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ABSTRACT An accurate prediction for the stored-grain situation is a necessary means to ensure grain
security. It is difficult for traditional machine learning methods to process large-scale stored-grain moni-
toring data, while deep learning methods have the problems of difficult model training and high resource
consumption. To solve these problems, a risk prediction model for stored-grain situations was proposed
based on a broad learning network. First, the concept of stored-grain risks was proposed and defined in three
categories: low, medium, and high. Then, based on the existing broad learning network, two improved broad
learning algorithms were proposed: an enhanced node incremental algorithm and an input data incremental
algorithm. Based on the multi-modal features of stored-grain situation data, canonical correlation analysis is
introduced to the feature extraction and fusion methods. Finally, an accurate prediction model of stored-grain
risk based on improved broad learning and correlation analysis is constructed. The experimental results show
that, compared to the traditional broad learning model, the two improved broad learning models improve the
accuracy of stored-grain risk prediction by more than 2.3%. Meanwhile, compared with the existing deep
learning models, the improved broad learning model reduces training time by more than 20 times without
reducing the prediction accuracy and has better robustness. In short, the incremental learning trainingmethod
can make the prediction accuracy of the broad learning model close to or reach the level of the deep learning
model with the increase of training data, which proved that the proposed methods may be an effective
alternative to deep learning models.

INDEX TERMS Stored-grain risk point, broad learning network, multi-modal data, incremental learning,
canonical correlation analysis.

I. INTRODUCTION
Grain reserves are an important measure to guarantee food
security in a country. To ensure the safety of grain storage,
it is also necessary to predict the changing trend of the grain
storage situation in time, in addition to real-time monitor-
ing of the state of grain storage. However, relevant studies
have shown that the prediction of the stored-grain situation
is a very complex problem [1] and is also a key scientific
and technological problem that needs to be solved urgently
in the field of grain storage. To facilitate this research,
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we put forward the concepts of ‘‘dangerous grain situation’’
and ‘‘stored-grain situation risk point,’’ and researched the
‘‘stored-grain situation risk point prediction model.’’ This
model predicts a time point at which the stored grain will
be in a dangerous state (refers to mildew or deterioration
of quality). The prediction accuracy of the stored-grain sit-
uation risk points is related to many factors, such as grain
variety, granary type, local storage conditions, meteorolog-
ical conditions, geographical location, grain temperature,
and humidity, initial moisture content of the grain, impu-
rity content of the grain, gas composition in the warehouse,
and types and the initial state of biological harmful factors.
Because of the complex interactions among various factors,
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it is very difficult to predict the risk point of a stored-grain
situation.

Prediction methods based on traditional machine learning
include linear regression (LR), nonlinear regression, Markov
method, support vector regression (SVR) [2], random forest
[3], ARIMA [4], grey prediction models [5], and BPNN [6].
These methods are widely used in various fields. However,
data on stored-grain situations are very complex, includ-
ing static, dynamic, one-dimensional, two-dimensional, and
three-dimensional data. The amount of data is large and the
attributes and characteristics of the data are diverse. It is
difficult for prediction models based on traditional machine
learning methods to effectively process a large amount of
stored-grain situation data from multiple sources. As a result,
this type of forecasting model can only use partial data
to make one-sided predictions of the stored-grain situation,
which is poor in meeting the actual needs of ‘‘grain situation
risk-point prediction. At present, deep learning algorithms
have been greatly developed and widely used, and their
outstanding advantage is that they can independently learn
the deep features in samples and can greatly improve the
model prediction performance. Thus, it is a good choice for
constructing a prediction model for the risk point of the
stored-grain situation. [7], [8]
When faced with big data, deep learning models need to

learn a large number of weight parameters, and because of
the greater number of intermediate layers in deep learning
networks, the application of the BP algorithm in the training
of deep neural networks is not only very time-consuming but
also easily encounters the problem of gradient disappearance
or gradient explosion. Stored-grain situation data are big data,
and these data not only possess high dimension and large
scale but also possess dynamic growth trends, which undoubt-
edly bring great difficulties to the training of stored-grain
situation risk-point prediction models using deep learning.
Therefore, it is necessary to propose a new neural network
model that is simple and easy to train and can adapt to
modeling and training using large-scale dynamic stored-grain
situation data to ensure model accuracy.

The introduction of broad learning [9], [10], [11] makes it
theoretically possible to generate such neural network mod-
els. Neural networks that adopt a broad learning mode are
called broad-learning networks (BLN). Based on the original
shallow neural network, it expands the network along the
width direction and the hidden layer into a cascade struc-
ture composed of feature nodes and enhanced nodes. Ridge
regression of the pseudo inverse is designed to find the
desired connection weights, which is significantly faster than
the solving speed of the gradient descent method. Simul-
taneously, the broad learning network can also adopt the
incremental learning method to be updated quickly [12].
Owing to the advantages of a broad learning network, it has
received significant attention since it was proposed and has
been successfully applied in image classification [13], [14],
pattern recognition [15], fault detection [16], disease diagno-
sis [17], and other fields.

In this study, a new stored-grain situation risk prediction
model is proposed based on the basic theory of broad learn-
ing. The main contributions of the study are as follows:

(1) A simple broad learning neural network structure is pro-
posed, and a training method based on incremental learning
is introduced, which greatly reduces the complexity of the
model and training time.

(2) Through experiments, it is proved that the prediction
accuracy of the model can approach or even reach the pre-
diction level of the deep learning model through incremental
learning, and it can accurately predict the changes in storage
grain conditions within a month. Our research shows that in
some prediction fields, such as the one studied in this paper,
our proposed model can be an effective alternative to the deep
learning model.

II. RELATED WORKS
At present, the risk warning to stored grain is mainly realized
by establishing a mathematical model. The main models
include the empirical model, mass-heat transfer model, and
machine learning model [18]. Due to the implementation of
the grain reserve system in China, there are more and higher
levels of research in this field.

The empirical models include the power function model,
exponential function model, and sine function-based model.
The model based on the sine function is summarized accord-
ing to the grain situation data of large granaries in China,
as shown below.

T = b+ A sin
(
x ·

2π
365

− ω

)
,

where b is the average temperature of the granary, A is the
magnitude of the temperature change, ω is the initial phase,
and x is the number of days.

During grain storage, complex ecosystems are established
within the granary, with internal heat, mass, and momen-
tum transfers. Based on this, the material transfer model,
momentum transfer model, and heat transfer model are estab-
lished, namely the so-called ‘‘three-transfer’’ model. Based
on the three-transfer model, Quemada et al. [19] studied the
influence of airflow on heat and water in the process of
grain storage by analyzing the flow pattern, isotherm, and
water distribution changes. REN et al. [20] established a
three-dimensional numerical model of temperature change
by applying the porous medium model and the solar radia-
tion model and studied the relationship between grain pile
temperature and wall temperature, grain pile height, and
the distance between grain pile and wall. Yin et al. [21]
built a coupled mathematical model of the temperature field,
humidity field, and micro airflow field of wheat pile based
on the multi-field coupling theory to simulate and predict
the process of grain pile temperature change. Liu et al. [22]
revealed the spatio-temporal coupling relationship between
the temperature field, humidity field, and grain mold by
simulating the phenomenon of mildew heating caused by a
high local moisture content of corn pile.
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With the rapid development of artificial intelligence, it is
more accurate to usemachine learning algorithms for analysis
and modeling. Duan et al. [8] used temperature sensors to
measure and collect grain temperature data for 423 days from
a real-world granary and collect the corresponding meteoro-
logical data from China Meteorological Data Network. This
paper proposes to leverage meteorological data to predict the
average temperature of the grain pile with machine learning
algorithms: a support vector regression (SVR) approach and
an adaptive boosting (AdaBoost) approach. Li et al. [23] pro-
posed the Holt-Winters model that is applied to the analysis
and prediction of the temperature time series of the grain
warehouse. The model’s value is adjusted by improving the
membership function and considering the influence of nearest
neighbor and global data. This model is proven to perform
better than the ARIMA model. Wang et al. [24] proposed the
HCM model based on Fourier analysis. The model realizes
the prediction of grain temperature by atmospheric tempera-
ture. Its root mean square error (RMSE) is between 1.6 and
2.3◦C, which can meet the basic application requirements.
In recent years, deep learning has been gradually applied in

the prediction of stored grain conditions. Wu et al. [25] aimed
at temperature changes caused by heat accumulation inside
grain piles, designed and trained a bidirectional LSTM neural
network using the existing temperature data to accurately
predict the temperature at a certain time. The experimental
results show that the bi-directional LSTM neural network
has a better temperature change trend than the LSTM neu-
ral network, RNN neural network, bi-directional RNN neural
network, GRU neural network, and bidirectional GRU neural
network has the better predictive ability. Duan et al. [26]
proposed a coding-decoding model with an attention mecha-
nism to accurately predict grain temperature. Feng et al. [27]
established a grain pile temperature prediction model based
on the LSTM network by converting historical grain situation
data into a sparse matrix and using the Adam optimization
algorithm for parameter optimization. The model can predict
the temperature of the grain pile for the next 15 days.

In the risk prediction of stored-grain situations, most of
the existing prediction models aim at a single-grain situation
parameter, among which the most important grain situation
prediction parameter is temperature. However, the prediction
of temperature can only reflect the risk of the grain situation
to a certain extent, and cannot reflect the risk state of the grain
situation accurately. In addition, the stored-grain situation
risk prediction model based on deep learning still has some
problems, such as a complex model and long training time.

In this paper, a new neural network structure is proposed
to overcome the shortcomings of deep learning model in
the prediction of grain storage risk. The neural network
follows the shallow structure of the traditional neural net-
work, extends the input layer and the hidden layer to the
breadth direction, and introduces the incremental learning
mode. The new neural network can not only guarantee the
same prediction accuracy as deep learning, but also greatly

reduce the complexity and training difficulty, and improve the
robustness. In some application areas where sample data is
insufficient, it can effectively replace deep learning models.

III. BROAD LEARNING NETWORK
A. BASIC NETWORK STRUCTURE
A broad learning network (BLN) is generated based on
RVFLNN (Random Vector Function Chain Neural network
(RVFLNN) [28]. The network structure is shown in Fig. 1.
The BLN network structure still follows the traditional shal-
low neural network with a three-layer structure, and the
difference between them is that the BLN expands its hidden
layer in the width direction; that is, the hidden layer consists
of multiple groups of feature nodes and enhancement nodes.
The input data X of the BLN is not directly connected with
the feature node but is used as the value of the feature node
after some mapping.

FIGURE 1. The basic structure of broad learning network.

B. INPUT LAYER
In the BLN input layer, the number of neurons is equal to the
number of attributes of the input data. Assuming that the input
data haveM attributes, the ith input data can be represented as
a vector xi = (xi1, xi2, . . . , xiM ) ∈ RM . Assuming that there
are N such input data, N M-dimensional input vectors can
be represented by a matrix X = (x1, x2, . . . , xi, . . . , xN )T ∈

RN×M . After batch processing of input data X, the BLN sends
them to the feature nodes for transformation. Because the
attributes of the input data are of different types, the raw input
data are generally normalized for convenience.

C. HIDDEN LAYER
1) FEATURE NODE
According to the basic structure of the BLN shown in
Fig. 1, the hidden layer comprises a feature node layer
and an enhancement node layer. Assuming that the fea-
ture node layer of BLN is composed of n groups of nodes
Z1,Z2, . . . ,Zn, and the node of group Zi is composed of q
neurons, the input data X are expressed as follows after the
feature mapping Zi.

Zi = ϕi(XWei + βei), i = 1, 2, . . . , n. (1)
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ϕi in Eq. (1) is the activation function, and the common
sigmoid and ReLU functions can be used. The activation
functions for each mapping group may differ. Wei ∈ RM×q

is a weight matrix of the network, and the initial value may
be randomly generated. βei ∈ RN×q is a bias matrix and the
initial value is random. These two matrices are fine-tuned by
the sparse auto-encoder to extract sparser features from the
input data.

2) ENHANCEMENT NODE
The enhancement node layer of the BLN is denoted by
H1,H2, . . . ,Hm. Assuming that the jth enhanced node Hj
contains r neurons, the matrix Zn from the feature node
layer can be transformed after the enhancement node layer
as follows:

Hj = ξj(ZnWhj + βhj), j = 1, 2, . . . ,m. (2)

In Eq. (2), ξj is the activation function, and functions such
as the sigmoid function and ReLU can be used.Whj ∈ Rnq×r

is the weight matrix, βhj ∈ RN×r is the bias matrix, and their
initial values are set to random values.

D. OUTPUT LAYER
The output layer of the BLN handles both regression and
classification problems. For the classification problem, tag
encoding uses unique hot code. If the label of the input sample
xi is yi = (yi1, yi2, . . . , yiQ) ∈ RQ, the unique hot code
[0,0,1. . . ,0] indicates that the input sample is of the third type.
All labels can be represented as

Y = (y1, y2, . . . , yi, . . . , yN )T (3)

In Eq. (3), Q is the number of categories and Y is the label
matrix. After input sample X passes through the BLN, the
following output matrix is obtained:

∧

Y = (
∧
y1,

∧
y2, . . . ,

∧
yi, . . . ,

∧
yN )T (4)

E. MODELING AND RESOLVING FOR BLN
Based on the previous discussion, in BLN, only the weight
matrix requires training, which undoubtedly greatly reduces
the training amount of the BLN. BLN training is based on the
following objective functions:

argmin
Wm

(||Y −
∧

Y ||
2
2 +

λ

2
||Wm

||
2
2) (5)

In Eq. (5), ||Y −
∧

Y ||
2
2 represents the training error, which is

minimized by the training process. λ

2 ||Wm
||
2
2 is the regular-

ization term that is used to prevent over-fitting of the model,
where λ is the regularization coefficient with a value range
of 0-1.

IV. IMPROVEMENT OF BLN INCREMENTAL LEARNING
AND STRUCTURE SIMPLIFICATION
Incremental learning means that when there are new samples,
the model only needs to perform incremental training or local

updates based on new data. This training method can make
the model update faster, and the cost of the model update is
smaller. Literature [29] proposed a dynamic updating neural
network training algorithm was proposed. By obtaining a
pseudo-matrix [30], this algorithm provides a fast update
method for connectionweights when new input data are avail-
able. Since then, incremental learning has been applied to
machine learning algorithms such as random forest [31] and
SVM [32], gradually becoming an important learningmethod
in the field of machine learning. In this study, two incremental
learning algorithms, the Enhanced Node Increment algorithm
(EIBLS) and the input data increment algorithm (IIBLS), are
used to improve the classification accuracy of the traditional
BLN model.

A. ENHANCED NODE INCREMENT ALGORITHM OF BLN
(EIBLN)
The enhanced node incremental learning algorithm is a
learning algorithm that keeps the number of feature nodes
unchanged in the network and increases the number of
enhanced nodes to improve the feature extraction ability of
the model. Its structure is shown in Fig. 2.
When several enhancement nodes are added to the model,

the hidden layer matrix of the model is expanded from A =

[Zn|Hm] to Am+1
= [A|ξ (ZnWm+1 + βm+1)], where Wm+1

and βm+1 are the newly added weight matrix and bias matrix,
respectively, and ξ is the activation function. Using a pseudo-
fitting operation, the pseudo-fitting matrix of the hidden layer
matrix is

(Am+1)+ =

[
A+

− DBT

BT

]
(6)

where D = A+ξ (ZnWhm+1 + βhm+1)

BT =

{
C+ C ̸= 0
(1 + DTD)−1BTA+ C = 0

(7)

andC = ξ (ZnWhm+1 +βhm+1 )−AD,C+ is the pseudo inverse
of C .

According to Eq.(6) and Eq.(7), the connection weight
Wm+1 of the hidden and output layers is updated as
follows.

Wm+1
=

[
Wm

− DBTY
BTY

]
(8)

FIGURE 2. Enhanced node incremental algorithm of BLN.
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B. INPUT DATA INCREMENT ALGORITHM OF BLN (IIBLN)
In the era of big data, the amount of data is growing rapidly,
which requires machine learning models to be updated or
constructed rapidly. Traditional deep learning models usually
need to be retrained when the input data increases, which is
time-consuming and laborious. Broad learning networks have
a special advantage in dealing with this problem: they may
use an input data increment algorithm to update themselves
quickly.

As shown in Fig. 3, we assume that the newly added data
to the BLN are Xa. Amn is the original hidden layer matrix,
including the n groups of feature mappings and the m groups
of enhanced mappings. Owing to the new data, the hidden
layer is updated to

Ax = [ϕ(XaWe1 + βe1), . . . , ϕ(XaWen + βen)|

ξ (ZnxWh1 + βh1), . . . , ξ (ZnxWhm + βhm )] (9)

In Eq. (9), Znx = [ϕ(XaWe1 + βe1 ), . . . , ϕ(XaWen +

βen )] is the updated part of the original feature nodes
and Wei ,Whj, βei , βhj is a randomly generated matrix. After
updating, the hidden layer matrix is

xAmn =

[
Amn
ATx

]
(10)

The corresponding pseudo-inverse operation is:

(xAmn )
+

= [(Amn )
+

− BDT |B] (11)

where DT = ATx (A
m
n )

+

BT =

{
C+ C ̸= 0
(1 + DTD)−1(Amn )

+D C = 0

C = ATx − DTAmn , (12)

Finally, the weight xWm
n is updated to:

xWm
n = Wm

n + (Y Ta − ATxW
m
n )B (13)

In Eq. (13), Y Ta is the label corresponding to the new
data Xa.

FIGURE 3. Input data increment algorithm of BLN.

C. THE IMPLEMENTATION OF BLN
According to the above improvements to BLN, the over-
all implementation process of the BLN Incremental model
including feature-mapping nodes, enhancement nodes, and
new inputs is shown in Algorithm 1.

Algorithm 1 The Implementation of the Incremental Learn-
ing of BLN
Input: training set X ;
Output: W
for i = 0; i ≤ n do
Random Wei, βei;
Calculate Zi = [φ(XWei + βei)];

end
Set feature mapping group Z n=[Z1, . . . ,Zn];
for j = 1; j ≤ m do
Random Whj,βhj;
Calculate Hj = [ξ (ZnWhj + βhj)];

end
Set enhancement nodes group Hm

= [H1, . . . ,Hm];
Set Amn and calculate Am+1

n ;
While loss function does not converge do
if p enhancement nodes are added then

Random Whm+1,βhm+1;
Calculate Hm+1 = [ξ (ZnWhm+1 + βhm+1)];
Update Am+1

n ;
Calculate (Am+1

n )+ and Wm+1
n ;

m = m+ 1;
else

if n+ 1 feature mapping is added then
Random Wen+1 , βen+1 ;
Calculate Z n+1 = [φ(XWen+1 + βen+1 )];
Random Wexi , βexi , i = 1, . . . ,m;

CalculateHexn+1 = [ξ (Zn+1Wexi +βexi ), . . . , ξ (Zn+1Wexm +βexm )];
Update Amn+1;
Update (Amn+1)

+andWm
n+1;

n = n+ 1;
else

New inputs are added as Xa;
Calculate Ax ;
Update (x (Amn )

+ and (xWm
n );

end
end
end
Set W ;

Notice that all the pseudo inverse of the involved matrix
are calculated by the regularization approach. Specifically,
this algorithm only needs to compute the pseudo inverse of
the additional enhancement nodes instead of computations
of the entire (Am+1) and thus results in fast incremental
learning.

D. STRUCTURE SIMPLIFICATION
After the broad expansion with added mapped features and
enhancement nodes via incremental learning, the structure
may have a risk of being redundant due to poor initialization
or redundancy in the input data. Generally, the structure can
be simplified by a series of low-rank approximation methods.
In this paper, we adopt the classical SVD as a conservative
choice to offer structure simplification for the proposed broad
model. The simplification can be done in different ways:
1) during the generation of mapped features; 2) during the
generation of enhancement nodes; or 3) in the completion of
broad learning. After comparison, we choose to simplify the
model in the completion of broad learning.
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V. STORED-GRAIN SITUATION RISK PREDICTION MODEL
BASED ON BLN
The framework of the stored-grain situation risk-prediction
model based on the improved BLN is shown in Fig. 4.
Stored-grain status data are usually in the form of tempera-
ture, humidity, gas composition, insect condition, etc., which
present multi-modal characteristics. Integrating information
from multiple modes is necessary for building models using
machine learning. However, existing broad learning net-
works and their improved algorithms only use single-mode
data when classifying or predicting patterns. Based on the
above-improved framework of the broad learning network,
this study combined the multi-modal characteristics of the
stored-grain situation data and proposed the following risk-
prediction model, as shown in Fig. 4. The model aims to
improve prediction accuracy by learning and fusing data from
multiple modes.

FIGURE 4. The framework of warehouse grain situation risk prediction
model.

As shown in Fig. 4, a typical correlation analysis (CCA)
module and feature fusion nodes are added to the proposed
stored-grain situation risk prediction model based on a broad
learning network. First, feature extraction of the stored-grain
situation data with various modes is carried out, and the
extracted features are input into the correlation analysis mod-
ule for correlation learning. Feature fusion is carried out in
the feature fusion node, and finally, pattern classification is
realized through the output layer. The advantage of this model
is that, compared with the classification model using a single
mode, it can obtain a higher classification performance by
making full use of the fusion features of multiple modes.

Canonical correlation analysis can be used for dimen-
sionality reduction of multiple datasets. It can map multiple
datasets with different modes to the same data space, accord-
ing to an association rule. The CAA can be fused and mapped
in a cascading manner, and its mathematical definition is as
follows:

Assuming that X = {x1, x2, · · · , xn} and Y =

{y1, y2, · · · , yn} are two n-dimensional datasets, a new coor-
dinate space is obtained through transformation via basis
vectors u and v, respectively. The correlation parameters of
datasets X and Y are defined as:

ρ = max
u,v

uT
∑

xyv√
uT

∑
xxu

√
vT

∑
yyv

(14)

In the above equation,
∑

xy,
∑

xx , and
∑

yy are interclass
and intraclass covariance matrices, respectively.

∑
xy = E

[
xyT

]
=

1
n

n∑
i=1

xiyTi

∑
xx = E

[
xxT

]
=

1
n

n∑
i=1

xixTi

∑
yy = E

[
yyT

]
=

1
n

n∑
i=1

yiyTi (15)

The correlation calculation in the above equation is an opti-
mization problem, which can be transformed into a problem
of solving eigenvalues.

It is assumed that the input data of the model have two
modes: the number of samples is N, and the number of fea-
ture nodes and enhanced nodes are N1 and N2, respectively.
The characteristic expression of one mode of data is X1 =

[Z1|H1], which is generated by a broad learning unit, and
its feature nodes and enhanced nodes can be expressed as

Z1 =
{
zi|zi ∈ RN1

}N
i=1 and H1 =

{
hj|hj ∈ RN1

}N
j=1 respec-

tively; similarly, the feature expressions, feature nodes, and
enhancement nodes of another modal data can be represented
as X2 = [Z2|H2], Z2 =

{
zi|zi ∈ RN2

}N
i=1, and H2 ={

hj|hj ∈ RN2
}N
j=1, respectively, generated by another broad

learning unit. To better learn the common characteristics of
the two modal datasets, they are first mixed and then input
into the fusion node layer. In this study, considering the con-
venience of processing, the data of the two modes are simply
connected in parallel as the total feature that is extracted last
and the net input of the fusion node, namely:

FN×2(N1+N2) =

[
XN×(N1+N2)
1 |XN×(N1+N2)

2

]
(16)

Here, F represents the new input of the fusion node layer.
To better fuse the data of different modes, this study intro-
duces a fusion node mapping layer. The features of the
differentmodes are abstractly fused by referring to the nonlin-
ear fitting of a traditional neural network. Finally, the output
matrix is used for feature learning to improve the classifica-
tion performance of the model. Assuming that the number of
nodes in the fusion layer is N3, the output of the fusion node
layer is.

TN×N3 = φ
(
FN×2(N1+N2) ·W 2(N1+N2)×N3

t + bNt × N3

)
(17)

where φ (·) is an S-type nonlinear activation function.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA ACQUISITION AND PROCESSING
The experimental data are the 2019-2020 stored-grain situa-
tion measurement and control data from a national granary in
China. This granary is equipped with a full set of stored-grain
situation measurement and control systems that can measure
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the temperature, humidity, worm situation, and gas composi-
tion. The measurement and control software can dynamically
display the cloud and trend maps of the temperature and
humidity in the granary visually. In this study, 735 pieces of
temperature and humidity data (in the form of Excel tables,
each of which included one item of average temperature in
the granary, one item of average temperature in each layer
of the grain pile, 12 items of maximum and minimum tem-
perature, one item of humidity in the granary, and one item
of temperature and humidity outside the granary), 105 pieces
of stored-grain situation reports (in the form of Word files),
76 cloud map images of temperature and humidity (JPG
image format file), 20 insect situation reports (Word format
file), 24 insect density maps (JPG image format file), and
10 gas composition reports (Word file), were obtained for the
experiments.

There are two types of data (text and image data) with
multiple modes (each mode corresponds to a data source).
First, we preprocessed the text data as follows: exported the
data in Word files and Excel files, removed the sick data, and
formed four plain text files of temperature, humidity, insect
pests, and gas components with a total of 23,275 data points,
where 70% of the data were taken as training sets and labeled.
SamplePairing tool was then used to expand the image data
to 600 pieces, and the Labelimg tool was used to add labels.

This study divides the data into two groups according to the
year: text data and image data, which are composed of multi-
ple modal data. The proposed model takes the multi-modal
data as the input of the broad learning network, and via
the typical correlation analysis module shown in Fig. 4, the
stored-grain situation risk characteristics are extracted at a
deeper level to improve the accuracy of the prediction. In the
experiment of text data, the model was trained with the text
stored-grain situation data of 2019-2020 as the training set.
The temperature, humidity, and pest situation data of a day
are taken as a model vector, and 720 model vectors were used
in total. The data was sampled once a day, and the data that
was not sampled on time was processed by the interpolation
method. All data were batch normalized before being used
for model training. In the experiment of image data,

In the stored-grain situation risk forecast dataset, the nor-
mal data account for the majority; therefore, it is a typical
unbalanced dataset. To improve the proportion of risk data
and ensure the balance between the data of various risk types,
we adopted COMSOL Multiphysics software to simulate
the ecological environment of the granary. COMSOL Multi-
physics has efficient computing power and unique multi-field
fully coupled analysis ability, which can ensure the high
precision of the numerical simulation. Firstly, the heat trans-
fer module and porous media flow module are called in
COMSOL Multiphysics software to establish a set of sim-
ulation modeling methods for multi-physical field coupling
analysis. The Navie-Stokes (NS) equation is used to construct
the multi-field coupling mathematical model of temperature,
humidity, and micro airflow, and the coupling simulation is
carried out for each initial physical field of the grain pile.

The multi-mode simulation data changed with time is gener-
ated and visualized to make up for the deficiency of image
data. By changing the initial conditions of the simulation
model and artificially setting the simulation parameters,
we deduced the low-, medium-, and high-risk conditions and
obtained a large number ofminority types of data, whichwere
added to the training dataset to ensure the balance of data
types in the dataset. Finally, we split the data into training
and test sets in a 7:3 ratio.

In addition, the data were preprocessed before being
used for model training. For the general methods of signal
processing, Literature [33] addresses the role of emerging
technologies and mathematical tools in integrating computa-
tional intelligence and digital signal processing in education
and has a great inspiration for our research on signal prepro-
cessing. In our study of signal preprocessing, first, the text
data was cleaned according to the big data cleaning process,
then for the image data, the median filtering method was
used to filter the salt and pepper noise that is from abnormal
sensors. Finally, normal distribution normalization is used for
batch normalization of data to accelerate the convergence of
the model.

B. CLASSIFICATION OF RISK LEVELS AND INDEX OF
EVALUATION
According to the actual grain storage experience, we divide
the storage risk of grain into the following grades, as shown
in the label. It should be noted that the risk level of the
stored-grain situation given in Table 1 has limitations. For
example, the temperature of the grains stored in the granary
in summer may be higher than the normal index. In this case,
we labeled some samples in the dataset using manual analysis
and judgment.

TABLE 1. Risk grading of stored-grain situation.

Using accuracy as the evaluation index of the classifier is
unfair to unbalanced data. To objectively evaluate the perfor-
mance of classification algorithms, researchers often evaluate
the algorithm performance according to the concept intro-
duced using a confusion matrix. According to the confusion
matrix in Table 2, indices such as Recall, Precision, F-value,
and G-mean are introduced to evaluate the performance of the
model in this study.
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TABLE 2. Confusion matrix.

Some indicators are defined as follows:

R =
TP

TP+ FN

P =
TP

TP+ FP

F − value =
2RP
R+ P

G−mean =

√
TP

TP+ FN
×

TN
TN + FP

(18)

In the above equation, P is the precision rate, R is the recall
rate, F-value is the weighted average of the recall rate and
precision rate, and G-mean is the comprehensive index of
positive case accuracy and negative case accuracy.

To compare the robustness of somemodels in the literature,
a simplified robustness evaluation method based on random
sampling is proposed to evaluate the robustness of the model
against the influence of input disturbance. In this paper, based
on the loss function as the model optimization basis, all
possible value ranges of input variables are called global
space, and the space composed of preset variation ranges of
input variables for a certain satisfactory model is called the
robustness space of the model, and its robustness index Fm is
defined as

Fm = 1 −
1fm
1f

(19)

where 1fm is the difference between the maximum value
and the minimum value of the loss function f that is sampled
in the robust space of model m; 1f is the difference between
the maximum value and the minimum value of the loss
function f that is sampled in the global space. The larger the
robustness index Fm is, the better the anti-input disturbance
performance (robustness) of the model m is reflected. When
the robustness index Fm is greater than the threshold set
according to the actual needs, the model m can be considered
to meet the requirements of robustness.

C. EXPERIMENTAL SETTINGS
The purpose of the experiment is to test whether the broad
learning model proposed in this paper can be used as an
alternative to deep learning to ensure prediction accuracy and
whether it is better than the existing stored-grain situation pre-
diction model. Therefore, this study is compared with some
deep learning methods, mainly in terms of the recognition
rate, training and testing time, as well as the sensitivity of
parameters, and compared with other stored-grain situation
prediction models.

In the experiment, we compared the basic broad learn-
ing network (BLN), the broad learning of Cascade Feature

Mapping (CFBLS) [13], and the broad learning of finite
connection cascade feature mapping (LCFBLS) [13]. CFBLS
improves the connection mode of the feature nodes in the
broad learning model and adopts a cascading connection
structure. LCFBLS is similar in structure to CFBLS, but the
last set of feature nodes is used to generate enhancement
nodes. Meanwhile, the incremental broad learning method in
this study was compared with four deep learning methods:
the BERT model [34], the transformer network model [35],
the SSD model [36], and YOLOv5 [37].

The loss function used formodel training in this study is the
cross-entropy loss, as shown in Eq.(20), where qi is 1 when
sample i corresponds to the real label y otherwise, qi is 0.

Losscross =
1
N

N∑
i=1

−qi log (pi) (20)

However, to avoid the overfitting problem of the model
or the influence of inaccurate labels, this study introduced
the label smoothing strategy [38] when calculating the cross-
entropy loss. In this strategy, the possibility that the predicted
samples belong to another category is also included in the
measurement range, and the value qi in the cross-entropy loss
is modified as shown in Eq. (21).

qi =

{
1 − ε(N − 1)/N , i = y
ε/N , i ̸= y

(21)

To verify the performance of the proposed algorithm on a
small sample dataset, the initial training data of the experi-
ment are only 1000, and then the samples are increased by
1000 each time to evaluate the impact of the incremental
learning algorithm of broad learning on the accuracy of the
model. The initial parameters of the broad learning network
are set to 10× 10 feature nodes and 100 enhancement nodes.
In the incremental broad learning algorithm, the enhanced
nodes are updated five times, and 100 enhanced nodes are
added each time. The experiments are divided into two
groups. Text and image data are used to evaluate the incre-
mental learning algorithm of the proposed risk prediction
model. Finally, the prediction performance of the proposed
model based on correlation analysis is compared with that of
other existing models.

The experimental environment is as follows: Intel Xeon
E5 v3 processor, 32 GB memory, and NVIDIA GeForce
RTX 2080 Ti 11GB graphics card. We used the CUDA
10.0 architecture, PyTorch deep learning framework, and
Python3.6 programming language.

In our proposed BLN, the regularization parameter λ for
ridge regression is set as 10−8, meanwhile, the one= layer lin-
ear feature mapping with one-step fine-tuning to emphasize
the selected features is adopted. In addition, the associated
parameters Wei and βei, for i=1,. . . , n are drawn from the
standard uniform distributions on the interval [−1, 1]. For the
enhancement nodes, the sigmoid function is chosen to estab-
lish BLN. For deep learning networks used for comparison,
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TABLE 3. The results of Eibln.

TABLE 4. The results of IIBLN.

the hyper-parameters are tuned based on the back propaga-
tion, and its specific Settings are shown in the experiments
below.

D. RESULTS AND ANALYSIS
The model in this paper can be used for both classification
and prediction. Basic BLNS are available for classification.
BLN that is introduced incremental learning can be used for
prediction because it covers the time-sequential characteris-
tics of the context. In the experiment, the first set of data
is essentially a time series, which we used to do the predic-
tion experiment, and compared with BERT, Transformer, and
other common prediction models. In the experiment of the
second set of data, we only did the classification experiment
and compared it with some popular CNN networks. Note that
the model’s predictions are also logical, not numerical. Real
results are obtained by manual labeling.

1) THE FIRST GROUP OF EXPERIMENTS
To verify the effectiveness of the proposed incremental broad
learning model for stored-grain situation risk prediction,
we first used text data to build a model according to the
method proposed above and compared the prediction accu-
racy of the models using the EIBLS incremental learning
algorithm and IIBLS incremental learning algorithm. The
textual data used in the experiment included temperature,
humidity, and bug data, which are derived from EXCEL
files. After the text data was preprocessed, it is numerically
and normalized to form 720 model vectors of temperature,
humidity, and insect condition, which are used as model
input vectors. The results of model training are shown in
Fig. 5. It can be seen that with the increase in the number
of training rounds, the loss curve in the incremental learning
mode declines and converges faster. The results are presented
in Table 3 and Table 4, respectively.

As can be seen from Table 3 and Table 4, with the
introduction of incremental learning into broad learning,

the prediction accuracy of the model gradually improved.
Because the IIBLS can provide new information for the pre-
diction model, under the condition of the same incremental
nodes, it has better prediction accuracy than the algorithm that
only adds enhanced nodes. For example, under the condition
that the number of enhanced nodes is 600, the prediction
accuracy of the IIBLSmodel with input data is approximately
10% higher than that of EIBLS with 1000 input data. But at
the same time, the increase of input data leads to the increase
of data processing overhead, which makes the training time
of the IIBLS model longer than that of EIBLS under the same
enhancement nodes.

Next, we compared the results of the proposed broad
learning model with the basic broad learning model, other
improved broad learning models, and two types of deep
learning models (BERT and Transformer) in terms of pre-
diction accuracy and model training time. The key structural
parameters of the BERT model are consistent with Google’s
official pre-trained model, and the Settings are as follows: the
number of hidden layers is set to 12, and the number of taps
in the multi-tap self-attention mechanism is set to 8. Adam
optimizer is used. For the transformer, the number of layers is
set to 4, and the number of self-attention heads is set to 8. The
relative position-coding length is 8, the batch size is 32, and
a ranger optimizer with an initial learning rate of 0.0004 is
used during the training. The learning rate of each epoch is
decayed to 0.8 times the original, and the maximum iteration
times in the training process are set to 30. Beam search is
used during decoding, and the cluster size is set to 3. The
amount of training data is increased from 1000 to 6000, and
the comparison results are listed in Fig. 6.

As shown in Fig. 6, the model proposed in this study
is superior to the basic broad learning model and the two
improved broad learning models in terms of the prediction
accuracy rate and training time. In particular, the training time
of the proposed model is significantly reduced because of
the incremental learning algorithm. Compared with the two

VOLUME 11, 2023 82045



L. Feiyu et al.: Prediction Model for the Stored-Grain Situation Risk Point Based on BLN

TABLE 5. The results of EIBLS.

TABLE 6. The results of IIBLS.

FIGURE 5. Loss cure for the first group of experiments.

FIGURE 6. Comparison between the proposed model and the other
models on the first dataset.

common deep learning algorithms, IIBLS is very close to the
prediction accuracy of the two deep learning methods, and
EIBLS has only a small gap. However, the training time of
the two broad learning models in this study is much shorter
than that of the two deep learning models. The accuracy of
the improved BLN is about 2.3% higher than that of the tra-
ditional BLN, and the training time is about 20 times shorter.
In addition, it can also be seen from Fig. 6 that the robustness
of the BLN model is better than that of the deep learning,
because the multi-layer structure of deep learning model has
the effect of amplifying disturbance, while BLN does not.

It can be seen that the proposed broad learning models can
be used as a substitute for the deep learning models for the
prediction of the situation risk of stored grain.

2) THE SECOND GROUP OF EXPERIMENTS
In this experiment, we used image data to model the problem
of stored-grain situation risk prediction and compared the
prediction accuracy of models using the EIBLS and IIBLS
incremental learning algorithms. All images are adjusted to a
resolution of 224 × 224. The perceptual domain of the basic
broad learning network is 4 × 4, and the feature map and
pool size are both 3. The training loss curve of the model is
shown in Fig. 7. As shown in Fig. 7, we obtained training
results consistent with numerical data for image data. The
comparison results are presented in Table 5 and Table 6
respectively.

As can be seen from Table 5 and Table 6, for image data,
with the introduction of incremental learning, the prediction
accuracy of the models improves faster. The IIBLS incremen-
tal learning algorithm had higher prediction accuracy than
the EIBLS incremental learning algorithm under the same
condition of incremental nodes. However, owing to the time
cost of image processing, the training time of the models is
slightly longer than that of the text input data.

To verify the effectiveness of the BLN prediction model
with incremental learning for image data, the EIBLS and
IIBLS prediction models are compared with the basic BLN,
CFBLS, LCFBLS, and two deep neural network image
detection models called SSD and YOLOv5 in terms of pre-
diction performance. The comparison results are presented
in Fig. 8. The parameters of each comparison model are
set as follows: the initial structure of the IIBLS is set as
a 4 × 4 awareness domain, 100 enhancement nodes, and
10× 10 feature nodes, and the feature mapping and pool size
is 3. The initial structures of the BLN, CFBLS, and LCFBLS
are set to 1000 enhancement nodes and 100 × 10 feature
nodes.
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FIGURE 7. Loss cure for the second group of experiments.

FIGURE 8. Comparison between the proposed models and the other
models on the second dataset.

As can be seen from Fig. 8, the method proposed in this
study is superior to the basic broad learningmodel and the two
improved broad learning models in terms of the accuracy rate
of prediction and training time for image data. Comparedwith
the two common deep learning network models for one-stage
object detection, IIBLS and EIBLS have only a small gap, but
the training time is much shorter than that of the two typical
deep learning models. For Fm (Robustness, see Eq. (19))
index, similar results are also obtained with the first set of
data. The accuracy of the improved BLN is about 14.4%
higher than that of the traditional BLN, and the training time
is about 30 times shorter. It can be seen that the broad learning
model proposed in this study can be used as a substitute for
the deep learning model for the prediction of stored-grain
situation risk, regardless of whether the data are text or image.

3) ABLATION EXPERIMENT
Previously, we discussed the prediction performance of the
BLN combined with an incremental learning algorithm for
different types of datasets, from which we can see the
advantages of our proposed method for the prediction of
stored-grain situation risk. Next, we further discuss the
predictive performance of the BLN model after the intro-
duction of the CCA module through ablation experiments.
The CCA module fuses features from different types of
data. The introduction of the CCA module makes full use
of the complementarity of different types of features and

further improves the prediction performance of the model.
The results of the ablation experiments are listed in Table 7.

TABLE 7. Ablation experiment.

As shown in Table 7, the prediction performance of the
model is further improved after the introduction of the CCA
module.

4) COMPARE RESULTS WITH SOME OF THE PREVIOUS
STUDIES
To further clarify the effectiveness and advancement of our
model, we compared it with the four models discussed in
the related works section in terms of performance, and the
comparison results are shown in Table 8.

TABLE 8. The comparison between our model and the previous studies.

It can be seen from Table 8, for the risk prediction of grain
storage, the model proposed in this paper is superior to the
existing models in terms of comprehensive performance.

VII. CONCLUSION
Based on the broad learning idea that has been proposed in
recent years, this study introduces incremental learning and
correlation analysis in the improved broad learning network
proposed in this study to establish a risk point prediction
model for stored-grain situations. It is found that the incre-
mental learning training method can make the prediction
accuracy of the model close to the deep learning model.
The experimental results show that compared with traditional
BLNS, the precision of grain situation risk prediction can be
improved by more than 10%. Compared with deep learning,
the training time is reduced by more than 50% under the
condition that the prediction accuracy does not decrease,
Moreover, it can accurately predict the changes of storage
grain conditions within one month, and the prediction time
is longer than some existing deep learning models. Aiming at
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the problems of deep learning models, such as long training
time and large resource demand, this model significantly
reduces the training difficulty and resource consumption
under the premise that the prediction accuracy does not
decrease. Although the accuracy of this model is not compa-
rable to that of the deep learning model, its fast ‘‘incremental
training’’ features make it have better application prospects in
fields with low accuracy requirements and large data changes,
Such as weather forecasting, air pollution, infectious disease
forecasting and so on. At present, as an alternative to the
prediction model based on deep learning, the broad learning
prediction model proposed in this study still has the following
limitations: (1)The precision of target recognition is low due
to the inability of broad learning to extract the deep features of
sequences;(2) There may be a large number of redundancies
in the network structure, resulting in reduced efficiency of
the model;(3) There are still few new technologies related to
model improvement. Future workwill focus on improving the
fusion effect of grain situation data with different modes and
how to introduce the attention mechanism into broad learning
to further improve the prediction accuracy and application
range of the broad learning model.
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