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ABSTRACT In this paper, the cooperative output regulation (COR) of heterogeneous linear multi-agent
systems is studied. We propose a novel distributed observer approach that ensures synchronization of agents’
outputs to a reference trajectory generated by a leader, while rejecting disturbance. A unified framework
based on tools fromH∞ theory is established which allows treatment of both networks of non-introspective
and networks of introspective agents. The proposed protocols do not require exchange of the controller states,
which reduces or completely eliminates communication costs. A sufficient local stability condition is derived
and a novel controller gain design method is provided to satisfy that condition. It is proven that the solvability
of the COR problem can be guaranteed in advance for: i) introspective agents with arbitrary dynamics, ii)
non-introspective agents with stable dynamics, under the assumption that the poles of exosystems lie on the
imaginary axis. The effectiveness of the proposed approach is verified through numerical simulations.

INDEX TERMS Cooperative output regulation, leader-following consensus, observer-based approach,
multi-agent systems (MASs),H∞ static output feedback.

I. INTRODUCTION
During the past two decades, cooperative control of
multi-agent systems (MASs) has received significant atten-
tion from researchers, see [1], [2], [3], [4], [5] and references
therein. It has been demonstrated that in order to achieve
collective goals, dynamic agents need to mutually interact,
which leads to new theoretical challenges that require exten-
sion of the classical methods in control. In the process, the
cooperative output regulation (COR) has stood out as an
important problem, where the main challenge is to design a
distributed control law such that agents asymptotically track
the reference trajectory generated by a leader while simul-
taneously rejecting disturbances. A variety of cooperative
control problems, such as leaderless synchronization, leader-
following consensus, formation and containment control [5],
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[6], [7], [8], [9], [10], [11], [12] can be seen as a special case
or extension of the COR problem.

There are two well-known methods for tackling the COR
problem for heterogeneous MASs. The first method is based
on a distributed observer and relies on the assumption that
a solution of the corresponding regulator equations exists.
The pioneering work in this area was done in [13], where
the dynamic compensator in form of a distributed observer
was introduced. This work was extended in [14] to the output
feedback case. The second method is based on the distributed
internal model, which is more robust against plant parameters
variation, but requires the transmission-zero condition to be
satisfied [15]. Both design methods have been extensively
investigated in recent years. For instance, in [16], the authors
have analyzed global output regulation problem under the
communication constraint of limited bandwidth. The COR
problem under switching graphs and time-delays is consid-
ered in [17], [18], and [19], while adaptive protocols that
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solve the COR problem in the case when themodel of a leader
is not available to all agents can be found in [20] and [21].
All results in the area of cooperative control can be cat-

egorized in regard to information available to every agent
in the network. More specifically, if agents possess some
type of self-knowledge, such as measurement of their own
state or output, then we refer to them as introspective agents.
In this case, the possibilities of manipulating agents’ inter-
nal dynamics are broad and various control schemes can be
utilized. Design of protocols based on the full state infor-
mation has been carried out in [13], [15], [18], [19], [20],
and [21], while the protocols requiring only output infor-
mation were addressed in [14], [16], and [22]. Unlike the
introspective agents, if the agents in the network cannot
measure their own state or output, then they are called non-
introspective agents [23]. Therefore, the controller of each
agent must be based only on relative measurements and infor-
mation acquired through the communication channels from
the neighboring agents in the network. In [24], the authors
have proposed the neighborhood controller–neighborhood
observer protocol for output synchronization of homoge-
neous networks, while the heterogeneous networks are con-
sidered in [23]. The COR problem for linear heterogeneous
non-introspective agents is investigated in [25], and for non-
linear agents in [26].

In majority of the existing consensus and COR proto-
cols [12], [13], [14], [16], [17], [18], [20], [21], the internal
controller (observer) states are transmitted between agents via
the communication network and used as inputs for the dis-
tributed observer. Some protocols, such as those in [7], [22],
[23], and [25], even require the additional exchange of output
or state measurements. Recently, significant research efforts
have been devoted to developing consensus and COR proto-
cols that rely solely on the exchange of output measurements.
Such protocols can greatly reduce the communication burden
since output measurements typically have a lower dimension
than controller states [27], [28]. Additionally, when agents
can measure their neighbors’ relative output information,
these protocols can be implemented without establishing the
communication network [29], [30].
However, the limited exchange of information between

agents gives rise to difficulties in analyzing the stability
of the closed-loop system. The dynamics of the distributed
observer becomes coupled with that of the heterogeneous
multi-agent system, and as a consequence, the controller and
observer gains cannot be independently designed. In [31] and
[32], the authors developed a low-gain technique based on
the small-gain condition to design a distributed observer for
networks of introspective agents. Nonetheless, this method
cannot guarantee the solvability of the COR problem in the
presence of external disturbances, thus limiting its practical
applications. More recently, the COR problem without con-
troller state exchange was investigated in [33], and a stability
condition based on the dynamics of the overall multi-agent
system has been derived. However, the proposed design

algorithm does not directly incorporate this condition into
the design process. Instead, the controller and observer gains
are independently calculated using Riccati equations, and the
process is iteratively repeated until the stability condition is
fulfilled. Lately, tools from H∞ control theory have proven
to be of great use for the design of the distributed internal-
model-based protocols [34], [35], [36], while their potential
in the design of distributed observer-based protocols is not
yet fully exploited.

In networks of non-introspective agents, both agent and
exosystem states need to be estimated in a distributed manner
since local output measurements are not available. Conse-
quently, designing distributed observers without knowledge
of neighboring agents’ controller states becomes an even
more challenging task than it is in networks of introspective
agents. In [27] and [28], the authors solve the COR problem
for networks of heterogeneous agents with minimum-phase
dynamics and identical relative degrees. The tracking prob-
lem in homogeneous MASs with general linear dynamics
is solved in [29] and [30] by introducing the local observer
that estimates synchronization error. Further, the heteroge-
neous MASs with general linear dynamics have been studied
in [37], but no guarantees for the solvability of the COR
problem by the proposed design method are established, even
for the agents with minimum-phase dynamics.

Motivated by above discussion, we propose a novel dis-
tributed observer-based approach that solves the COR prob-
lem in heterogeneous linear MASs without requiring agents
to exchange the internal controller states. Unlike other
papers in the literature which address either the case of
non-introspective or introspective agents, here we consider
both cases in a unified framework based on tools from H∞

control. An extensive solvability analysis is carried out from
both the agents’ and exosystem’s perspective. Under the
assumption that the poles of exosystems lie on the imaginary
axis, it is proven that the solvability of the COR problem
can be guaranteed in advance for: i) introspective agents with
arbitrary dynamics, ii) non-introspective agents with stable
dynamics.

The main contributions of the paper can be summarized as
follows:

1) Contrary to the observer-type protocols [12], [13], [14],
[16], [17], [18], [20], [21], [22], [23], [25], the approach
proposed in this paper does not require the exchange of
the controller states among the agents. Instead, only the
output information needs to be shared, which consid-
erably reduces the communication burden. Moreover,
if the followers are equipped with sensors that pro-
vide them with relative output measurements of the
neighboring agents, then the proposed protocols can
be implemented without establishing a communication
network, making a MAS more secure [30].

2) A novel controller design method that combines
the advantages of parametric algebraic Riccati equa-
tions (ARE) and tools from H∞ theory is devel-
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oped. Compared to the low-gain method [31], [32],
the proposed approach provides greater flexibility in
designing the controller parameters, thus enabling bet-
ter tuning of the system performance. Moreover, the
solvability of the COR problem is guaranteed for intro-
spective linear agents with arbitrary dynamics in the
presence of disturbances, which extends results in [31]
and [32]. Furthermore, contrary to [33], the stabil-
ity condition in our paper depends on the individual
dynamics of each agent, rather than the dynamics of
the overall MAS.

3) In addition to introspective agents, a more challeng-
ing case of the COR problem in the networks of
non-introspective agents is also considered. Compared
to the protocols [29], [30] that are devised for homo-
geneous agents, in this paper the agents are allowed
to be heterogeneous with a general linear dynamics.
Furthermore, the existence of a solution to the COR
problem is guaranteed for agents with poles in the
closed left half-plane, which extends the results in [27]
and [28], where heterogeneous agents are assumed to
be minimum-phase with an identical relative degree.

The rest of the paper is organized as follows. In Section II,
the preliminaries are given and the COR problem is for-
mally stated. In Sections III and IV, COR protocols for
non-introspective and introspective agents are proposed,
respectively. Section V deals with extensive solvability anal-
ysis. Finally, numerical simulations and concluding remarks
are given in Sections VI and VII, respectively.
Notation: I is an identity matrix with appropriate dimen-

sion. For a square matrix A, λ (A) denotes its spectrum, and
ρ (A) its spectral radius. The absolute value of a matrix is
defined as |A| = [|aij|], where A = [aij]. Moreover, A > 0
(≥ 0) means that A is positive definite (semidefinite). The
Kronecker product of two matrices A and B is denoted as
A ⊗ B. For a stable system G(s), ∥G∥∞ denotes its H∞

norm, while ∥G(jω)∥ denotes its largest singular value with
respect to the frequency. The operator diag(·) builds a (block)
diagonal matrix from its arguments.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a multi-agent system consisting of N linear hetero-
geneous agents described by the following dynamics:

ẋi = Aixi + Biui + Eiω

yi = Cixi + Qω, i = 1, . . . ,N , (1)

where xi(t) ∈ Rni is the state, ui(t) ∈ Rmi is the control input,
yi(t) ∈ Rp is the output of the agent i, and ω(t) ∈ Rqω is
the state of an exosystem 6ω that represents disturbance to
be rejected. The disturbance is generated as follows

6ω : ω̇ = Pω, (2)

where P is a constant matrix. Furthermore, suppose that
the reference signal, denoted by y0(t), is generated by an

exosystem

6ν :

{
ν̇ = Sν

y0 = Fν
, (3)

where ν(t) ∈ Rqν is the state, and y0(t) ∈ Rp is the output
of the exosystem 6ν . Note that the time index t has been
dropped in the equations for sake of clarity.

The N agents with the dynamics (1), called the followers,
and an agent described by the exosystem (3), termed the
leader, can be represented by a node setV = {0, 1, 2, . . . ,N },
with 0 corresponding to the leader. The interactions among
the agents are modeled by an edge set E ⊆ V × V , where the
ordered pair (i, j) ∈ E indicates the existence of a directed
link from node i to node j. In such case, we say that the
node i is a neighbor of the node j. The set of all neighbors of
the node i is denoted by Ni. An adjacency matrix associated
with a directed graph (digraph) G = (V, E) is denoted as
A = [aij] ∈ R(N+1)×(N+1), where aij > 0 for (j, i) ∈ E
and aij = 0 otherwise. Without loss of generality, we assume∑N

j=0 aij = 1, i = 0, . . . ,N . Then, Laplacian matrix L =

[lij] ∈ R(N+1)×(N+1) is defined as L = I −A. The Laplacian
and adjacency matrices can be partitioned in the following
way

A =

[
1 0
a0 Ā

]
, L =

[
0 0

−a0 L̄

]
, (4)

where a0 = [a10, a20, . . . , aN0]T .
We assume that each follower has access to relative

outputs of the neighboring agents, thus obtaining the quan-
tity ζi =

∑
j∈Ni

aij
(
yi − yj

)
which can be written in

terms of the elements of the Laplacian matrix as ζi =∑N
j=0 lijyj, i = 1, . . . ,N . The regulated output for each agent

is defined as follows:

ỹi = yi − y0, i = 1, . . . ,N . (5)

The main objective is to design a distributed dynamic control
law that drives the regulated output to zero. Based on the
information available to each agent we will distinguish the
following two cases.

In the first case, we assume that the agents are non-
introspective, i.e. they can only measure relative output of
the neighboring agents. The goal is to design a distributed
dynamic relative output feedback (ROF) control law, i.e.
a control law based on a linear combination of relative output
measurements ζi =

∑N
j=0 lijyj, i = 1, . . . ,N . In the second

case, it is assumed that agents are introspective, i.e. each agent
can measure its output signal in absolute (global) coordinates
yi. In this case, we distinguish the following two scenarios.
The former requires exchange of yi through communica-
tion channels among the neighboring agents, while the latter
assumes that the introspective agents can also measure the
relative outputs, thus eliminating the need for communica-
tion. The control law for this case, covering both scenarios,
will be called the distributed dynamic output feedback (OF)
protocol.
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The cooperative output regulation (COR) problem can then
be stated as follows.
Problem (COR): For the multi-agent system composed

of (1), (2), and (3), design ROF (OF) controller such that the
closed-loop system satisfies the following the conditions:

1) The origin of the overall closed-loop system is asymp-
totically stable when ω = 0 and ν = 0.

2) For any initial conditions ν(0), ω(0), xi(0), the regu-
lated output satisfies lim

t→∞
ỹi(t) = 0, i = 1, . . . ,N .

In order to solve the COR Problem, we will formalize the
required assumptions:
Assumption 1: The digraph G contains a directed spanning

tree with node 0 as its root.
Assumption 2: The matrix S has no strictly stable poles.
Assumption 3: The pairs (Ai,Bi), i = 1, . . . ,N , are stabi-

lizable.
Assumption 4.1: For the ROF protocol, the pairs(

[−Ci −Q F ] ,
[ Ai Ei 0

0 P 0
0 0 S

])
, i = 1, . . . ,N

are detectable.
Assumption 4.2: For the OF protocol, the pairs

(F, S),
(
[ Ci Q ] ,

[ Ai Ei
0 P

])
, i = 1, . . . ,N ,

are detectable.
Assumption 5: The linear matrix equations{

5ω
i P = Ai5ω

i + Bi0ω
i + Ei

0 = Ci5ω
i + Q

, (6a){
5ν
i S = Ai5ν

i + Bi0ν
i

0 = Ci5ν
i − F

, (6b)

have solution pairs (5ω
i , 0ω

i ) and (5
ν
i , 0

ν
i ) for i = 1, . . . ,N ,

respectively.
Remark 1: Assumption 2 is introduced to avoid the triv-

ial case of strictly stable S, as eigenvalues with negative
real parts exponentially decay to zero and do not affect
the asymptotic behavior of the closed-loop system. Further-
more, if the COR problem is solved for a linear MAS under
Assumption 4.2, then it is also solved when this assumption
is violated, as stated in [38]. Assumptions 3-5 are stan-
dard in the cooperative output regulation literature [13].
The equations (6) are known as regulator equations, whose
solvability is a necessary condition for solving the classi-
cal output regulation problem [38]. For the OF protocol,
Assumption 4.2 can be ensured under mild conditions if the
pairs (Ci,Ai) and (Q,P) are detectable. When there is no dis-
turbance acting on the plant output (i.e., Q = 0), Assumption
4.2 reduces to the detectability of the pair ([ Ci 0 ] ,

[ Ai Ei
0 P

]
),

which is always detectable if the pairs (Ci,Ai) and (Ei,Ai)
are detectable [39]. For the ROF protocol, Assumption 4.1
is always ensured if the pairs ([ Ci 0 ] ,

[ Ai Ei
0 P

]
) and (F, S) are

detectable, and matrices S and P have no common eigenval-
ues. If S and P have common eigenvalues, Assumption 4.1
does not hold for single-output agents, while for multi-output
agents it can be ensured under mild conditions [40].

Remark 2: It is worth noting that, similar to works [17],
[22], [33], we consider separate exogenous systems to model
the disturbance and reference signal. The disturbance ω is
assumed to be unmeasurable for all agents, while at least
one agent has knowledge of the reference signal y0. However,
as noted in Remark 1, when exosystems S and P have common
eigenvalues and the agents have a single output, Assump-
tion 4.1 will not hold. A possible solution to handle this issue
is simply to exclude the common eigenvalues from matrix P,
as suggested in [33]. An alternative approach in the literature
is to model disturbances and reference signals using a single
exosystem such as in [13], [14], [15], and [16]. In this
case, at least one agent must have access to the complete
exosystem state, including disturbances. It is important to
highlight that all the results obtained for the ROF protocol
are equally applicable to this scenario. Nevertheless, for the
sake of ensuring a straightforward parallel between the ROF
and OF protocols, we have adopted the same approach for
both introspective and non-introspective agents.

Prior to presenting the main results, we provide a lemma
regarding the spectral radius of the matrix |µI − L̄|, where
µ ∈ R. Thismatrix plays a crucial role in the stability analysis
of MAS.
Lemma 1: Consider the Laplacian and adjacency matrix

partition (4). Then, for any real scalar µ, ρ
(∣∣µI − L̄

∣∣) =

|µ − 1| + ρ
(
Ā

)
. Moreover, ρ

(
Ā

)
< 1 if and only if the

digraph G associated with the adjacency matrix A contains
a directed spanning tree with node 0 as a root.

Proof: In order to prove the first statement of the
lemma, note that L̄ = I − Ā. Since Ā is a non-negative
matrix with zeros on the main diagonal, it is straightfor-
ward to show that |µI − L̄| = |µ − 1|I + Ā. Therefore,
λi

(∣∣µI − L̄
∣∣) = λi

(
|µ − 1| I + Ā

)
= |µ − 1|+λi

(
Ā

)
, i =

1, . . . ,N . Moreover, according to Perron-Frobenius theorem,
the non-negativity of Ā implies that ρ(Ā) is its eigenvalue,
from which follows ρ(|µI − L̄|) = |µ − 1| + ρ(Ā). This
completes the proof of the first statement.

For the second statement, the structure of A implies that
it contains the eigenvalue 1 in addition to the eigenvalues
of Ā. The matrix A is row-stochastic, thus according to
(Lemma 3.4, [1]), it has a simple eigenvalue ρ(A) = 1 if and
only if the digraph G contains a directed spanning tree with
node 0 as the root. Therefore, ρ(Ā) < 1. □

III. COR IN NETWORKS OF NON-INTROSPECTIVE AGENTS
In this section, the distributed ROF controller is first intro-
duced, which is followed by a discussion on the stability
analysis and controller design procedure.

Consider the following ROF controller

 ˙̂xi
˙̂ωi
˙̂νi

 =

Ai Ei 00 P 0
0 0 S

  x̂iω̂i
ν̂i

 +

Bi0
0

 ui +

LxiLω
i
Lν
i

 εi,

ui = K x
i x̂i + Kω

i ω̂i + K ν
i ν̂i, i = 1, . . . ,N , (7)
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where x̂i ∈ Rni , ω̂i ∈ Rqω and ν̂i ∈ Rqν are local estimates
of xi, ω and ν, respectively. The term εi ∈ Rp represents the
virtual error signal defined as

εi
1
=

N∑
j=0

lijyj − µ(Cix̂i + Qω̂i − F ν̂i), i = 1, . . . ,N , (8)

whereµ is a real scalar. The first equation in (7) can be viewed
as a distributed observer of the system and exosystems states.
The observer gains Lxi , Lω

i , Lν
i and the control law gains

K x
i , Kω

i , K ν
i are the parameters to be designed.

Remark 3: In addition to the relative measurements, the
virtual error signal contains a termµ(Cix̂i + Qω̂i − F ν̂i) that
depends on the local estimates of the system and exosystems
states. This implies that the implementation of controller (7)
does not require communication among agents. It should be
noted that the added term is crucial for the stabilization of
MAS, which will be shown later.

Let Kω
i and K ν

i be designed as follows:

Kω
i = 0ω

i − K x
i 5ω

i , K ν
i = 0ν

i − K x
i 5ν

i . (9)

Define the tracking and estimation errors as ei = xi−5ω
i ω−

5ν
i ν, x̃i = x̂i − xi, ω̃i = ω̂i − ω, ν̃i = ν̂i − ν. By taking

into account the regulator equations (6), the error dynamics
of each subsystem can be written as
ėi
˙̃xi
˙̃ωi
˙̃νi

 =


Ai+BiK x

i BiK x
i BiKω

i BiK ν
i

0 Ai Ei 0
0 0 P 0
0 0 0 S



ei
x̃i
ω̃i
ν̃i

 +


0
Lxi
Lω
i
Lν
i

 εi.

Furthermore, let ẽi =
[
x̃Ti ω̃T

i ν̃Ti

]T and define variable ξi =∑N
j=1 lijCjej − µCiei. Then, εi can be expressed as εi = ξi +

µ
[
−Ci −Q F

]
ẽi. Introduce the following matrices

Hi =

Ai Ei 00 P 0
0 0 S

 , Gi =
[
−Ci −Q F

]
,

Ki =
[
K x
i Kω

i K ν
i

]
, Li =

LxiLω
i
Lν
i

 ,

which in turn gives the closed-loop dynamics[
ėi
˙̃ei

]
=

[
Ai + BiK x

i BiKi
0 Hi + µLiGi

] [
ei
ẽi

]
+

[
0
Li

]
ξi. (10)

Denote

φ = col {φi} , (φi = ei, ẽi, ξi)

8 = diag {8i} , (8i = Ai,Bi,Ci,Hi,Gi,K x
i ,Ki,Li)

L̃ = L̄⊗ Ip, , (11)

then the overall system dynamics becomes
[
ė
˙̃e

]
= ACL

[
e
ẽ

]
,

where the closed-loop state matrix is

ACL =

[
A+ BK x BK

L(L̃− µI )C H + µLG

]
. (12)

Note that due to (6b), ỹi can be written as ỹi = Cixi+Qω−

Fν = Ciei. It can be concluded that limt→∞ei(t) = 0 implies
limt→∞ỹi(t) = 0. Therefore, ensuring that ACL is Hurwitz
stable is equivalent to solving the COR problem.

A. STABILITY ANALYSIS
In this subsection, we derive local stability conditions that,
if satisfied, ensure the stability of the closed-loop matrix ACL .

Define the following matrices

Âi =

[
Ai +BiK x

i BiKi
0 Hi + µLiGi

]
, B̂i =

[
0
Li

]
, Ĉi =

[
Ci 0

]
,

(13)

with the corresponding transfer function

Ti(s) = Ĉi(sI − Âi)−1B̂i, i = 1, . . . ,N . (14)

Theorem 1: Consider a multi-agent system composed
of (1), (2) and (3). Then, under the Assumptions 1-5, the
ROF protocol (7) solves the COR problem if the following
condition holds

∥Ti∥∞ < γ ∗, i = 1, . . . ,N , (15)

where γ ∗
=

1
ρ(|µI−L̄|)

.

Proof: The closed-loop system matrix ACL in (12) can
be rewritten as ACL = Â+ B̂(L̃− µI )Ĉ, where

Â =

[
A+ BK x BK

0 H + µLG

]
, B̂ =

[
0
L

]
, Ĉ =

[
C 0

]
. (16)

Assume that Â is Hurwitz, which can always be achieved
under the Assumptions 3 and 4.1. Then, the matrix determi-
nant lemma gives

det(sI − ACL)

= det(sI − Â) det(I − (sI − Â)−1B̂(L̃− µI )Ĉ)

= det(sI − Â) det(I + (µI − L̃)Ĉ(sI − Â)
−1
B̂).

Note that ACL is Hurwitz stable if det (sI − ACL) ̸=

0, ∀s ∈ C̄+. This means that the matrix I + (µI −

L̃)Ĉ(sI − Â)−1B̂ must not have zero eigenvalues for any
s ∈ C̄+, otherwise its determinant will be equal to zero.
Therefore, ACL is stable if

ρ((µI − L̃)Ĉ(sI − Â)−1B̂) < 1, ∀s ∈ C̄+. (17)

Taking (13) and (16) into account, the transfer function
Ĉ(sI − Â)−1B̂ can be expressed as

Ĉ(sI − Â)−1B̂

= C(sI − (A+ BK x))−1BK (sI − (H + µLG))−1L

= diag(Ci(sI−(Ai+BiK x
i ))

−1BiKi(sI − (Hi+µLiGi))−1Li)

= diag(Ti(s)).

Furthermore, by using the block-normmatrix inequality [34]
we can write

ρ((µI − L̃)diag(Ti(s))) ≤ ρ(|µI − L̄|diag(∥Ti∥∞)).
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According to Lemma 8 in [34], the inequality ρ((µI − L̄)
diag(∥Ti∥∞)) ≤ ρ(|µI − L̄|) max

i
∥Ti∥∞ holds, which allows

the stability condition to be written as

ρ(|µI − L̄|) max
i

∥Ti∥∞ < 1.

The above condition is equivalent to the condition (15),
which completes the proof. □
Remark 4: It should be noted that the proposed controller

relies on knowledge of a global information and is not
fully distributed. Actually, most of the existing protocols,
for instance [28], [31], [32], [34], [35], [36], also rely on
knowledge of global information. It is worth noting that in
many practical situations, it is possible to know or predict the
lower bound of a spectral radius of |µI − L̄|. One possible
approach to develop a fully distributed protocol is by employ-
ing adaptive gain methods, as demonstrated in [2] and [29].

In the following lemma, we establish the lower bound
for ∥Ti∥∞.
Lemma 2: Suppose that the transfer function Ti(s) is sta-

ble. Then, µ−1 is a lower bound of ∥Ti∥∞, i.e.

∥Ti∥∞ ≥
1
µ

, i = 1, . . . ,N . (18)

Proof: Introduce the following coordinate transforma-
tion matrix

Mi =


I I −5ω

i −5ν
i

0 I −5ω
i −5ν

i
0 0 I 0
0 0 0 I

 .

In the new state coordinates, the systems matrices become
Ǎi = MiÂiM

−1
i , B̌i = MiB̂i and Či = ĈiM

−1
i . Taking into

account (9), it can be shown that these matrices are

Ǎi=


Ai + BiK x

i −µ [ I −5ω
i −5ν

i ]LiCi 0 0
0 Ai − µ [ I −5ω

i −5ν
i ]LiCi −Bi0ω

i −Bi0ν
i

0 −µLω
i Ci P 0

0 −µLν
i Ci 0 S

,

B̌i =

 [ I −5ω
i −5ν

i ]Li
[ I −5ω

i −5ν
i ]Li

Lω
i
Lν
i

 , Či =
[
Ci −Ci 0 0

]
. (19)

Suppose that ∥Ti∥∞ < µ−1 holds. Then, by the means of
the small-gain theorem, the feedback controller ǔi = −µy̌i
stabilizes the system (19). The resulting state matrix is then
equal to

Ǎi − µB̌iČi

=

 Ai+BiK x
i −µ[ I −5ω

i −5ν
i ]LiCi 0 0 0

−µ[ I −5ω
i −5ν

i ]LiCi Ai −Bi0ω
i −Bi0ν

i
−µLω

i Ci 0 P 0
−µLν

i Ci 0 0 S

 .

However, since λ(Ǎi − µB̌iČi) = λ(Ai) ∪ λ(P) ∪ λ(S) ∪ λ
(Ai+BiK x

i −µ(Lxi − 5ω
i L

ω
i − 5ν

i L
ν
i )Ci), it can be concluded

that it is impossible to stabilize the system with the controller
ǔi = −µy̌i. Thus, (18) must hold. □

So far we have not justified the necessity of the Assump-
tion 1. This will be done in the following corollary.
Corollary 1: The stability condition (15) can be satisfied

if and only if Assumption 4.1 holds and

µ >
1 + ρ(Ā)

2
. (20)

Proof: In order for the condition (15) to be satisfiable,
it is clear that γ ∗ must be greater than the lower bound of
∥Ti∥∞, i.e. the following must hold

ρ(|µI − L̄|) < µ. (21)

If part: According to Lemma 1, if Assumption 4.1 holds,
then ρ

(∣∣µI − L̄
∣∣) = |µ − 1| + ρ

(
Ā

)
and ρ(Ā) < 1.

Therefore, (21) can be rewritten as |µ − 1| + ρ(Ā) < µ.
It can be easily checked that this inequality holds for any µ

that satisfies (20).
Only if part: Suppose that Assumption 4.1 does not hold.

Then, from Lemma 1 it follows that ρ(Ā) = 1. Therefore,
ρ

(∣∣µI − L̄
∣∣) = |µ − 1|+1, which is always greater or equal

to µ. □

B. CONTROL LAW SYNTHESIS
Generally, it is difficult to find Ki and Li such that ∥Ti∥∞ <

γ ∗, since the gain matrix Li is embedded in both the state
and input matrix, thus a general H∞ design method can-
not be applied. Instead, we will first determine the gain Li
such that Hi + µLiGi is stable. Note that it is always pos-
sible to find such Li since the pair (Hi,Gi) is detectable by
Assumption 4.1. After Li is determined, the problem reduces
to finding the gain K x

i such that (15) holds, since Kω
i =

0ω
i − K x

i 5ω
i , K ν

i = 0ν
i − K x

i 5ν
i .

The problem of determining the gain matrix Li such that
Hi+µLiGi is Hurwitz stable is well-studied in the traditional
control literature. In this paper, we introduce the following
algebraic parametric Ricatti equation (ARE)

Xi(ϵi)HT
i + HiXi(ϵi) − δiXi(ϵi)GTi GiXi(ϵi) + ϵiI = 0, (22)

where δi is a small positive constant and ϵi > 0 is an
adjustable parameter. After solving (22) for Xi(ϵi), the gain
Li is calculated as Li = −µ−1Xi(ϵi)GTi .
For the fixed Li, the problem can be converted to the

standardH∞ static output feedback (SOF) problem. Namely,
the state matrix Âi can be rewritten as Âi = Āi + B̄iK x

i C̄i,
where

Āi =

[
Ai

[
0 Bi0ω

i Bi0ν
i

]
0 Hi + µLiGi

]
, (23)

B̄i =

[
Bi
0

]
, C̄i =

[
I

[
I −5ω

i −5ν
i

]]
. (24)

The task is to find the output feedback gain K x
i such that the

transfer function Ti(s) = Ĉi(sI − Āi − B̄iK x
i C̄i)

−1B̂i is stable
and ∥Ti∥∞ < γi, for i = 1, . . . ,N . An additional variable
γi ≤ γ ∗ has been introduced, which gives more freedom
for setting the upper bound of ∥Ti∥∞. Necessary condition
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Algorithm 1H∞ Static Output Feedback (SOF) Algorithm
1: Set P0 = I and Q0 = I
2: Solve the following optimization problem for
P,Q,V1,V2

min trace(PQ0 −QP0), s.t. constraintsPĀi + ĀTi P + V1C̄i + C̄T
i V

T
1 PB̂i ĈT

i
B̂Ti P −γiI 0
Ĉi 0 −γiI

 < 0

ĀiQ+QĀTi + B̄iV2 + VT2 B̄
T
i B̂i ĈT

i Q
B̂Ti −γiI 0
QĈi 0 −γiI

 < 0

(
P I
I Q

)
≥ 0,P > 0,Q > 0

3: Check the following conditions:
1) if trace(PQ)−n < ε1, a prescribed tolerance, go to

Step 4
2) if trace(PQ) − trace(P0Q0) < ε2, a prescribed

tolerance, initial P may not be found, EXIT
3) otherwise set P0 = P,Q0 = Q and go to Step 2.

4: Set P0 = P . Solve the following optimization problem
for K x

i with given P

min α, s.t. constraint

8 = PĀi + ĀTi P + PB̄iK x
i C̄i + C̄T

i K
xT
i B̄Ti P − αP 8 PB̂i ĈT

i
B̂Ti P −γiI 0
Ĉi 0 −γiI

 < 0

5: if α ≤ 0, the stabilizing K x
i is found, EXIT

6: Solve the following optimization for P problem with
given K x

i :

min α, s.t constraint from the Step 4.

7: if α ≤ 0, the stabilizing K x
i is found, EXIT

8: Solve the following optimization problem for P with
given K x

i and α:

min trace(P) s.t constraint from the Step 4.

9: Check the following conditions:
1) if ∥P − P0∥ / ∥P∥ < δ, the solutionmay not exists,

EXIT
2) otherwise go to Step 4

for solving the H∞ SOF problem is that Assumption 3
holds.

There are many available algorithms in the literature for
solving the H∞ SOF problem [41], [42], [43]. In this paper,

Algorithm 2 Design of ROF Controllers
1: Set µ according to Corollary 1. Initialize ϵi and δi.
2: Compute Li = −µ−1Xi(ϵi)GTi , where Xi(ϵi) is the solu-

tion of the ARE:

Xi(ϵi)HT
i + HiXi(ϵi) − δiXi(ϵi)GTi GiXi(ϵi) + ϵiI = 0

(25)

3: Compute the gain K x
i by Algorithm 1.

4: If the Algorithm 1 does not return the stabilizing solution,
return to Step 1 and decrease ϵi. If the Algorithm 1
returns the stabilizing solution, but performance is not
satisfactory, return to Step 1 and increase ϵi.

we have adopted the iterative LMI (ILMI) approach devel-
oped in [43], which utilizes a separate algorithm to optimize
initial values of the variables and thus is very effective
in finding the solution. The ILMI method is presented in
Algorithm 1, where the notation is adapted to one used in this
paper.

Further discussion regarding the solvability and impor-
tant properties of ARE (22) will be provided in Section V.
It should be noted that although fixing the gain Li gen-
erally reduces the freedom for determining K x

i , it will be
shown that the proposed approach always ensures the solv-
ability of the COR problem for certain types of plants and
exosystems.

The complete procedure for determining the gains Li and
K x
i is summarized in Algorithm 2.

IV. COR IN NETWORKS OF INTROSPECTIVE AGENTS
This section presents a distributed OF controller and dis-
cusses the MAS stability, as well as the controller design
procedure.

Consider the following OF controller[
˙̂xi
˙̂ωi

]
=

[
Ai Ei
0 P

] [
x̂i
ω̂i

]
+

[
Bi
0

]
ui

+

[
Lxi
Lω
i

] (
yi −

[
Ci Q

] [
x̂i
ω̂i

])
,

˙̂νi = Sν̂i + Lν
i εi,

ui = K x
i x̂i + Kω

i ω̂i + K ν
i ν̂i, i = 1, . . . ,N , (26)

where x̂i ∈ Rni , ω̂i ∈ Rqω and ν̂i ∈ Rqν are the local
estimates of xi, ω and ν, respectively. The observer gains
Lxi , L

ω
i , Lν

i and the control law gains K x
i , Kω

i , K ν
i are the

parameters to be designed.
In the case of the introspective agents, the virtual error

signal εi ∈ Rp is defined as

εi
1
=

N∑
j=0

lijyj − µ(yi − F ν̂i), i = 1, . . . ,N , (27)

where µ is a real scalar. Note that the additional term in
equation (27) is different from that in equation (8) since the
ith agent has access to its own output yi.
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Remark 5: The availability of the local output yi allows for
the design of more efficient control strategies for the intro-
spective agents. In (26), the reference signal is estimated by
a distributed observer using a virtual error signal, while the
disturbance and system states are estimated based on locally
available information. This approach substantially differs
from the approaches [31], [32], where both the reference and
disturbance signals are estimated by a distributed observer
based on information diffused through the network. The
benefit of constructing a local observer is that it facilitates
the design of the observer gains.

Let Kω
i and K ν

i be designed in the same way as in (9).
Define the tracking error, local observer error and distributed
observer error as

ei = xi − 5ω
i ω − 5ν

i ν, ẽi =

[
x̃i
ω̃i

]
=

[
x̂i − xi
ω̂i − ω

]
,

ν̃i = ν̂i − ν.

Substituting ei, ẽi, ν̃i into (26) yields the following closed-
loop dynamicsėi˙̃ei

˙̃νi

 =

Ai + BiK x
i BiK xω

i BiK ν
i

0 Hi + Lxωi Gi 0
0 0 S + µLν

i F

 eiẽi
ν̃i


+

 0
0
Lν
i

 ξi.

Similarly to the procedure in the previous section, define
ξi =

∑N
j=1 lijCjej − µCiei and

Hi =

[
Ai Ei
0 P

]
, Gi =

[
Ci Q

]
,

K xω
i =

[
K x
i Kω

i

]
, Lxωi =

[
Lxi
Lω
i

]
.

Following the rule (11) for notations, the closed-loop state
matrix can be written as

ACL =

 A+ BK x BK xω BK ν

0 H + LxωG 0
Lν(L̃− µI )C 0 S̃ + µLν F̃

 , (28)

where S̃ = IN ⊗ S, F̃ = IN ⊗ F . Under the same arguments
as in the previous section, it can be concluded that ACL being
Hurwitz is equivalent to solving the COR problem.

A. STABILITY ANALYSIS
Let us first define ĀCL =

[
A+BK x BK ν

Lν (L̃−µI )C S̃+µLν F̃

]
. Then, the

following lemma is of particular importance for the stability
analysis.
Lemma 3: The closed-loop state matrix ACL in (28) is

stable if and only if thematrices H+LxωGand ĀCL are stable.
Proof: The proof follows from the similarity relation

ACL ∼

[
H + LxωG 0

BK xω

0 ĀCL

]
,

where the structure of the matrix allows the separation prin-
ciple to be applied. □

Under the Assumption 4.2, it is always possible to find the
gain matrix Lxωi such that Hi + Lxωi Gi is Hurwitz stable for
i = 1, . . . ,N , which further implies stability of the matrix
H + LxωG.

In order to analyze stability properties of ĀCL , let us first
introduce the matrices

Âi =

[
Ai + BiK x

i BiK ν
i

0 S + µLν
i F

]
, B̂i =

[
0
Lν
i

]
, Ĉi =

[
Ci 0

]
,

(29)

with the corresponding transfer function

Ti(s) = Ĉi(sI − Âi)−1B̂i. (30)

Then, we present the stability condition for the multi-agent
system under the OF protocol.
Theorem 2: Consider a multi-agent composed of (1), (2)

and (3). Then, if Hi + Lxωi Gi is Hurwitz stable and Assump-
tions 1-5 hold, the OF protocol (26) solves the COR problem
provided that the following condition holds

∥Ti∥∞ < γ ∗, i = 1, . . . ,N , (31)

where γ ∗
=

1
ρ(|µI−L̃|)

.

Proof: Given the Hurwitzness ofHi+Lxωi Gi, it remains
to ensure the stability of ĀCL according to Lemma 3.
The stability analysis of ĀCL is analogous to the proof
of Theorem 1, with respect to the newly defined matri-
ces Âi, B̂i, Ĉi and the corresponding transfer function
Ti(s) = Ĉi(sI − Âi)−1B̂i. □
Similarly to the previous section, we establish the lower

bound for ||Ti||∞.
Lemma 4: Suppose that the transfer function Ti(s) is sta-

ble. Then, µ−1 is a lower bound of ∥Ti∥∞, i.e.

∥Ti∥∞ ≥
1
µ

, i = 1, . . . ,N , (32)

Proof: Introduce the following coordinate transforma-
tion matrix

Mi =

[
I −5ν

i
0 I

]
,

Then, the new system matrices can be expressed as Ǎi =

MiÂiM
−1
i , B̌i = MiB̂i and Či = ĈiM

−1
i , that is

Ǎi =

[
Ai + BiK x

i −µ5ν
i L

ν
i F

0 S + µLν
i F

]
,

B̌i =

[
−5ν

i L
ν
i

Lν
i

]
, Či =

[
Ci F

]
. (33)

The rest of the proof is analogous to the proof of Lemma 2.
□

Corollary 2: The stability condition (31) can be satisfied
if and only if Assumption 4.1 holds and µ >

1+ρ(Ā)
2 .

Proof: The proof is analogous to the proof of
Corollary 1. □
Remark 6: A special type of graphs that are extensively

investigated in the literature of cooperative control are
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acyclic graphs [44]. Acyclic graphs are characterized by a
lower triangular matrix L̄ with ones on the main diagonal.
The consequence of this structure is that for µ = 1 one gets
γ ∗

→ ∞, which means that for acyclic graphs both the ROF
and OF protocols solve the COR problem with a sufficient
condition being that local transfer functions are stable.

B. CONTROLLER SYNTHESIS
In this subsection, an algorithm for synthesis of the OF con-
troller is provided. Here we encounter the same difficulty as
in the case of the ROF protocol, which is the simultaneous
calculation of Ki and Lν

i . Therefore, we first find the gains
Lxωi and Lν

i such that Hi +Lxωi Gi and S +µLν
i F are Hurwitz

stable, which is always possible under Assumption 4.2. Then,
under Assumption 3, we will determine K x

i such that Ai +

BiK x
i is stable and ∥Ti∥∞ < γi, where γi ≤ γ ∗.

Observe that, according to Lemma 3, the eigenvalues of
the matrix Hi + Lxωi Gi can be assigned independently of
the remaining eigenvalues of the matrix ACL . Therefore, Lxωi
can be obtained using standard ARE-based methods. In this
paper, we use the following ARE

Yi(κi)HT
i + HiYi(κi) − Yi(κi)GTi GiYi(κi) + κiI = 0, (34)

which always has a solution for κi > 0 under Assump-
tion 4.2 [45]. The stabilizing gain is then computed as Lxωi =

−Yi(κi)GTi .
On the other hand, the gain Lν

i is computed as Lν
i =

−µ−1Xi(ϵi)FT , where Xi(ϵi) is the solution of the ARE intro-
duced in the Section III-B:

Xi(ϵi)ST + SXi(ϵi) − δiXi(ϵi)FTFXi(ϵi) + ϵiI = 0. (35)

In the previous equation, δi represents a small positive con-
stant, and ϵi > 0 is an adjustable parameter.

Under the OF protocol, the state matrix Âi can be rewritten
as Âi = Āi + B̄iK x

i C̄i, where

Āi =

[
Ai Bi0ν

i
0 S + µLν

i F

]
, (36)

B̄i =

[
Bi
0

]
, C̄i =

[
I −5ν

i

]
. (37)

Therefore, K x
i can be determined by using the Algorithm 1.

The other feedforward gains are computed as Kω
i = 0ω

i −

K x
i 5ω

i and K ν
i = 0ν

i − K x
i 5ν

i .
The complete procedure for control synthesis is sum-

marized in Algorithm 3. Further discussion regarding the
solvability of the COR problem by the proposed approach is
provided in Section V.

V. SOLVABILITY ANALYSIS
In this section, under some additional assumptions for
leader’s dynamics, we provide further analysis regarding the
solvability of the COR problem. It is shown that under the
ROF protocol, the existence of a solution to the COR problem
can be guaranteed whenever λ(Ai) ∈ C̄−, i = 1, . . . ,N .
Furthermore, under the OF protocol, a solution to the COR
problem always exists.

Algorithm 3 Design of OF Controllers
1: Set µ according to Corollary 2. Initialize κi,ϵi and δi.
2: Compute Lxωi = −Yi(κi)GTi , where Yi(κi) is the solution

of the ARE:

Yi(κi)HT
i + HiYi(κi) − Yi(κi)GTi GiYi(κi) + κiI = 0

(38)

3: Compute Lν
i = −µ−1Xi(ϵi)FT , where Xi(ϵi) is the solu-

tion of the ARE:

Xi(ϵi)ST + SXi(ϵi) − δiXi(ϵi)FTFXi(ϵi) + ϵiI = 0,
(39)

4: Compute the gain K x
i by Algorithm 1.

5: If the Algorithm 1 does not return the stabilizing solution,
return to Step 1 and decrease ϵi. If the Algorithm 1 returns
stabilizing solution, but performance is not satisfactory,
return to Step 2 and increase ϵi.

Prior to the further discussion, we introduce the two lem-
mas that are fundamental for establishing subsequent results.
Lemma 5: Consider a system with the state-space

realization

ẋ = (A+ µLC)x + Lu

y = Cx, (40)

and corresponding transfer function

G(s) = C(sI − A− µLC)−1L, (41)

where A is an anti-Hurwitz stable matrix (i.e. it has at least
one eigenvalue in C̄+), and the pair (C,A) is detectable.
Then, for every χ > µ−1 there exists a gain matrix L such
that ∥G∥∞ < χ . Moreover, the gain matrix can be obtained
as L = −µ−1PCT , where P > 0 is a solution of the following
ARE

PAT + AP+ ϵI +

(
1

µ2χ2 − 1
)
PCTCP = 0, (42)

with ϵ being a positive constant.
Proof: According to the bounded real lemma

(BRL) [46], A + µLC is Hurwitz stable and ∥G∥∞ < χ ,
if there exists P > 0 satisfying

P(A+ µLC)T + (A+ µLC)P+
1
χ2 LL

T
+ PCTCP < 0.

(43)

Let L = −µ−1PCT . Then, the inequality (43) becomes

PAT + AP+

(
1

µ2χ2 − 1
)
PCTCP < 0. (44)

Since A has eigenvalues with nonnegative real parts, there
does not exist P > 0 that satisfies the inequality (44) when-
ever µ−2χ−2

− 1 ≥ 0, thus χ > µ−1 must hold.
The inequality (44) is satisfied for every P > 0 that is a

solution of the ARE (42). The existence of such P is ensured
by detectability of (C,A) [45]. □
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FIGURE 1. Maximal singular value with respect to the frequency
(∥G(jω)∥) of two-input, two-output system for µ−1

= 100,

χ = µ−1 + 0.01 and different values of ϵ. The system is of the seventh
order, with two pairs of poles on the imaginary axis, at ±jω1 and ±jω2.

It should be noted that −µ−1PCT is not a unique substitu-
tion for the gain L in terms ofP. However, this choice of L can
lead to the minimum possible norm of G(s). In the following,
we establish the value of that minimum norm.
Lemma 6: Consider the system given by (40), (41), where

A is an anti-Hurwitz stable matrix. Then, ||G||∞ ≥ µ−1.

Proof: Under the the feedback controller u = −µy, the
closed loopmatrix of (41) is equal to A, which is anti-Hurwitz
stable by assumption. Therefore, according to the small-gain
theorem, ||G||∞ ≥ µ−1 must hold. □
Remark 7: In the case when A is an anti-Hurwitz stable

matrix, Lemma 5 and Lemma 6 imply that there always exists
a gain L such that ∥G∥∞ ∈ [µ−1, χ), where χ can be chosen
to be arbitrarily close to µ−1. It should be noted, that when
A is Hurwitz, there is no restriction on the lower bound of
∥G∥∞ since the inequality can be satisfied for any χ > 0.
Remark 8: Suppose that χ is chosen as χ = µ−1

+ 1,
where 1 > 0 is a small constant. Then, for any ϵ >

0, we have ∥G∥∞ ≈ µ−1. Furthermore, it is well-known
that the solution P(ϵ) of the ARE (42) is monotonically
non-decreasing with respect to ϵ. In the special case, when
state matrix has eigenvalues in the closed left half-plane,
ϵ → 0 corresponds to P(ϵ) → 0 [47], [48], thus leading
to L → 0.
In order to illustrate the scenario in Remark 8, Fig. 1

shows the largest singular value with respect to frequency, i.e.
||G(jω)||, for a marginally stable MIMO system. The system
is of the seventh order, with two pairs of poles at ±jω1 and
±jω2. As it can be seen, ∥G∥∞ → µ−1 for ϵ = 10−10, where
the largest singular values occur at the frequencies ω1 and
ω2. On the rest of the frequency range, ||G(jω)|| decreases
as frequencies get further from ω1 and ω2, due to L → 0.
An increase of the value of ϵ causes a larger gain matrix L,
which further increases ||G(jω)|| on the rest of the frequency
range. However, ||G||∞ remains the same.

A. SOLVABILITY ANALYSIS UNDER ROF PROTOCOL
In this subsection we provide some additional results regard-
ing the solvability of the COR problem under the ROF
protocol.

First, introduce the following matrices

Ȟi =

Ai −Bi0ω
i −Bi0ν

i
0 P 0
0 0 S

, Ľi =

 I −5ω
i −5ν

i Li
Lω
i
Lν
i

,

Ǧi =
[
−Ci 0 0

]
.

Then, by taking into account (19), the transfer function (14)
can be rewritten in terms of these matrices as

Ti(s) = Ci(sI − Ai − BiK x
i )

−1 [
I −5ω

i −5ν
i

]
Li

+

(
I + µCi(sI − Ai − BiK x

i )
−1 [

I −5ω
i −5ν

i

]
Li

)
× Ǧi(sI − Ȟi − µĽiǦi)−1Ľi. (45)

Define the new transfer function T̄i(s) = Ǧi(sI − Ȟi −

µĽiǦi)−1Ľi, which can be shown to be identical to T̄i(s) =

Gi(sI−Hi − µLiGi)−1Li. This leads to a more concise repre-
sentation of (45) in terms of matrices in original coordinates

Ti(s) = Ci(sI − Ai − BiK x
i )

−1 [
I −5ω

i −5ν
i

]
Li

+

(
I + µCi(sI − Ai − BiK x

i )
−1 [

I −5ω
i −5ν

i

]
Li

)
× T̄i(s). (46)

Assumption 6: The eigenvalues of Ai, i = 1, . . . ,N ,
belong to the closed left half-plane of the complex plane,
while the eigenvalues of the matrices P and S lie on the
imaginary axis.
Theorem 3: Suppose that µ is chosen such that the con-

dition (20) holds. Then, under Assumptions 1-6, the COR
problem is always solvable by ROF protocol (7). Moreover,
for a sufficiently small ϵi, the values of Ki and Li, i =

1, . . . ,N, can be obtained by Algorithm 2.
Proof: The ARE (25) in Algorithm 2 corresponds to the

ARE (42) when δi = 1−µ−2χ−2. The Assumption 6 implies
that Hi has eigenvalues in the closed left half-plane, thus by
Remark 8, Lν

i → 0 as ϵi → 0. Therefore, for any gainK x
i that

stabilizes Ai + BiK x
i we can write Ti(s) → T̄i(s). Choosing a

sufficiently small δi in Algorithm 2 leads to
∥∥T̄i∥∥∞

→ µ−1,
thus implying ||Ti||∞ → µ−1. The rest of the proof follows
from Corollary 1. □
Remark 9: The Theorem 3 guarantees the existence of a

solution for agents with poles in the closed left half-plane for
ϵi → 0. On the other side, the system response becomes faster
as ϵi increases because Xi(ϵi), and hence the control input,
also increase with ϵi. Even though for a larger ϵi we still
have ||T̄i||∞ → µ−1, the other terms in Ti(s) become non-
negligible, leading to a larger ||Ti||∞. This makes it less likely
to find K x

i that solves the H∞ SOF problem. Furthermore,
it should be noted that if either an agent or an exosystem
has poles in the open right half-plane, the existence of a
solution cannot be guaranteed in advance, as it is not possible
to achieve Li → 0 for any ϵi. Namely, as the unstable
poles of the exosystems or agents move further right in the
complex plane, the required stabilizing gain Li increases.
Consequently, minimizing ∥Ti∥∞, which depends on both Li
and the follower state model, becomes more difficult. It is
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important to note that, in general, the H∞ norm of linear
systems cannot be arbitrarily reduced by using state or output
feedback [49].
Remark 10: Although seemingly restrictive, the Assump-

tion 6 covers a wide variety of important and common
agents’ dynamics in multi-agent systems. An example are
agents with first and second order integrator dynamics [10],
[11]. The assumption that the the poles of exosystems lie on
imaginary axis is a common assumption in many existing
results such as [7], [16], [18], [21], [31], [32], [39], and
[37]. Under the assumption, the exosystems associated with
matrices S and P can generate a diverse range of reference
and disturbance signals that are interesting in practice. This
includes step signals, polynomial signals, sinusoidal signals
of various frequencies, and their linear combinations [31].
Possible practical applications include cooperative tracking
and formation control of mobile vehicles [2], [39], control of
unmanned aerial vehicles [33], control of robotic manipula-
tors [20], and so on.
Remark 11: Solvability of the COR problem for certain

classes of agents’ dynamics has also been discussed in
related works. For example, in [27] it is assumed that the
agents are minimum-phase and with an identical relative
degrees. In [37], an H∞ based design method is proposed,
but it does not guarantee that the stabilizing controller gains
can be found, even when the agents’ dynamics is stable.
Similarly, [28] considers the output synchronization of the
non-introspective agents that are minimum-phase and SISO.

B. SOLVABILITY ANALYSIS UNDER OF PROTOCOL
In this subsection, we analyze solvability of the COR problem
under the OF protocol.

In terms of the matrices introduced in (33), the transfer
function (30) can be rewritten as

Ti(s) = −Ci
(
sI − (Ai + BiK x

i )
)−1

5ν
i L

ν
i

+

(
I − µCi

(
sI − (Ai + BiK x

i )
)−1

5ν
i L

ν
i

)
T̄i(s),

(47)

where T̄i(s) = F
(
sI − (S + µLν

i F)
)−1Lν

i , which corre-
sponds to the form in Lemma 5.
Assumption 7: The eigenvalues of the matrix S lie on the

imaginary axis.
Theorem 4: Suppose that µ is chosen such that the condi-

tion (20) holds. Then, under Assumptions 1-5 and 7, the COR
problem is always solvable by OF protocol (26). Moreover,
for a sufficiently small ϵi, the values of Ki and Li, i =

1, . . . ,N, can be obtained by Algorithm 3.
Proof: The ARE (39) in Algorithm 3 corresponds to the

ARE (42) when δi = 1− µ−2χ−2. Under the Assumption 7,
S is marginally stable, thus by Remark 8, Li → 0 as ϵi → 0.
Therefore, for any gainK x

i that stabilizes Ai+BiK x
i it follows

that Ti(s) → T̄i(s). The choice of a sufficiently small δi in
Algorithm 3 leads to

∥∥T̄i∥∥∞
→ µ−1, implying ||Ti||∞ →

µ−1. The rest of the proof follows from Corollary 2. □

Remark 12: Along with Assumption 7, some existing
results require additional assumptions in order to guar-
antee the solvability of the COR problem. For example,
the observer-based low-gain method [31] guarantees the
existence of a solution only when Ei = 0, while the
approach [36] requires the agents to be right-invertible.
Furthermore, contrary to some existing works, the proposed
method does not impose any restrictions on the spectrum of
the matrix P.

Finally, for the sake of clarity and to avoid repetition,
we note that conclusions can be drawn in this section anal-
ogously to those presented in Remark 9.

VI. SIMULATION RESULTS
A. EXAMPLE 1
Consider a network consisting of a leader and six followers
with the following dynamics


ν̇ =

[
0 −1
1 0

]
ν, y0 =

[
1 0
0 1

]
ν,

ω̇ =

[
0 2

−2 0

]
ω,

ẋi =

[
0 1
0 0

]
xi +

[
1 0
0 −1

]
ui +

[
1 −1

−1 0

]
ω,

yi =

[
1 0
0 1

]
xi +

[
0 1
0 0

]
ω, i = 1, 4;

ẋi =

0 1 0
0 0 −1
0 0 0

 xi +

1 0
1 −1
0 1

 ui +

−2 1
1 0
0 −1

 ω,

yi =

[
1 1 0
0 1 1

]
xi +

[
0 1
0 0

]
ω, i = 2, 5;

ẋi =

0 1 0
0 0 1
0 −36 0

 xi +

1 0
1 0
1 1

 ui +

1 0
0 0
0 1

 ω,

yi =

[
1 0.5 0
0 −1 1

]
xi +

[
0 1
0 0

]
ω, i = 3, 6.

The solutions of the regulator equations (6) for agents
i = 1, 4, i = 2, 5, and i = 3, 6 are respectively:

0ω
i =

[
1 1

−1 0

]
, 0ν

i =
[ 0 −2

−1 0

]
, 5ω

i =
[
0 −1
0 0

]
,

5ν
i =

[
1 0
0 1

]
,

0ω
i =

[
0 3.5

−5 3

]
, 0ν

i =
[

−1 2
2 2

]
, 5ω

i =

[ 1 1.5
−1 −2.5
1 2.5

]
,

5ν
i =

[
−1 1
2 −1

−2 2

]
,

0ω
i =

[
0.67 0.33
0 −13.33

]
, 0ν

i =
[
0 −1
1 1

]
, 5ω

i =

[
0 −0.83
0 −0.33
0 −0.33

]
,

5ν
i =

[ 1 0
0 0
0 1

]
.
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The network topology among agents is described by

L̄ =


[r]1 −0.10 0 −0.1 0 −0.8

−0.12 1 −0.12 0 −0.12 0
0 −1 1 0 0 0

−0.67 −0.33 0 1 0 0
0 −0.8 0 0 1 −0.2
0 −0.33 0 0 −0.33 1

 .

By setting µ = 1, for the network topology defined by L̄,
we obtain γ ∗

= ρ(µI − L̄)−1
= 1.51. Based on Theorems 1

and 2, in order to guarantee the stability of the MAS, theH∞

norms ∥Ti(s)∥∞, for i = 1, . . . ,N , must be smaller than γ ∗.

1) ROF PROTOCOL
The observer gains are calculated by solving ARE (25) in
Algorithm 2 for ϵi = 10 and δi = 0.1. The resulting observer
gains are:

Li =
[ 19.17 9.99 −9.25 1.97 −6.32 6.18

−2.59 9.09 −9.30 4.91 −1.49 −10.94

]T
, i = 1, 4,

Li =
[ 28.11 15.48 −9.98 −2.01 10.58 −0.25 8.85

−16.60 11.01 0.32 3.48 −8.48 1.25 −10.95

]T
, i = 2, 5,

Li =
[ 5.07 1.46 0.56 −8.24 10.98 −6.69 2.04

−5.81 −6.55 45.76 −2.40 2.41 −1.31 −12.22

]T
, i = 3, 6.

Then, the gain K x
i for each agent is determined using

Algorithm 1, which is implemented in YALMIP, a MATLAB
optimization toolbox. For γi = 1.2, the following gains are
obtained:

K x
i =

[
−4.95 −0.60
−0.60 2.26

]
, i = 1, 4,

K x
i =

[
−2.39 −3.38 −0.59
2.55 3.50 −0.15

]
, i = 2, 5,

K x
i =

[
−2.49 −3.10 0.00
2.39 39.35 −4.71

]
, i = 3, 6.

In the final step, the gains Kω
i and K ν

i are calculated as Kω
i =

0ω
i −K x

i 5ω
i andK

ν
i = 0ν

i −K
x
i 5ν

i , respectively. The resulting
H∞ norms are: ∥Ti∥∞ = 1.14 for i = 1, 3, ∥Ti∥∞ = 1.12 for
i = 2, 5 and ∥Ti∥∞ = 1.15 for i = 3, 6. Since these norms
are smaller than γ ∗, we can conclude that the COR problem
is solved.

In Fig. 2, the output regulation errors of the agents under
the designed controller are shown. It can be seen that the
ROF protocol ensures tracking of the reference signal, even
in the presence of disturbance. Furthermore, in Fig. 3 the
output trajectories are depicted, demonstrating that all outputs
synchronize with the reference trajectory.

2) OF PROTOCOL
In the case of the OF protocol, by solving the ARE (39) in
Algorithm 3 for ϵi = 10 and δi = 0.1, we obtain the following
distributed observer gains:

Lν
i =

[
−10 0
0 −10

]
, i = 1, . . . ,N .

Similarly, the gains of the local observer are obtained by
solving the ARE (38) for κi = 1, but their specific values
are not presented for the sake of brevity. For γi = 1.2, the

FIGURE 2. Output regulation errors of the followers under the ROF
protocol.

FIGURE 3. Output trajectories of the followers (solid lines) and reference
trajectory (dashed line) under the ROF protocol.

Algorithm 1 gives the following controller gains:

K x
i =

[
−4.27 −0.67
−0.67 1.78

]
, i = 1, 4,

K x
i =

[
0.35 0.47 0.72
1.88 3.00 0.57

]
, i = 2, 5,

K x
i =

[
−0.55 −1.13 −1.00
1.55 37.96 0.44

]
, i = 3, 6.

The remaining gains are determined asKω
i = 0ω

i −K x
i 5ω

i and
K ν
i = 0ν

i − K x
i 5ν

i . As a result, we have: ∥Ti∥∞ = 1.19 for
i = 1, 3, ∥Ti∥∞ = 1.18, for i = 2, 5 and ∥Ti∥∞ = 1.003 for
i = 3, 6. Since the resulting norms are smaller than γ ∗,
we conclude that the COR problem is solved.

Figs. 4 and 5 show the output regulation errors and output
trajectories under the designed OF protocol. It can be seen
that the errors asymptotically converge to zero, while agent
outputs synchronize with the reference trajectory, indicating
successful output regulation.

B. EXAMPLE 2
In this example, we consider the MAS from Example 1 and
investigate the influence of various design parameters on
closed-loop performance for both the ROF and OF protocols.
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FIGURE 4. Output regulation errors of the followers under the OF
protocol.

FIGURE 5. Output trajectories of the followers (solid lines) and reference
trajectory (dashed line) under the OF protocol.

In the first scenario, the parameter ϵi is varied, while other
parameters are the same as in the previous example. Fig. 6
shows the mean squared output regulation error for all agents,
which is calculated as MSE =

1
N

∑N
i=1 ỹ

T
i ỹi. The figure

indicates that increasing ϵi enhances the performance of the
MAS. However, for ϵi = 10 and ϵi = 100, the difference in
performance is not too significant, meaning that the excessive
values for ϵi will not improve the performance substantially.
It is important to note that by increasing ϵi, the gains Li
(ROF) and Lν

i (OF) also increase, and for some high values
(e.g., 104 in this example), the SOF algorithm will not be able
to provide a solution.

In the second scenario, the parameter δi is varied, while the
other parameters are kept the same as in the previous example.
In the case of the ROF protocol, it was not possible to find K x

i
using the SOF algorithm for δi = 100. The resulting MSE
curves are depicted in Fig. 7. Notably, for the ROF protocol,
the output regulation errors decay at the fastest rate when
δi = 0.1, while in the case of the OF protocols, the best

FIGURE 6. Comparison of MSE for different values of parameter ϵi.

FIGURE 7. Comparison of MSE for different values of parameter δi.

performances are obtained for δi = 0.01. Clearly, δi can be
used to adjust performance, but excessive values can lead to
performance deterioration.

C. EXAMPLE 3
In this example, we consider exosystems that have poles with
strictly positive real parts to demonstrate that even when the
existence of a solution cannot be guaranteed in advance, the
proposed method still may solve the COR problem, as dis-
cussed in Remark 9. The exosystem matrices are given by:
S =

[
0.5 1
0 −1

]
and P =

[
0.5 2
0 −2

]
, while the followers’ model

and parameters of Algorithms 1-3 remain unchanged.
In the case of the ROF protocol, the following gains and

H∞ norms are obtained:

K x
i =

[
−9.35 −0.38
−0.38 5.76

]
, ∥Ti∥∞ = 1.19, i = 1, 4,

K x
i =

[ 1.25 −1.18 −1.66
22.14 15.22 −5.70

]
, ∥Ti∥∞ = 1.18, i = 2, 5,

K x
i =

[ 1.25 −1.18 −1.66
22.14 15.22 −5.70

]
, ∥Ti∥∞ = 1.20, i = 3, 6,
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FIGURE 8. Output regulation error under the ROF protocol in the case
when the exosystem matrices are unstable.

FIGURE 9. Output regulation error under the OF protocol in the case
when the exosystem matrices are unstable.

while in the case of the OF protocol we have:

K x
i =

[
−6.51 −1.17
−1.17 6.44

]
, ∥Ti∥∞ = 1.12, i = 1, 4,

K x
i =

[ 1.55 −0.47 −1.54
7.49 4.15 −4.00

]
, ∥Ti∥∞ = 1.17, i = 2, 5,

K x
i =

[
−11.04 −7.98 0.54
9.84 47.20 −5.98

]
, ∥Ti∥∞ = 1.10, i = 3, 6.

Figures 8 and 9 show the output regulation errors of the
followers. It can be seen that, despite the instability of the
exosystem, the errors asymptotically converge to zero. The
output trajectories are not shown as they exhibit exponential
growth.

VII. CONCLUSION
In this paper, we have proposed a novel observer-based
approach for solving the COR problem for heterogeneous
MASs. Two COR protocols have been presented, for net-
works of non-introspective and networks of introspective
agents, respectively. The proposed protocols do not require
the exchange of the controller states and thus reduce the com-
munication burden. Furthermore, algorithms based on H∞

SOF theory and ARE methods are provided for determining

the controller gains. It has been proven that for a large class
of reference signals the solvability of the COR problem can
be guaranteed in advance for: i) introspective agents with
arbitrary dynamics, ii) non-introspective agents with stable
dynamics.

The future work will be focused in two directions. The first
direction is extension of the proposed method to dynamically
switching networks as well achieving robust performance in
a presence of communication delays in the case of intro-
spective agents. The second direction is investigation of the
possibility of applying the proposed method to the leaderless
output synchronization problem and output synchronization
problem over signed graphs.
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