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ABSTRACT The subtle gait characteristics of early Parkinson’s disease (EPD) patients are currently difficult
to detect or require expensive, experimentally demanding testing equipment. The use of machine learning
(ML) models in conjunction with inertial measurement unit (IMU) algorithms opens up new possibilities for
the assessment of EPD patients. The aim of this study is to measure EPD gait using the IMU algorithm,
select gait features using Recursive Feature Elimination (RFE), and classify EPD patients with healthy
(HT) older adults using ML on the selected features. Firstly, 10 healthy subjects were recruited and the
system parameters were validated using the double gold standard to ensure the reliability of the system.
Second, 60 subjects (30 EPD patients and 30 HT elderly) were recruited to wear the system for linear
walking activities and to obtain gait parameters. The results show that this system has good reliability, i.e.
the best intraclass correlation coefficient (ICC) is between 0.521 and 0.941. The six best features of stride
length, stance phase, stance time, swing phase variability, step speed and cadence were selected by REF and
classified by decision tree (DT) with a model accuracy of 91.6%, sensitivity and specificity of 91% and 83%
respectively, and an ROC value of 0.92. Our results show that the use of the IMU algorithm with precise
accuracy can detect subtle gait features and that the use of optimal gait features can well assess patients with
EPD, providing a new way to detect EPD.

INDEX TERMS Early Parkinson’s disease, subtle gait characteristics, machine learning, detection method.

I. INTRODUCTION

Parkinson’s disease (PD) is a complex and progressive
multi-system disease [1], which is caused by increased death
of substantia nigra neurons in the basal ganglia of the brain.
The typical manifestations of PD patients are slow movement,
rigidity, and decreased self-discipline, which will bring seri-
ous motor disorders to PD patients [2]. Movement disorders
may cause some special gait characteristics of PD patients,
such as shorter gait length, slower gait speed, impaired
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rhythm, and increased axial stiffness [3], [4]. PD is a very
common disease among the elderly [5], with 1 in 1000 people
over 65 years old and 1 in 100 people over 75 years old [6].
Mobility impairment is a very risky factor for PD patients, and
patients with both mobility impairment and PD have a higher
risk of death than those with only one of these conditions [7].

Medicine often uses the Parkinson’s Unified Rating
Scale [8] (UPDRS) to evaluate the degree of Parkinson’s
disease, but its evaluation of gait is relatively general and has
certain subjective factors. Generally, a timer is used to let
the patient do some walking and other actions, and the gait
cannot be accurately measured. To measure the gait of PD
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patients more accurately, it is usually necessary to use expen-
sive instruments for detection in fixed laboratories, such as
photoelectric stereophotogrammetry [9], which requires the
participation of special staff and cannot be used for gait mon-
itoring in life. In recent years, portable devices have attracted
wide attention from the medical industry, such as inertial
measurement units (IMU) and pressure-sensitive carpets for
quantifying gait [10]. This low-cost gait measurement tools
have developed rapidly. Although it is relatively easy for the
IMU to obtain daily gait data, it is vague how the quantitative
evaluation of these gaits is compared with the one-time clini-
cal evaluation, and whether they can replace or only enhance
the current gold standard needs further verification [11].

Inrecent years, IMU has gradually been attached to impor-
tance by the scientific research community, and wearable
IMU equipment has been used for gait detection and analysis
in the laboratory or daily life [12]. For patients with early PD,
gaits may change slightly, which may have serious conse-
quences if left untreated, and a wearable IMU was now the
appropriate choice to be able to detect their gait data in daily
life. The wearable IMU can well-meet the requirements of
not being constrained by the environment, making it possible
to detect the gait anytime and anywhere [13]. According to
previous reports, spatiotemporal gait parameters are of great
significance in the analysis of gait detection results using
wearable IMU systems [14]. However, there are few articles
about the verification of wearable IMU at present. Whether
it can replace expensive gait detection equipment still needs
constant experimental verification.

The purpose of this paper is to propose a new IMU-based
free-walking gait model. The IMU noise is analyzed by using
Allen variance to observe the main sources of noise and to
treat the noise to the walking cycle. The model is first pro-
cessed for noise and then combined with the corresponding
gait model to calculate each gait parameter.

For this purpose, we developed a daily gait device (DGE)
based on the above model. The parameters that DGE can
measure include step length, stride length, stride time, step
frequency, step speed, support phase, swing phase, ankle joint
(AJ) angle, heel strike (HS) angle, toe off (TO) angle and
pressure center (COP). For the IMU part of the sole, the
hardware size is small and can be embedded in the heel. It can
provide relatively comprehensive real-time gait data, and the
collected data can be viewed at any time through a personal
computer (PC) or mobile phone application, which has good
portability. For early Parkinson’s patients, to intervene early,
we need to obtain gait data in their daily life more. To better
share data with other gold standards, validation experiments
are particularly important. Using two gold standards for the
first time to validate IMU spatiotemporal gait parameters
can reduce data imbalance in single gold standard validation
of single parameters, making IMU data more medical refer-
ence value and making daily data more available. Recruited
elderly patients with early PD and healthy elderly people
carried out the straight-line walking experiment and collected
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corresponding gait data, and calculated the mean value and
coefficient of variation of gait parameters of the PD group
and healthy group respectively. Previous experimental stud-
ies have found that PD patients may also have slow gait
or abnormal gait posture adjustment in the early stage or
before they have no gait disorder [15], [16]. Through this
experiment, it was also found that the variation coefficient
of TO angle, HS angle and stride time of EPD patients also
changed significantly, which provided a necessary argument
for EPD patients to have insufficient ankles flexion.

Il. RELATED WORK

Wearable technology is now more prevalent in the medi-
cal industry, and its rapid development can gradually shift
from the original testing in the laboratory or fixed places to
non-fixed places. For the calculation of spatiotemporal gait
parameters, accurate estimation of step size is an important
parameter. Next, we summarized the most advanced step size
estimation techniques that are currently closest to our work.

Wu et al. used 2 MPU-9150 sensors mounted at the left
and right ankles, respectively, with an inverted pendulum
model [17]. They calculated the distance of a single step by
multiplying the leg length by the sine of the change in leg
direction at each step. Their calculation of error was based
on the total walking distance, and the error of a single step
was not analyzed. Pepa et al. used the accelerometer that
came with the smartphone and developed a corresponding
program to collect data on movement gait [18]. They use an
inverted pendulum model to estimate step size and validate
it with other devices. Wang et al. presented a biomechanical
model of knee flexion, and they used four MPU-6050 sensors
mounted to the left and right thighs and calf, respectively [19].
They used a double pendulum model to estimate step size,
taking into account the asymmetry of step size and gait, but
they ignored the displacement of the hip joint in the direction
of motion, resulting in a bias in step size estimation. The
accuracy for single pendulum model or double swing model
methods usually depends on the parameters set in advance or
estimated for calibration, which also causes uncertainty in the
accuracy.

Recently Anderson et al. using 4 MPU-6050 and 4 Ultra
Wideband (UWB), solved the limitations of the above study,
but they used 8 sensors, the data processing of 8 sensors
increased the difficulty and complexity of the system, and
the stability of the system for outdoor needs further demon-
stration [20]. The current application of machine learning
methods allows for more sub-stages, but using sensor algo-
rithms has lowed computational complexity and more timely
response times. So, in daily wear detection sensor algorithms
are still preferred. For using a single IMU, it is difficult to
take into account the asymmetry of the gait space. Therefore,
we use 4 IMUs worn on the bottom of the foot and ankle
and use low-power components. No need to set parameters
in advance for precise estimation. And it is a low-cost device
with functions such as user feedback.
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FIGURE 1. Experimental supporting facilities: 1; Testers, 2; Sampling shoes ((2) is the internal drawing of sampling shoes), 3; Lower leg sampling module
((3) for appearance), 4; Data acquisition part, 5; Bluetooth transmitter, 6; MCU, 7; Inertial measurement unit, 8; Full pressure film pressure sensor, 9;
circuit board for the foot pressure data acquisition device, 10; Gyroscope sensor, 11; Magnetometer sensor, 12; Accelerometer sensor, 13; Data
acceptance part, 14; Bluetooth receiver ((14) is a Bluetooth receiver integrated circuit), 15; Personal computer, 16; Data preprocessing, 17; temporal gait
model building, 18; Generate inspection report. The blue line represents the data flow.

Ill. MATERIALS

A. CIRCUIT DESIGN

1) CIRCUIT OVERVIEW

The original intention of the development is for medical wear,
and the scientific nature of the design and the stability of the
circuit is fully considered in the circuit design. As shown 8 in
Fig. 1, for the foot pressure membrane pressure sensor whose
size is based on different shoe sizes, 32-foot pressure points
are set for each of the left and right feet, enabling detailed
delineation of the foot area. As shown 9 in Fig. 1, the board
is a foot pressure data acquisition device, a board size of
55 mm x 25 mm, in the production of the need to use resin
adhesive encapsulation to enhance the board’s ability to resist
pressure. As shown in (2) in Fig. 1, the finished product with
the foot pressure sampling shoes was installed. As shown in
(3) in Fig. 1, for the lower leg data acquisition equipment,
the board size is 43 mm x 18 mm. As shown in (14) in
Fig. 1, for the left and right leg data receiving equipment,
the plate size is 56 mm x 56 mm. For this system, the main
electronic components are IMU, low power Bluetooth, micro
control unit (MCU, PIC18F25K80) produced by Microchip
Technology, USA, efc.
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TABLE 1. Foot pressure membrane sensor parameters.

Parameters Numerical Value  Unit
Measurement range 0-100 kg
Sensing point diameter 13-15 mm
Sensor thickness <0.25 mm
Hysteresis <10 %
Drifting <10 %
Precision +10 %

2) FOOT PRESSURE FILM PRESSURE SENSOR

Foot pressure film pressure sensor uses a flexible foot pres-
sure sensor with array distribution, which is made by a
precision printing process, transferring nano force-sensitive
materials, silver paste and other materials to the flexible film
substrate and curing by drying. The basic parameters are
shown in Table 1.

3) IMU

As shown 7 in Fig. 1, the 9-axis motion sensor is used, which
is composed of a 3-axis gyroscope, 3-axis accelerometer
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and 3-axis magnetometer, and the IMU is used to measure
the motion information of the measured object [21]. The
system uses a power supply voltage of 3.3 V, an accelerom-
eter range of £16 g, a gyroscope range of +2000°/sec, and
Inter-Integrated Circuit (I2C) communication, efc. Sampling
in three directions of the x-axis, z-axis and y-axis can flexibly
and accurately collect data from all directions for analyzing
spatiotemporal gait parameters.

4) DATA COMMUNICATION

As shown in 5 and 14 in Fig. 1, at present, the medical
system mostly uses Bluetooth communication, which has
a wide range of applications on the Internet of Things.
Most platforms support Bluetooth communication, so using
this communication can improve the application range of
medical devices on the Internet of Things. The communica-
tion module adopts the FSC-BT909 Bluetooth module from
Feasycom, Shenzhen, China, which is a dual module with
Bluetooth 4.2 audio and data Bluetooth, and supports both
BR/EDR and LE, transmitting power +18.5 dBm, voltage
range 2.3-3.6 V, working frequency band 2.402-2.480 GHz,
size 13 mm x 26.9 mm x 2.4 mm, capable of high-speed
transmission. With the integrated antenna, the communica-
tion range is up to 500 m and has a strong anti-interference
capability, which fully meets the system’s usage range and
can avoid data instability when the communication threshold
is reached. The data is sent and received in strict accordance
with the set protocol, and the sensor data is sent with a time
stamp.

IV. METHODS

A. TIME-SEQUENCE GAIT MODEL BASED ON IMU

1) PLANTAR PRESSURE ANALYSIS

When the sensor is subjected to pressure, the resistance
decreases with the increase in pressure, and its piezoresistive
characteristics show a power function relationship between
resistance and pressure, and the inverse of the resistance is
nearly linear with the pressure, each sensing unit can be
regarded as an independent variable resistance, through the
hardware and software to process the data conversion can
measure the corresponding force value.

The pressure distribution in the foot varies during move-
ment ((c) in Fig. 2), and it is important and inevitable to
divide the pressure into the foot into different areas for iden-
tification. The COP can be calculated from the foot pressure
sampling pointed and presented in images (Fig. 2 (a) and (b))
as the central distribution of COP, which facilitates the gait
assessment of the test person by the medical personnel after-
ward. The COP distribution can be used to analyze the fall
detection problem and prevent it in advance, which is an
important indicator for judging walking stability and balance
problems, and the closer the COP distribution is to a linear
trend, the better the stability of the tested walking process.

For the walking process, in addition to paying close atten-
tion to the COP changes at the same time the average pressure
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FIGURE 3. (a) and (b) are the average pressure distribution curves of the
foot pressure when the left and right feet walk freely, respectively.

curve still has a very significant gait relationship, which can
be used for the problem of freeze gait (FOG) recognition [4]
when the accelerometer has difficulty capturing the untrav-
eled or no effective step. In the stepping process and in the
static state, the force on the foot pressure film pressure sensor
is the vertical component of gravity on the foot pressure film,
and the pressure F is almost equal to the component of gravity
G, so the average pressure distribution curve can be obtained
(Fig. 3). The maximum value of the curve peak are when one
side of the foot is completely on the ground, and the other
side is in the air.

2) IMU ACQUISITION UNIT

The tester needs to wear the right shoe size when record-
ing the gait in life, and the data is sent to the PC (15 in
Fig. 1)receiver via Bluetooth of the collection device for
data interaction. Since the IMU tri-axis accelerometer data
are susceptible to interference, the calculation of the rele-
vant gait data is susceptible to serious effects of interference
components, and here the acceleration data are filtered using
arithmetic average filtering (16 in Fig. 1) to improve the
accuracy and stability of the calculated data. The quaternion
can be solved from the original data for attitude saving, and
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the corresponding attitude angle can be solved by quater-
nion [22]. To reduce the integration error of the angular
velocity meter for a long time, the complementary filtering
method is used to fuse the data of the accelerometer and
angular velocity meter [23].

As the IMU can be affected by a variety of noises,
it can affect the final calculation results. We used the Allen
algorithm to analyse the IMU noise and found that zero bias
instability was the main source of noise [24]. As the gait
parameters are in a cyclic state during walking, we propose
a cycle-setting approach to eliminate zero bias instabilities,
whereby the left and right feet reach a cycle of relative
resting points, so that the corresponding axis is set to zero
to eliminate zero bias noises.

For the angle problem in the motion state, the heel landing
(HS) angle, toe off the ground (TO) angle ((b) in Fig.4)
and ankle joint activity (relative to the joint activity in the
initial position of standing [25], (a) in Fig. 4) were measured
respectively. For spatiotemporal gait parameters, step length,
step speed, step time, cadence, swing phase and stance phase
are calculated respectively.

3) STEP LENGTH

The distance between the heel of one foot touching the ground
and the heel of the other foot touching the ground. The axial
acceleration of the accelerometer sensor in the travel direction
(X-axis) can be used to calculate the travel step length, and
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the corresponding step length can be calculated by double
integration of the X-axis acceleration data. The calculation
formula is as follows.

d=/’wﬂo—%mmwt (1)

where d denotes the step size, a, denotes the x-axis accel-
eration of the triaxial accelerometer, and a,,; denotes the
average of all accelerations in a single step. Since the sensor
contains a DC component in the acceleration output, to elim-
inate this DC component, this a4, needs to be subtracted
before calculating the dual integration.

In the walking process, the walking direction is the X-axis
direction of the IMU, and the acceleration is mainly gener-
ated by the swing of the wearer’s body during the walking
process, as well as the acceleration generated by the inter-
action between the foot and the ground when landing and
lifting [26]. The latter collision with the ground can be seen as
an elastic collision, when the walking speed is from slow to
fast, the size of the elastic force will not directly affect the
maximum acceleration and minimum acceleration but will
make the average value of acceleration becomes larger [27].
To remove the effect of this elasticity, the following correction
factors are used [28].

dy =k x Ax(avg) — Ax(min) )
Adx(max) — Ax(min)

dj, s the step correction factor; k is a constant; dy(ay,) is the
average value of single-step acceleration; dy(min) is the min-
imum value of a single-step X-axis; dy(max) 1 the minimum
value of the single-step x-axis. Therefore, the actual step (D)
can be calculated according to the following formula (3).

D=d x dy 3)

4) STEP SPEED

Walking distance per unit time, unit: m/s. It is calculated
as (4)-(5).

D
Ip

D=4 5)
i=1

where D is the total distance traveled and ¢p is the time to
travel the total distance. The total walking distance D is calcu-
lated by summing the step lengths calculated by equation (1),
where n is the number of steps taken by the tester.

“

y =

5) CADENCE

The number of steps walked per unit of time (steps/min). The
cadence can be calculated from Fig. 3. The periodic shift of
foot pressure corresponds to the periodic shift of gait, and a

cycle includes peaks and valleys. The calculation formula is
as (6).

ﬁ=;xm ©6)
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where f. is the step frequency, » is the number of test steps, T
and is the n step duration in seconds, then you can calculate
the number of steps in 60 seconds that is the cadence.

6) CALCULATION OF SWING PHASE AND STANCE PHASE

In a single stride, the support phase time is the HS to TO
time, and the swing phase time is the time from TO to HS of
a particular side foot. Therefore the stance phase and swing
phase can be calculated by using equations (7)-(8).

tys — t

Tsw = % x 100% @)
t/To — IHS

Tsy = T x 100% (8)

where Tsw and Tsr are the swing phase and support phase,
respectively, #; is the single stride time, #gs is the single stride
HS moment, t7¢ is the single stride TO moment, and t/TO is
the next stride TO moment.

B. PARTICIPANTS
We divided the participants into two groups i.e. group A and
group B.

Group A: 10 participants (5 male and 5 female) were
recruited from the community and were healthy participants
without abnormal gaits, with an average age of 25 years,
a height distribution range of 158 cm-180 cm and a weight
distribution range of 48 kg-70 kg.

Group B: Thirty patients with EPD were recruited from
patients with Parkinson’s disease at Run Run Shaw Hos-
pital, Zhejiang University School of Medicine (Hangzhou,
China), and 30 HT volunteers of relatively similar age, height,
weight and shoe size (without orthopedic or neurological
disease) were recruited as the experimental reference group.
Information about this group is shown in Table 2. Where
PD patients underwent the Mini-mental State Examination
(MMSE) results were greater than 26 [29], excluding the
effect of cognitive dysfunction and dementia on the results,
where the level of education: was 6-12 years. For the Hoehn-
Yahr (H&Y) classification [30], all patients with stages 1-4
can walk on their own, and stage 5 patients are physically
restricted to a wheelchair or bed with difficulty walking
independently. Usually, stage 1-2 is classified as EPD patients
and treated mainly with medication. In this trial, all PD partic-
ipants were < stage 2 (stage 1: n=1; stage 2: n=4), i.e., par-
ticipants were diagnosed as early-stage patients. None of the
participants experienced gait freezing during the experiment.

All gait experimental procedures were conducted by move-
ment disorder specialists according to standardized consen-
sus criteria. Participants were informed of the purpose of
their participation and signed a written consent form, their
participation in this gait assessment was voluntary and could
be terminated at any time their participation and consent was
obtained for the use of the data. This study was approved
by the Ethics Committee of the Sir Run Run Shaw Hospital
Affiliated to Zhejiang University School of Medicine.
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TABLE 2. Information on healthy participants and early PD patients in
group B.

HC(n=30) PD(n=30)
Age 65.60+10.51 66.40+8.39
Gender (m: ) 20:10 20:10
Height (cm) 167.2+5.11 163.2+6.26
Weight (Kg) 65.5£6.23 62.149.61
Shoe Size (CHN) 40.6+2.19 40.0+£2.00
MDS-UPDRS III 23.80+4.09
H-Y \ 1.80+£0.45
MMSE 28.80+0.84

C. EXPERIMENTAL DESIGN

The wearable parts of the system consist of sampling shoes
and a calf collector. The sampling shoes consist of an IMU,
a foot pressure sensor and a power supply, and the calf
collector consists of an IMU and a Bluetooth transmitter.

Zebris®-FDM system, consisting of 22,528 sensors,
dimensions: 307.0 x 60.5 x 2.5 cm, measuring range:
1-120 N/cm?, using three groups forming a foot pressure
analysis trail of approximately 9 m [31].

The Vicon®-512 system [32], consisting of six infrared-
sensing cameras and reflective markers, acquires motion
trajectories by tracking the reflective markers [33].

Group A: Subjects are required to choose the appropriate
shoe size for the sampling shoes and tie the calf part behind
the calf with an elastic band. This device will not change the
walking habits of the wearer, so no gait abnormalities will
occur due to walking discomfort. Reflective markers on the
toe and heel for the camera to obtain motion tracking. All
equipment was turned on. Subjects were required to walk at
normal speed on the analysis trail, as in Fig. 5. Each tester
walked 6 complete gait cycles.

Group B: EPD patients wore only this system DGE device
and performed linear walking in the laboratory to collect
and record data for subsequent analysis. Each tester walked
6 complete gait cycles.

D. FEATURE SELECTION AND CLASSIFICATION MODEL
The temporal gait features collected from DGE and the
coefficients of variation (stride length variability, stride time
variability, swing phase variability, and stance phase variabil-
ity) were used to construct the DT classifier by a total of
14 features.

RFE is a wrapper-based feature exclusion algorithm that
searches for the best subset of features in the space by exe-
cuting an optimization algorithm [34]. The importance scores
of each feature are calculated by feeding a set of 14 features
as an initial feature subset into the DT classifier. Then, the
lowest importance score is eliminated from the current subset
of gait features to obtain the remaining subset of gaits. Then,
the above steps are repeated for filtering until the desired
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FIGURE 5. Experimental system setup.

number of features is reached. This method automatically
eliminates feature subset redundancy to produce better and
more compact gait feature factors.

E. DT CLASSIFICATION ALGORITHM AND APPLICABILITY
The DT algorithm is a data mining induction technique that
uses either depth-first greedy or width-first methods to recur-
sively partition a recorded data set until all data items belong
to a specific class. The DT consists of three parts: a root node,
an internal node and a leaf node, which is a flowchart-like tree
structure where each internal node represents a test condition
on an attribute, each branch represents the result of the test
condition and each leaf node is assigned a class label [35].
The DT classification technique is divided into two stages,
tree construction and tree pruning, with tree construction
proceeding from the top downwards. At this stage, the tree
is recursively partitioned until all the data items belong to the
same class label. Compared to other algorithms, DT is simple
and fast, suitable for small data samples, and can handle noisy
data with high accuracy [36]. The DT classification algorithm
was chosen as we had a small training set of samples and
needed high accuracy and speed.

F. STATISTICAL ANALYSIS

All statistical analyses for this data analysis were performed
using spss version 23. All gait data were tested by the
Kolmogorov-Smirnov test and screened for normality.

The intraclass correlation coefficient (ICC) was used to
compare the confidence levels between different test sys-
tems using the Two-way random versus absolute agreement
model, where the confidence interval was set to 95%. ICC can
analyze problems between data. Among them, ICC<0.5 has
poor reliability, 0.5 < ICC < 0.75 has general reliability,
0.75<ICC < 0.9 has good reliability, and ICC>0.9 has excel-
lent reliability.

Bland-Altman plots were used to evaluate the intra- and
inter-assessor reliability and to compare the consistency
between DGE and Zebris@and Vicon®. The horizontal
x-axis is the average of the data measured by the two sys-
tems, and the vertical y-axis is the difference between the
two systems. The upper and lower red dashed lines indicate
the upper and lower limits of the 95% agreement limits,
i.e., 1.96 times the standard deviation; the yellow horizontal
dashed line is where the mean value of the difference is 0,
and the middle blue solid line indicates the mean value of the
difference.
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The independent samples t-test was used to compare the
mean difference between the two systems and a p-value set at
0.05 was considered statistically significant.

V. RESULTS

A. GROUP A: CONSISTENCY OF GAIT PARAMETERS

The ten HT subjects walked 6 steps freely and calculated
the mean of each of the left and right foot gait data, i.e.,
20 samples each of step length, stride time, stance time,
swing time, stance phase, swing phase, HS and TO (including
left and right foot), and 10 samples each of step speed and
cadence. The Zebris® (ZE) and Vicon®) (VI) data were used
as gold standards to plot Bland-Altman plots (Fig. 6) using the
gait data measured by DGE, respectively.

The differences in step length, stride time and step speed in
the Bland-Altman plot for ZE-DGE are within the upper and
lower limits of consistency and have an excellent agreement;
most of the differences of cadence, stance phase and swing
phase are within the upper and lower limits of consistency
and have good agreement. For the Bland-Altman plot of
VI-DGE, the difference in step lengths in are in the upper
and lower limits of consistency, with excellent consistency;
the difference in stride time, step frequency, and step speed
are mostly in the upper and lower lines of consistency, with
good consistency.

B. GROUP A: CORRELATION OF GAIT PARAMETERS

DGE was compared with ZE and VI for the correlation,
respectively, and ICC and significance (p) analyses were
performed for the temporal gait parameters step length, stride
time, stance time, swing time, HS, TO, step frequency, step
speed, support and swing phases, respectively, and the results
were recorded in Table 3, where the support and swing phases
were compared with ZE only. Where p ranges from 0.000 to
0.322 with good overall significance and ICC ranges from
0.572 to 0.941 with good overall correlation.

The following results can be seen through the ICC results
analyzed for 10 subjects in the same experimental situa-
tion. The results of the DGE and ZE left foot data are
as follows: step length results ICC=0.922, p = 0.001)
have excellent reliability, stride time results (ICC=0.936,
p = 0.000) have excellent reliability, stride time results
(ICC=0.936, p =0.000) have excellent reliability, stance
time results (ICC=0.774, p = 0.013) have good reliability,
swing time results (ICC=0.655, p = 0.102) have general
reliability, stance phase results (ICC=0.574, p = 0.110)
have general reliability, and swing phase results (ICC=0.572,
p = 0.111) have general reliability. The results of the right
foot data are as follows: step length results ICC=0.835, p =
0.005) have good reliability, stride time results (ICC=0.933,
p = 0.000) have excellent reliability, stance time results
(ICC=0.711, p =0.026) have general reliability, swing time
results (ICC=0.783, p =0.034) have good reliability, stance
phase results (ICC=0.724, p = 0.034) have general reliabil-
ity, and swing phase results (ICC=0.720, p = 0.036) have
general reliability. As shown in Table 3.
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TABLE 3. DGE and Zebris ®, Vicon ®Intra-class correlation coefficient (ICC) and significance value of data statistics.

System group
Position (foot) Equipment mean and SD (ICC) ICC Sig (p) Reliability
DGE 0.676+0.026 \
L Zebris® 0.677+0.033 DGE: ZE 0.922  0.001 Excellent
Step length Vicon® 0.685+0.041 DGE: VI 0.802  0.012 Good
(m) DGE 0.672+0.036 \
R Zebris® 0.687+0.053 DGE: ZE 0.835  0.005 Good
Vicon® 0.688+0.036 DGE: VI 0.872  0.001 Good
DGE 1.166+0.127 \
L Zebris® 1.152+0.126 DGE: ZE 0.936  0.000 Excellent
S Vicon® 1.126+0.107 DGE: VI 0.832  0.000 Good
Stride time (s)
DGE 1.174+0.118 \
R Zebris® 1.138+0.118 DGE: ZE 0.933  0.000 Excellent
Vicon® 1.139+0.127 DGE: VI 0.893  0.000 Good
DGE 0.693+0.051 \
L Zebris® 0.689+0.087 DGE: ZE 0.774  0.013 Good
. Vicon® 0.696+0.035 DGE: VI 0.893  0.000 Good
stance time
DGE 0.687+0.102 \
R Zebris® 0.694+0.056 DGE: ZE 0.711  0.026 General
Vicon® 0.691+0.124 DGE: VI 0.765  0.005 Good
DGE 0.442+0.081 \
L Zebris® 0.426+0.054 DGE: ZE 0.655  0.102 General
L Vicon® 0.434+0.074 DGE: VI 0.895  0.000 Good
swing time
DGE 0.435+0.048 \
R Zebris® 0.428+0.027 DGE: ZE 0.783  0.034 Good
Vicon® 0.439+0.039 DGE: VI 0.819  0.028 Good
DGE 103.200+11.371 \
Cadence \ .
(Steps/min) Zebris® 105.700+11.681  DGE: ZE 0.941  0.000 Excellent
Vicon® 106.860+11.601  DGE: VE 0.898  0.000 Good
DGE 1.150+0.111 \
Step speed \ .
(m/s) Zebris® 1.195£0.116 DGE: ZE 0.913  0.000 Excellent
Vicon® 1.217+0.114 DGE: VI 0.861  0.000 Good
DGE 61.400+2.366 \
Stance  phase .
(%) L Zebris® 62.940+1.610 DGE: ZE 0.574  0.110 General
Vicon® 61.820+1.120 DGE: VI 0.823  0.001 Good
DGE 61.600+2.319 \
R Zebris® 63.640+2.465 DGE: ZE 0.724  0.034 General
Vicon® 62.031+1.872 DGE: VI 0.715  0.011 General
DGE 38.600+2.366 \
L Zebris® 37.020+1.598 DGE: ZE 0.572  0.111 General
Swing  phase Vicon® 38.911+2.125 DGE: VI 0.682  0.000 General
0,
%) DGE 38.500+2.369 \
R Zebris® 36.360+2.465 DGE: ZE 0.720  0.036 General
Vicon® 37.24142.157 DGE: VI 0.784  0.001 Good
L DGE 45.451+4.272 \
HS () Vicon® 44.254+2.865 DGE: VI 0.521  0.202 General
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TABLE 3. (Continued.) DGE and Zebris ®, Vicon ®Intra-class correlation coefficient (ICC) and significance value of data statistics.

R DGE 44.102+8.785 \

Vicon® 46.156+5.049 DGE: VI 0.587  0.108 General
L DGE 34.652+5.064 \

0 () Vicon® 35.35443.448 DGE: VI 0.611 0.265 General
R DGE 35.362+4.582 \

Vicon® 34.489+6.312 DGE: VI 0.645  0.322 General

The results of the DGE and VI left foot data are as follows:
step length results ICC=0.802, p = 0.012) have good relia-
bility, stride time results (ICC=0.832, p = 0.000) have good
reliability, stance time results (ICC=0.893, p = 0.000) have
good reliability, swing time results (ICC=0.895, p =0.000)
have good reliability, stance phase results (ICC=0.823,
p = 0.001) have good reliability, swing phase results
(ICC=0.682, p = 0.000) have general reliability, HS results
(ICC=0.521, p = 0.202) have general reliability, and TO
results (ICC=0.611, p = 0.265) have general reliability.
The right foot data results are as follows: step length results
(ICC=0.872, p = 0.001) have good reliability, stride time
results (ICC=0.893, p = 0.000) have good reliability, stance
time results (ICC=0.765, p = 0.005) have good reliability,
swing time results (ICC=0.819, p =0.028) have good reli-
ability, stance phase results (ICC=0.715, p = 0.011) have
general reliability, swing phase results ICC=0.784, p =
0.001) have good reliability, HS results (ICC=0.587, p =
0.108) have general reliability, and TO results ICC=0.645,
p = 0.322) have general reliability. Where the results of
the cadence data are as follows: The reliability of DGE with
ZE results (ICC=0.969, p = 0.000) is excellent and DGE
with VI results (ICC=0.946, p = 0.000) is excellent. The
results of the step data are as follows: DGE with ZE results
(ICC=0.913, p = 0.000) have excellent reliability, and
DGE with VI results (ICC=0.861, p = 0.000) have good
reliability.

It is clear from Table 4 that for step length, stride time,
cadence, HS, TO, and step speed in the DGE-ZE and DGE-VI
groups, the difference between the means is not statistically
significant and there is no significant difference (both p is
greater than 0.05); for stance phase and swing phase in the
DGE-ZE group are statistically significant and there is a
significant difference (both p is less than 0.05 and greater
than 0.01).

C. GROUP B: DIFFERENCES IN GAIT CHARACTERISTICS
BETWEEN EPD PATIENTS AND HEALTHY INDIVIDUALS

For EPD patients and HT subjects were calculated: stride
length, stride speed, cadence, stride time, stance time, swing
time, HS angle, TO angle, stance phase and swing phase,
and the results were calculated using the mean and standard
deviation of each of the 6 steps for all test subjects. The results
are shown in Table 5.
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As shown (a) in Fig. 7, where EPD patients had signifi-
cantly shorter stride lengths, slower stride speeds, reduced
cadence, and overall longer stride time compared to HT
subjects. From Table 5 It can be seen that the stance time to
stride cycle ratio (64.25%) and swing time to stride cycle ratio
(35.75%) in EPD patients and stance time to stride cycle ratio
(62.42%) and swing time to stride cycle ratio (37.58%) in HT
subjects; it can be seen that the stance time to stride cycle
ratio increased in EPD patients and swing time to stride cycle
ratio decreased in HT subjects compared to HT subjects. The
difference between the toe-off angle of HT and EPD is small
and the heel-off angle is large, and the heel-off angle may
become a new parameter to distinguish HT from EPD.

The gait variability coefficients are recorded in Table 6.
As shown (b) in Fig. 7, it can be seen that EPD patients had
higher stride variability, stride time variability, swing phase
variability and stance phase variability than HT subjects.
Among them, the stride time variability and swing phase
variability of EPD patients differed more than those of HT
subjects.

D. GROUP B: EPD PATIENT ASSESSMENT RESULTS

Use a DT classifier to classify EPD patients and healthy
participants, select 14 features using RFE, and select the
optimal feature combination. We selected the feature com-
binations with the first to eighth importance scores from the
RFE results (Fig. 8) and performed DT training sequentially,
and found that the best classification combinations were those
with the top six importance scores, i.e., the top six combi-
nations achieved the best results in DT training. Therefore,
the selected feature combinations are stride length, stance
phase, stance time, swing phase variability, step speed and
cadence. DT-RFE had a mean accuracy of 91.6%, specificity
of 83%, sensitivity of 91% and ROC value of 0.92 for the
classification of patients with EPD. In conclusion, the DGE
system was shown to be effective in identifying patients
with EPD.

VIi. DISCUSSION

With the development of the gait field, gait problems have
been taken seriously by scientific researchers in many fields.
From the gait problem, the walking style of a person can
be analyzed, and identification can be realized, etc. From
the comparison of the gait of a class of people with certain
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FIGURE 6. Differences between DGE and ZE and VI represented by Bland-Altman plots.
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FIGURE 6. (Continued.) Differences between DGE and ZE and VI represented by Bland-Altman plots.

TABLE 4. DGE t-test with spatiotemporal parameters of ZE and VI
systems, respectively.

t-test comparison

group p
DGE-ZE 0.501
Step length
DGE-VI 0.242
DGE-ZE 511
Stride time © 05
DGE-VI 0.316
. DGE-ZE 0411
Stance time
DGE-VI 0.463
S DGE-ZE 0.362
Swing time
DGE-VI 0.244
DGE-ZE 0.634
Cadence
DGE-VI 0.485
DGE-ZE .
Step speed © 0388
DGE-VI 0.201
DGE-ZE 0.013
Stance phase
DGE-VI 0.422
. DGE-ZE 0.010
Swing phase
DGE-VI 0.264
HS DGE-VI 0.365
TO DGE-VI 0.624

characteristics with the normal healthy gait, the classification
of people with this class of characteristics can be realized,
etc. Long-term research has now demonstrated that gait is
not limited to clinical and specific medical studies but also
provides important indicators in the areas of post-operative
rehabilitation, training, sports, and growing adolescents [37].
The feedback through gait has an important impact on the
maintenance of health issues. With the multi-disciplinary
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TABLE 5. HT and PD spatiotemporal gait parameters.
HT(mean and SD) EPD(mean and SD)
Stride length 1.21+0.09 0.97+0.12
Step speed 1.13+0.12 0.85+0.14
Cadence 111.83+5.20 104.38+9.07
Stride time 1.08+0.05 1.16+0.11
Stance time 0.67+0.05 0.75+0.09
Swing time 0.40+0.01 0.41+0.02
HS () 45.86+4.12 43.00£6.75
TO (°) 34.89+1.45 28.89+5.72
Stance phase 62.42+1.40 64.25+2.28
Swing phase 37.58+1.40 35.75+£2.28

focus on gaits, relying solely on optical capture by cam-
eras or fixed pressure plate runways is no longer sufficient,
and secondly, they are very expensive, the former for light
and the difference due to markers will also have reliabil-
ity problems exist, the latter will be limited by the length
of the path there are limitations of the activity. With the
development of IMU being used as a gait field, it has some
advantages such as being portable, cheap, wearable, and easy
to maintain, most researchers have turned their attention
to IMU research. For the development of IMU, the ques-
tion of its accuracy and whether it can be used to replace
expensive inspection equipment still needs to be continuously
verified.

We first developed the DGE, proposing an IMU-based
model capable of detecting daily gait. With low-power Blue-
tooth to view important parameters such as gait data, COP
curve and ankle angle in real-time at the user’s end. We per-
formed the first parametric validation with the double gold
standard to verify the validity of its data.
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FIGURE 7. (a) ; Difference between HT and PD space-time gait
parameters, (b); Difference between HT and PD gait variation coefficients.

TABLE 6. HT and PD gait variability.

HT EPD
Stride length variability (%) 5.11£1.99 6.64+4.31
Stride time variability (%) 1.74+0.98 2.26+0.98
Swing phase variability (%) 2.66+1.01 3.29+0.30
Stance phase variability (%) 1.60+0.62 1.76+0.24

A. DOUBLE GOLD STANDARD VERIFICATION

According to our survey, we found that there are few vali-
dation experiments for the new inertial sensor wearable gait
detection devices, and most of them are still in the R&D stage
or have a large gap with the gold standard that currently exists.
Only a small number of spatiotemporal gait experiments have
been validated in the current validation studies [38], [39],
mostly using a single gold standard [40], [41], and most
of the validation-type articles use Zebris®and Vicon®as
gold standards. Thus, we used the double gold standard for
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the first time under the premise of using the single gold
standard. Using the double gold standard can verify the
consistency between this system and the current commonly
used gold standard, and the results show that: DGE-Zebris
has good overall reliability (ICC>0.572) and DGE-Vicon
has good overall reliability (ICC>0.521). For most of the
measured temporal gait parameters, the differences were
within £1.96 SD with good agreement. It provides a good
guarantee of data accuracy for the subsequent use of iner-
tial sensors for wearable detection of gait in life and pro-
vides the necessary basic experimental validation for data
sharing.

B. TEMPORAL GAIT AND VARIABILITY IN EPD PATIENTS
In this study, we collected only 30 patients with EPD (H&Y
stage 1 and 2), and patients with intermediate and late stages
were not included in this study, to verify the detectability of
DGE in EPD patients on the one hand, and to distinguish EPD
patients from healthy gait patients of the same age on the
other hand, which has a distinguishable meaning. In the study
of gait in EPD patients, Jakob et al. were unable to identify
different gait parameters between EPD and healthy controls
in straight-line walking [42], and Yang et al. proposed an
IMU model to detect EPD patients during turns, but it is still
difficult to detect subtle differences in the gait in EPD patients
in straight-line walking [16].

C. IMU ACCURACY ISSUES

For the IMU for measurement, there will be accuracy prob-
lems, the gyroscope has good dynamic response character-
istics, but there will be integral cumulative error and the
error caused by temperature drift; the accelerometer is good
static stability, for dynamic calculation of the angle error
is larger, so we need to correct the gyroscope through the
accelerometer. To reduce the error accumulation problem
caused by integration we need to reinitialize each new step
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in the calculation, Hamacher et al. to verify that this method
works [43].

The system was first validated against the gold standard
to prove the reliability of its data, indicating that the data
measured by DGE is universal. The prediction accuracy by
DT-REF is 91.6% and the ROC value is 0.92, which proves
that the model can predict early PD patients better, and the
system is portable, convenient and can be used anytime and
anywhere to do the test, which will reduce the expenditure of
the pharmaceutical system.

D. WALKING COP CURVE PROVIDES BALANCE MEASURE
FOR EPD PATIENTS

For the current stage of research, we first developed a foot
wearable system that can be used to obtain real-time gait
parameters in daily life, and can dynamically display foot
pressure changes during walking in the form of a visualization
chart, and draw the COP trajectory in walking, which can
be used to measure the stability of daily walking, where the
closer the COP walking trajectory is to a straight line the
better the balance of the tester’s walking.

E. CLINICAL SIGNIFICANCE AND ROLE OF THE RESULTS
Although it is generally accepted in current research that
resting tremor, bradykinesia and rigidity are the main symp-
toms of PD [44]. But abnormal movements, as well as small
changes in posture, may be evident from the early stages
of Parkinson’s, where reduced gait length is one of the key
features of gait, a finding that has been verified in previous
studies [45]. The results of our experiments show that in
addition to significant changes in stride length, there are also
significant changes in the five parameters of stance phase,
stance time, swing phase variability, step speed and cadence
in patients with EPD. This may be a new confirmation that
changes in these five parameters may provide the necessary
test for the subsequent early detection of patients with EPD.
The study of gait in EPD is still little studied by anyone.
Some subtle changes in walking impairment may already
be present in people with EPD. Through this experiment,
it was demonstrated that a highly accurate differentiation
between elderly EPD and healthy elderly individuals is feasi-
ble, or in the future, may provide a basis for medical testing
and rehabilitation of EPD to prevent further deterioration of
pathological movements and postures caused by long-term
abnormal gait patterns.

In conclusion, this system allows for the study of EPD gait,
which may provide a theoretical basis for future detection
of EPD or physiotherapy strategies, and evidence that more
accurate detection can be applied in clinical practice and may
improve treatment outcomes.

F. LIMITATIONS

The number of samples collected in this experiment is small,
and a large amount of data collection work has not been
performed, and further validation is needed for a large number
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of data results. The system designs to foot pressure and ankle
joint angle is not validated for the time being and requires
subsequent validation. In this study, we first validated the data
of this system with the double gold standard, and secondly,
we collected and compared the spatiotemporal gait data of
early Parkinson’s elderly patients with healthy elderly people,
but these studies were cross-sectional and did not conduct
longitudinal studies. Due to equipment limitations, we did not
validate the gait data in daily life.

VIi. CONCLUSION

Through effective experimental comparison with Zebris®and
Vicon®double gold standards, DGE can provide effective
measurement with accurate capture in step length, stride
time, cadence, step speed, stance phase and swing phase gait
parameters. And for the recruited EPD patients and recruited
HT subjects, using DGE for measurement, we could get a
significant difference between the gait parameters of EPD
patients and HT subjects, which proved that the IMU-based
detection system was able to detect subtle gait characteristics
in straight-line walking, which provided a basis for our team
to conduct the next study on the gait of Parkinson’s patients.
This system may in the future become an inexpensive alterna-
tive to expensive laboratory gait detection equipment and can
be used in everyday life, in variable environments, and with
high accuracy. In the future, we will recruit more patients
with EPD as well as other patients who may develop gait
disorders such as Alzheimer’s patients as well for more
in-depth studies. Whether certain parameters change in gait
in patients with other early neurological disorders remains to
be tested in our later experiments. DGE has higher accuracy
and provides a good basis for our upcoming longitudinal
study of gait in EPD patients, which can track gait changes
in EPD patients and effectively reduce the inconvenience
of longitudinal studies of EPD patients and save medical
costs.
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