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ABSTRACT The application of Internet of Vehicles technology has led to an increase in the demand for
vehicle scheduling, but the available computational resources and spectrum in current wireless networks are
limited and scarce. Therefore, in order to improve the efficiency of vehicle scheduling, a cognitive spectrum
scheduling method based on Deep Neural Network and Monte Carlo Tree Search for vehicle networking has
been proposed. It evaluates the priority of MCTS and provides spectrum resource scheduling solutions, and
uses DNN for offline training to obtain an environment model. In the simulation experiment for this method,
the CUR of the proposed method increased by a maximum of 19.3% compared to other methods used for
comparison. Its ALC is 20.4% higher than other methods. Its convergence time is lower than all methods
used for comparison, with a maximum difference of 59.3%. The mean MAE of the proposed method is
0.793, and the mean RMSE is 0.628. The results of MAE and RMSE demonstrate that the proposed method
in the experiment exhibits the lowest errors, both in training and testing processes. The proposed method
provides a certain technical foundation for the cognitive spectrum scheduling of the Internet of Vehicles.

INDEX TERMS DNN, MCTS, vehicle networking, cognitive spectrum, scheduling methods.

I. INTRODUCTION
In recent years, Vehicle-to-everything related technologies
and industries have received extensive attention and rapid
development [1]. The huge data application market provides
a strong foundation for the development of China’s Vehicle-
to-everything industry. However, with the rapid development
of the Vehicle-to-everything, the data of the Vehicle-to-
everything has also seen a blowout growth in recent years.
In the face of huge and complex vehicle road environment,
plus a large number of sensors, the Vehicle-to-everything
has put forward high requirements for data task processing
delay and network bandwidth resources. With the increas-
ing maturity of emerging information and communication
technologies, vehicles can achieve comprehensive network
connectivity and resource sharing. Combined with artificial
intelligence technology and mobile edge computing architec-
ture, it can further realize a variety of computing intensive
intelligent services, thus further improving the comprehen-
sive information processing capacity of vehicles, so as to
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independently determine the driving scheme of vehicles in
a complex road environment, and further ensure and improve
road safety and travel efficiency [2]. As a wireless Internet of
Things network, Vehicle-to-everything has the characteristics
of network nodes moving and network topology changing
from time to time. Obviously, when the number of intelli-
gent connected vehicles shows a rapid growth trend, it will
inevitably generate a large amount of resource demand, such
as spectrum resources, computing resources, etc. At this time,
a large number of network connections and differentiated data
services generated by the Vehicle-to-everything put forward
stricter requirements and challenges for reliable dynamic
network resource scheduling schemes. In addition, in the
dynamic Vehicle-to-everything environment, temporal data
will gradually lose its usefulness over time. It is also very
important to maintain high-quality temporal data. In order
to improve the timeliness of network resource supply of
intelligent networked vehicles, a more efficient and reliable
Vehicle-to-everything wireless resource scheduling scheme
is needed [3]. With the increase in the number of intelligent
connected vehicles in cities, vehicles need to communicate
frequently with ground cellular networks, resulting in a large
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amount of data interaction and greatly exacerbating the seri-
ous shortage of spectrum resources. In order to cope with the
huge challenge of spectrum resource shortage faced by the
Vehicle-to-everything, cognitive Vehicle-to-everything came
into being. Cognition of the Vehicle-to-everything allows
vehicles to access idle authorized frequency bands oppor-
tunistically without affecting the use of authorized users, so as
to alleviate the contradiction between the growing demand
for spectrum use of the Vehicle-to-everything and the current
situation of scarce spectrum resources. In order to improve
the quality and efficiency of dynamic spectrum resource allo-
cation, there have been a lot of research work based on Game
theory, Swarm intelligence optimization algorithm, Deep
reinforcement learning and other methods. However, existing
spectrum scheduling techniques do not incorporate the driv-
ing status of vehicles themselves (i.e., the impact of individual
information such as vehicle position and speed on the quality
of spectrum scheduling) into the decision-making process of
spectrum allocation. Secondly, the existing dynamic spec-
trum allocation methods cannot quickly adapt to the highly
dynamicVehicle-to-everything network environment. How to
meet the fast and reliable demand of spectrum scheduling of
vehicle users in cognitive Vehicle-to-everything has impor-
tant research significance. Therefore, a frequency spectrum
scheduling scheme based on vehicle driving status priority
and scene simulation, namely Finder MCTS, is proposed
for the urban Vehicle-to-everything. Subsequently, DNN was
used for learning and training, resulting in a state predictor
that can be applied even under offline conditions. A combined
model of DNN and Finder MCTS was constructed to further
improve the efficiency of vehicle scheduling in IoV. The
main contribution of the research is to improve the spectrum
resource utilization and the quality of user experience of the
system. By adding interference constraints from cognitive
radio resource scheduling to the tree search process, search
efficiency can be improved. At the same time, the quality
of radio resource management in vehicle-to-everything is
ensured, and the efficiency of resource management is greatly
improved.

II. RELATED WORK
Vehicle scheduling is an important factor in transport.
A reasonable vehicle scheduling plan is related to the
effective utilization of information. Many studies have con-
ducted in-depth discussions on vehicle scheduling meth-
ods. Researchers have improved and optimized the vehicle
scheduling method by using deep learning, swarm intelli-
gence algorithm, etc. Cui H et al., in order to cope with
the pressure of rescue service brought by multiple vehicle
types in the rescue process, divided the vehicles into small,
medium and large ones, modified the corresponding speed
through six road conditions, and designed a multi-objective
Decision model for rescue vehicle scheduling with two
stages. At the same time, non dominated sorting genetic
algorithm II with real number coding is designed. Compared
with multi-objective gray wolf algorithm and traditional

genetic algorithm, the proposed method has faster Rate of
convergence and better scheduling effect [4]. To address
the scheduling problem of public transportation vehicles
and crew, Andrade Michel A’s team designed an accurate
constraint programming model that simulates driver absen-
teeism behavior usingMonte Carlomethods and evaluates the
obtained travel vehicle driver allocation. In the experimental
results of randomly generated instances, it has been proven
that this method has certain effectiveness and significant
benefits in covering the travel distance [5]. Researchers have
designed a scheduling scheme for electric vehicles using deep
learning technology. This plan considers both the impact of
risk preference on energy output and the impact of group
charging on electric vehicle scheduling methods. The exper-
imental results indicate that this method can improve energy
utilization efficiency while reducing operational costs for
enterprises. In practical scenarios, this scheduling scheme has
high practical significance [6]. For electric vehicles, reason-
able scheduling is also necessary to meet the vehicle’s range
and charging requirements [7]. The periodicity of public
transportation has a certain impact on vehicle scheduling.
In the study by Lieshout R et al., the periodicity of public
transportation was included in the study of vehicle scheduling
schemes. It improves related formulas such as constraint con-
ditions and shrinkage techniques. The experimental results
demonstrate that the improved formula has high efficiency
and effectiveness in determining the number of vehicles and
scheduling [8]. The vehicle scheduling method based on IoV
can effectively solve the data processing problem caused by
the amount of information. However, with the increasing
amount of information, conventional methods can no longer
meet the needs of data processing. Researchers consider fac-
tors such as resource allocation, energy optimization, and
flow control into vehicle resource scheduling. They utilized
6G networks to build green IoV systems, thereby reducing
energy consumption [9].
Spectrum resource allocation is a key research topic in IoV

that affects the effectiveness of resource allocation. In recent
years, deep learning methods such as DNN have yielded
a series of research results in spectrum resource alloca-
tion. Sharif A et al. applied DNN to the optimal strategy
learning of IoV technology by making use of its advan-
tages of continuous learning and training, and designed an
experience driven method based on the actor critic Deep
reinforcement learning framework. The results show that the
throughput of this method is increased by 35% and 14%
respectively [10]. J. Elhachmi’s team proposed an adap-
tive DNN technology that can update dynamic requests and
achieve adaptation, and applied it to spectrum technology
optimization. The results showed that this method has better
superiority, stability, and robustness compared to traditional
DNN [11]. To determine the optimal frequency of the spec-
trum, R Nandakumar et al. utilized DNN optimization spec-
trum technology and constructed a sequential user selection
method. Compared to traditional scheduling schemes, the
results verified that this method can effectively improve user
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FIGURE 1. System scenario for spectrum scheduling in cvn.

satisfaction and maintain appropriate channel allocation sta-
tus [12]. Nandakumar R et al. established a prediction model
for spectral transmission using a neural network with time
memory. The improved prediction method can reduce the
waiting time of users and enhance the performance capacity
of the network by predicting the spectral state [13].
In summary, spectrum resource allocation is a key issue

in IoV. Researchers have optimized the application of tech-
nologies such as MCTS and DNN in IoV and its spectrum
resource allocation, but issues such as unreasonable resource
allocation still frequently arise in this field. Therefore, a fre-
quency spectrum scheduling scheme based on vehicle driving
status priority and scene simulation, namely Finder Monte
Carlo Tree Search (MCTS), is proposed for the urbanVehicle-
to-everything. Subsequently, DNN was used for continu-
ous learning and training, resulting in a state predictor that
can be applied even under offline conditions. A combined
model of DNN and Finder MCTS, the DNN-F-MCTSmodel,
was constructed to further improve the efficiency of vehicle
scheduling in IoV.

III. DNN AND MCTS IN COGNITIVE SPECTRUM
SCHEDULING METHODS FOR 2-CAR INTERNET
A. THE SYSTEM MODEL IN THE COGNITIVE SPECTRUM
SCHEDULING METHOD FOR THE INTERNET OF VEHICLES
In the research related to IoV, as a newly proposed tech-
nical concept, CVN can solve the shortage of its spectrum
resources. In CVN, spectrum sharing technology can be uti-
lized to alleviate communication interference issues, thus
meeting the differentiated communication business services
in IoV. Figure 1 shows the spectrum allocation scenario in
cognitive vehicle networking. The main user represents the
user who authorizes the current network mobile phone; The
second-level user represents the equipped vehicle. When the
main user occupies the channel, a protection area will be
formed around it (within the red circle range in Figure 1).
When a secondary user occupies the channel, an interfer-
ence area (within the green circle range in Figure 1) will
be formed around it. The radiation of secondary users can

FIGURE 2. Three-dimensional structure of the integrated vehicle
networking communication network.

cause interference to the primary user when it appears in their
protected area.

When the above situation occurs, the established allocation
algorithm will be applied to the base station in this study. The
cognitive radio module can be used in the configuration of
vehicle nodes. On this basis, the node can be used to sense
whether the spectrum resources are idle and available. The
vehicle is able to send access requests to the common control
channel to the base station. After learning, the base station
is able to allocate idle and available spectrum resources into
the black circle range in Figure 1. Within this range is the
approximate optimal strategy.

Based on CVN and other related technologies, the con-
cept of Tiandi Integrated Vehicle Network (TIVN) has been
derived. TIVN can be used to meet the needs of VN calcu-
lation in remote areas. Its characteristics mainly include the
following aspects. The network topology of TIVN has the
characteristics of dynamic changes, wide coverage effective-
ness, and self-organization. In this network structure, Low
Earth Orbit (LEO) can be used as a space-based node. LEO
can be used for calculating vehicle demand and tasks in urban
and remote areas. In urban areas, it includes ground base
stations, drones, cloud computing centers, etc. The introduc-
tion of roadbed communication mode can make the service
coverage of vehicle communication more targeted. The use
of LEO nodes can reduce network workload and increase net-
work capacity. Meanwhile, users can independently choose
network servers, thereby improving the service experience.
Figure 2 is a schematic diagram of the network structure of
TIVN.

In CVN, it is necessary to evaluate the vehicle status,
such as direction, speed, acceleration, and GPS coordinates,
in order to obtain a priority level. The main evaluation indi-
cators in this experiment include vehicle driving evaluation
score, network utility score, and comprehensive priority eval-
uation score. Formula (1) is the specific calculation formula

VOLUME 11, 2023 81171



X. Cui, G. Chen: Cognitive Spectrum Scheduling Method for Internet of Vehicles

for the vehicle driving evaluation score.

Travelingscoren =
(1+ cos(θn))

4
· (

vmax − vn
vmax − vmin

+
1

1+ ean
)

(1)

In formula (1), θn represents the angle between the current
direction of travel and the line connecting the base station and
vehicle coordinates; vn and an are used to describe the speed
and acceleration of vehicle n, respectively; vmax represents
the maximum driving speed of the vehicle; vmin represents the
minimum driving speed of the vehicle. The higher the value
of the network utility score, the better the global communi-
cation capability, which means that the vehicle can receive a
larger spectrum allocation weight. Formula (2) is the specific
calculation formula for the network utility score.

Utilityn = log2(1+ SNRn) ·

∑
1≤n,n′≤N ,n′ ̸=nDispersionn,n′

N − 1
(2)

In formula (2), SNRn represents the signal-to-noise ratio of
user n when receiving base station signals; log2(1 + SNRn)
is used to describe the rate at which user n receives data;∑

1≤n,n′≤N ,n′ ̸=nDispersionn,n′ is used to describe the global
user dispersion of user n. Formula (3) is the calculation
formula for Dispersionn,n′ .

Dispersionn,n′ =

{
1, Dn,n′ > εn

0, Dn,n′ ≤ εn
(3)

In formula (3), εn represents the threshold value of Dis-
persity; n, n′ represents two secondary users; Dn,n′ is used to
describe the average dispersion time between the two.From
this, the formula for calculating the comprehensive priority
evaluation score in formula (4) can be obtained.

Priorityscoren = Travelingscoren · Utilityn (4)

It is necessary to note that the vehicle driving evaluation
score and network utility score are obtained by the base
station through real-time collection and analysis of vehicle
related feature information in the network. For vehicle users
in the network who initiate service requests to the base sta-
tion, the base station uses the collected vehicle information
to calculate the priority score of the requested vehicle, and
sorts it from top to bottom. Therefore, we can obtain a priority
service score list for users in the cognitive network within
the current allocation cycle_ List. This priority service order
list will be used as a secondary user allocation order list,
ensuring that vehicle users with different allocation weights
in the network access based on differentiated priority, and
improving the reliability of spectrum scheduling schemes.

B. COGNITIVE SPECTRUM SCHEDULING METHOD FOR
VEHICLE NETWORKING BASED ON MCTS
The main problems with spectrum scheduling methods are
insufficient real-time performance and insufficient solution
quality [14], [15]. By utilizing MCTS, these issues can be

FIGURE 3. Specific search steps for f-mcts.

addressed. Based on tree search, the classic MCTS (Basic
MCTS, B-MCTS) exhibits strong learning ability. It can
extend the tree search to nodes with high rewards and then
simulate using the set strategy. This can update rewards and
other information. MCTS is a heuristic search algorithm
based on tree data structure that is still effective even when
the search space is huge. The process of the Monte Carlo tree
search algorithm is divided into four stages: selection, expan-
sion, simulation and backpropagation. In the selection phase
of the Monte Carlo tree search algorithm, the root node is
taken as the starting point (i.e. the top black circle), a decision
is made by comparing the value of the node to be selected,
and the child node with the largest value is selected. In the
expansion phase of the Monte Carlo tree search algorithm,
after expanding the current node, a new node (i.e. the white
circle at the bottom) is created in the decision tree as a new
child node of the node, according to the confidence upper
bound interval value of its child nodes. In the simulation
phase of the Monte Carlo tree search algorithm, the basis of
the current node movement selection is a random strategy:
that is, a subnode is randomly selected from the subnodes
to be selected and expanded to the last node. After the end
of the Monte Carlo simulation phase, broadly speaking, the
simulation results can be any value. In the backpropagation
stage, any value propagates in the opposite direction along the
decision tree to the root node, and the node state that initiates
Monte Carlo simulation changes to visited.

However, the search scale of B-MCTS expands with the
expansion of search text, which reduces its search speed.
Meanwhile, B-MCTS ignores the uncertainty brought about
by environmental factors. The variance during simulation is
large, which reduces its search performance. In response to
these issues, a new scheduling scheme, F-MCTS, is proposed
in this study. F-MCTS can use the vehicle’s posture infor-
mation and communication information to define the priority
of spectrum allocation. Then, based on the prioritization
results, MCTS is used to provide a real-time spectrum allo-
cation scheme. In F-MCTS, the MDP state space is defined,
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FIGURE 4. The iterative calculation process of dnn-f-mcts.

as shown in formula (5).

S = {sv
∣∣(λ v , ϕv, ξv)} (5)

In formula (5), sv represents the state; ϕv is the number of
communication services that need to be allocated; ξv denotes
the total broadband requests of ϕv users; λv denotes the vector
of the remaining bandwidth on the base station side. It is
shown in formula (6).

λv = {λ1, . . . , λm, . . . λM }v (6)

In formula (6), λm denotes the remaining bandwidth of
channel m. The MDP action space is also defined, as shown
in formula (7).

A = {am |1 ≤ m ≤ M} (7)

In formula (7), am is used to describe the vehicles that
can be scheduled and assigned when m is assigned by the
agent; M represents the total number of channels; In MDP,
node v and edges are the main components of a search tree;
v represents the search tree node in the corresponding state
sv. In the search tree, the edges connecting the parent and
child nodes are used to describe the actions that cause a state
change to occur. Each node v needs to maintain its node status
value in the search tree. The node status valuesmainly include
sv, v, the number of times the node has been accessed N v,
and the accumulated reward value Qv. Figure 3 depicts the
specific search steps for F-MCTS.

In Figure 3, the Vehicle ID is used to represent the vehicle.
In the specific search steps of F-MCTS, it is first necessary to
create v and initialize it to obtain the state value. It is shown
in formula (8).

v = {N v, sv,Qv} (8)

In the second step, it is necessary to allocate the frequency
spectrum of the vehicles in sequence according to the Prior-
ityscore_list table in the comprehensive priority evaluation.

FIGURE 5. Flow chart of finder dnn-f-mcts.

Multiple iterative calculations are required during allocation.
Taking v as an example, assume that the action when allocat-
ing the channel of Vehicle ID3 is a1. At this point, the search
tree expands downwards until the child node v′. During this
process, continuous iterative calculations are carried out to
continuously update the state values of nodes, as shown in
formula (9).

sv′ = fESP(sv, a1) (9)

In formula (9), fESP represents the state transition function.
In the third step, when the extension of the search tree

meets the end condition of the iterative calculation, then
the currently obtained set A∗ needs to be returned. This
set is used to describe the allocation actions of the optimal
channel.
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TABLE 1. Experimental environment.

C. SCHEDULING METHODS BASED ON DNN AND F-MCTS
Due to the uncertainty of spectrum occupation activities of
primary users, the statistical state of the tree will be unsta-
ble when it expands from one node to the next. In other
words, given a state and an action, the next state is uncertain.
This uncertainty is caused by the unknown environment of
Vehicle-to-everything. Therefore, in order to limit the scale
of horizontal expansion of MCTS trees and accelerate search
speed, it is necessary to gradually learn real environment
models close to CVN during spectrum allocation. In the
experiment, DNNwas used for continuous learning and train-
ing, resulting in an Environmental State Predictor (ESP) that
can be applied even under offline conditions. Note that in
order to train for ESP, sufficient training data is required. So,
first of all, during the cold start phase of F-MCTS, which
is the initial running phase of the algorithm, ESP is not
used. This does not affect the channel allocation solution of
F-MCTS. Moreover, during the period after the cold start
phase, our base station can calculate and obtain a considerable
number of ‘‘state action transfer pairs’’ in real-time. Subse-
quently, these state action transition pairs are continuously
input as training data into our ESP to obtain the state action
transition function, which is an offline training process. After
obtaining the transition function, the search of F-MCTS will
accelerate convergence due to the reduction of branches (i.e.,
the reduction of uncertainty). Based on the accumulated state
action transfer pairs mentioned above, we use the historical
accumulated state action pairs as inputs and use DNN to train
the transfer states. The network structure of DNN consists
of one input layer, three hidden layers, and one output layer.
Formula (10) showcases its Loss function.

LossESP =
1
B

∑
B

(
∥∥∥sv′ − ∧sv′∥∥∥

2
) (10)

In formula (10), B is used to describe the size of the sample
during the gradient descent process; ∥·∥2 is used to describe
the L2 norm. When the function reaches convergence state,
the network parameter wESP in DNN will be updated. After
learning and training, one can obtain ESP. For action am and
state sv, the state

∧
sv′ that exists in the extended node can be

obtained, as shown in formula (11).
∧
sv′ = fESP(sv, am |wESP ) (11)

Based on the above F-MCTS and DNN, the CVN vehicle
scheduling method was further optimized in the experiment,
namely DNN-F-MCTS. In the newly established vehicle

schedulingmethod, there are still 4 steps of iterative operation
to be calculated, as shown in Figure (4).

In the DNN-F-MCTS model, the first step is to select the
optimal sub node, as shown in formula (12).

argmax
v′∈child(v)

(
Qv′

N v′
+ c ·

√
ln(N v)

N v′
) (12)

In formula (12), c is the coefficient, and its value is ≥ 0.
child(v) denotes the set of sub nodes in the search tree. During
the iteration, N v denotes the number of times the parent node
v has been accessed; N v′ denotes the number of times sub
node v′ has been accessed;Qv′ is the cumulative reward, and it
is acquired by v′. Then there is the constraint oriented exten-
sion, where the optimal sub nodes obtained in the previous
step need to be used for the subsequent extension. Constraint
processing is necessary to prevent excessive expansion from
increasing the computational complexity. Then there is a dif-
ferentiated scenario simulation. Random returns are defined
to adjust reward evaluation. Finally, there is backpropagation.
The main purpose of backpropagation is to update the expe-
rience gained from previous exploration before proceeding
to the next iteration. Therefore, the rewards in this pro-
cess include the reward evaluation of all extension nodes.
This can be used to reflect the performance of spectrum
allocation. Meanwhile, the DNN-F-MCTS model achieves
pre-processing before updating through formula (13).

N v← N v + 1 (13)

Then, it is combined with formula (14) to update the node
state values.

Qv← Qv + Q∼v (14)

After the above processing steps, DNN-F-MCTS can
obtain a differentiated spectrum allocation method. Finally,
after outputting the results, the optimal allocation scheme in
CVN can be obtained. In DNN-F-MCTS, it is first necessary
to input the current node and then determine whether it is a
child node. If it is a child node, then in the third step, it is
necessary to determine whether the N value of the current
node is equal to 0. If its value is equal to 0, then the optimal
allocation scheme is obtained through simulation and back-
propagation. If in the second step, the current point is not a
child node, then the child point with themaximum confidence
upper limit (UCT) needs to be selected as the current node.
It then determines whether it is a child node. In the third
step, if the N value of the current point is not equal to 0,
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FIGURE 6. Comparison of different indicators of three mcts algorithms.

it is necessary to enumerate the possible actions that may
exist in the point and append them to the search tree. Then
it randomly selects a new child point as the current node and
returns to the second step. Figure 5 specifically illustrates the
DNN-F-MCTS method.

IV. VERIFICATION OF COGNITIVE SPECTRUM
SCHEDULING METHOD FOR 3-VEHICLE NETWORKING
In the method validation section, Table 1 provides the specific
experimental environment. All validation experiments were
conducted on the Windows 10 operating system. The simula-
tors are used to set the vehicle and channel attributes, and are
random. Simulate the experiment inMATLAB.The processor
is Intel Core CPU i99820X 3.50 GHz, with 64 GB of RAM.
Edge servers have a computing power of 7 × 108 cycles/s,
vehicle computing power is 5 × 107 cycles/s, V2V channel
bandwidth is 10MHZ,V2I channel bandwidth is 20MHZ, and
vehicle communication range is 150m. The vertical distance
of the road is 50m, the communication range of the edge
server is 300m, the vehicle transmission power is 10P/dBm,
the attenuation coefficient is 0.9, the learning rate in the
strategy network is 0.001, and the path loss factor is 2. The
parameter settings are shown in Table 1.
To verify the advantages of the F-MCTS proposed in the

experiment, this method was compared with the R-MCTS
and P-MCTS spectrum scheduling methods based on ran-
dom order and priority. At the same time, the number of
users selected is 1862. Figure 6 showcases the comparison
results of Channel Utilization Ratio (CUR), Average Link

FIGURE 7. Comparison of indicators of different algorithms.

Capacity (ALC), and convergence time for three methods.
The CUR of F-MCTS increased by 23.9% and 41.9% respec-
tively compared to P-MCTS and R-MCTS. The ALC of
F-MCTS increased by 12.5% and 25.0% respectively com-
pared to P-MCTS and R-MCTS. The average convergence
time of F-MCTS decreased by 32.9% and 52.9% respec-
tively compared to P-MCTS and R-MCTS. The CUR and
ALC values of F-MCTS are lower than those of P-MCTS
and R-MCTS. The average convergence time of F-MCTS is
lower than that of P-MCTS and R-MCTS. This indicates that
F-MCTS can learn quickly in a time-varying environment,
to find the optimal solution. This significantly improves the
availability of spectrum resources in the system.

In order to verify the advantages of DNN-F-MCTS pro-
posed in the experiment, this method was compared in
the experiment with the methods in the literature. Refer-
ence [17] is the task offload of vehicle-mounted edge com-
puting network realized by deep reinforcement learning.
Reference [18] is an adaptive attitude determination method
for biomimetic polarization integrated navigation systems
based on reinforcement learning strategies. Reference [18]
is a resource allocation method based on Markov decision-
making. The comparison results of CUR, ALC, and conver-
gence time for the four methods are shown in Figure 7. The
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FIGURE 8. Performance comparison under different cognitive vehicle
user numbers.

CUR of DNN-F-MCTS was increased by 9.1%, 19.3%, and
15.7% compared to the methods in references [17] and [18],
respectively. The ALC of DNN-F-MCTS was increased by
7.1%, 20.4%, and 20.4% compared to the methods in refer-
ences [17] and [18], respectively. The average convergence
time of DNN-F-MCTS was reduced by 30.7%, 32.3%, and

FIGURE 9. Relationship between ccs number and computing tasks
number and the average scheduling delay.

59.3% compared to the methods in references [17] and [18],
respectively. The CUR andALC values of DNN-F-MCTS are
lower than those of the methods in references [17] and [18].
The average convergence time of DNN-F-MCTS is lower
than that of the methods in references [17] and [18].

The number of users is an important factor affecting
the performance of different vehicle scheduling methods.
Figure 8 compares the CUR, ALC and convergence times of
different methods for different numbers of users. Figure 8
indicates that the CUR values of each method increase as
the number of users increases until a convergence state is
reached. This may be due to the accumulation of experi-
ence due to the increase in the number of users, thereby
improving the quality of vehicle scheduling solutions. The
ALC values of each method decrease as the number of users
increases. It may be because the increase in the number
of users makes it difficult for various methods to find the
optimal solution, thus achieving a global convergence state.
The average convergence time of each method increases with
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FIGURE 10. Comparison of algorithm convergence and relationship
between vehicle number and average scheduling delay.

the increase of the number of users, while the convergence
time of DNN-F-MCTS changes the slowest.

In TIVN, the number of Central Cloud Server (CCS) on
the ground and the quantity of computing tasks will have
an impact on the efficiency of vehicle scheduling schemes.
Figure 9 shows the average scheduling delay variation under
different CCS and computational task quantities. Figure 9 (a)
shows the average scheduling delay when the number of CCS
grows from 1 to 50 when the quantity of computing tasks
is set to 20. As the number of CCS increases, the average
scheduling delay of each method gradually decreases. This
may be because increasing the number of CCS provides
more vehicle scheduling options for scheduling schemes. The
DNN-F-MCTS vehicle scheduling method proposed in this
experiment has the highest reduction in average scheduling
delay. In Figure 9 (a), when the quantity of CCS is set
to 20, the average scheduling delay is calculated when the
quantity of tasks increases from 1 to 100. It can be con-
cluded that as the quantity of computing tasks grows, the

FIGURE 11. Comparison of rmse and mae.

average scheduling delay of eachmethod gradually increases.
When the quantity of computing tasks is less than 20, the
variation in the average scheduling delay of the methods in
references [17] and [18] is not significant. When the quantity
of computing tasks exceeds 20, the average scheduling delay
of the methods in references [17] and [18] increases with the
number of computations. When the number of tasks is 1-100,
the average scheduling delay of DNN-F-MCTS increases
as the number of tasks increases, showing a certain linear
relationship. This may be because the algorithms in the liter-
ature are significantly influenced by constraints. Therefore,
the efficiency of problem solving is affected, resulting in a
higher average scheduling delay. Themethod proposed in this
experiment is less affected by constraint conditions, so the
efficiency of problem solving is higher.Overall, the efficiency
and convergence speed of the DNN-F-MCTS model pro-
posed in the study are better than those in references [17]
and [18] because the proposed method incorporates the state
of the vehicle itself into the process of IoV spectrum allo-
cation, while adapting to the characteristics of dynamic IoV
networks. Moreover, this method uses the vehicle’s posture
information and communication information to define the
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FIGURE 12. Revenue comparison and relationship between vehicle
number and revenue.

priority of spectrum allocation, and provides a real-time spec-
trum allocation scheme throughMCTS, So the effect is better.

In the iterative calculation of the algorithm, the learn-
ing rate also affects the convergence of the method. The
impact of different learning rates on the vehicle scheduling
method proposed in the experiment is shown in Figure 10 (a).
It demonstrates that when Episode is below 200, different
learning rates increase with the increase of Episode. When
Episode is above 200, the method reaches convergence at
learning rates of 0.01 and 0.001. When the learning rate is
0.00001, the convergence speed of the proposedmethod in the
experiment changes slowly and requires longer training time.
When the learning rates are 0.01 and 0.001, the difference
in convergence speed between the two is small. The learning
rate used in this experiment is 0.001. Figure 10 (b) shows the
comparison of convergence rates among different methods.
It indicates that the method proposed in this experiment
reached a convergence state when the episode was 23, with
high convergence efficiency.

Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) are indicators to measure the accuracy of algo-
rithms. These two indicators present the error situation of

the algorithm from different perspectives. The smaller the
MAE and RMSE values of the algorithm, the stronger its
performance. Figure 11 (a) showcases the MAE indicator
test results, and Figure 11 (b) indicates the RMSE indicator
test results. The experiment in the test set indicates that the
MAE andRMSEof the proposed algorithm in this experiment
show an overall decrease with the increase of the epoch and
finally reach convergence. In the comparison of MAE and
RMSE indicators of different methods, the error curves of the
proposed algorithm are all at the bottom. This indicates that
the overall error of the proposed method in the experiment
is the lowest. Figure 11 illustrates that the MAE mean and
RMSE mean of the proposed algorithm in the experiment
are 0.793 and 0.628, respectively. The results of MAE and
RMSE demonstrate that the proposed method in the exper-
iment exhibits the lowest errors in both training and testing
processes.

For testing the practicality of the method in this study,
Figure 12 demonstrates the calculation of benefits under
different time slots and vehicle numbers. Figure 12 (a) shows
that the cumulative benefits of the method gradually increase
as the time slot increases. This indicates that different vehicle
scheduling methods can achieve better vehicle scheduling
and thus achieve better returns. Relatively speaking, the
proposed method in this experiment achieved the highest
cumulative returns. This proves that this method exhibits bet-
ter scheduling performance in the actual vehicle scheduling.
Figure 12 (a) indicates that as the quantity of vehicles grows,
the cumulative benefits of the different vehicle scheduling
methods tend to increase and then decrease. This may be
because as the number of vehicles increases, it leads to
an increase in computational tasks, thereby reducing the
scheduling effectiveness of vehicle scheduling methods.

V. CONCLUSION
Acognitive spectrum schedulingmethod for vehicle network-
ing based onDNN andMCTS is proposed to address the issue
of low data availability and utilization efficiency in the cur-
rent vehicle networking industry. According to the simulation
test results, the CUR of F-MCTS increased by 23.9% and
41.9% respectively compared to P-MCTS and R-MCTS. The
ALC of F-MCTS increased by 12.5% and 25.0% respectively
compared to P-MCTS and R-MCTS. The average conver-
gence time of F-MCTS reduced by 32.9% and 52.9% respec-
tively compared to P-MCTS and R-MCTS. The CUR and
ALC of this method are both improved bymore than 7% com-
pared to similar algorithms used for comparison. The highest
increase reached 20.4%.The mean MAE of this algorithm
is 0.793, and the mean RMSE is 0.628. The results of the
error indicator show that the algorithm has the lowest error
among the centralized algorithms. In terms of practicality, the
cumulative benefits of the proposed algorithm are the highest
under different time slots. The method proposed in this study
still has certain shortcomings. The proposed algorithm lacks
sufficient granularity in spectrum resource requirements.
Therefore, it may not be able to maintain performance when
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faced with multi-objective optimization scenarios. Testing
and optimizing its performance in multi-objective scenarios
is the next research direction.
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