
Received 3 July 2023, accepted 19 July 2023, date of publication 1 August 2023, date of current version 7 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3300844

A Near Real-Time Big Data Provenance
Generation Method Based on the Conjoint
Analysis of Heterogeneous Logs
YUANZHAO GAO 1, XINGYUAN CHEN 1,2, BINGLONG LI1, AND XUEHUI DU1
1Zhengzhou Science and Technology Institute, Zhengzhou 450000, China
2State Key Laboratory of Cryptology, Beijing 100878, China

Corresponding author: Xingyuan Chen (chxy302@vip.sina.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB0803603.

ABSTRACT Data provenance is an effective approach for data security supervision. In the distributed,
multi-user, and multi-layer big data system, only the provenance generation method, which leverages the
information logged at both application and operating system level, has the capacity to completely obtain
the provenance information required for data usage supervision. However, the current research on the
conjoint analysis of multiple logs is inadequate, and it is difficult for them to effectively integrate the
provenance information extracted from different logs, especially in the big data scenario. For the near
real-time provenance generation based on the analysis of multiple heterogeneous logs, this paper employs
a Hadoop-based big data system as the research object, and proposes a parallel log analysis method
based on auxiliary data structures and multi-threading. For the efficient conjoint analysis of multiple logs,
5 auxiliary data structures are constructed as the medium for the correlation and fusion of log information,
and a multi-threading method is presented to parallelize the lookup of provenance information. In order
to cope with the complex log record generation rules, log analysis methods for nondeterministic records,
non-instantaneous operations, and instantaneous batch operations are proposed to generate provenance
information correctly. In addition, a provenance generation framework is established to implement the
proposed log analysis method. The experimental results show that the log collection time overhead caused
by processing files above MB level is less than 0.1%. The proposed method can analyze logs in near real
time and generate provenance information correctly.

INDEX TERMS Big data provenance, provenance generation, multi-log conjoint analysis, hadoop.

I. INTRODUCTION
Big data is the innovative engine of economic and social
development. While it is developing vigorously, data security
issues are becoming increasingly serious. Big data security
incidents occur frequently in recent years. Data security
supervision and data governance face severe challenges
[1], [2].

Data provenance, which describes the origins of data
and the operation and processing procedure by which
it arrived at the current state, covers the information
of arbitrary operations supported by a data management
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and processing system to access data, and thus is natu-
rally suitable for detecting data security threats (such as
data leakage and data abuse) and achieving data security
supervision [3], [4].

Obtaining sufficient provenance information is the
pre-requisite for the full use of provenance in data security
supervision. Big data systems provide diverse data services
to numerous users, and generally present multi-layer and
distributed characteristics on the data organization [5].
The provenance information required for data security
supervision involves multiple users, working nodes [6], and
even multiple data management systems at different layers,
which brings great challenges to provenance tracking and
generation.
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Current provenance generation methods include oper-
ating system (OS)-level methods, application-level meth-
ods, and hybrid methods, which integrate both OS- and
application-level methods [7], [8].

OS-level methods generate provenance by intercepting and
analyzing system call information [9], [10]. These methods
can obtain the information about all the operations occurred
in the system, but they suffer from semantic gap problems in
that system call information represents only atomic actions.
Thus, OS-level provenance information alone is inadequate
to effectively explain the behaviors of applications and
users [11], [12], especially in the big data system.
Application-level methods include provenance-aware

methods and log-based methods. The former captures
provenance information by modifying the application’s
source code to enable provenance generation [13] or
leveraging intrusive provenance tracking tools [14]. The latter
extracts provenance information from application logs [15],
[16] and is more practical. None of them can provide a
complete provenance view of data objects in the big data
system [7], [17].

Hybrid methods generally adopt both application logs
and system call log to generate whole-system provenance
information. They take advantage of the rich semantics of
application logs and the rich information of system call
log [18], and have the capacity to present a data object’s entire
provenance view in the whole file cycle.

Because the required provenance information is scattered
in multiple logs, correlating and fusing the information of
heterogeneous logs is a challenge for hybrid methods [15].
Rupprecht et al. [19] proposed URSPRUNG that adopts
application-specific sources, which an application naturally
produces during its execution (such as logs), and system call
information to achieve transparent provenance generation.
They did not consider the correlation and integration of
related provenance information. Pasquier et al. [20] proposed
a hybrid provenance capture mechanism, CamFlow. On the
correlation of the OS- and application-level information, they
only store related information together in a certain way, but
do not integrate them further. Datta et al. [21] proposed a
provenance-based auditing framework, which records both
OS- and application-level provenance information. They
took the system call log as the main provenance source,
applied application logs only to supplement some metadata
information, and did not propose multi-log conjoint analysis
method. To achieve the fusion of the provenance information
at two levels, Hassan et al. [7] proposed a provenance
tracker, OmegaLog, which leverages the principle that a
file operation execution process is also the corresponding
application log writing process to link this process and the
related application, and then link the OS- and application-
level information. However, in the distributed environment,
the above-mentioned processes may be not on the same
node. Thus, this method is not applicable to the big data
system. Yu et al. [18] proposed a heterogeneous log fusion

technique, ALchemist, which first normalizes various logs to
a canonical representation and then fuses different logs based
on their same fields. However, the normalization of diverse
logs is very complex. Moreover, they correlate different
application logs by taking a system call log as the medium.
Because of the multi-layer feature of big data systems in
data organization, it is also very difficult to correspond
the upper-layer application behavior with the underlying
process behavior. In addition, Li et al. [22] proposed an
event provenance graph construction method by analyzing
the correlations among logs. They calculate the correlations
between the logs in a specific event by comparing pairwise
log element appearance frequencies in this event, rather than
directly analyze the semantic or logical correlations between
log elements in different logs.

Existing hybrid provenance generation methods are mostly
based on system call information, whose expressiveness
is not sufficient to represent the big data operation and
processing procedure. Moreover, their research on multi-log
conjoint analysis to realize the information fusion of different
logs is inadequate and does not consider the provenance
generation timeliness. Therefore, it is difficult for them to
realize effective data usage monitoring and rapid security
threats detection.

To address the above-mentioned problems, this paper
employs a Hadoop-based big data system as the research
object, and studies the multi-log conjoint analysis method
for provenance generation in a distributed, multi-user, and
near real-time scenario. Our research faces the following
challenges:

(1)Multi-log conjoint analysis. Formost provenance types,
their attributes have to be extracted from multiple logs.
The integration of different log analysis processes and the
correlation of the related records in different logs need to be
addressed.

(2) Near real-time provenance generation, which requires
high efficiency of log processing. When a log is selected
to generate a kind of provenance entry, the log analysis
efficiency is mainly affected by the lookup of the missing
information, which cannot be obtained from this log. The lack
of effective lookup method may lead to a backlog of data to
be analyzed. In addition, it is necessary to address the near
real-time collection and centralized storage of logs distributed
in different working nodes.

(3) Log analysis correctness. Log record generation rules
indicate how an application or system records the activities
that have occurred. For example, when a file copying
operation occurs in the Hadoop Distributed File System
(HDFS) [23], an ‘‘open’’ record that records the file to be
copied and a ‘‘create’’ record that records the file to be created
are generated in the HDFS audit log (HA-Log), but not a
‘‘copy’’ record. Hadoop log record generation rules are com-
plex, which brings great challenges to correctly transforming
log data into provenance information. Moreover, in the multi-
user scenario, because that the operation records of different
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users are stored together, an operation may generate multiple
non-adjacent log records, which makes log analysis more
complex.

HDFS is the data storage foundation of Hadoop. HDFS
data are the core of provenance tracking. For efficient
and correct HDFS data provenance generation, the main
contributions of this paper are summarized as follows:

(1) We propose a parallel multi-log analysis method based
on auxiliary data structures and multi-threading, which takes
Hadoop application logs as the main provenance source and
adopts a system call log as the supplement to the missing
information in application logs. Overall, each log is analyzed
in parallel and independently. We construct 5 auxiliary
structures as the medium for the correlation and fusion of
log information, and present a multi-threading method to
parallelize the lookup of log missing information, so as
to ensure the correct correlation and efficient analysis of
heterogeneous logs.

(2) In this paper, log analysis is regarded as deterministic
pattern recognition, i.e., the generation of arbitrary prove-
nance information, such as data operation type and object,
is regarded as the recognition of a specific pattern. In order to
cope with the influence of non-deterministic records on the
determination of operation type, we propose a determination
method based on an interrupt mechanism. To analyze the
operation records of coexisting files generated due to large
file reading, we propose a parent-child thread cooperative
analysis method. To analyze the batch operation records
generated due to the attribute setting/getting of the whole
directory, we propose a segmented analysis method.

(3) We present a provenance generation framework to
enable the near real-time collection and centralized storage
of the required logs stored on distributed nodes, so as to
support the implementation of the proposed log analysis
method.

(4) The experimental results show that collecting log
records generated due to processing files above MB level
does not incur obvious time overhead. The log analysis
rate is always higher than the log generation rate, and the
accuracy reaches 100% when the time thresholds used in
the analysis method are all set correctly, which enable near
real-time and correct provenance generation to provide a
strong data foundation for provenance-based data security
supervision.

The rest of the paper is organized as follows. Section II
introduces the big data provenance model (BDPM) [24].
Section III specifies the required provenance information
based on the BDPM model and the logs to generate it.
Section IV describes the auxiliary data structures that are
used to assist the multi-log analysis. Section V presents a
multi-threading-based missing information seeking method.
Section VI presents the log analysis methods based on
auxiliary data structures and multi-threading. Section VII
introduces a provenance generation framework. Section VIII
includes the experimental results and evaluations. Finally,
Section IX concludes this paper.

II. BIG DATA PROVENANCE MODEL
Provenance can be represented by a directed acyclic graph.
A provenance model formally defines the elements used in
provenance description, the dependencies between them, and
the rules established on these elements and dependencies
to effectively express provenance. It is the foundation of
provenance research [25], [26]. Currently, the most widely
used provenance model is the PROV-DMmodel [27] released
by the World Wide Web Consortium (W3C) Provenance
Working Group. The highly abstract nature of PROV-DM
has led to its widespread adoption. For the big data scenario,
we extended the PROV-DMmodel by subtyping and defining
new relations, and proposed the BDPM model.

The BDPM model consists of three primary types of
nodes: entity, activity, and agent, and fifteen types of edges
representing the provenance dependencies: derivation, coex-
istence1, coexistence2, inclusion1, inclusion2, usage, start,
end, generation, invalidation, communication, attribution1,
attribution2, association, and delegation, as shown in Fig. 1.
An entity is something we want to describe the provenance
of. It refers to the data object in this paper. An activity
is something that acts upon or with entities and changes
their state. An agent is something that bears some form of
responsibility for an activity occurring, for the existence of an
entity, or for the activities of other agents [28]. Coexistence,
inclusion, and attribution dependencies may be changed by
activities. ‘‘dependency1’’ and ‘‘dependency2’’ represent the
past and current dependency, respectively.

We specify the provenance types and information to be
obtained according to the provenance ontology [29] built on
the basis of the BDPM model and HDFS data supervision
requirements.

III. ADOPTED LOGS
A. REQUIRED PROVENANCE INFORMATION
1) REQUIRED ENTITIES
HDFS data are the core of provenance tracking. In the BDPM
ontology, the entity types corresponding to HDFS data is
HDFSFile, which includes subtype HFile and HDirectory.
An HDFS file is stored in the hosts’ local file systems in
the form of block files, which are named after HFile data
block IDs. They coexist with each other. The provenance
information of block files is required to promote the
supervision ofHFile access behaviors. In this study, the fourth
extended file system (Ext4) is used as the local file system,
and the entity type corresponding to the block file is E4File.
All the required entity types are as follows:

HFile : < ID,fileType, name, path, replication, tc,

ta, tm, td , permission, size > . (1)

HDirectory : < ID,fileType, name, path, tc, ta, tm,

td , permission > . (2)

E4File : < ID, size > . (3)

where ID represents the identifier of a provenance node. The
identifier of an HDFS file is the inode ID assigned to it by
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FIGURE 1. Structure of BDPM model.

HDFS. The identifier of a block file is its corresponding block
ID. replication denotes a replication factor. tc, ta, tm, and td
denote the creation time, last access time, last modification
time, and deletion time, respectively.

2) REQUIRED ACTIVITIES
In this paper, we focus on HDFS operations and the block
file operations occur due to HDFS operations. The required
activity type is FileDataOperation:

FileDataOperation : < ID, [IP], [ts, te, to], [{args}],

[finalStatus], [mode] > . (4)

Activities lack distinct identification information. Their
identifiers need to be self-generated. The elements in the
square bracket are optional. ts, te, and to denote the starting
time, ending time, and occurrence time, respectively. {args}
denotes activity arguments. finalStatus denotes the operation
result, such as success and failure. mode denotes the operation
execution mode, which represents the way users access
HDFS, including command line interface (CLI), HttpFS,
WebHDFS, and network file system (NFS). Considering that
the function of NFS is to mount HDFS as part of the local file
system [30], we focus on the first three modes.

3) REQUIRED AGENTS
According to the required entity and activity types, the
required agent type is User:

User :< ID > . (5)

We assume that the name of each user is unique and
immutable, and take the name as the identifier of a user.

4) REQUIRED PROVENANCE DEPENDENCIES
According to the required node types, the required depen-
dency types include all the dependencies except for ‘‘start’’
and ‘‘end.’’

TABLE 1. HA-Log fields.

We select the following five logs to generate the required
provenance information.

HDFS logs: HA-Log, EditLog (HDFS transaction log) in
the XML format, HttpFS audit log (HTA-Log), and Jetty
NameNode log (JNN-Log), and Progger log (P-Log).

HA-Log and EditLog record the operations performed
via any execution mode. They are the most important data
sources for provenance generation. The information that
can be extracted from HA-Log is summarized in Table 1.
It has the strongest correlation with the specified provenance
information. The HDFSFile operation-related EditLog record
(or transaction) types are summarized in Table 2. The
operation object is represented by the file’s absolute path. The
‘‘OP_RENAME’’ record is generated when a file is moved to
the trash, and the ‘‘OP_RENAME_OLD’’ record is generated
in other instances of renaming or moving.

HTA-Log and JNN-Log record the timestamp, user name,
IP address, type, object, and parameters of operations
performed via the HttpFS andWebHDFS mode, respectively.

Progger is a configurable OS-level provenance tracking
tool [31], [32]. The information of some local operations
occur in the hosts’ file systems that Hadoop logs do not record
can be obtained from P-Log [33], such as block file operation
information. The system call types required in this paper and
the information to be logged are summarized in Table 3 (the
number in brackets indicates the system call type in P-Log).
We briefly introduce the elements in these records:

(1) PID, PPID, SID, and PSID denote the process ID,
parent process ID, process ID of a session leader, and parent
process ID of a session leader, respectively. Program denotes
the process name.

(2) File, Flags, Mode, and FD denote the file absolute
path, file access mode, file permission, and file descriptor,
respectively. File descriptor is an abstract indicator used to
access a file or some other input/output resource, such as a
network socket [34].

(3) SocketFD denotes the socket descriptor. sIP, sPort, dIP,
and dPort denote the source IP, source port, destination IP,
and destination port, respectively.
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TABLE 2. File operation-related EditLog record types.

TABLE 3. System call types to be logged.

‘‘SYS_OPEN’’ and ‘‘SYS_CLOSE’’ are only recorded
when the operation object is a block file. ‘‘SYS_READ’’
is recorded when the file reading is executed via a socket
descriptor.

To improve the log analysis efficiency as a whole,
we analyze these logs in parallel. Meanwhile, because that the
attributes of some provenance types have to be extracted from
multiple logs and the recording of provenance is generally
caused by activities. For a specific HDFSFile operation,
we select a particular log, which we call starting log,
to generate its provenance entry, and generate or change other
related provenance entries when analyzing this log. Missing
information can be obtained from auxiliary structures whose
data are extracted from logs, or sought from other logs by
creating a child thread. For HDFSFile creation, the starting
log is EditLog. For other operations, the starting log is
HA-Log. The relationship between the adopted logs is shown
in Fig. 2.

FIGURE 2. Relationship between adopted logs.

IV. AUXILIARY DATA STRUCTURE
Under the condition of multi-user, multi-log, and multiple
operation execution modes, we extract part of the log
information during the log analysis process, and save it into
5 auxiliary structures to accelerate the lookup of the missing
information. These structures are applied to the construction
of the proposed log analysis methods. Their functions are as
follows:

(1) Auxiliary structures are the medium for the correlation
of different logs. A log parser can get the missing information
from an auxiliary structure via taking the common elements
between this structure and the log as link points, so as
to improve the efficiency of seeking missing information.
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Compared with ALchemist [18], we do not normalize all the
logs, but only extract the required information from logs and
organize it in a way that is easier to find, which is more
practical.

(2) Auxiliary structures store some state information of
files and their operations, which can be used to ensure
the correctness of log analysis under the condition of
parallelization and multi-threading, and to assist the analysis
of multi-record operations that generate other subsequent log
records in addition to the first record or record combination,
which is used to determine the operation type.

A. HDFSFILE HASH TABLE
HDFSFile hash table (H-Hash) is the most important
auxiliary structure. The entry of H-Hash is added when
analyzing EditLog, and modified or deleted when analyzing
other logs.

Because that the operation object recorded in logs is
generally represented by the file’s absolute path, we set the
key of H-Hash to HDFSFile absolute path. The value of
H-Hash stores an HDFSFile state information array in the
following format:

< {inodeID, tc,fileType, size, blockNum, {blockID,

blockSize}m, {userName, IP, opType, opMode,

opID, inodeIDOP, t/numO}n}k > . (6)

k denotes the number of HDFSFiles with the same absolute
path supported by H-Hash. Suppose that f1 and f2 are
two files with the same path that have been deleted and
created successively. Because that the analysis of EditLog and
HA-Log is asynchronous, if f2 creation record is analyzed
before f1 deletion record, the setting of k can ensure that
f1 information will not be overwritten by f2 information and
the object of the deletion operation is identified correctly.
The identification basis is tc. Suppose that the timestamp
and file path of an operation record, r1, are t1 and fp1, and
there are multiple files whose file path is fp1 in H-Hash. The
operation object recorded by r1 is the file with the largest
tc in the files whose tc is less than t1. inodeID is used to
convert the path of a file into its provenance ID, as well
as to quickly locate the corresponding data entry in another
auxiliary structure, the HDFSFile block and hierarchy file
(BH-File). fileType is used to help identify whether the
operation object is a single file or the whole directory. The
latter refers to the operations act upon a directory and its
descendant files or directories, which are only supported by
the CLI mode. blockNum, blockID, and blockSize are used to
analyze operations involving block files. m is the maximum
number of blocks supported by H-Hash.

{userName, IP, opType, opMode, opID, inodeIDOP, t /
numO}n is used to store the information of non-instantaneous
file data modifying operations and multi-record operations.
n is the number of operations supported by H-Hash. IP is
only extracted from HA-Log or EditLog. opMode denotes
the operation execution mode. opID denotes the provenance

identifier of an operation, which is used to supplement the
provenance information of multi-record operations when
analyzing their subsequent records. inodeIDOP denotes the
inode ID of the first or last object of a whole-directory
operation. t denotes the timestamp of an operation record.
numO denotes the number of ‘‘open’’ records generated due
to file reading in HA-Log.

HDFS non-instantaneous data modifying operations
include file creation, appending, and truncation. When ana-
lyzing these operations, the functions of the above-mentioned
information are as follows:

(1) Assisting the multi-threading-based parallel log analy-
sis. These operations change a file’s size, data block, and tm,
which need to be extracted from EditLog. Once a file
appending or truncation record is met in HA-Log, a child
thread is created to seek the corresponding operation record in
EditLog based on the operation information stored inH-Hash.

(2) Avoiding recording incorrect file reading range.
Suppose that when analyzing a reading record of a file, f1,
in HA-Log, H-Hash shows that f1 is being appended. Then
a data block read by this operation maybe not recorded
in H-Hash or a block recorded in H-Hash maybe not read
by this operation. It is necessary to get all the blocks that
f1 currently has from EditLog and find the reading records
of the corresponding block files from P-Log to determine the
blocks that were actually read.

Multi-record operations include single-file operations and
whole-directory operations. The subsequent records of these
operations can be identified via the operation information
stored in H-Hash. In multi-user and near real-time scenarios,
storing the information of these operations into H-Hash rather
than finding all the records at once avoids skipping too
many intermediate records and can effectively deal with
the situation that not all the operation records have been
generated.

B. HDFSFILE BLOCK AND HIERARCHY FILE
BH-File is created when analyzing EditLog and updated
during the analysis of other logs. Each HDFSFile has a
BH-File data item.

The data item of HFile records inode ID, file path, and
block set. When the number of a file’s blocks exceeds the
limit of H-Hash, BH-File can be used to obtain its block
information. The data format is as follows:

< inodeID, path, {blockID, blockSize} > . (7)

The data item of HDirectory records inode ID, path, and
a collection of subfiles/subdirectories, which are arranged by
their names. This collection is used for the analysis of whole-
directory operations. The data format is as follows:

< inodeID, path, {inodeID,fileType, path} > . (8)

Each BH-File stores the information of HDFSFiles with
inode IDswithin a certain range to facilitate the quick location
of a specific BH-File.
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C. LINKED LIST FOR RECORDS NOT ANALYZED IN
SEQUENCE
In general, we analyze log records by their storage order.
However, for some non-deterministic records, such as r1,
we need to seek and analyze its subsequent record r2 that
is generated due to the same user with r1 to determine the
operation type represented by r1. If r1 and r2 are not adjacent,
and r2 has been analyzed before some of its previous records,
we put the location information of r2 into this linked list
(R-List) to avoid repeated analysis.

When analyzing a record, we first determine whether it
may appear in R-List according to its type. If possible,
we check whether this record is in R-List. If so, we just delete
the node corresponding to it in R-List and analyze the next
record.

D. LINKED LIST FOR HTA-LOG AND JNN-LOG
When analyzing some operations performed via the HttpFS
or WebHDFS mode, it is necessary to leverage HTA-Log
or JNN-Log to determine the operation type or get the
operation information. Because that no operation generates
multiple records in HTA-log or JNN-Log, we store required
log records into a linked list by their storage order, i.e.,
HTA-List and JNN-List. We add nodes from the tail, seek
data from the head, and delete a node after obtaining
the required information from it. The operation sequence
recorded by HA-Log/EditLog is generally consistent with
that recorded by HTA-Log/JNN-Log. In most cases, the
required information can be obtained from the head of
HTA-List/JNN-List, which ensures the efficiency of seeking
missing information. The data format is as follows:

< t, user, IP, opType, path, {args} > . (9)

V. MULTI-THREADING-BASED MISSING INFORMATION
SEEKING METHOD
Because of the complexity and diversity of log information
and the analysis asynchronism of different logs, auxiliary
structures do not cover all the missing information required
for log analysis. Therefore, we propose a multi-threading-
based missing information seeking method as a supplement
to the auxiliary structures. When neither the record being
analyzed nor the related auxiliary structure contains the
required information, the log analysis main thread creates a
child thread to seek the missing information from other logs
or wait for other log parsers to put the required information
into the auxiliary structure, and then continues to analyze the
subsequent records. Leveragingmulti-threading to parallelize
the lookup/wait of missing information and log analysis
reduces the impact of lack of information on the near
real-time generation of provenance information. Child thread
creation scenarios are as follows:

(1) The auxiliary structures do not contain the required
information type. Such information can only be sought from
logs.

(2) The auxiliary structures contain the required infor-
mation type, but the required information has not yet been
generated. If the missing information does not affect the
subsequent log analysis, the main thread creates a child
thread to wait for the information to be generated (For
example, Getting the operation IP from HTA-List for an
attribute setting operation performed via the HttpFS mode).
Otherwise, the main thread pauses to wait (For example,
H-Hash does not contain the entry of the operation object
being analyzed).

(3) The auxiliary structures contain the required infor-
mation type, but it is uncertain whether the information
corresponding to the current record will be generated. For
example, the main thread leverages JNN-List to determine
whether an operation was performed via the WebHDFS
mode. But there exists no information related to this operation
in JNN-List. The main thread cannot determine whether
the execution mode was not WebHDFS or the required
information has not been put into JNN-List. Thus, it needs
to create a child thread to find out whether the corresponding
record exists in JNN-Log.

In addition, if a child thread has already been created
when analyzing an operation, the main thread does not create
a child thread when the above-mentioned situations occur
again.

VI. LOG ANALYSIS METHODS
A. OVERALL LOG ANALYSIS PROCESS
Based on the Hadoop source code analysis and a large
number of experimental tests, we establish some deter-
ministic log analysis and pattern recognition methods. The
overall log analysis process is shown in Fig. 3. The steps
in the dashed boxes are only performed for the analysis
of specific logs or specific operations. Hereinafter, unless
otherwise specified, r1, op1, and o1/f1/d1 denote the
record, operation, and operation object currently being
analyzed, respectively. The main log analysis steps are as
follows:

(1) Analysis scope identification. According to the
pre-divided log analysis scope, determining whether r1 needs
to be analyzed based on r1 type and o1 path or name.
(2) Operation type identification.
1) Execution mode identification. For HA-Log, dif-

ferences in execution modes lead to differences in record
characteristics and analysis methods. Thus, to analyze
an operation, we need to first identify its execution
mode by analyzing the record characteristics on specific
fields. For example, the ‘‘proto’’ value of records gener-
ated due to the operations performed via the WebHDFS
mode is typically ‘‘webhdfs.’’ Due to space limitations,
we do not introduce all the record characteristics in detail
here.

2) Identifying the operation that generated r1 and its
type. For some record types, it is necessary to analyze
the H-Hash entry of o1 at first to determine whether r1 is
the subsequent record of a multi-record operation. If so,
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FIGURE 3. Log analysis process.

we further determine whether to update H-Hash and record
provenance information according to op1 type. Otherwise,
we analyze op1 type, where the analysis of non-deterministic
records is a challenge.

(3) Operation analysis. Extracting provenance information
from logs. The difficulties lie in the analysis of non-
instantaneous multi-record operations.

(4) H-Hash and BH-File item deletion, which only involves
HA-Log.

B. NON-DETERMINISTIC RECORD ANALYSIS METHOD
In EditLog and HA-Log, some record types can uniquely
represent a certain operation type (such as ‘‘append’’ of
HA-Log). We call them deterministic records. Some record
types may occur in different operations (such as ‘‘open’’ of
HA-Log). We call them non-deterministic records. A non-
deterministic record may need to be combined with other
records to represent a certain file operation. For example, the
combination of ‘‘open+create’’ in HA-Log that satisfies some
conditions represents file copying.

In order to determine the operation type represented by
a non-deterministic record (such as r1), it is first necessary
to identify whether r1 is the starting record of a record
combination, i.e., to find whether there exists a subsequent
record of a record combination after r1. Because that the
operation records of the same user may not be adjacent,
we draw on the OS interrupt principle, and propose a
non-deterministic record analysis algorithm based on an
interrupt mechanism, as shown in Algorithm 1.

Algorithm 1 Non-deterministic Record Analysis Algorithm

Input: log1 that is being analyzed and R-List
Output: Provenance information
1: breakpoint ← 0
2: r2← readFileRecord(log1, position(r1)+ 1)
3: while r2 ̸= NULL && ((exists(r2.time) && r2.time −
r1.time < tmax) || !(exists(r2.time))) do

4: if breakpoint = 0 && r2.user ̸= r1.user && r2.type ∈
TR then

5: breakpoint ← position(r2)
6: else if r2.user = r1.user && r2.type ∈ TR then
7: break
8: end if
9: r2← readFileRecord(log1, position(r2)+ 1)
10: end while
11: if r2.time− r1.time < tmax then
12: if r1 and r2 form a record combination then
13: Determine op1 type and generate op1 related

provenance information
14: if breakpoint ̸= 0 then
15: put position(r2) into R-List
16: end if
17: end if
18: end if

When r1 has been determined as a non-deterministic
record, the log parser seeks forward for the next record r2,
which was generated due to the same user with r1, within
a given time interval threshold, and determines op1 type
according to the find results. During the lookup process, the
thread records the breakpoint location when it meets a record
that is within the analysis scope (TR denotes the record types
in the analysis scope in line 4) and was generated due to
other users for the first time. If r2 exists, forms a record
combination with r1, and is not adjacent to r1, after r2 has
been analyzed, its location is stored into R-List. Then, the
thread continues to analyze log records from the breakpoint
if it is not 0.

For HA-Log, a line of data is a record. For EditLog, the
record unit is called transaction, which contains multiple
lines, and the unit of measurement for position in Algorithm
1 is transaction. Besides, not all the EditLog records contain
time information.

C. NON-INSTANTANEOUS MULTI-RECORD OPERATION
ANALYSIS METHODS
The number of records generated due to the same operation
in different logs is different. For EditLog, file creation is
a multi-record operation. For HA-Log, single-file multi-
record operations include reading, copying, and replication
factor setting with waiting mode, which is executed via the
CLI mode with parameter ‘‘-w’’ to wait for the replication
to complete. Whole-directory operations include reading,
copying, attribute setting/getting, and search.
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Accurate identification of all the records generated due
to an operation and the normal or abnormal end of an
operation are the difficulties for analyzing the above-
mentioned operations. For file creation, file reading executed
via non-CLI modes, and file replication factor setting with
waiting mode, the identification can be done based on
the operation information recorded in H-Hash. For other
operations, we propose a parent-child thread cooperative
analysis method and a segmented analysis method based on
auxiliary structures. We introduce them in detail below.

1) PARENT-CHILD THREAD COOPERATIVE ANALYSIS
METHOD
This method is applied to analyze large file reading and
whole-directory reading executed via the CLI mode. The size
of an HDFS block is 128 MB by default [23]. In this paper,
we call a file large file if it is larger than 10 blocks.

HFile reading causes block file reading. Unlike the
WebHDFS and HttpFS mode, Hadoop logs do not record
the read range of HFile reading performed via the CLI
mode. Thus, to accurately obtain the HFile read range at
the block level, we make the HA-Log analysis thread create
a child thread to seek the corresponding block file reading
records in P-Log. Meanwhile, to ensure the correctness
of HA-Log analysis, we propose a parent-child thread
cooperative analysis method. We first briefly describe the
characteristics of the ‘‘open’’ record in HA-Log to illustrate
the reason for applying this method.

(1) ‘‘open’’ record characteristics
An HDFS cluster consists of a single NameNode, which

manages the file system namespace, and a number of
DataNodes, which stores file data, i.e., block files [35]. When
HDFS performs file reading, it typically takes 10 data blocks
as a batch to locate the DataNodes where they are located,
generates an ‘‘open’’ record in HA-Log, and then reads
block files. For a batch of blocks, the ‘‘open’’ record and
the ‘‘SYS_OPEN’’ record of the first block file are in one-
to-one correspondence, and their time interval is extremely
short.

Meanwhile, ‘‘open’’ is a non-deterministic record. There
exist other operations that generate ‘‘open’’ records in
addition to file reading. In the CLI mode, the operations with
‘‘open’’ as the starting record are shown in Table 4, where
‘‘getBlockLocations’’ and ‘‘read’’ are not shell commands.
They are used to refer to the file operations performed via the
Java API, which belongs to the CLI mode.

For an ‘‘open’’ record, r1, which was generated due to an
operation performed via the CLI mode, if op1 type cannot be
determined via Algorithm 1, the main thread creates a child
thread to identify op1 type by analyzing the corresponding
record of r1 in P-Log. If f1 is a large file, it first stores
op1 information into f1 H-Hash entry and sets ‘‘opType’’
to ‘‘UD (undetermined).’’ When the main thread meets a f1
‘‘open’’ record, r2, generated due to the same user with r1,
if f1 H-Hash entry shows op1 type is ‘‘UD,’’ it will not create
a child thread again.

TABLE 4. Non-deterministic record ‘‘open.’’.

Suppose that op1 is file reading and f1 is a large file,
if the user (assuming u1) who executed op1 got f1 checksum
as well during f1 reading, or u1 immediately read f1 again
after op1 ended abnormally because of network outage, when
the main thread meets a f1 ‘‘open’’ record generated due
to u1 again, it cannot determine whether this record was
generated due to op1 correctly based on HA-Log alone, but
needs to rely on the corresponding operation records in P-
Log.

(2) Parent-child thread cooperative analysis method for a
single file

To address the interference brought by the ‘‘open’’ record
generation rule to the correct analysis of large file reading,
we propose a parent-child thread cooperative analysis method
by leveraging the correspondence between the ‘‘open’’ record
generated due to HFile reading and the ‘‘SYS_OPEN’’ record
of the first block file in a batch (hereinafter referred to
as first block). This method takes message queue as the
communication medium of parent and child threads.

Each time the child thread finds a ‘‘SYS_OPEN’’ record of
f1 first block, it sends the record’s timestamp to the message
queue constructed for op1. When the main thread meets
a f1 ‘‘open’’ record rk , if the H-Hash entry of f1 shows
that it is being read by op1, it gets a timestamp, t , from
the corresponding queue, and compares whether the interval
between the timestamp of rk and t is within a given threshold.
If so, it can be determined that rk was generated due to op1.
The main and child thread analysis algorithms are

Algorithm 2 and Algorithm 3, respectively. Suppose that the
main thread cannot determine op1 type and has created a
thread to analyze the corresponding records of r1 in P-Log.
Algorithm 2 describes the analysis process when the main

thread meets a f1 ‘‘open’’ record again. In line 3, if the
condition is true, the main thread continues to analyze
whether r2 was generated due to op1. In line 5, the main
thread waits for the child thread to identify op1 type. ‘‘RD’’
refers to file reading. In lines 12-14, if |t − r2.time| >

tmax, it is determined that r2 was not generated due to op1,
and the main thread continues to seek forward for the f1
‘‘open’’ record corresponding to t . In line 16, if op1.numO is
reduced to 1, it indicates that all the ‘‘open’’ records generated
due to op1 have been analyzed. The main thread deletes
op1 information in the H-Hash entry of f1 and releases the
related message queue.
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Algorithm 2Main Thread HA-Log Analysis Algorithm

Input: HA-Log, H-Hash, R-List, and MQ, which refers to
the message queue

Output: Provenance information
1: r2 ← readFileRecord(HA-Log, (breakpoint ̸=

0 ? breakpoint : position(r1)+ 1))
2: while r2 ̸= NULL do
3: if r2.src = f1 && r2.cmd = ‘‘open" && r2.ugi =

op1.userName then
4: if op1.opType = ‘‘UD" then
5: Query f1.hashEntry periodically until op1 infor-

mation is deleted or op1.opType is changed to
‘‘RD’’

6: else if op1.opType = ‘‘RD" then
7: ifMQ = NULL then
8: Query MQ periodically until it is not NULL
9: else
10: Get a timestamp, t , from MQ
11: end if
12: if |t − r2.time| > tmax then
13: Seek forward for the f1 ‘‘open’’ record corre-

sponding to t and put it into R-List
14: end if
15: op1.numO - -
16: if op1.numO = 1 then
17: Delete op1 information in f1.hashEntry and

release MQ
18: end if
19: end if
20: end if
21: r2← readFileRecord(HA-Log, position(r2) + 1)
22: end while

Algorithm 3 describes the analysis process that the child
thread seeks f1 block file ‘‘SYS_OPEN’’ records generated
due to op1, and determines op1 type as well as whether
op1 ended abnormally. In line 1, according to r1.time, the
child thread seeks f1 ‘‘SYS_OPEN’’ record within a certain
time range after r1.time. If it is found, op1 is file reading.
In line 3, numO is calculated according to f1 length and the
first block read by op1. If op1 did not actually read all the
data blocks after this block, op1 can still be analyzed correctly
by using the file reading exception handling methods in
Lines 19-26. In line 6, the PID and SID value of the block
file reading process and the corresponding TCP connection
establishing process can be used to determine whether
pr2 was generated due to op1. Similarly, the PID and SID
value of the related ‘‘SYS_CONNECT’’ records can be
used to determine whether pr1 and pr2 were generated due
to the operations executed by the same user in line 11.
Line 18 indicates two cases where op1 ended abnormally. The
former indicates that the next f1 block file ‘‘SYS_OPEN’’
record was not found beyond the given time threshold.
The latter indicates that the user re-executed f1 reading
from where it was interrupted after op1 ended abnormally.

Lines 19-26 show that how the child thread deals with
op1 exception according to the analysis progress of the
main thread. In line 19, numO−A, which refers to the
actual number of ‘‘open’’ records generated due to op1,
is calculated according to the last block read by op1. numO−E
refers to the expected ‘‘open’’ record number in line 20.
If numO−A is equal to numO−E, the child thread just exits.
Else, line 21 indicates that all the ‘‘open’’ records generated
due to op1 have been analyzed by the main thread, whereas
line 23 is the opposite. And the child thread executes different
processing.

Algorithm 3 Child Thread P-Log Analysis Algorithm
Input: P-Log, BH-File, H-Hash, and MQ
Output: Provenance information
1: seek f1 block file ‘‘SYS_OPEN" record pr1
2: if pr1is found then
3: Calculate numO, put it into op1.numO of f1.hashEntry, and set

op1.opType to ‘‘RD"
4: pr2 ← readFileRecord(P-Log, position(pr1) + 1)
5: while pr2 ̸= NULL && pr2.Time− pr1.Time < tmax do
6: if pr2 is a f1 block file ‘‘SYS_OPEN" record generated due to

op1 then
7: if pr2.File is a first block off1 then
8: Send pr2.Time to MQ
9: else if pr2.File is the last block file of f1 then
10: break
11: else if pr2.File = pr1.File && pr2 and pr1were generated

due to the same user then
12: break
13: end if
14: pr1 ← pr2
15: end if
16: pr2 ← readFileRecord(P-Log, position(pr2) + 1)
17: end while
18: if pr2.Time− pr1.Time > tmax || pr2.File = pr1.File then
19: Calculate numO−A
20: if numO−A < numO−E then
21: if op1.numO = numO−E − numO−A + 1 then
22: Delete op1 information in f1.hashEntry and release MQ
23: else
24: op1.numO += numO−A − numO−E
25: end if
26: end if
27: end if
28: end if

(3) Parent-child thread cooperative analysis method for the
whole directory

Whole-directory operations do not have a definite ending
flag in HA-Log. To identify the ending record of the whole
directory reading, we get the inode ID of the last operation
object (assuming oL) in d1 with depth first traversal, i.e.
file reading order, according to the file hierarchy stored in
BH-Files, and put it into op1 information of d1 H-Hash
entry. However, due to the dynamic change of files in d1 or
op1 exception, the actual oL may be different from the
recorded value. In order to correctly identify all the ‘‘open’’
records generated due to op1, we still adopt the parent-child
thread cooperative analysis method, whereas the analysis
process of the child thread needs to be adjusted as follows:
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FIGURE 4. Provenance generation framework.

1) The child thread seeks the block file ‘‘SYS_OPEN’’
records of d1’s descendant files in turn with depth first
traversal. Each time it finds a first block ‘‘SYS_OPEN’’
record (Not limited to large files), besides the record
timestamp, it also sends the file inode ID and an operation
ending flag to the message queue. If the found first block is
the last one read by op1, the flag is set to 1. Otherwise, it is
set to 0.

2) If the next ‘‘SYS_OPEN’’ record was not found beyond
the time threshold, the child thread determines that op1 ended
abnormally. It releases the message queue after all the
messages have been read by the main thread, and deletes all
the op1 information in H-Hash.

Besides ‘‘open’’ records, the main thread analyzes the
‘‘listStatus’’ records (Indicating the operation object is a
directory) generated due to op1. Each time it meets such
a record, it stores op1 information into this directory’s
(assuming dk , k ≥ 1) H-Hash entry as one of the bases for
identifying whether an ‘‘open/listStatus’’ record of dk ’s child
file/directory is generated due to op1.

2) SEGMENTED ANALYSIS METHOD
This method is applied to analyze whole-directory attribute
setting/getting operations and file search. These operations
do not involve block files. Thus, the parent-child thread
cooperative analysis method does not apply to them.

A single attribute setting/getting operation is an instan-
taneous operation. Thus, the time interval between adja-
cent records generated by the whole-directory operation is
extremely short. Taking advantage of this feature, we propose
a segmented operation analysis method. We take the adjacent
records generated by the same operation as a segment and
analyze them continuously. When a segment is interrupted,
if it is determined that this operation does not end, we store

the timestamp of this segment’s last record into H-Hash for
subsequent segment identification.

This method is divided into an intra-segment record
analysis algorithm and a segment identification algorithm,
as shown in Algorithm 4 and Algorithm 5. Suppose that
op1 information has been stored into d1 H-Hash entry, and
inodeIDOP is set to the inode ID of the current oL .

Algorithm 4 covers the possible situations that may be
encountered when analyzing a segment’s last record. The
HA-Log parser finds out whether oL still exists in HDFS,
analyzes the sequence between r3.src (assuming o3) and
oL , and gets o∗L , which refers to the updated last operation
object in d1, through BH-File. In line 4, if r2 and r3 were
generated due to the same user, it is determined that
r2 belongs to the current segment. Line 8 indicates that
the segment is interrupted. If op1 does not end, the parser
records r3.time as shown in line 11. Except the situation
that o3 is before oL , if the last operation object in d1 has
changed, the parser also stores the inode ID of o∗L into
H-Hash in line 17. Line 27 indicates that oL does not
exist.

Algorithm 4 Intra-segment Record Analysis Algorithm

Input: HA-Log, BH-File, and H-Hash
Output: Provenance information
1: r2← readFileRecord(HA-Log, position(r1) + 1)
2: r3← r1
3: while r2 ̸= NULL do
4: if r2.ugi = r3.ugi then
5: if r2.cmd = ‘‘listStatus" then
6: Store op1 information into r2.src.hashEntry
7: end if
8: else
9: if oL exists then
10: if r3.src, o3, is before oL then
11: Record r3.time into op1 information in the

H-Hash entries of the directories on o3.path
between o3.parent and d1

12: else if o3 is oL then
13: if oL is still the last operation object in d1 then
14: Record op1 ending time and delete op1 H-

Hash information
15: else
16: Get the last operation object in d1 for now,

o∗L
17: Record r3.time and o∗L .inodeID into H-Hash

as line 11 does
18: end if
19: else
20: Get o∗L
21: if o3 is o∗L then
22: Execute the pseudocode in line 14
23: else
24: Execute the pseudocode in line 17
25: end if
26: end if
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27: else
28: Execute the pseudocode from line 20 to 25
29: end if
30: break
31: end if
32: r3← r2
33: r2← readFileRecord(HA-Log, position(r2) + 1)
34: end while

Algorithm 5 describes when the log parser meets a record
r1 that is suspected to be generated due to op1, it makes further
confirmation by comparingwhether the time interval between
r1.time and the timestamp of the previous segment’s last
record is within a given time threshold. If not, it is determined
that op1 ended abnormally.

Algorithm 5 Segment Identification Algorithm

Input: HA-Log and H-Hash
Output: Provenance information
1: if the H-Hash entry of r1.src’s parent directory contains
op1 information && r1.cmd = op1.opType && r1.ugi =
op1.userName then

2: if r1.time− op1.t < tmax then
3: Analyze this segment leveraging Algorithm 4
4: else
5: Record op1 ending time as op1.t and delete op1 H-

Hash information
6: end if
7: end if

VII. PROVENANCE GENERATION FRAMEWORK
In this section, we establish a provenance generation
framework to support the implementation of the proposed
log analysis method via the near real-time collection and
centralized storage of the adopted logs. The framework is
shown in Fig. 4.

A. LOG COLLECTION
The adopted logs are all stored in the local file system of
Hadoop hosts. EditLog, HA-Log, and JNN-Log are stored on
NameNode. HTA-Log is stored on the node that runs HttpFS
server. P-Logs are stored on all the nodes that run Progger.

We adopt the distributed streaming data collection system
Apache Flume [36] to collect the adopted logs. Flume
supports collecting and aggregating large amounts of log
data from many different data sources and sending them
to a centralized destination. By using Flume Taildir source,
whenever new files are created or new lines are appended
to existing files in the specified directories, Flume can
collect the fresh data in nearly real time. Collected data
are first sent to the log analysis server via Avro sinks and
sources. Then, Avro sources send different logs to different
directories to ensure their identifiability through File Roll
sinks. In particular, the P-Log of each node is collected into
s single file. An HDFS block typically has 3 replicas that

are stored on different DataNodes for high availability [30].
When anHFile reading operation occurs, it is uncertain where
the corresponding block file reading operations occur. With
the above collection method, no matter which P-Log the
required information is originally in, it can be sought from
a single file.

B. LOG ANALYSIS
Log analysis is implemented by a set of log parsers.We divide
the log analysis mode into two categories: analysis mode and
search mode. The analysis parser analyzes each log record,
generates provenance nodes and dependencies defined by
BDPM ontology, and stores them into Neo4j database,
whereas the search parser seeks required information from
logs. Each parser is responsible for one analysis mode of a
log, and an analysis parser can call search parsers through
specific link points to obtain the required information.

C. PROVENANCE STORAGE
Neo4j is a high-performance, scalable, and distributed graph
database [37], [38]. It models the objects and relationships
between them as the nodes and edges of a graph, which
makes it easy to represent highly connected data and
semi-structured data. Neo4j is fully compliant with ACID
(atomicity, consistency, isolation, and durability), supports
efficient graph traversal, and has rich graph query functions.
Thus, we store the generated provenance information into
Neo4j.

VIII. EXPERIMENTS
In this section, we evaluate the time overhead incurred by
log collection as well as the timeliness and correctness of the
proposed log analysis methods.

A. ENVIRONMENT
The experiments were conducted on top of a small Hadoop
cluster with 12 nodes and a log analysis server, which were
built based on the VMware virtualization platform, where the
cluster consists of a NameNode and 11 DataNodes.

Host machine configuration: Windows 10 Pro, Intel Core
I5-8250U quad core CPU@1.6 GHz, 500 GB of hard drive,
32 GB of memory.

Virtual machine configuration: CentOS 6.5, 40 GB of hard
driver. Each Hadoop node has 2 GB of memory. The log
analysis server has 4 GB of memory.

Software releases: Apache Hadoop 2.10.1, Apache Flume
1.7.0, and Neo4j 3.5.15.

B. LOG COLLECTION TIME OVERHEAD EVALUATION
We use the MapReduce job, a typical big data processing
mode, to evaluate the time overhead caused by log collection
to Hadoop data processing.

Obviously, the log collection time overhead has a positive
correlation with the amount of log data generated during
Hadoop data processing. When the amount of data to be
processed is fixed, the smaller the average file size, the more
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TABLE 5. Log collection time overhead test results.

the number of files, and the larger the amount of log data.
We used 7 datasets of 4000MB, which contain 1, 1000, 2000,
5000, 10000, 20000, and 50000 files, respectively, to evaluate
the relationship between the log collection time overhead
and the average file size. To facilitate dataset generation
and experimental result analysis, the datasets containing
multiple files were generated by copying a seed file. The
MapReduce jobs used to test the time overhead on large file
processing and batch small file processing were Wordcount
and MultiFileWordCount, respectively. The test results are
shown in Table 5. M denotes the average file size.
Table 5 shows that when M is larger than 1 MB, the time

overhead is minimal. The proposed method can be integrated
into the big data processing system well. When M drops
below 1 MB, log collection incurs obvious time overhead.
WhenM is 0.08 MB, the time overhead is 7.81%.
The decrease in M , i.e., the increase in the number of

files, increases the amount of data to be read/write for
log collection as well as the amount of CPU and memory
resources occupied by log collection, which is one of the
reasons for the increase in the job runtime. However, even
without log collection, the decrease inM itself still causes the
increase in the job runtime because of the dispersion of data
to be processed. Compared with whenM is 4 MB, whenM is
0.08 MB, the job runtime without log collection increases by
61.81%. Therefore, properly merging small files can reduce
or even eliminate the time overhead caused by log collection
and improve job execution efficiency. This is also applicable
to simply running MapReduce jobs without log collection.

C. LOG ANALYSIS METHOD TIMELINESS EVALUATION
EditLog and HA-Log are the most important data sources for
provenance generation, and they are both starting logs whose
analysis tasks are heavier than other logs’. On the premise of
considering actual situations, we set some conditions, which
are conducive to the rapid generation of log records, to test
the highest generation rate (rc) of both logs and the average
analysis rate (ra) of the generated log data. In all the tests,
if ra is always higher than rc, it indicates that the proposed
method can achieve near real-time provenance generation.

1) EDITLOG TEST
In all the HDFSFile operations, only the analysis of
HDFSFile creation starts with EditLog. If users only execute

this operation, the generation rate of the records within
the analysis scope is highest, whereas the analysis rate is
lowest. If ra is always higher than rc under this condition,
it indicates that the proposed method can meet the near
real-time requirements on EditLog analysis. Thus, this test
only executes HDFSFile creation.

For file creation, rc is related to file size, creation manner,
replication factor, and the number of users (nu). Obviously,
rc is negatively correlated with file size. Because we found
that the data files on most popular data sharing platforms
(such as Wikipedia, Google, and Amazon) are generally
larger than 1 KB, we constructed a dataset S, which contains
1 million files. The sizes of these files are all around 1 KB.
The creation manner includes creating all the files one by
one by executing 1 million creation commands and creating
the whole directory at once by executing only 1 command.
We select the latter, which has higher log generation rate.
The replication factor is set to the default value of 3. Under
the above conditions, we test the changes of rc and ra as nu
increases from 1 to 12. All the users perform operations in
parallel on different nodes. Each nu is tested 10 times. rc
takes the highest value of the test results, whereas ra takes
the average.

The test results are shown in Fig. 5. rc rises with the
increase in nu at first, and then stabilizes. The peak rc is
292.3 KB/s (About creating 108 files per second). ra rises
with the increase in the log data volume at first because that
establishing the connection between the log parser and Neo4j
incurs time overhead, but the proportion of this overhead
in the total log analysis time gradually decreases as the
log data volume increases. With the increase in nu, the
interleaving degree of the operation records generated due
to different users increases, which increases the EditLog
analysis complexity and the amount of data to read/write
for BH-File update, and leads to the decline in ra. But ra
stabilizes finally, and is always higher than rc.

2) HA-LOG TEST
For HA-Log, operation type, execution mode, and execution
manner are the main influencing factors of rc and ra.
HDFSFile operations can be divided into instantaneous
operations and non-instantaneous operations according to
their runtime. The former contains various attribute get-
ting/setting operations. Their log generation rate is high, but
usage frequency is low. The latter refers to file read/write
operations. Their log generation rate is related to the file size
and is lower compared with that of instantaneous operations,
whereas their usage frequency is higher. Thus, we test
two cases where non-instantaneous operations are executed
separately and both operations are executed simultaneously,
but do not specifically test the case where instantaneous
operations are executed separately. Here, the whole-directory
reading and permission setting are used for the test.

Using dataset S, we first test rc and ra changes of file
reading as nu increases. When rc peaks, we fix the number of
users executing file reading, gradually increase the number
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FIGURE 5. EditLog rc and ra test results.

FIGURE 6. HA-Log rc and ra test results of file reading.

of users executing permission setting, and further test the
changes of rc and ra.
The test results of file reading are shown in Fig. 6. When

nu was 5, rc reached a peak of 71 KB/s (About generating
418 records per second). The ra trajectory of HA-Log is
similar to that of EditLog, but the change range is larger.
Whole-directory reading is analyzed by the main and child
threads cooperatively. The increase in nu leads to the increase
in the number of block file operation records in P-Log and
the number of child threads, which further leads to the
increase in the time taken by child threads to seek block
file ‘‘SYS_OPEN’’ records and the cases that the main
thread waits for child thread messages. Thus, ra declines
significantly. Finally, both rc and ra stabilize, and ra is always
higher than rc.
In Fig. 7, rate 1 refers to the file reading test results

when nu is greater than 5. Rate 2 refers to the test results
of two operations executed simultaneously. Compared with
the former, the latter improves obviously. When nu is 12, rc
is 111.53 KB/s (About generating 602 records per second).
The growth rate of rc is larger and it is still on the rise when
nu is 12. This is because that the segmented analysis method,
which does not create child threads to analyze P-Log, is more

FIGURE 7. HA-Log rc and ra test results of two operations.

efficient than the parent-child thread collaborative analysis
method, and the proportion of users who perform permission
setting gradually increases.

D. LOG ANALYSIS METHOD CORRECTNESS EVALUATION
The proposed log analysis methods are deterministic pattern
recognition methods established on the basis of Hadoop
source code analysis and a large number of experimental
tests. However, in the multi-user scenario, the correctness of
these methods still faces uncertainties. Because the records
generated due to the same operation may not be adjacent,
determiningwhether some patterns occur depends on the time
interval between related records. For some time thresholds in
the log analysis methods, whether they are set too large or too
small, they may lead to wrong determination, which are the
main influencing factors of the method correctness.

Considering the record generation rules of various opera-
tions in EditLog and HA-Log, we test whether the following
scenarios that use time thresholds as the basis for pattern
recognition face the risk of wrong determination. For these
scenarios, if the time threshold is set too large, the records
generated by different operations may be determined as
generated by a single operation. If the threshold is set too
small, the records generated by a single operation may be
determined as generated by different operations.

(1) EditLog: In the CLI mode, determining whether
a ‘‘OP_MKDIR’’ record is the starting record of a
whole-directory creation operation according to the time
interval between the parent ‘‘OP_MKDIR’’ record and its
descendant ‘‘OP_ADD’’ record.

(2) HA-Log: In the CLI mode, determining whether a
‘‘open’’ record is the starting record of a file copying
operation according to the time interval between the ‘‘open’’
and ‘‘create’’ records with the same ‘‘ugi’’ value.

(3) HA-Log: In the CLI mode, determining whether a
replication factor setting operation adopts the waiting mode
according to the time interval between the ‘‘setReplication’’
and ‘‘open’’ records with the same ‘‘src’’ value.
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TABLE 6. Time threshold test results.

(4) HA-Log: In the CLI mode, determining whether
a whole-directory operation occurs according to the time
interval between the ‘‘listStatus’’ record and its preceding
or following record that has the same ‘‘ugi’’ value with
it. The existence of these two cases relates to the record
generation rules of HA-Log. Taking the whole-directory
permission setting as an example, if the permission parameter
is consistent with the current permission of the directory
(assuming d1), only a ‘‘listStatus’’ record with ‘‘src’’ value
as d1 is generated in HA-Log. Otherwise, a ‘‘setPermission +
listStatus’’ record combination is generated.

By executing Hadoop shell commands via a bash script,
we first test the maximum time interval between the
above-mentioned records when they are generated due to a
single operation under the condition that 12 users perform
operations in parallel on different nodes (near full-load state).
Then, we test the minimum time interval between them when
they are successively generated due to different operations
under the single-user condition(near no-load state). If the
former is smaller than the latter, the corresponding scenario
has a safe range for the time threshold setting. Otherwise,
it faces the risk of wrong determination.

The test results are shown in Table 6. Scenario 4 is divided
into 2 sub-scenarios. Scenario 4-1 and 4-2 indicate that the
‘‘listStatus’’ record precedes and follows the record that has
the same ‘‘ugi’’ value with it. Table 6 shows that theminimum
time intervals are between 1.5s and 2s, whereas the maximum
time intervals are all below 1.5s. Thus, every scenario has
a safe threshold range. By setting the time thresholds in
these ranges, the correctness of the log analysis methods
reaches 100%, which provides a strong data foundation for
provenance-based data security supervision.

IX. CONCLUSION
The establishment of data provenance can lay a solid
foundation for data security supervision. To address the
problems of generating big data provenance in near real-time
based on multi-log analysis, this paper proposes a par-
allel multi-log analysis method based on auxiliary data
structures and multi-threading, which supports the efficient
analysis of non-deterministic records, non-instantaneous
operations and instantaneous batch operations. The experi-
mental results show that the proposed method can correctly
generate provenance information in near real-time and
brings little time overhead to large file processing. In the
future, we will further expand provenance tracking beyond

HDFS to improve the effectiveness of provenance on data
supervision.
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