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ABSTRACT The driver’s mental workload is closely related to driving safety. However, how to analyze the
driver’s mental workload in a reasonable and correct manner remains an open question. As an important
factor to evaluate mental workload, changes in physiology encounter two clear problems: (1) Physiological
factor contains multi-characteristic indicators, there is a lack of reasonable means for synchronizing
multi-dimensional tabular data, and the limits of tabular data processing in the evaluation of mental workload
have a significant impact on the evaluation results. (2) The physiological data obtained during the driving
process are of the time-series variety. The correlation of numerous indicators must be considered in
time-series data correlation analysis. Mental workload should be the result of multiple indicators interacting
over time, rather than a single instant. In this regard, we propose a model, that is the long time sequences and
multiple physiological factors(LTS-MPF), for classifying and predicting multiple physiological changes in
the time series. In contrast to previous methods of processing data in a single instant, LTS-MPF can directly
analyze all time-series factors that may affect the driver’s mental workload during a time interval, such
as Heart rate growth, Heart rate variability, and Electrodermal activity, and so on. Furthermore, LTS-MPF
can predict the driver’s mental workload in the next 1s as well as classify the current sequence’s results.
Specifically, we collect physiological data from drivers via sensors. These collected data are processed and
transformed into tabular data. The table’s columns represent features, while the rows represent all feature
data at one moment in time. The row order also indicates the forward and backward order of the different
moments. We convert each row in this table into an embedding feature and feed the entire table into our
proposed LTS-MPF based on the Transformer model. The LTS-MPF achieves time series correlation while
eliminating column feature series irrelevance. The experiment results reveal that LTS-MPF exceeds earlier
techniques in forecasting the driver’s mental workload, with an accuracy of up to 94.3%. And its accuracy
in predicting mental workload in the future for one second can reach 93.5%. These findings suggest that
LTS-MPF can be utilized to not only better evaluate a driver’s mental workload in the present, but also in the
future, providing solid data for early warning of dangerous driving behaviors and enhancing driving safety.

INDEX TERMS Driver’s mental workload, physiological factor, long time sequences and multiple physio-
logical factors, tabular data, transformer model.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Driver’s physiological changes during the driving process
approving it for publication was Chao Tong . show the fluctuation of their mental workload. Furthermore,
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changes in mental workload can have a direct impact on
drivers’ safety. Drivers may delay processing information or
even fail to react in time if their mental workload is too high.
When the driver’s mental load is too low, drivers may make
mistakes due to boredom or burnout. Too high or too low
mental workload also can have a negative impact on driving
safety. Therefore, a proper evaluation of the mental workload
of driving can be a reasonable and effective way to ensure
driving safety.

Given the amount of time and effort spent on establishing
methods to optimize workload, it would appear that every-
thing related to workload and workload assessment would
be well defined and acknowledged. The widely accepted
definition of mental workload was proposed by Hicks in
1979 [1] as “Mental workload is a hypothetical construct
that describes the extent to which the cognitive resources
required to perform a task have been actively engaged by
the operator”. Several methods for evaluating the driver’s
mental workload have been developed. These methods are
divided into three: (1) subjective measurement; (2) perfor-
mance measurement; (3) physiological measurement [2], [3],
[4], [5]. The subjective measurement is based on the driver’s
memory and takes the form of a questionnaire in which
the driver answers questions about the driving process [6].
The subjective measurement is regarded as the most flexible
and convenient technique of burden evaluation due to the
ease of access to its evaluation results and the cheap cost
of collection [4]. However, it does not provide a continuous
form of measurement, and the results are affected by recall
bias and the driver’s short-term memory. After subjective
measurement, answers to the questions filled out by each
driver for each time interval are organized into a table. The
performance measurement refers to the driver’s behaviors
in accomplishing a task, which is divided into two types: a
direct measurement, e.g., vehicle transverse and longitudinal
acceleration, speed, lane shift, distance headway, etc. [7],
[8]and an indirect measurement, e.g., driver’s responses to
stimuli in the driving process [9], [10], [11], Regardless of
the statistical method, these acquired data will eventually be
stored in a table. The physiological measurement covers the
quantitative measurement and visualization of physiological
signals to indirectly detect a driver’s mental workload. Cur-
rently, physiological measurements are divided into five main
categories [12], [13], [14]: eye activity, heart activity, brain
activity, muscle activity, and other related activities. We can
record any type of physiological data while driving using
sensors. Finally, regardless of the method used to collect data
for driver mental workload evaluation, the collected data is
stored in tables. Each column in this table indicates a separate
factor, such as the driver’s heart rate, electromyography, vehi-
cle speed, acceleration, and so on, while each row provides a
specific value of those mentioned characteristics at any given
time.

We expect the collected tabular data should allow us to
directly classify or predict the mental workload of drivers.
Many machine learning algorithms, such as support vector
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machines (SVM), neural networks, random forests, and so on,
were developed to address this issue [15], [16], [17]. How-
ever, these trained models usually fail to generalize effec-
tively and have low accuracy, potentially due to changes in
the data itself. Physiological data fluctuates, whereas velocity
data is linear. Processing both forms of data at the same time
is frequently inadvisable. For example, when just using heart
rate and speed to evaluate mental workload, the same mental
workload evaluation findings are produced if both speed and
heart rate is the same at different times. However, the mental
workload for the same heart rate that is in two processes of
rising and falling should be different. This contradicting data
is damaging to machine learning algorithms because it makes
it difficult to converge the model, decreasing generalization.
However, most of these machine learning algorithms that
identify the driver’s mental workload for each moment of fea-
ture data struggle to depict the driver’s mental workload real-
istically. Because mental workload fluctuates continuously,
itis not as if it was high in the last few moments and suddenly
drops in the next few. As a result, the previous method of data
processing may not be the best option for categorizing mental
workload. In summary, we find (1) the physiological factor is
a multi-characteristic indicator, and there is a lack of reason-
able means for simultaneous processing of multi-dimensional
tabular data, and (2) the physiological data obtained from
the driving process is time-series, and correlation analysis
of time-series data must take into account the correlation of
multi-characteristics.

Recently, there has been much interest in data tables, which
are semi-structured data with variable lengths without a fixed
data model. Strategies based on the Transformer architecture
have also performed well in various table inference tasks.
Many works use Transformer in a BERT manner, serializing
tables or rows into word sequences. That is, each moment
of physiological data is treated as a word, and temporal
multidimensional data as a complete sentence. However,
most Transformer models require table structure lineariza-
tion, or converting the row and column order into a fixed
positional encoding. The before-and-after order of rows in
physiological data indicates their back-and-forth relation-
ship on time series, and they have fixed position encoding.
The before-and-after order of columns, on the other hand,
should be random. The previous linearized table processing
introduces spurious column order bias. As a result, these
models are vulnerable to column order perturbations, which
can affect driver mental workload classification or predic-
tion. In response, we propose LTS-MPF, which is based on
the Transformer structure for processing physiological data
for table comprehension convenience. When linearizing the
acquired tabular data, irrelevance to column order perturba-
tions will be achieved by incorporating structural deviations
of the columns. LTS-MPF has the following characteristics:
(1) It can better handle physiological data without the influ-
ence of column sequences on the model when constructing
time series correlations. (2) It can directly deal with whole
table data with good induction bias of table data, and it

VOLUME 11, 2023



W. Wei et al.: Classification and Prediction of Driver's Mental Workload Based on LTS-MPF

IEEE Access

can more directly classify or predict the mental workload
of drivers. Experiments show that LTS-MPF exceeds ear-
lier techniques in forecasting the driver’s mental workload,
with an accuracy of up to 94.3%. And its accuracy in pre-
dicting mental workload in the future for one second can
reach 93.5%.

All experimental results support the efficacy of LTS-MPF.
The following are our contributions:

« For the first time in the processing of physiological data,
we introduced a new Transformer model LTS-MPF, and
used the column-independent processing approach in
modeling.

« The processing of the entire table achieves physiological
data processing in time series and simultaneous process-
ing of multidimensional data. It is also more consistent
with the overall use of physiological data.

o The proposed LTS-MPF is not only good for classifying
drivers’ mental workload, but also for predicting later
moments, demonstrating its potential value.

Il. RELATED WORKS

A. CLASSIFYING DRIVER MENTAL WORKLOAD USING
PHYSIOLOGICAL DATA

Collecting and analyzing drivers’ physiological data has
become an important way to evaluate the mental workload
of drivers while driving [18], [19], [20]. Their physiolog-
ical changes reflect their mental workload as well. Heart
rate growth (HR growth), Heart rate variability (HRV), and
Electrodermal activity (EDA) are the three most commonly
used physiological indicators to evaluate a driver’s mental
workload. The HR growth rate is determined by the driver’s
HR variability or the number of heartbeats per minute. HR is
a vital physiological indicator of the human body [21], [22],
but it differs among drivers. As a result, the HR growth
rate can better capture the driver’s HR variability at various
points in time. HRV, which refers to how fast or slow the HR
rhythm is at different times of HR, also uses HR as the basic
unit. HRV is studied in driver’s mental workload analysis
tasks as the small rise and fall of the RR interval between
linked HRs [23]. EDA, on the other hand, is an important
physiological indicator. EDA is caused by the autonomic acti-
vation of skin sweat glands in response to emotional stimuli.
In a state of unconscious behavior, EDA can test a driver’s
true psychological state [24]. After obtaining the driver’s
physiological data during driving, the data from the same
moments will be organized together. As a result, the entire
dataset will be converted into physiological data about the
driver at various time intervals. The driver’s mental workload
analysis should then synthesize these characteristics. These
organized tabular data present multidimensional, nonlinear
characteristics in studies. Many studies make use of various
classification algorithms, such as Neural network (NN), Sup-
port vector machines (SVM), and Random forest (RF) [16].
However, in practice, these models can frequently only model
data based on multiple sets of data per moment, and they are
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unable to learn about the entire table of data, i.e., the ability
to learn over a long time series. As a result, models based
on a single point in time frequently struggle to achieve good
generalizability.

B. PROCESSING AND UNDERSTANDING

OF TABULAR DATA

Various tasks in machine learning are performed on long
sequences of multidimensional data, so we should analyze
tabular data. These tasks can be divided into table-based
semantic parsing tasks, table-based automated question and
answer, and table-based fact-checking [25]. The output of
table-based semantic parsing is typically a semantic under-
standing sufficient to perform database queries on table
data [26]. For instance, statistical student achievement infor-
mation is tabular content. In the given task of training the
model to identify the number of individuals scoring above
80 in mathematics, the display of the model can transform
this task into a query statement for the database. The entire
table is transformed into a database, and the answer to the
question is transformed into a data query statement. However,
this model is limited to specific tables, such as questions
about grades in other subjects, and it is difficult to generalize
to other arbitrary questions. It is difficult for us to classify
drivers’ mental workload directly. Table-based automated
question and answer extract answers directly from the table.
For example, the table is the weather conditions for a week.
When the question is whether Tuesday is sunny, the model
can choose the correct answer from the features of Tuesday.
This model learns the model’s global semantic understanding,
and the answer is already on the table. The final type is
table-based fact-checking, which is an output that determines
whether the current table satisfies certain facts based on the
table’s input information [27]. These outputs are typically
multi-categorized and correspond to various situations. Based
on the tabular data, we expect to output the different states
of the current driver’s mental workload load in the driver’s
mental workload classification. In conclusion, we can con-
clude that the classification and prediction of a driver’s mental
workload belong to table-based fact-checking in a tabular
task. We expect to classify the driver’s mental workload
directly from the psychological data collected.

C. PROCESSING AND ANALYSIS OF LONG TIME
SEQUENCES DATA

With the ongoing development of deep learning, there have
been several significant changes in the learning algorithms for
the long time sequences data in recent years. First, researchers
proposed Recurrent Neural Network (RNN) based on deep
learning and neural network knowledge [28], [29]. RNN
will remember the temporal information in the data by
using the previous time sequences’ output as the input for
the current sequences. However, RNN’s memory is rela-
tively short and it will forget the input over long periods.
A more complex model Long Short-Term Memory (LSTM)
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is proposed to better remember long sequences data. It will
discard previously unwanted information selectively while
deciding whether to update new information in the memory
unit. A structure like this allows the previous information
to be kept for a long time without being discarded. On the
other hand, to enhance the correlation between input data.
In the representation of temporal data, word embedding
is also used [30], [31]. In high-dimensional space, it can
represent semantically similar words. After combining the
word embedding representations, an attention mechanism is
also introduced to the learning of long time sequences to
display the specific important representations. During this
time, the Transformer model is a significant departure from
the previous model, completely replacing the RNN model
structure and running parallel to the sequence problem [32],
[33]. Furthermore, Transformer not only improves the ability
to process long time sequences data but also incorporates
attention mechanisms. It is still the standard technique for
processing long sequences data. Subsequently, BERT based
on Transformer takes a step further to demonstrate that Trans-
former has excellent generalization capabilities for numerous
tasks [34]. Tapas is the first Transformer model inspired by
BERT for tabular data. Gradually, Table-based Transformer
models are increasingly being proposed. However, for the
driver’s mental workload classification task, the positional
encoding introduced by these models through the use of the
Transformer can affect the correlation between unordered
features such as HR and EDA. As a result, the question of how
to reasonably model on the acquired physiological tabular
data remains an open question.

lll. METHODS

A. OVERALL APPROACH

For tables with different column orders, LTS-MPF can pro-
duce uniform output. First, the table information will be
converted into a form that LTS-MPF can input, including
token, segment, cell position, row position, rank, and so on.
The organized table data will be input to LTS-MPF, which is a
model built from a self-attentive layer. Subsequently, we use
the output of the model to implement the classification and
prediction of that temporal psychological data.

LST-MPF is constructed from the Transformer model. For
the original table data, we need to convert the table content
into a pattern that the Transformer model can receive, that is
to restore the original data into feature embeddings. The over-
all framework of LST-MPF is shown in Figure 1. For tables
with different column order, they are split into a uniform input
form before being input to LST-MPF. Then after learning of
LST-MPF, the model will output the corresponding embed-
ding features in the last layer. We use the feature vector with
the h[cls] flag bit for the final classification, or prediction.

B. PRE-PROCESSING OF TABLE DATA
Tables can be organized in a variety of ways, and different
column orderings can result in various table forms. These

81728

tables, however, essentially represent the same meaning. For
example, the three tables in Figure 1 each have different
columns, but they all express the same meaning. However,
data location information must be entered as an additional
feature in the Transformer model. Variations in the columns
can also cause input differences, which can affect the model’s
output. Forcing various inputs to produce the same output
would decrease the model’s ability to generalize. As a result,
we remove the column position information while recording
table information. We keep track of each cell’s token and
segment in the original table, as well as its cell location
and row position, and whether it is distinguished by rank as
belonging to the table header or content.

1) EMBEDDING FEATURES OF TABLE DATA

Specifically, LTS-MPF uses flattened text as input, that is
the table content is flattened, and then the entire table con-
tent is input at once. For classification or prediction tasks,
we borrow the strategy from Bert’s method and use [CLS]
as a prefix. To handle the table task, we introduce embed-
dings such as token, segment, cell position, row position, and
rank to understand the overall table better. Suppose, for any
tabular data after flattening, S = {v{,v2, -+, vy}, where n
denotes the length of the whole table. The input to LTS-MPF
is a combination of the following feature embeddings,
asin

token(X) = {xy,, Xpy, - -+, Xy, }
segment(G) = {gseg1 » 8segys T s gseg,,}
cell(C) = {Ccelll s Ceellys " * 5 Ccell,,}
row(R) = {rrovv] s Frowys =0 s ”rown}
rank(Z) = {Zmnkl s Zranksy > s Zrank,,}

where seg;, cell;, row;, rank; correspond to the segment, cell,
row and rank id of the i,/ token, respectively.

2) POSITION ENCODING

For the order of the different fields of the record, such as Cell;,
or row; information, we need to perform position encod-
ing based on the starting position display of the table. The
dimensionality between position encoding and embedding
features is the same so that they can be directly summed up.
In LTS-MPF, we use sine and cosine functions of different
frequencies for encoding,

PE (pos 20y = sin(pos/ 100007/ dmodel
PE(pos,2i+1) = COS(pOS/]OOOOZi/dmOdel)

where pos is the position, and i is the dimension. Each dimen-
sion of the position encoding corresponds to a sine curve.
These wavelengths form a geometric progression from 25 to
10000 - 2r. We chose this function because we assume that it
allows the model to easily learn to pay attention to the relative
positions, since for any determined offset k, PEpos + k can
be expressed as a linear function of PEpos.

VOLUME 11, 2023



W. Wei et al.: Classification and Prediction of Driver's Mental Workload Based on LTS-MPF

IEEE Access

Table Data
Columnl Column2 Column3 Column] Column3 Column2 Column3 Column2 Columnl
Timel datal, data2; data3; datal, data3; data2; data3, data2, datal,
Time2 datal, data2, data3, datal, data3, data2, data3, data2, datal,
Token Wicss  Weolimn! Weoimn2 Weolimnz Waan Waaant Waadt Waaaz Waa2 Waaa
Segment So Sy Si Si Si Si S, S, S, S,
Cell Position CPy CPy CP, CP, CPs CPy CPs CP; CP; CPg
Row Position RP, RP, RP, RPy RP, RP, RP, RP, RP, RP,
Rank Ry Ry Ry Ry Ry Ry R, R, R, R;
Q K v
| | |
Linear Linear Linear
Transformer J‘ l l
LTS-MPF (Self-Attention) Multi-head Attention
¥
Concat
+
Linear
¥
h| CLS] h{:nllmml h(‘ntumn? hCnlumnE hdam 11 hdamE] hdala} 1 hdata 12 hdataD hd:naBZ

FIGURE 1. LTS-MPF general framework diagram.

C. LTS-MPF

For LTS-MPEF, the model is also a transformer-based model.
Each Transformer layer includes a multi-headed self-attentive
sublayer, where each token can pay attention to all tokens.
The transformer structure is actually an extension of the
self-attentive mechanism. It is similar to the variation of
convolutional layers in convolutional neural networks, where
the model can learn more important data better by gradient
descent algorithm. In the model as Figure 1, Q is used for
query, K is used for keyword retrieval, and V represents the
corresponding result. Where Q, K, and V all come from
changes in the data itself, that is the self-attentive mecha-
nism. Subsequently, the output is passed through the fully
connected layer and the classifier, then the final classification
result can be obtained.

1) SELF ATTENTION

The Attention function can be described as mapping query
and a set of key-value pairs to an output, where query, key,
value, and output are all vectors. The output is a weighted
sum of values, where the weights assigned to each value are
computed by the compatibility function of query with the
corresponding key. For the input feature X = x,, after three
learnable matrix variations W<, WX and WV, the result can

be projected to W<, WK and WV
0=xw2 Vv=xw" K=xwK

In practice, we simultaneously compute a set of query’s atten-
tion functions and combine them into a matrix Q. The key
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and value are also packed together into matrices K and V.
We compute the output matrix as,

T

N

where, d; denotes the number of dimensions of the input
feature x,,.

Attention(Q, K, V) = softmax(

)14

2) MULTI-HEAD ATTENTION

We find that it is better to use different linear mappings of
query, key and value to dk, dk and dv dimensions, respec-
tively. Each attention function can divide the original input
feature dimension into n parts, and each part performs a
separate self-attention operation, and the subsequent results
are then aggregated to effectively improve the performance
of the model. This mechanism is also known as multi-head
attention mechanism.

Multi-head attention allows different representation sub-
spaces of the model to jointly focus on information at differ-
ent locations. If there is only one attention head, its average
value will weaken this information.

Multihead(Q, K, V) = Concat(head,, . . ., headh)WO
wherehead; = Attention(QWiQ, KWl-K , VWI-V)
where the mapping is the parameter matrix Wl.Q € Rmoderxdo
WK e RdmoddXdK W.V c RdmndEIXdV and WO c thv X dmodel
2 ’ 1 :

In this work, we use =4 parallel attention layers or heads.
For each head, we use dx = dy = dpoder /h = 64. Although
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split into multiple heads, the total number of dimensions of
the input features does not change, so the total computa-
tional cost is similar to that of single head attention with all
dimensions.

3) FFN FEED-FORWARD MODEL FFN

In addition to the attention sublayer, each layer of the model
contains a feedforward network of fully connected layers.
This feedforward network is applied individually and identi-
cally to each location. It consists of two linear transformations
with a ReLU activation between them.

FFN (x) = max(0, xW| + b1)W, + by

This layer efficiently organizes high attention features and
outputs the most useful features to the next structure.

4) SOFTMAX EMBEDDING AND SOFTMAX

At the end of our model, the output feature embedding has the
same weight as the fully connected layer between the classi-
fiers. Similar to other sequence models, we use the learned
embedding features converted to vectors of the dimension
dimodel. We also use linear transformations and softmax func-
tions to convert the decoder output into probabilities for
classifying and predicting psychological situations.

During the smooth process, the model is trained with super-
vised data, which allows the model to converge. And for
testing, we only need to use this signifier h [cls] to achieve
the final classification and prediction.

IV. EXPERIMENTAL SETUP
A. DATA AND EQUIPMENT
21 participants—15 men and 6 women—aged between
21 and 32 years and reporting 1 to 11 years of driving experi-
ence participated in this study as Table 1. Participants from
South China University of Technology who were in good
physical and mental health made up the participants. Each
one had a valid driver’s permit and gave their permission for
video and physiological signals to be captured while they
were driving. Participants’ vision had an acuity of at least
1.0, according to a new national standard visual acuity chart
(scale: 0.01-2.0). In order to confirm their willingness to take
part in the experiment, participants signed a statement.
Before starting out, drivers would receive a map of the
route. Drivers drove a lavida on the expressway. We ran
a 66.7-kilometer test on the Erenhot-Guangzhou Express-
way from Tangjia Toll Station to Guangning Toll Station in
Guangdong Province. Because there were different driving
scenarios, such as a straight road, a curve, a ramp, a tunnel,
and changing between three or four lanes, the data features
of the physiological indicators obtained were also differ-
ent. Physiological signals were recorded using the sensor
BIOPAC MP160 to ensure the validity of the experimental
findings. On the left and right sides of the chest as well as
the waist, an ECG sensor was fastened. An EDA sensor was
attached to the index and middle fingers of the non-dominant
hand. The ECG input signal was set to between 10 mv, the
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sampling rate was 2000 beats per second, and the maximum
response of the EDA was set at 50/mu S. The observer seated
on the passenger side to connect the BIOPAC MP160 to
the AcqKnowledge 5.0 software on the laptop, as well as to
receive and store experimental data. Environment for process-
ing experimental data: The software environment was made
up of Python 3.7 and AcqKnowledge 5.0. AcqKnowledge
5.0 was primarily used to retrieve physiological signals (such
as ECG and EDA), and Figure 2 depicts the experimental
setup. Extensive data analysis was mostly carried out using
Python 3.7 after data extraction.

In one day, two drivers participated in the driving experi-
ment each driving for half a day. The drivers’ physiological
responses would be monitored by sensors on their bodies and
fingertips. After getting the driver’s approval, the observer
turned on BIOPAC MP160 and AcqKnowledge 5.0 and the
experiment started. The observer’s role was to assist with
device connections, respond to the driver’s inquiries, and
monitor the accuracy of the physiological signal collection
while the driver was driving. Driving time from 8:00 to
19:00, including dinner and rest intervals from 12:00 to 14:00,
totaled 8 hours and 20 minutes. The two ten-minute breaks
occurred at the beginning and end of the driving. The driver
sat in the passenger seat, his eyes closed, and the automobile
was silent during this time. The data collected at this point
provided as a baseline for later data processing. The whole
experimental period was 42 days to ensure that each person
would conduct at least two days of driving experiments and
two non-consecutive days. Therefore, each driver not only
experienced a variety of natural scenarios, such as daytime,
dusk, sunny, rainy days, etc. but also experienced the straight
road, curved road, on-ramp and lane changes, etc., for 8 hours
per day, so the data collected on psychological indicators
were also diverse. Discontinuous driving events for 8 hours
per day also provided data on psychological characteristics
when driving with fatigue. Because the same person drove for
two non-consecutive days, it eliminated the tiny changes in
psychological characteristics caused by experienced driving,
which might result in unrepresentative data.

The final experiment collected 21,648 sets of data,
of which 1,472 sets were invalid and there were 20,176 sets
of usable data. The train and test sets are set up according to
80% and 20%, distributed as 16140 and 4036 sets. For the
experimental results, we conducted 5 experiments on each
setting, and the results are taken as mean.

B. DATASETS AND EVALUATION

Features are taken from the time interval for the origi-
nal data acquired from a sensor based on the experiments
mentioned above. The data is promptly processed utilizing
resampling, noise reduction, and filtering methods. In terms
of noise reduction, this study first reduces the sampling
rate of the acquired data from 2000.000samples/secod to
31.250samples/secod, and then applies a low pass filter with
the Frequency outoff set to 3Hz. After completing the above
steps, a data extraction is carried out where the intervel
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TABLE 1. Experimental participant basic information.

Driver characteristics Amount Ratio/% Mean Std

Male 15 71.4

Female 6 28.6

Age 21-24 years 2 years 9.5
Age 25-28 years 14 years 66.7 27.3 years 3.7

Age 29-32 years 5 years 23.8

Driving experience of 5 years or less 13 years 61.9
Dri%ingp experienceG—)il years 8 )?/ears 38.1 3.3 years 26

FIGURE 2. Experimental equipment.

window is 1 second, thus reducing the effect of noise during
driving.

After the experiment, we use a traditional method, NASA-
TLX [6] belonging to the subjective measurement, to label the
original data. NASA-TLX is a popular and widely used way
to evaluate subjective feeling of drivers from six dimensional
indicators [35], with scores spanning 1-10.

e Mental Demands:Driving requires mental demands
such as thinking, decision making, memory, and other
intuitive processes.

« Physical Demands: Is it easy or difficult to move your
hands and feet while driving? Is your body as a whole
calm or tired?
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« Temporal Demands: Do you sense any time constraints
when driving? Is the work completion rate rapid or slow?

« Own Performance: Do you believe you have completed
the driving test successfully? Are you happy with how
you performed?

« Effort: How much effort was put in the completion pro-
cedure to ensure a successful completion of the needed
operation?

o Frustration: How insecure/frustrated/angry/stressed/
upset did you feel during the driving task?

For a total of 15 comparisons, all six-dimensional indica-
tors are aggregated and assessed for relevance one by one.
The number of times an index is selected determines its
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weight, which is indicated by w;. Each index’s score on this
scale is denoted by r;. Finally, a weighted average of each
index is determined to yield the mental workload score, which
is derived using the formula below.

6
weighted average score of mental workload = i Z Wir;
15 P

Electrocardiograms (ECG) have been used in numerous
studies as the most obvious and essential sign of changes in
drivers’ mental workload. In this paper, two distinct factors,
heart rate growth rate (HR_growth rate) and heart rate vari-
able (HRV), are being studied. Heart rate (HR) is the average
number of times the heart beats in a given amount of time. The
heart rate may show how hard the heart is working depending
on the activity. It is one of the most important physiological
indicators of the human body. The HR_growth rate measures
how much a driver’s heart rate varies at any given time, and
the index can take individual variations into account. A driver
may feel considerable discomfort if their heart rate increases
by more than 20%, according to certain studies [36]. The
following is how the HR_growth rate is calculated:

hi—h
Hi=—=
h

x 100%

where £; is the HR value at a certain point in a period, and H; is
the HR growth rate at that point. The average HR throughout
that time is /.

Heart rate variability (HRV) features depend on inter-beat-
interval (IBI) measurements that the time between two con-
secutive beats. An investigation of the metrics and geometric
distribution properties of the time series in RR intervals is
called a time-domain analysis of HRV. The root mean square
of the difference of all successive RR intervals (RMSSD) and
the standard deviation of RR intervals (SDNN) are two often
utilized indicators. A collection of successive RR intervals
is referred to as an RR time series. RR stands for the time
interval between two succeeding beats (R peaks) in the ECG.

1 —
SDNN = \/ szvz |(RR; — RR)?

where, RR; is the i-th RR interval, and RR denotes the N-th
interval’s mean RR value.

1
RMSSD = \/ ]ﬁz{.\’zl(RRm — RR;)?

where RR; and RR;;1 are two adjacent inter-RR intervals.

In earlier research, most short-term HRV parameters were
investigated with a temporal window length of 5 minutes or
1 minute [37] to assure the correctness of results. However,
Lu et al. [38] say that utilizing 10s as the temporal window
duration has good reliability, and its findings are commonly
employed in driver state recognition. On this premise, 5s is
chosen as the time interval for analysis in this work.

Electrodermal activity (EDA), a characteristic electrical
characteristic of human skin, is connected to the autonomic
activation of the sweat glands. This emotional input is one of
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the most subtle. Emotional triggers are what induce sweat-
ing on the hands and feet. Every time we experience a
change in mood, the EDA data substantially changes, and the
AcgqKnowledge 5.0 system can measure and analyze these
differences. EDA can examine actual physiological signals
in unconscious behavior. As the features of this experiment,
the mean and standard deviation (Std) of EDA, Mean EDA
and Std EDA, are employed.
Table 2 gives a list of all extracted factors.

V. EXPERIMENTS AND RESULTS

A. EFFECT OF COLUMN ORDER ON CLASSIFICATION
RESULTS

The Transformer method will be affected by the table’s dif-
ferent column order. Our proposed LTS-MPF method is suf-
ficient to convert the table data into the model in a form that
is independent of column order. The following experiments
were carried out to test the effectiveness of the LTS-MPF
method on the multi-factor time series forecasting task. First,
we divided the same multifactor time series data into five
tables (see Table 3). These tables differ only in column order
but contain the same data. We then compare LTS-MPF to
TAPAS, another Transformer method on tables. TAPAS also
converts tables into a text-like format for model input, but
ignores the effect of changes in column order. The model
output changes as the order of the input table column changes.
We used multi-factor data collected within a 60-second time
window to train both models using configuration 2. Table 4
displays the experimental results.

Under different table configurations, our proposed
LTS-MF maintains a stable and efficient classification per-
formance. It achieves a mean correct rate of 94.34% with
a variance of 0.054 under 5 sets of configurations. TAPAS,
on the other hand, performs the best only in table configu-
ration 2, with the correct rate significantly lower in all other
configurations. Under all five configurations, it has a mean
correct rate of 88.66% and a variance of 2.175.

These experimental results demonstrate LTS-MF’s effi-
cacy and robustness. It is unaffected by column order in
the table, whereas TAPAS is extremely sensitive to col-
umn order. Furthermore, LTS-MF can exhibit a correct rate
exceeding TAPAS by 3.1% even under TAPAS’s best table
configuration2. This demonstrates LTS-MF’s superior gener-
alization ability for predicting driver’s mental workload.

B. EFFECT OF TIME SERIES LENGTH ON CLASSIFICATION
RESULTS

LTS-MPF is a table-based temporal classification model that
can utilize both structured and temporal information in tables.
It takes the whole table as input, with each row representing
one moment of data. To examine the effect of timing length
on LTS-MPF, we divide the dataset into time intervals ranging
from 40 seconds to 80 seconds. We can then simulate the
data sampling frequency and observation window in various
scenarios.
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TABLE 2. Summary of all extracted factors.

Type of Factors Name and Definition Unit
HR Growth Rate: the growth rate of heart rate variation in one second %

ECG SDNN: Standard deviations of all RR intervals s
RMSSD: Root mean square of successive differences between adjacent RR intervals S

EDA Mean EDA: Average value of electrodermal activity within five seconds wS
Std EDA: Standard deviation of electrodermal activity within five seconds wS

TABLE 3. Five table configuration of features.

Table configuration 1 Mean EDA Std EDA SDNN RMSS HR_growth rate
Table configuration 2 HR_growth rate SDNN RMSS Mean EDA Std EDA
Table configuration 3 SDNN RMSS HR_growth rate Std EDA Mean EDA
Table configuration 4 Std EDA Mean EDA SDNN RMSS HR_growth rate
Table configuration 5 RMSS HR_growth rate Mean EDA SDNN RMSS

TABLE 4. Correct rate of different table configurations within 60-Second.

Table configuration 1

Table configuration 2

Table configuration 3

Table configuration 4

Table configuration 5

TAPAS 90.1

91.2

87.4

85.7

88.9

LTS-MF 94.4

94.3

94.3

94.4

94.3

TABLE 5. Correct rate of different method within different time windows.

Data_40s | Data_50s | Data_60s | Data_70s | Data_80s
NN 76.2 74.4 71.5 68.4 66.8
SVM 87.5 86.4 83.2 80.6 77.8
RF 90.4 89.5 88.5 86.1 83.2
RNN 89.2 87.2 85.5 84.2 81.2
LSTM 90.3 90.5 88.9 88.1 86.4
TAPAS 90.8 91.1 91.2 89.4 88.5
LTS-MPF 94.1 93.6 94.3 92.5 91.4

We ran experiments with a variety of methods, including
traditional machine learning methods like neural networks,
support vector machines, and random forests, as well as tem-
poral or table-related methods like RNN, LSTM, and TAPAS.
Due to traditional machine learning methods that cannot
handle temporal information, their results are an average of
classification results at each moment. While RNN and LSTM
can deal with temporal data, they ignore structured data in
tables. TAPAS also makes use of the Transformer structure.
In configuration 2, the data column order is used, and the
experimental results are shown in Table 5.

LTS-MPF achieves optimal or near-optimal performance
at various timing lengths, as shown in Table 5, and has
significant advantages over other methods. For example, at a
timing length of 40 seconds, LTS-MPF achieves a correct rate
of 94.1%, while the closest method to it is TAPAS with only
90.8%. At a timing length of 80 seconds, LTS-MPF achieves
a correct rate of 91.4%, while the closest methods to it are
TAPAS and LSTM with only 88.5% and 86.4%, respectively.

These results demonstrate the utility of LTS-MPF for both
temporal and structured data. Because traditional machine
learning methods cannot handle temporal data, they per-
form poorly in all configurations. RNN and LSTM can
deal with temporal data, but they ignore structured data in
tables. Through a self-attentive mechanism, LTS-MPF, on the
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other hand, can effectively use both temporal and struc-
tured information to capture potential patterns and patterns in
tables. TAPAS is a model designed specifically for the table
quizzing task that encodes tables and questions using the
Transformer structure. However, in our task, the question text
is not explicitly provided, but the classification results must
be inferred from the whole table, so TAPAS is not suitable for
our task scenario. In contrast, LTS-MPF is able to leverage
the entire table as input and capture the relationship between
temporal and structured information through a self-attentive
mechanism. For example, in a dataset where each row repre-
sents relevant data about a character’s mental workload at a
specific point in time, we need to calculate the overall mental
workload of a driver based on the entire table. In this case,
relying on individual time points or individual characteristics
alone is insufficient to make an accurate judgment, but rather
requires consideration of how the driver as a whole change
between time points. This necessitates that the model be able
to process both temporal and structured data, as well as learn
the underlying patterns and patterns. All these validate the
effectiveness of LTS-MPF.

We counted the confusion matrix results for 40s, 60s, and
80s timings, and the results are shown in Figure 3.In Figure 3
LML, MML, and HML, respectively, are abbreviations for
low mental workload, medium mental workload, and high
mental workload.

The experimental results show that the LTS-MPF method’s
classification effectiveness decreases as the time series
lengthens, but the decrease is not statistically significant. One
possible explanation is that as the time series lengthens, the
feature changes become more complex, making it difficult
for the classification model to capture useful information.
Second, we calculate the recall of LML at 40s to be 0.9618.
Similarly, MML and HML have recalls of 0.9018 and 0.9262,
respectively. At 60s, the recall of LML, MML, and HML is
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LML MML HML Recall LML MML HML Recall LML MML HML Recall

LML 2820 73 39 0.9618 LML 2811 69 35 0.9643 LML 2723 79 49 0.9551

MML 49 1102 71 0.9018 MML 52 1110 65 0.9046 MML 87 1074 71 0.8718

HML 35 25 753 0.9262 HML 41 21 763 0.9248 HML 94 47 743 0.8405
Precision | 09711 0.9183 0.8725 - Precision | 0.9680 0.9250 0.8841 - Precision | 0.9377 0.895 0.8610 -

LTS-MPF Confusion Matrix Results for 40s

FIGURE 3. LTS-MPF model’s confusion matrix results.

0.9643, 0.9046, and 0.9248, respectively. At 80s, the recall of
LML, MML, and HML is 0.9551, 0.8718, and 0.8405, respec-
tively. This means that among the three time series, LML
has the highest recall and HML has the lowest recall. This
could imply that the LTS-MPF method is better at identifying
positive cases for LML while misclassifying positive cases as
negative (false negatives) for HML. Finally, for each category
of precision, the precision of LML at 40s is 0.9711. MML and
HML precision are 0.9183 and 0.8725, respectively. At 60s,
the precision of LML, MML, and HML is 0.9680, 0.9250, and
0.8841, respectively. At 80s, the precision of LML, MML,
and HML is 0.9377, 0.8950, and 0.8610, respectively. This
means that for all three time series, LML has the highest pre-
cision and HML has the lowest precision. This could imply
that the LTS-MPF method is better at excluding negative
cases (true negatives) for LML while misclassifying negative
cases as positive cases (false positives) for HML. In summary,
the LTS-MPF method can adapt to data with varying time
series lengths while maintaining high overall accuracy and
stability. However, there are some distinctions between the
various categories. In terms of recall and accuracy, LML
outperforms the other two categories, whereas HML falls
short of the other two categories.

C. EFFECT OF TIME-SERIES DATA ON PREDICTION
RESULTS

LTS-MPF is a time-series processing method that can not
only classify the driver’s mental workload in the current time
series but also predict it in the next time series. We also
compared it with other methods, and the experimental results
are presented in Table 6.

The experimental results demonstrate that LTS-MP can
classify and predict driver’s mental workload for both cur-
rent and future time series. According to Table 6, LTS-MPF
achieves the highest classification accuracy of 93.5%, 92.3%,
and 91.1% on all three types of temporal data, which is
much higher than the classification accuracy of other machine
learning algorithms such as NN, SVM, RF, RNN, and LSTM.
LTS-MPF also provides a considerable benefit over TAPAS,
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LTS-MPF Confusion Matrix Results for 60s

LTS-MPF Confusion Matrix Results for 80s

TABLE 6. Prediction results of different method within different time
windows.

Data_5s Data_10s Data_15s
NN 71.1 65.8 63.2
SVM 80.8 77.9 74.4
RF 82.1 78.6 76.4
RNN 84.8 83.7 80.5
LSTM 88.3 87.4 86.1
TAPAS 90.5 88.9 87.9
LTS-MPF 93.5 92.3 91.1

TABLE 7. Accuracy of LTS-MPF under different time windows with
different number of blocks and heads.

Data_40s Data_60s Data_80s
1 head 92.1 93.4 89.2
2 block 4 head 94.2 94.1 90.2
6 head 94.1 93.8 90.7
1 head 93.4 94.0 90.5
4 block 4 head 94.1 94.3 91.4
6 head 94.3 94.5 91.7
1 head 93.9 94.1 91.2
6 block 4 head 94.0 94.3 92.3
6 head 94.2 94.4 92.4

which has the same Transformer results. All of the exper-
imental data show that LTS-MPF has excellent temporal
processing and generalization capabilities.

D. MODEL ANALYSIS

The encoder and decoder of LTS-MPF can be made up of
numerous blocks, and each Transformer module can have
multiple attention heads. This structure can increase the
model’s representation and generalization abilities. We also
confirmed multiple LTS-MPF structures in our experiments,
and the results are provided in Table 7.

According to the experimental results, increasing the num-
ber of both blocks and heads can increase the model’s
accuracy on various tasks. For the same amount of blocks,
employing 4 or 6 heads produces better outcomes than
using one head. Increasing the number of blocks with the
same number of heads can also increase model perfor-
mance. Finally, LTS-MPF is a versatile and effective model
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architecture that, in terms of parameters and layer count, may
be adapted to various application circumstances.

VI. CONCLUSION
The driver’s mental workload is a significant component
influencing driving safety, however, there are few appropriate
and precise assessment methods. In this paper, we propose
a classification and prediction method based on time-series
multi-feature biopsychological data in this research, and we
utilize the LTS-MPF (long time sequences and multiple phys-
iological factors) model to assess and predict the driver’s
mental workload. Sensors are used to collect biopsycholog-
ical data from drivers and to convert it into tabular data.
Then, for each row of tabular data, we embed it in a vec-
tor and feed the entire table into the LTS-MPF model. The
LTS-MPF model allows for time series correlation analysis
and reduces uncorrelatedness between feature series. In our
experiments, we evaluate the effectiveness of the LTS-MPF
model with other methods for classifying and predicting the
driver’s mental workload and discover that the LTS-MPF
model has considerable advantages. The experimental find-
ings demonstrate that the LTS-MPF approach has a high
overall accuracy at various time series lengths and a good
balance between different categories. When compared to
earlier methods, the LTS-MPF method handles time-series
multi-feature data better and has superior generalization and
prediction capabilities. We believe that the LTS-MPF model
can be utilized not only to assess current mental workload
but also to anticipate future mental load changes, giving data
support for early warning of unsafe driving behaviors.
Although the LTS-MPF model has demonstrated out-
standing results in identifying and forecasting driver men-
tal load, it does have significant limits and weaknesses.
(1) The LTS-MPF model requires a considerable amount of
labeled data for training, and acquiring and labeling this data
is time-consuming and labor-intensive. (2) The LTS-MPF
model can only manage single table data and cannot han-
dle correlation and consistency across many tables. (3) The
LTS-MPF model has not yet included the impact of external
elements on the driver’s mental load, such as driving environ-
ment, road conditions, and traffic conditions. All of these are
challenges that we need to look into deeper in the future.
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