uniformity test of the NIST STS.

FIGURE 11. Kolmogorov–Smirnov (K-S) p value uniformity test of the
NIST STS.

uniform distribution, s/10. The K-S test [70] is utilized to
examine continuous distributions of ungrouped data based on
the following test statistic:

D = max
1≤i≤s

(
F (Yi)−

i− 1
s

,
i
s
− F (Yi)

)
, (4)

where F is the continuous theoretical cumulative distribution
being tested and s is the sample size. The distributional form
hypothesis is rejected if D exceeds the table-derived critical
value.

In this study, we generated 3,900 hash value sequences
of 1 million bits each for each hash function, equivalent
to 487.758 MB of data. We provide the results of pro-
portional tests conducted for multiple subtests, such as
the nonoverlapping template matching, serial, cumulative
sums, random excursion, and random excursion variant tests,
using minimum and maximum values. However, for the p
value uniformity test, we consider only the minimum value.
Figures 11, 10, and 9 present the results of the Fast NIST
STS evaluation. The overlapping template test showed ALIT-
Hash to be a failure, with a proportion value of 0.9851, below
the reference proportion value of 0.98522. In comparison,
TJUILIK-Hash passed all fifteen tests conducted. Therefore,
it follows that the output of TJUILIK-Hash cannot be
distinguished from that of random permutations or mappings.
In contrast, ALIT-Hash generates nonrandom output when the
number of occurrences of predefined target strings in a given
pattern does not match the expected number.

IX. CONCLUSION
The current study proposes two new lightweight hash
functions based on the SATURNIN block cipher algorithm
and the Beetle mode of operation. In addition, we propose
a modification of the super S-box of the SATURNIN block
cipher as the basis of the second proposed hash function.
Security analysis results show that the two hash functions
both have a reasonably good level of security with respect
to differential and linear cryptanalysis. Additionally, the
differential security level of TJUILIK-Hash is better than
that of ALIT-Hash due to the S-box changes. The hardware
utilization on a microcontroller board that is both cost-
effective and low in power, and implementation on the
ATmega2560 resulted in an average processing time of
0.746 microseconds for the TJUILIK-Hash algorithm. Fur-
thermore, the results of performance tests on a personal
computer demonstrate that the ALIT-Hash and TJUILIK-Hash
implementations are comparable in speed and throughput to
the implementations of seven other existing hash functions.
Simulations conducted using Contiki-NG and the Cooja
simulator indicate that the two proposed hash functions
exhibit favorable performance relative to PHOTON-Beetle-
Hash, PHOTON, and SPONGENT, as measured in terms of
five metrics. ALIT-Hash exhibits superior performance in
throughput (3,536.51 bits/s) and energy efficiency com-
pared to TJUILIK-Hash, whereas TJUILIK-Hash demonstrates
superior power and ROM consumption. The results of
cryptographic randomness tests show that the two proposed
hash functions pass seven tests with a p value of at least
0.01. These results indicate that both hash functions have the
cryptographic properties expected of a good hash function.
When applied as a PRNG, TJUILIK-Hash passed all tests in
the NIST STS, whereas ALIT-Hash failed one of the tests,
namely, the overlapping template test. This finding indicates
that our modification increases the randomness of TJUILIK-
Hash. Therefore, the two proposed hash functions should
be considered for implementation because they are low-
cost algorithms that provide a high level of security, which
is crucial for IoT devices with limited resources. In the
future, it will be necessary to conduct additional research on
hardware compatibility based on other metrics.

REFERENCES
[1] Statista. IoT Connected Devices Worldwide 2019–2030. Accessed:

Dec. 23, 2022. [Online]. Available: https://www.statista.com/statistics/
1183457/iot-connected-devices-worldwide/

[2] GSMA | Safety, Privacy and Security Across the Mobile Ecosystem |
Public Policy. Accessed: Dec. 19, 2022. [Online]. Available: https://
www.gsma.com/publicpolicy/resources/safety-privacy-and-security-
across-the-mobile-ecosystem

[3] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
‘‘A survey on IoT security: Application areas, security threats, and solution
architectures,’’ IEEE Access, vol. 7, pp. 82721–82743, 2019.

[4] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and
H. Karimipour, ‘‘A survey on Internet of Things security: Require-
ments, challenges, and solutions,’’ Internet Things, vol. 14, Jun. 2021,
Art. no. 100129.

[5] L. Zhou, C. Su, and K.-H. Yeh, ‘‘A lightweight cryptographic protocol with
certificateless signature for the Internet of Things,’’ACMTrans. Embedded
Comput. Syst., vol. 18, no. 3, pp. 1–10, May 2019.

VOLUME 11, 2023 84087

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

[6] S. Banerjee, V. Odelu, A. K. Das, S. Chattopadhyay, J. J. P. C. Rodrigues,
andY. Park, ‘‘Physically secure lightweight anonymous user authentication
protocol for Internet of Things using physically unclonable functions,’’
IEEE Access, vol. 7, pp. 85627–85644, 2019.

[7] S. Shin and T. Kwon, ‘‘A privacy-preserving authentication, authorization,
and key agreement scheme for wireless sensor networks in 5G-integrated
Internet of Things,’’ IEEE Access, vol. 8, pp. 67555–67571, 2020.

[8] R. Kalaria, A. S. M. Kayes, W. Rahayu, and E. Pardede, ‘‘A secure
mutual authentication approach to fog computing environment,’’ Comput.
Secur., vol. 111, Dec. 2021, Art. no. 102483. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0167404821003072

[9] K.-L. Tsai, F.-Y. Leu, L.-L. Hung, and C.-Y. Ko, ‘‘Secure session
key generation method for LoRaWAN servers,’’ IEEE Access, vol. 8,
pp. 54631–54640, 2020.

[10] N. Hayati, S. Windarta, M. Suryanegara, B. Pranggono, and K. Ramli,
‘‘A novel session key update scheme for LoRaWAN,’’ IEEE Access,
vol. 10, pp. 89696–89713, 2022.

[11] N. Hayati, K. Ramli, S. Windarta, and M. Suryanegara, ‘‘A novel secure
root key updating scheme for LoRaWANs based on CTR_AES DRBG
128,’’ IEEE Access, vol. 10, pp. 18807–18819, 2022.

[12] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[13] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, ‘‘Cryptographic primitives
in blockchains,’’ J. Netw. Comput. Appl., vol. 127, pp. 43–58, Feb. 2019.

[14] F. H. Pohrmen and G. Saha, ‘‘LightBC: A lightweight hash-based
blockchain for the secured Internet of Things,’’ in Proc. Int. Conf.
Innov. Comput. Commun., D. Gupta, A. Khanna, S. Bhattacharyya,
A. E. Hassanien, S. Anand, and A. Jaiswal, Eds. Singapore: Springer,
2021, pp. 811–819.

[15] D. R. Stinson, ‘‘Some observations on the theory of cryptographic
hash functions,’’ Des., Codes Cryptogr., vol. 38, no. 2, pp. 259–277,
Feb. 2006. [Online]. Available: http://www.springerlink.com/index/
F621241047Q60866.pdf

[16] A. Biryukov and L. Perrin, ‘‘State of the art in lightweight symmetric
cryptography,’’ Cryptol. ePrint Arch., vol. 2017, pp. 1–55, Jan. 2017.
[Online]. Available: https://eprint.iacr.org/2017/511.pdf

[17] S. Windarta, S. Suryadi, K. Ramli, B. Pranggono, and T. S. Gunawan,
‘‘Lightweight cryptographic hash functions: Design trends, comparative
study, and future directions,’’ IEEE Access, vol. 10, pp. 82272–82294,
2022. [Online]. Available: https://ieeexplore.ieee.org/document/9846993/

[18] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, ‘‘NISTIR 8114
report on lightweight cryptography,’’ Nat. Inst. Standards Technol. (NIST),
Gaithersburg, MD, USA, Tech. Rep. 8114, 2017.

[19] Announcing Request for Nominations for Lightweight Cryptographic
Algorithms, National Institute of Standards and Technology, Gaithersburg,
MD, USA, 2018, pp. 43656–43657.

[20] C. Dobraunig, F. Mendel, M. Eichlseder, and M. Schläffer.
(2021). Ascon v1.2 Submission to NIST. [Online]. Available: https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

[21] T. Beyne, Y. L. Chen, C. Dobraunig, and B. Mennink. (2021). Elephant v2.
[Online]. Available: https://www.esat.kuleuven.be/cosic/elephant/

[22] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink,
R. Primas, and T. Unterluggauer. (2021). ISAP v 2.0. [Online]. Available:
https://isap.iaik.tugraz.at/

[23] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and
K. Yasuda. (2021). PHOTON-Beetle Authenticated Encryption and Hash
Family. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/updated-spec-doc/
photon-beetle-spec-final.pdf

[24] C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, A. Moradi,
L. Perrin, A. R. Shahmirzadi, A. Udovenko, V. Velichkov, and Q. Wang.
(2021). Schwaemm and ESCH: Lightweight Authenticated Encryption
and Hashing using the Sparkle Permutation Family. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf

[25] J. Daemen, P. M. C. Massolino, A. Mehrdad, and Y. Rotella, ‘‘The
subterranean 2.0 cipher suite,’’ IACR Trans. Symmetric Cryptol., vol. 2020,
pp. 262–294, Jun. 2020.

[26] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin,
Y. Sasaki, S. M. Sim, and Y. Todo. (2021). GIFT-COFB v1.1. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-
spec-final.pdf

[27] H. Wu and T. Huang. (2021). TinyJAMBU: A Family of Lightweight
Authenticated Encryption Algorithms (Version 2). [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

[28] C. Guo, T. Iwata, M. Khairallah, K. Minematsu, and T. Peyrin. (2021).
Romulus v1.3. [Online]. Available: https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/updated-
spec-doc/romulus-spec-final.pdf

[29] M. Hell, T. Johansson, A. Maximov, W. Meier, and H. Yoshida. (2021).
Grain-128AEADv2—A Lightweight AEAD Stream Cipher. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-
spec-final.pdf

[30] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. (2011).
The Keccak Reference. Accessed: Jun. 15, 2020. [Online]. Available:
https://keccak.team/files/Keccak-reference-3.0.pdf

[31] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, ‘‘Duplexing the
sponge: Single-pass authenticated encryption and other applications,’’ in
Selected Areas in Cryptography, A. Miri and S. Vaudenay, Eds. Berlin,
Germany: Springer, 2012, pp. 320–337.

[32] G. Bertoni, J. Daemen, M. Peeters, G. van Assche, and V. R. Keer,
‘‘Permutation-based encryption, authentication and authenticated encryp-
tion,’’ in Directions Authenticated Ciphers (DIAC). Stockholm, Sweden:
ECRYPT, 2012.

[33] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘Sponge-
based pseudo-random number generators,’’ in Proc. 12th Int. Workshop
Cryptograph. Hardw. Embedded Syst., vol. 6225, 2010, pp. 1–15.

[34] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, ‘‘The contiking open source operating system for next
generation IoT devices,’’ SoftwareX, vol. 18, p. 6, Jun. 2022. [Online].
Available: https://github.com/contiki-ng/contiki-ng/wiki/Home

[35] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, and
Y. Seurin, ‘‘Hash functions and RFID tags: Mind the gap,’’ in Crypto-
graphic Hardware and Embedded Systems—CHES 2008, E. Oswald and
P. Rohatgi, Eds. Berlin, Germany: Springer, 2008, pp. 283–299.

[36] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and
I. Verbauwhede, ‘‘SPONGENT: A lightweight hash function,’’ in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst., in Lecture Notes
in Computer Science, vol. 6917. Cham, Switzerland: Springer, 2011,
pp. 312–325, doi: 10.1007/978-3-642-23951-9_21.

[37] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and
I. Verbauwhede, ‘‘SPONGENT: The design space of lightweight crypto-
graphic hashing,’’ IEEE Trans. Comput., vol. 62, no. 10, pp. 2041–2053,
Oct. 2013.

[38] J. Guo, T. Peyrin, andA. Poschmann, ‘‘ThePHOTON family of lightweight
hash functions,’’ in Advances in Cryptology—CRYPTO 2011 (Lecture
Notes in Computer Science), vol. 6841. Cham, Switzerland: Springer,
2011.

[39] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and
H. Yoshida, ‘‘A lightweight 256-bit hash function for hardware and
low-end devices: Lesamnta-LW BT,’’ in Information Security and
Cryptology—ICISC 2010, K.-H. Rhee and D. Nyang, Eds. Berlin,
Germany: Springer, 2011, pp. 151–168.

[40] Information Technology—Security Techniques—Lightweight
Cryptography—Part 5:Hash-Functions, Standard ISO/IEC 29192-5:2016,
2016. [Online]. Available: https://www.iso.org/standard/56425.html

[41] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. V. Assche, and R. V. Keer.
(2021). Xoodyak, A Lightweight Cryptographic Scheme. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/xoodyak-
spec-final.pdf

[42] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, ‘‘Beetle
family of lightweight and secure authenticated encryption ciphers,’’
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2018,
pp. 218–241, May 2018. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/881

84088 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-642-23951-9_21

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

[43] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, ‘‘The
design of Xoodoo and Xoofff,’’ IACR Trans. Symmetric Cryptol.,
vol. 2018, no. 4, pp. 1–38, Dec. 2018. [Online]. Available: https://tosc.iacr.
org/index.php/ToSC/article/view/7359

[44] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer,
‘‘Xoodoo cookbook,’’ Cryptol. ePrint Arch., vol. 2018, pp. 1–32, Mar.
2018. [Online]. Available: https://eprint.iacr.org/2018/767.pdf

[45] FIPS Pub 202 SHA-3 Standard: Permutation-Based Hash and Extendable
Output Functions, NIST, Gaithersburg, MD, USA, 2015.

[46] C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, and Q. Wang, ‘‘Lightweight AEAD and
hashing using the sparkle permutation family,’’ IACR Trans. Symmet-
ric Cryptol., vol. 2020, pp. 208–261, Jun. 2020. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/8627

[47] D. J. Bernstein. (2019). Caesar: Competition for Authenticated
Encryption: Security, Applicability, and Robustness. [Online]. Available:
https://competitions.cr.yp.to/caesar.html

[48] A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin,
T. Pornin, and A. Schrottenloher, ‘‘SATURNIN: A suite of lightweight
symmetric algorithms for post-quantum security,’’ IACR Trans. Symmet-
ric Cryptol., vol. 2020, pp. 160–207, Jun. 2020. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/8621

[49] M. J. Dworkin. (2015). Sha-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. [Online]. Available: http://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[50] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, ‘‘Beetle family
of lightweight and secure authenticated encryption ciphers,’’ Cryptol.
ePrint Arch., vol. 2018, pp. 1–25, Jan. 2018. [Online]. Available:
https://eprint.iacr.org/2018/805

[51] Z. Bao, J. Guo, S. Li, and P. Pham, ‘‘Quantum multi-collision distin-
guishers,’’ Cryptol. ePrint Arch., vol. 2021, pp. 1–42, Jun. 2021. [Online].
Available: https://eprint.iacr.org/2021/703

[52] X. Dong, Z. Zhang, S. Sun, C. Wei, X. Wang, and L. Hu, ‘‘Automatic
classical and quantum rebound attacks on AES-like hashing by exploiting
related-key differentials,’’ in Advances in Cryptology—ASIACRYPT 2021,
M. Tibouchi and H. Wang, Eds. Cham, Switzerland: Springer, 2021,
pp. 241–271.

[53] X. Dong, Z. Zhang, S. Sun, C. Wei, X. Wang, and L. Hu, ‘‘Automatic
classical and quantum rebound attacks on AES-like hashing by exploiting
related-key differentials,’’ Cryptol. ePrint Arch., vol. 2021, pp. 1–45,
Sep. 2021. [Online]. Available: https://eprint.iacr.org/2021/1119

[54] X. Dong, J. Guo, S. Li, and P. Pham, ‘‘Triangulating rebound attack on
AES-like hashing,’’ Cryptol. ePrint Arch., vol. 2022, pp. 1–54, Jun. 2022.
[Online]. Available: https://eprint.iacr.org/2022/731

[55] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. (2007).
Sponge Functions. [Online]. Available: https://keccak.team/files/Sponge
Functions.pdf

[56] G. Leander and A. Poschmann, ‘‘On the classification of 4 bit S-boxes,’’ in
Proc. Int. Workshop Arithmetic Finite Fields, in Lecture Notes in Computer
Science, vol. 4547. Berlin, Germany: Springer, 2007, pp. 159–176.

[57] M. J. O. Saarinen, ‘‘Cryptographic analysis of all 4 × 4—Bit S-boxes,’’
Cryptol. ePrint Arch., vol. 2011, pp. 1–10, Jul. 2011. [Online]. Available:
https://eprint.iacr.org/2011/218

[58] M. J. O. Saarinen, ‘‘Cryptographic analysis of all 4 × 4-bit
S-boxes,’’ in Selected Areas in Cryptography (Lecture Notes in Computer
Science: Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7118. Berlin, Germany: Springer, 2012, pp. 118–133,
doi: 10.1007/978-3-642-28496-0_7.

[59] W. Zhang, Z. Bao, V. Rijmen, and M. Liu, ‘‘A new classification of 4-
bit optimal S-boxes and its application to PRESENT, RECTANGLE and
SPONGENT,’’ in Fast Software Encryption (Lecture Notes in Computer
Science: Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9054. Berlin, Germany: Springer, 2015, pp. 494–515,
doi: 10.1007/978-3-662-48116-5_24.

[60] L. Cheng, W. Zhang, and Z. Xiang, ‘‘A new cryptographic analysis of 4-
bit S-boxes,’’ in Information Security and Cryptology (Lecture Notes in
Computer Science: Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9589. Cham, Switzerland: Springer, 2016,
pp. 144–164, doi: 10.1007/978-3-319-38898-4_9.

[61] E. Biham, R. Anderson, and L. Knudsen, ‘‘Serpent: A new block cipher
proposal,’’ in Fast Software Encryption, S. Vaudenay, Ed. Heidelberg,
Germany: Springer, 1998, pp. 222–238.

[62] M. Sýs, Z. Říha, and V. Matyáš, ‘‘Algorithm 970: Optimizing the NIST
statistical test suite and the Berlekamp–Massey algorithm,’’ ACM Trans.
Math. Softw., vol. 43, no. 3, pp. 1–12, Dec. 2016, doi: 10.1145/2988228.

[63] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, N. Heckert, J. Dray, S. Vo, and
L. Bassham. (2010). A Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications. [Online].
Available: https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

[64] R.Weatherley. (2021). Lightweight Cryptography Primitives: Performance
on AVR. Accessed: May 15, 2023. [Online]. Available: https://rweather.
github.io/lightweight-crypto/performance_avr.html

[65] L. Alliance. RP2-1.0.3 LoRaWAN Regional Parameters. Accessed:
Jan. 7, 2023. [Online]. Available: https://resources.lora-alliance.org/
technical-specifications/rp2-1-0-3-lorawan-regional-parameters

[66] Zolertia. (Apr. 2013). The Z1 Mote · Zolertia/Resources Wiki ·
Github. Accessed: May 21, 2023. [Online]. Available: https://github.com/
Zolertia/Resources/wiki/The-Z1-mote

[67] A. Doganaksoy, B. Ege, O. Koçak, and F. Sulak, ‘‘Cryptographic 1102
randomness testing of block ciphers and hash functions,’’ Cryptol.
ePrint Arch., vol. 2010, pp. 1–12, Nov. 2010. [Online]. Available:
https://eprint.iacr.org/2010/564

[68] E. Filiol, ‘‘A new statistical testing for symmetric ciphers and hash
functions,’’ in Information and Communications Security, R. Deng, F. Bao,
J. Zhou, and S. Qing, Eds. Berlin, Germany: Springer, 2002, pp. 342–353.

[69] F. Sulak, ‘‘A new statistical randomness test: Saturation point test,’’ Int.
J. Inf. Secur. Sci., vol. 2, pp. 81–85, Sep. 2013. [Online]. Available:
https://ijiss.org/ijiss/index.php/ijiss/article/view/52

[70] National Institute of Standards and Technology (NIST). (2003).
NIST/SEMATECH Engineering Statistics Handbook. Accessed:
Feb. 15, 2023. [Online]. Available: http://www.itl.nist.gov/div898/
handbook/

SUSILA WINDARTA (Member, IEEE) received
the degree in cryptography from the National
Crypto Academy, Bogor, Indonesia, the bachelor’s
degree in information systems from Gunadarma
University, Indonesia, and the master’s degree in
mathematics from the Department of Mathemat-
ics, Faculty of Mathematics and Natural Sciences,
Universitas Indonesia, Depok, Indonesia, where
he is currently pursuing the Ph.D. degree in the
Department of Electrical Engineering, Faculty of

Engineering. Since 2013, he has been a Lecturer with the Department
of Cyber-Security Engineering, National Cyber and Crypto Polytechnic,
Indonesia. His current research interests include cryptography and informa-
tion security-related topics, mainly cryptographic hash functions and security
protocols.

SURYADI SURYADI received the B.Sc. degree
in mathematics from the Faculty of Mathemat-
ics and Natural Sciences, Universitas Indonesia,
Indonesia, in 1990, theM.Sc. degree in informatics
engineering from the Bandung Institute of Tech-
nology, Indonesia, in 1998, and the D.Phil. degree
from the Department of Electrical and Computer
Engineering, Universitas Indonesia, in 2013. He is
currently an Associate Professor (a Lecturer)
with the Department of Mathematics and the

Department of Electrical Engineering, Universitas Indonesia. He is the
author or coauthor of more than 40 papers published in prominent
international journals and conference proceedings, has written two books,
and has contributed a chapter to a book. His current research interests include
information security, cryptography, and computational mathematics. He is a
member of IndoMS.

VOLUME 11, 2023 84089

http://dx.doi.org/10.1007/978-3-642-28496-0_7
http://dx.doi.org/10.1007/978-3-662-48116-5_24
http://dx.doi.org/10.1007/978-3-319-38898-4_9
http://dx.doi.org/10.1145/2988228

S. Windarta et al.: Two New LWCHFs Based on Saturnin and Beetle for the IoT

KALAMULLAH RAMLI (Member, IEEE)
received the master’s degree in telecommunication
engineering from the University of Wollongong,
Wollongong, NSW, Australia, in 1997, and the
Ph.D. degree in computer networks from Uni-
versitaet Duisburg-Essen (UDE), NRW, Germany,
in 2003. He has been a Lecturer with Universitas
Indonesia (UI), since 1994, and a Professor of
computer engineering, since 2009. He teaches
advanced communication networks, embedded

systems, object-oriented programming, and engineering and entrepreneur-
ship. He is the prolific author, with more than 125 journals/conference papers
and eight books/book chapters published. His current research interests
include embedded systems, information and data security, computers and
communication, and biomedical engineering.

ANDRIANI ADI LESTARI (Member, IEEE)
received the degree in cryptography from the
National Crypto Academy, Bogor, Indonesia, and
the bachelor’s degree in statistics from Universitas
Terbuka. She is currently pursuing the master’s
degree in statistics with the Department of Statis-
tics, Faculty ofMathematics and Natural Sciences,
IPB University, Jakarta, Indonesia. Since 2019,
she has been a Lecturer with the Department of
Cryptography, Politeknik Siber dan Sandi Negara.

Her current research interests include cryptography and information security,
primarily block ciphers, cryptographic hash functions, and protocols.

WILDAN WILDAN received the bachelor’s degree
in cryptographic techniques from the National
Crypto Institute, Bogor, Indonesia, and the mas-
ter’s degree in mathematics from the Department
ofMathematics, Faculty ofMathematics andNatu-
ral Sciences, Universitas Indonesia, Depok. He has
been a Researcher with the Cryptographic and
Technology Cybersecurity Research and Devel-
opment Center, Indonesian National Cyber and
Crypto Agency, since 2017. His current research

interests include cryptographic techniques, with a specific focus on block
cipher cryptanalysis.

BERNARDI PRANGGONO (Senior Member,
IEEE) received the B.Eng. degree in electronics
and telecommunication engineering from Waseda
University, Japan, the master’s degree in dig-
ital communications from Monash University,
Australia, and the Ph.D. degree in electronics
and electrical engineering from the University
of Leeds, U.K. He is currently an Associate
Professor of cyber security and computer networks
with the School of Computing and Information

Science, Anglia Ruskin University, Cambridge, U.K. He has previously held
academic and research positions with Sheffield Hallam University, Glasgow
Caledonian University, Queen’s University Belfast, and the University of
Leeds. He has held industrial positions at Oracle, PricewaterhouseCoopers,
Accenture, and Telstra. His current research interests include cybersecurity,
the Internet of Things, cloud computing, and green ICT. He is a fellow of the
Higher Education Academy (HEA). He is an Associate Editor of Frontiers
of Computer Science and Frontiers in Communications and Networks.

RINI WISNU WARDHANI (Graduate Student
Member, IEEE) received the M.Eng. degree in
electrical engineering from the University of
Indonesia, in 2011. She is currently pursuing
the Ph.D. degree with the School of Com-
puter Science and Engineering, Pusan National
University, South Korea. She was with the
National Cyber and Crypto Agency of Indonesia,
from 2003 to 2021. Her current research interests
include hardware security, information security,
cryptography, and quantum computing.

84090 VOLUME 11, 2023

