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ABSTRACT Satellite data allows us to solve a wide range of challenging tasks remotely, including
monitoring changing environmental conditions, assessing resources, and evaluating hazards. Computer
vision algorithms such as convolutional neural networks have proven to be powerful tools for handling huge
visual datasets. Although the number of satellite imagery is constantly growing and artificial intelligence
is advancing, the present sticking point in remote sensing studies is the quality and amount of annotated
datasets. Typically, manual labels have particular uncertainties and mismatches. Also, a lot of annotated
datasets available in low resolution. Available visual representation of the observed objects can be more
detailed than annotation. This causes the need for markup adjustment, which can be referred to as a pseudo-
labeling task. The main contribution of this research is that we propose a pipeline for pseudo-labeling to
address the problem of inaccurate and low-resolution markup improvement for solving land-cover and land-
use segmentation task based on the data from the Sentinel-2 satellite. Our methodology takes advantages
both of classical machine learning (ML) and deep learning (DL) algorithms. We examine random sampling,
uniform sampling, and K-Means sampling and compare it with the full dataset usage. U-Net, DeepLab,
and FPN models are trained on the adjusted dataset. The achieved findings show that a simple yet effective
approach of data preliminary sampling and further markup refinement leads to significantly higher results
than just using raw inaccurate data in a deep neural network pipeline. Moreover, the considered sampling
technique allows to use less data for ML model training. The experiments involve markup adjustment and
up-scaling from 30m to 10m. We verify the proposed approach in precise test area with manual annotation
and show the improvement in F1-score from 0.792 to 0.816.

INDEX TERMS Artificial intelligence, artificial neural networks, computer vision, data analysis,
pseudo-labeling, remote sensing, sampling.

I. INTRODUCTION
Data acquisition using various satellite constellations
becomes more available for a number of environmental stud-
ies. Computer vision algorithms enable fast and precise data
analysis of ecosystems, forest areas, nature events, and human
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impact [1]. Advanced algorithms reduce computational time
and show remarkable results.

However, the current main limitation for neural
network-based approaches developing is heavily related to
high-quality annotation [2]. Manual markup creation is a
time-consuming process. Moreover, for particular environ-
mental tasks, field-basedmeasurements are required [3]. Typ-
ically, annotation for remote sensing semantic segmentation
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tasks is rather complex and contains mistakes and inaccu-
racy [4], [5]. Moreover, there can be gaps in a dataset with
proper labels. To resolve this issue, one can consider a task
of pseudo-labeling or weakly supervised learning. Pseudo-
labeling is a popular technique used in the field of machine
learning to improve and enlarge training datasets. The idea
behind pseudo-labeling is to use the predictions made by
an already trained model on unlabeled data to generate
labels for that data [6]. These pseudo-labels can then be
used to train a new model, which can in turn be used to
make more precise predictions on the previously unlabeled
data. Another powerful technique to deal with labeled data
limitations is weakly supervised learning [7]. In contrast to
traditional supervised learning, where models are trained on
large amounts of precisely labeled data, weakly supervised
learning uses incomplete or inexact labels to train models [8].
The same challenges of annotated data quality and avail-

ability arise in land use and land cover semantic segmentation
tasks [9]. This is a crucial task for environmental monitoring,
as changes in land cover can signify a range of local and
global processes [10], [11]. By gaining an understanding of
the natural and anthropogenic effects on land cover, society
can promptly take measures to mitigate their impact on the
environment. Therefore, we prioritize this task and aim to
address the challenges of data annotation and availability to
improve the accuracy of our analysis. Specifically, the moti-
vation of the study is the following. Deep neural networks
have proven to be a powerful technique for image process-
ing. However, they require well-annotated large datasets.
There are existing datasets with middle or low spatial res-
olution and inaccuracies in labels. We set a hypothesis that
such datasets can be automatically adjusted and used for
higher spatial resolution precise land cover and land use
mapping.

In this study, we investigate and propose a pseudo-labeling
pipeline to enhance the quality of semantic segmentation
using weak annotations and deep neural networks. Our exper-
iments utilize satellite data captured by the Sentinel-2 satel-
lite, where the spatial resolution is set to 10m per pixel. The
initial annotations have a lower spatial resolution of 30m per
pixel. Researchers commonly rely on either upscaling the
annotations or downsampling the satellite images to match
the resolution to each other. However, these methods often
lead to a significant reduction in the accuracy of recognition.
Instead, our approach focuses on selecting more relevant
training samples and annotation refinement to improve the
neural network model’s accuracy. Furthermore, we incorpo-
rate both machine learning (ML) and deep learning (DL)
techniques in our pipeline, leveraging the robustness of Ran-
dom Forest in handling noisy labels [12] and the ability of
DL to extract essential spatial features [13]. The primary
objectives of this study is:

• To investigate sampling approaches to reduce dataset
size preserving recognition quality of ML models. The
selected samples should accurately represent the study
area;

• To propose and verify an approach for markup enhance-
ment for satellite data using pseudo-labeling technique.
For this task, we take an advantage of ML algorithm
robustness to noise in labels;

• To develop a pipeline for land cover type classification
using weak markup with noisy or outdated labels uti-
lizing a CNN model. The pipeline will incorporate the
previous two issues: sampling and pseudo-labeling.

• To show the benefits and possible applications of the
proposed approach in the specific domain such as land
use and land cover tasks.

The rest of the paper is organized as follows. In Section II,
we discuss the state-of-the-art in the remote sensing and
land cover classification. In Section III-A, we describe the
datasets used in the experiments. The proposed approach for
markup enhancement is presented in Sections III-C and III-B.
Numerical results, method limitations and future avenues are
presented and discussed in Section IV.

II. RELATED WORK
A. PSEUDO-LABELING AND WEAK-MARKUP
Pseudo-labeling techniques in the remote sensing domain
strive to enlarge or enhance datasets. It assumes assigning
labels to new samples beyond the train and test datasets.
Pseudo-labeling can be also used to deal with weak markup,
specifically to correct some labels in the initial markup.
Manual markup in remote sensing tasks can be not pre-
cise enough or cover limited regions. Therefore, such tech-
niques have high importance due to vast study areas and
varying environmental conditions that make the annotation
process more complex. There are different approaches for
the pseudo-labeling task. In [14], pseudo-labeling assumes
a clustering algorithm utilizing and is used for dimension-
ality reduction. Patch-based pseudo-labeling procedure for
hyperspectral satellite images is proposed in [15]. In [16], the
authors leverage strong spectral correlation between labeled
and unlabeled samples in the hyperspectral images to extend
artificially training dataset. The key idea behind the proposed
approach is to select pixels with low information entropy
based on sparse representation. The discussed method allows
to increase classification models results. An adaptive method
for satellite image classification is presented in [17]. This
approach relies on utilizing unlabeled samples with high con-
fidence from a classifier to expand an initial training dataset,
with the selection process repeated several times. This leads
to an increase in the accuracy of the final model. CNN-based
approach to handle unlabeled data in a remote sensing task
was also described in [18].

One can consider a pseudo-labeling approach to deal with
weak markup or noise in labels. The task of dealing with
outdated maps in a remote sensing task has been previously
discussed in [12]. It is highlighted that a Random forest
classifier is able to cope with a particular amount of noise
in labels. The authors proposed an iterative scheme involving
adapted Random forest classifiers to process both changed
and unchanged spatial regions. In [19], the authors investigate
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FIGURE 1. Sentinel-2 image (a) , NLCD dataset with 30m per pixel (b), distribution of classes in image (c).

FIGURE 2. Sentinel-2 image (a) , NLCD dataset with 30m per pixel (b),
Manually Annotated 10m per pixel (c), distribution of classes in image (d).

the same problem of noisy labels. They constructed a
spectral-spatial probability transform matrix (SSPTM) to
assess the spectral similarity and spatial information. Some
samples were randomly assigned as ‘‘clean’’ and propagated
through the SSPTM. They repeated this process and finally
defined likeliest labels for each sample. Another weak anno-
tation challenge is described in [20]. To adjust forest species
dataset, the authors utilized a custom loss function to take
into account‘‘clarity’’ of training samples. Then, an updated
dataset was used to train a final neural network model.

B. SAMPLING APPROACHES
Sampling techniques in ML aim at selecting more rele-
vant training data points. It allows one to facilitate fast
and accurate ML algorithms training. In the remote sensing
domain, this approach is widely used to determine more

TABLE 1. Description of sentinel-2 channels.

representative locations within large study areas [21]. In [22],
the authors conduct a comprehensive analysis of different
sample selection methods for a remote sensing task. They
chose and considered four methods including simple random,
proportional stratified random, disproportional stratified ran-
dom, and deliberative sampling. It was found that stratified-
statistical-based sampling methods are more valuable for
further ML algorithm training. These approaches allow to
reduce dataset size significantly. Moreover, it is important
in case of imbalance classes, that can affect ML model
performance [23].

C. LAND COVER AND LAND USE CLASSIFICATION
Land cover type recognition plays a crucial role in the field
of remote sensing. The specific tasks involved in this process
can vary based on factors such as the scale of the target
territory, the number of classes, and the spatial resolution.
Low-spatial resolution satellite data is often used to create
large-scale maps, such as those covering an entire country
or the entire globe. In [24], a global database is presented
for the mapping task based on MODIS data with spatial
resolution of 500m per pixel. Medium-resolution satellite
data support more detailed land cover analysis. A number
of studies describe usage of the Landsat constellation data
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FIGURE 3. Uniform sampling approach. Red points represent a smaller
class, the selected samples for each class have higher density than
representatives of a larger class (yellow points).

FIGURE 4. K-Means sampling approach. For each class, we identify cluster
centers that correspond to the required quantity for the training dataset.

with spatial resolution of 30m per pixel [25]. For instance,
Landsat-8 data was leveraged to create pan-European land
cover and land use maps [26]. Sentinel constellation is also
a widely-used source of medium-resolution data utilized for
environmental studies. Wide spectral range, free-available
access, and rapid revisit time make the data highly relevant
for change detection in land use and land cover. This data has
been used in a number of works aiming to classify land cover
types [27], [28], [29].

On the other hand, high spatial resolution satellite imagery
provides more detailed information on land cover character-
istics. In [30], the authors conduct land cover classification
using QuickBird satellite observations with the spatial res-
olution of 2.4m per pixel. The importance of precise land
cover maps for carbon balance estimation is demonstrated
on the Arctic tundra ecosystem. Another example of the high
resolutionmaps is based onGaofen satellite observations [31]
andWorldView images [32]. The main disadvantages of such
satellite data are its high cost, limited access, and typically a
narrow wavelength range compared with middle resolution
data.

The number of target classes is another important aspect of
land cover classification. Some studies focus on a few general

TABLE 2. Results F1-score after pseudo-labeling.

classes, while others consider highly specialized classes such
as forest species [33] or agriculture crop types [34].

Depending on the tasks’ characteristics, appropriate com-
puter vision algorithms are selected. Classical ML algorithms
have demonstrated robust results in complex environmental
tasks, particularly of land cover and land use classifica-
tion [26], [27], [29]. On the other hand, deep learning
algorithms are capable of extracting and processing spa-
tial information and applied in a number of studies. For
instance, deep neural networks are considered in [28],
[31], and [32]. In addition to semantic segmentation tasks,
neural network approaches are used for land cover scene
classification [35].
To achieve accurate results, both classical ML and DL

algorithms require large and reliable datasets. There are sev-
eral well-known datasets and web services available for land
cover and land use classification tasks, including the fol-
lowing ones. Dynamic World is a near-real time global land
cover dataset with 9 classes and the spatial resolution of 10m
per pixel [28]. DeepGlobe Land Cover Classification dataset
consists of RGB satellite images with very high spatial reso-
lution of 50cm for 7 classes [36]. The Radiant MLHub plat-
form provides datasets for various regions around the world
with the spatial resolution of 10m [37]. The National Land
Cover Database (NLCD) is a dataset collected in 2019 that
includes segmentation mask for USA representing 8 classes
and 20 sub-classes with the spatial resolution of 30m [38].
Satellite data providers also propose additional land cover
classification products based on such satellites as Sentinel-2
or MODIS.

III. DATA AND METHODS
A. SATELLITE DATA AND MARKUP
We use the National Land Cover Database (NLCD) 2019 [38]
for segmentation masks. The dataset provides a compre-
hensive and consistent classification of land cover for the
conterminous United States (CONUS). It includes 20 land
cover classes, ranging from developed land and agriculture
to wetlands and forests. Database was created using Land-
sat satellite imagery with a spatial resolution of 30m per
pixel. Within our study we choose area that is located in
USA with markup resolution of 30m per pixel and area
62423 km2. We upsampled markup from 30 to 10m per pixel
with nearest neighbor interpolation. Resulting mask size is
2512 × 2485 pixels with classes distribution (Figure 1).
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FIGURE 5. Study workflow. The initial approach uses original markup brought from 30m to 10m per pixel with nearest neighbor interpolation. The
proposed approach applies sampling and pseudo-labeling techniques to adjust markup.

In our research we use four classes:
• Open water - areas of open water, generally with less
than 25% cover of vegetation or soil.

• Developed - areas with a mixture of constructed
materials and vegetation.

• Forest - areas dominated by trees generally greater than
5m tall, and greater than 20% of total vegetation cover.

• Grassland - areas dominated by grasses or culti-
vated vegetation, generally greater than 80% of total
vegetation.

Instead of Landsat [39] data with the spatial resolution of
30m, we use Sentinel-2 data with higher spatial resolution.
Sentinel-2 [40] is amultispectral satellite system that captures
images in several bands of the electromagnetic spectrum. The
satellite has 13 bands that cover a range of wavelengths,
from visible light to near-infrared and shortwave infrared
light with different spatial resolutions that interpolated to 10m
per pixels (Table 1). These spectral bands can be combined
to create a variety of composite images, such as false-color
composites, which can enhance the contrast between different
features on the Earth’s surface. In our experiments we use
bands B01 - B08, B11, B12. The data is preprocessed with
L2-Preprocessing [41]. L2-reprocessing is a set of steps taken
to transform raw Sentinel-2 satellite data into a format that
can be used for further analysis. This includes radiometric
calibration, atmospheric correction, and geometric correction

to ensure accurate and consistent data for applications such
as land use mapping and environmental monitoring. In this
study, we use cloudless composite for the summer period
of 2019. For additional visual assessment, we also consid-
ered summer composites for 2020 and 2021. The images for
2020 and 2021 were not used for models development.

We also expand the feature space by adding Vegetation
Indices. NDVI (Normalized Difference Vegetation Index)
and NDWI (Normalized Difference Water Index) are widely
used vegetation indices that are derived from remote sensing
data [42]. These indices are used to assess the presence
and health of vegetation, and the presence of surface water,
respectively.

By calculating NDVI and NDWI from satellite imagery,
it is possible to obtain valuable information about the envi-
ronment, which can be used for various applications such
as land use mapping, environmental monitoring, and agricul-
tural management. NDVI is especially useful for monitoring
vegetation growth and health, which is important for crop
management and monitoring of natural ecosystems. On the
other hand, NDWI can help to detect and monitor changes
in water bodies, such as lakes and rivers, which is useful
for hydrological modeling, water resource management, and
disaster response.

To validate the quality of land cover classification
on more accurate annotated data, we choose sub-region
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512 × 512 pixels covering the area of 26 km2 and manually
annotate it with CVAT-tool [43] based on 10m per pixel
composite for 2019, as well as other sources of satellite data
with higher spatial resolution. Figure 2 depicts the obtained
markup and the distribution of the target classes.

B. SAMPLING APPROACHES
Data sampling is the process of selecting a subset of infor-
mation from a larger dataset for analysis and processing.
The primary task of data sampling is to choose the most
representative subset of data that will best reflect the structure
and characteristics of the larger dataset.

In the context of our research, data sampling is necessary to
ensure sample balance and to speed up themodel training pro-
cess by reducing the dataset size. We use a sample approach
to create smaller yet representative dataset to train an ML
algorithm. In contrast to a CNN-based approach, in a classical
ML approaches, each sample is a pixel with the defined set
of features including spectral satellite bands and vegetation
indices.

For data sampling, we convert the original image and its
corresponding mask into a CSV format. Each object in the
file contains information about the pixel position on the image
(x, y) and feature vectors B01 - B08, B11, B12, NDVI, NDWI
with the target variable. The file contains a total of 6.2 million
rows, which are normalized to a range of 0 to 1 for faster
convergence.

The size of each class in the sampling process is chosen
based on the size of the smallest class (Grassland), which
comprises 692 thousand objects. As a result of the sampling
process, we obtain a file with 2.7 million rows containing an
equal number of training data for each class.

The main different between sampling in the general
domain and in the remote sensing domain is a spatial dis-
tribution. For instance, forest in different regions varies by
tree species, vegetation state, climate conditions. Therefore,
to develop a robust algorithm, we should consider pixels from
different areas, but we might exclude the repetitive entries
of neighbor pixels from the same location. In this study,
we consider a several sampling strategies to take into account
spatial distribution of training samples.

1) RANDOM SAMPLING
Random sampling using the pandas sampling tool enables
obtaining samples for each of the four classes from the train-
ing dataset. Selection of 692 thousand objects from each class
provides a sufficiently large sample size to be used further for
pseudo-labeling. After conducting this procedure, the overall
sample size amounts to 2.7 million objects. Finally, we create
a balanced dataset that is randomly distributed within the
study area.

2) UNIFORM SAMPLING
The original image is divided into a grid, and within each
class, 692 thousand samples are selected. Pixels from each

class are uniformly distributed within study area. The density
of selected pixels for each class depends on the initial amount
of observation for that class. For instance, for the smallest
class, that is grassland, we take each pixel, while for a larger
class, we select samples evenly distributed. Example of this
sampling approach is shown in Figure 3.

3) SAMPLING USING CLUSTERING
The K-Means [44] algorithm is an ML algorithm used to
cluster data into a predetermined number of clusters, k.

To select exemplary values, we divide the objects of each
class into k clusters using this algorithm, where k in our case
is 692,000 (the smallest class in the initial dataset). Then we
select the centers of each cluster, thereby selecting the most
diverse representatives within each class (Figure 4).

These exemplary objects can then be used to train a model
representing the entire dataset.

In addition, k values of 30k, 80k, 200k, and 400k are also
tested.

C. PSEUDO-LABELING
Pseudo-labeling is an ML technique that is often used when
only small amounts of labeled data are available, and the
remaining data needs to be labeled. In our experiment,
we use pseudo-labeling to improve the detailing in the exist-
ing labeling when processing satellite images for land use
classification.

For the pseudo-labeling stage of the study workflow,
we use datasets obtained during the sampling stage. The
generated CSV files with samples corresponding to selected
pixels are used to train an ML model. As features for each
pixel, band values and vegetation indices from Sentinel-2
images are considered. It is known that the RF classifier is
robust to noise in labels; therefore, it is utilized to reduce
the effect of weak and low-resolution annotations. The ML
model produces a new land cover map based on the selected
pixels. It relies on the ability of the model to refine the
initial labels from the markup with a 30m per pixel resolu-
tion based on a large statistical sample with more detailed
satellite imagery. However, classical ML algorithms in such
a setup cannot take into account the spatial patterns in data,
and further improvements are required. Therefore, in the
next step, a CNN model is trained on the pseudo-labeling
maps produced by the ML model. The entire experimental
workflow is shown in Figure 5.
Additionally, the ML algorithm provides us with a prob-

ability map for each pixel. The probabilities of those pixels
that were misclassified are replaced with zero.

D. EXPERIMENTAL SETUP
For the pseudo-labeling task, the RF [45] algorithm from the
Scikit-Learn [46] library is chosen.

For land cover type segmentation, we use U-Net [47],
FPN [48], and DeepLab [49] networks with a Resnet50 [50]
backbone and input size of 128 × 128 pixels. These
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TABLE 3. DeepLab model performance.

TABLE 4. U-Net model performance.

TABLE 5. Feature pyramid network model performance.

FIGURE 6. F1-score for different dataset size.

architectures are a common choice in the remote sensing
domain and have shown high results in various environmental
tasks [51], [52].

The training is performed using the Adam optimizer [50]
with a learning rate of 10−3 and the DiceLoss [53] loss
function for 40 epochs.

In addition, we employ two types of augmentations,
HorizontalFlip and VerticalFlip with a probability of 0.5,
utilizing the Albumentations library [54].
The network implementation is performed on the Pytorch

framework [55].
All experiments are conducted on the Zhores supercom-

puter [56]. To perform subsampling using clustering, the
K-Means algorithm implemented in the CUML [57] package
is used.

E. EVALUATION METRICS
We use F1-Score and IoU (Intersection over Union) metrics
to evaluate the quality of models.

Precision and Recall are commonly used metrics to evalu-
ate the quality of MLmodels. Precision is defined as the ratio
of true positive results to the total number of positive results
predicted by the model, while Recall is defined as the ratio
of true positive results to the total number of actual positive
results. The formulas are the following:

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

where TP is the number of true positive results, FP is the
number of false positive results, andFN is the number of false
negative results.

The F1-score (F-measure) is the harmonic mean between
Precision and Recall, and is a measure of the overall effec-
tiveness of the model. It is defined as the weighted harmonic
mean between precision and recall:

F1 − score =
2Precision Recall
Precision+ Recall

(3)

where Precision is precision, and Recall is recall.
The F1-score has the property of taking into account both

metrics and is more robust to imbalanced classes than simple
precision or recall. A high F1-score indicates that the model
performs well and is capable of correct classifying.

The IoU metric, also known as Jaccard Index, is one of
the most common metrics for evaluating the quality of image
segmentation. It is calculated as the ratio of the area of
intersection between the ground truth and predicted masks to
the area of their union. Formally, it is expressed as:

IoU =
Area of Overlap
Area of Union

(4)
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FIGURE 7. Sentinel-2 image (a) , NLCD dataset with 30m per pixel (b), new markup after Pseudo-Labeling with K-Means 692k (c), Sentinel-2 image tile
with L2-Preprocessing (d), NLCD dataset with 30m per pixel (e), new markup after Pseudo-Labeling with K-Means 692k (f).

FIGURE 8. Probability map after pseudo-labeling.

where Area of Overlap is the intersection area between the
ground truth and predicted masks, and Area of Union is the
union area of the masks.

The IoU value ranges from 0 to 1, where 0 indicates
no overlap between the masks, and 1 indicates a perfect

match. The higher the IoU value, the better the quality of
segmentation.

IV. RESULTS AND DISCUSSION
A. NUMERICAL AND VISUAL RESULTS
To adjust the markup, we use different sampling techniques
and RF classifier. We use manually annotated data to eval-
uate the achieved results for different sampling strategies
(Table 2). We also show F1-score computed on the ini-
tial markup, called NCLD, adjusted from 30m per pixel to
10m per pixel. The first experiment involves usage of the
entire dataset without training pixels selecting. The obtained
F1-score equals to 0.79, while the total amount of training
samples is 6.2 millions. To reduce the time of training pro-
cess, we consider a sampling technique where random train-
ing points are selected and formed new training dataset [22].
Although the dataset size decreases to 2.7 million samples,
the F1-score is also decreased from 0.79 to 0.75 for manually
annotated dataset. The uniform sampling assumes select-
ing training pixels that are distributed evenly within each
class [58]. It is supposed to cover various territories and
reduce amount of training dataset selecting just a part of pix-
els for each area. The training dataset size is the same as for
the random sampling, 2.7 million samples. However, it allows
just slightly improve the classification results comparing with
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FIGURE 9. DeeepLab model performance. Sentinel-2 image (a) , Manually Annotated 10m per pixel (b), results after training on NLCD with 30m per pixel
(c), results after training on NLCD with 30m per piexl with probability map (d), results after training on mask after Pseudo-Labeling (e), results after
training on mask after Pseudo-Labeling with probability map (f).

the random sampling. F1-score equals to 0.76 for the uniform
sampling. Other experiments involve the clustering strategy
to create a reduced dataset. This approach assumes select-
ing more relevant training samples. Figure 6 shows results
for different numbers of clusters that represent number of
samples in each class. The ultimate dataset are balanced with
the same number of samples for each class. This experi-
ment depicts that we can significantly reduce the training
dataset size from 6.2 to 2.7 millions training samples and
preserve the classification quality equal to F1-score of 0.79.
We create the final updated markup using dataset ‘‘K-Means
692k data’’. The obtained map is presented in Figure 7. The
proposed approach allow accelerate time of ML algorithm
training. We also compute the probability map of the RF
(Figure 8). It shows confidence of the model that each pixel
has a particular class. This map can be used as an additional
feature.

Next, we evaluate the performance of DeepLab and U-Net
models on four types of data (Table 3 and 4). The first
variant is obtained by training the model using markup with
a spatial resolution of 30m per pixel adjusted to 10m per
pixel by an interpolation. We achieve F1-score for DeepLab
and U-Net equal to 0.758 and 0.792, respectively. The IoU
equals to 0.625 and 0.675 for these two models. The next

experiment involves usage of additional input channel that
accompanies multispectral data. This channel is a probability
map representing the confidence of ML model in assign-
ing particular class to each pixel (Figure 8). However, this
probability map obtained after the pseudo-labeling does not
lead to model performance increase. In the third variant,
we train our model on data obtained through pseudo-labeling
with K-Means sampling of 692k and we also test the addi-
tion of a probability map. The results are improved both
for DeepLab and U-Net models. For DeepLab, IoU raises
from 0.625 to 0.658, while for U-Net, it is increased from
0.675 to 0.702. Prediction results for DeepLab and U-Net are
shown in Figures 9 and 10. The final results for each class
are presented in Figure 11. The best segmentation quality
is achieved for open water (F1-score is 0.95). F1-score for
forested areas equals to 0.88. Settlements and grassland are
identified with F1-score of 0.71 and 0.64, respectively.

In addition to these two models, an experiment is con-
ducted with the FPN model. Although the overall per-
formance of this model in the context of the given task
falls behind the aforementioned models, our pseudo-labeling
method yields improvements in terms of IOU, increas-
ing from 0.646 to 0.667, and F-score, increasing from
0.773 to 0.789 (Table 5).
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FIGURE 10. U-Net model performance. Sentinel-2 image (a) , Manually Annotated 10m per pixel (b), results after training on NLCD with 30m per pixel
(c), results after training on NLCD with 30m per piexl with probability map (d), results after training on mask after Pseudo-Labeling (e), results after
training on mask after Pseudo-Labeling with probability map (f).

FIGURE 11. F1-score results for the U-Net model on the test cite with
manual annotation.

Furthermore, we examine the applicability of the best
model trained on the pseudo-labeled dataset on Sentinel-2
composites obtained for the same region in 2020 and 2021
(Figures 12). Visual assessment of predictions for the years
2020 and 2021 supports the possibility of further model usage
for land cover and land use change monitoring over time.
For instance, it can be applied to estimate the absolute and
percentage changes between particular land cover classes.
The model successfully recognizes areas where logging was
conducted in 2021 and areas with growing trees.

Land cover and land use markup often have noise and inac-
curacy in labels. Figure 13 depicts a case with an inaccuracy
in annotation in the initial dataset. The proposed approach
allows us to create more detailed markup with precise labels
for the target classes. For instance, areas with buildings are
distinguished better from the forested areas. Although, the
markup can be further improved, the conducted study shows
the importance of processing of weak annotation and pro-
poses a promising way how deep learning and classical ML
can be combined to tackle the issue.

B. COMPARISON WITH EXISTING APPROACHES
Dealing with noisy labels is a crucial task in the remote
sensing domain and different studies have been already con-
ducted on this topic. They differ by the integrated methods
and specificity of the solved problems. In [12], the authors
utilized an adaptive RF classifier to process an outdated
dataset. The approach has shown significant results for cases
with changes in land cover types through the time. In our
study, we combine both a classical ML approach to adjust the
dataset and a DL approach to train a final model. It allows
us to take advantage of RF robustness to noise and ability
of CNN to process spatial data. Pseudo-labeling approaches
for non annotated samples are also highly relevant for remote
sensing. In [17], to expand the training dataset, a maximum
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FIGURE 12. Sentinel-2 image for 2019 (a) , model prediction for 2019 (b), Sentinel-2 image for 2020 (c), model prediction for 2020 (d), Sentinel-2
image for 2021 (e), model prediction for 2021 (f).

FIGURE 13. Sentinel-2 image (a) , NLCD dataset with 30m per pixel (b), new markup after Pseudo-Labeling with K-Means 692k (c).

likelihood classifier is implemented. Total accuracy raises
from 0.76 to 0.89 compared with the conventional approach
based on maximum likelihood classifier.

Previous works have proposed large global datasets with
different properties. Although we do not provide new datasets

with precise land cover manual annotations, we propose an
effective approach, how one can enhance existing datasets.
It is vital, because even perfect annotation becomes less
useful when they are utilized with new satellite constellations
or observations for other periods. Model zoo with pre-trained
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encoders are also known as a powerful tool for accurate
environmental tasks and land cover classification. However,
for fine-tuning demands for training data are more strict.
Therefore, it is promising to combine such approaches with
datasets enhancement as described in our work.

C. LIMITATIONS OF THE PROPOSED APPROACH
There are two limitations of the proposed pipeline. Firstly, if a
class is too small, the proposed pipeline may struggle with
data imbalance and could potentially neglect rare classes.
However, investigating this issue is beyond the scope of the
current study. Secondly, computational cost is a limitation
when estimating clustering centers. However, this compu-
tation is conducted only once, reducing the dataset size,
and subsequent experiments for land cover classification
are conducted faster due to smaller samples. Therefore, this
limitation is not crucial for the study in general.

D. FUTURE PERSPECTIVES
Among the promising avenues for future work, we can distin-
guish the following directions. In this study, we focus mainly
on the markup enhancement, while this approach can be
further combined with different advanced techniques to boost
the ultimate results. For instance, multispectral [59] or object-
based [60] augmentation approaches can be applied to the
satellite images to extend the training dataset. Another area
for refinement is to add more classes of land cover and land
use. The proposed approach can be applied to various target
classes according to the practical task definition. It might
be highly relevant for some specific vegetation classes that
are rarely available in open access datasets with proper
spatial resolution [61]. For particular regions, this problem
is more tangible. Besides land cover and land use classes,
weak markup occurs also in other remote sensing tasks such
as infrastructure object recognition [62]. The discrepancy
between satellite images and object annotations introduces
noise into the data. Searching for relevant pixels and conduct-
ing automatic markup adjustment can benefit such types of
remote sensing tasks.

In this study, we consider markup enhancement to meet
the satellite data resolution of 10m per pixel. High-resolution
images are becoming more available and can be accompanied
by previously created low-resolution markup. It is reasonable
to study markup improvement for higher spatial resolutions,
particularly for other datasets.

The primary objective of this study is to propose an
effective approach for adjusting remote sensing markup.
The study involves conducting experiments with U-Net,
DeepLab, and FPN architectures to assess the improvements
in land cover markup. Currently, advanced models such
as transformers and diffusion-based models have demon-
strated high levels of accuracy and performance in both
the general domain and the remote sensing domain. There-
fore, exploring the potential application of such advanced

architectures to enhance segmentation quality could be
beneficial.

V. CONCLUSION
In this study, we address the issue of weak markup in land
cover classification tasks using satellite data and deep neural
networks. Due to vast territories and diverse environmental
conditions, obtaining high-quality precise data annotation
can be challenging. While globe-maps may be available,
more accurate labels are needed to produce detailed and
accurate results for deep neural network models. To over-
come this challenge, we propose an efficient pipeline that
uses weak annotations with lower spatial resolution to create
new markup. This approach combines pseudo-labeling and
sampling techniques and includes classical ML algorithms
with advanced deep neural network ones. We demonstrate
our approach using Sentinel-2 imagery with a spatial resolu-
tion of 10m and an initial markup with a spatial resolution
of 30m. Our approach includes two stages. The first stage
involves selecting more relevant samples to reduce the size
of the training dataset. The second stage focuses on training
markup updates. The resulting dataset with updated semantic
segmentation labels is then used to train a deep neural net-
work. To validate our approach, we manually annotated a test
image with a spatial resolution of 10m. Our results show a
significant improvement in the recognition task on the test set.
The F1-score increases to 0.816 compared to the F1-score of
0.792 when using the initial markup. This approach has the
potential to benefit future environmental studies and change
detection tasks of land cover and land use on a large scale.
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