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ABSTRACT Video analytics with deep learning techniques has generated immense interest in academia
and industry, captivating minds with its transformative potential. Deep learning techniques and the deluge
of video data enable the mechanization of tasks that were once the exclusive domain of human effort.
Furthermore, edge intelligence is emerging as an interdisciplinary technology that drives the fusion of edge
computing and artificial intelligence (AI). Edge computing allows the Internet of Things (IoT) devices
with limited resources to offload their compute-intensive Al applications to the network edge servers for
execution. Specifically, AI workloads for video analytics can be moved to the network edge from the cloud,
providing improved latency and bandwidth savings, among other benefits. This article reviews current
technologies used in Edge Al-assisted video analytics in smart cities. It examines the various artificial
intelligence models and privacy-preserving techniques used in edge video analytics. It identifies the various
applications of video analytics in smart cities, including security and surveillance, transportation and traffic
management, healthcare, education, sports and entertainment, and many more. Besides, it highlights the
challenges of edge video analysis and open research issues. It is expected that this review will be valuable
for researchers, engineers, and decision-makers who want to understand the landscape and scale of edge
video analytics in smart cities.

INDEX TERMS Artificial intelligence, deep learning, edge computing, edge intelligence, edge video
analytics, machine learning, smart city.

I. INTRODUCTION

In recent years, video analytics, also known as video con-
tent analysis, has attracted growing interest in academia and
industry. As a result of the vast quantities of video data that
are easily accessible and the noteworthy improvements in
deep learning methodologies, video analytics has enabled
the automation of activities that were formerly exclusively
handled by humans. Recent improvements in video analytics
have changed the game. Video analytics applications range
from real-time applications that monitor buildings, airports,
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train stations, schools, and universities, as well as traffic con-
gestion in cities and on highways, to detect specific events,
such as car accidents or crowd stampedes, and trigger appro-
priate alerts. Other applications analyze customer traffic in
retail stores to maximize sales, and other, more familiar sce-
narios include facial recognition and smart parking.

Deep Neural Networks (DNN) growing usage has made it
possible to train video analytics systems that mimic human
behavior, leading to a paradigm shift. It started with systems
based on classical computer vision techniques that trigger an
alarm when, for example, the camera image becomes too dark
or changes drastically. It moved to systems that can identify
specific objects in an image and track their path.
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Video analytics software can run centrally on servers, usu-
ally in the monitoring station, or on cloud servers to take
advantage of their processing power and unlimited storage
capabilities. Alternatively, it can be embedded in the cameras
or local servers, a strategy known as edge processing.

Edge computing is an emerging paradigm that moves tra-
ditional cloud-based network computing capabilities from
centralized data centers to end-user devices and local area
networks. It fundamentally extends the cloud computing
architecture to the network edge, enabling an innovative vari-
ety of silent services and applications for end users. Since the
advent of the implementation of IoT applications in diverse
sectors, the quantity of Internet-enabled devices has surged
from millions to billions. It is anticipated that this trend will
persist in the near future.

Traditional centralized, cloud-based systems cannot
respond to all connected devices in real time without com-
promising the user experience. To address the challenges
of IoT infrastructure, edge computing has been introduced,
promising low latency, high mobility, and broad geographic
coverage with compensation for many nodes. Edge comput-
ing is still in the development phase. The surging prevalence
of this technological advancement can be ascribed to its
extensive capacity for a diverse array of applications, encom-
passing loT-based frameworks, real-time computing systems,
energy-efficient computing applications, latency-sensitive
applications, and mobile applications. These applications
have been studied extensively in various scholarly works such
as [1], [2], [3], [4], and [5].

Smart cities promise more convenience and more services
for citizens. Smart city projects today are essentially based
on [oT infrastructures and edge devices. One critical problem
they can solve is public safety [6]. For cities around the world,
public safety is a growing concern Therefore, cities of the
future should be equipped with edge computing technology to
provide crime-fighting capabilities to police and emergency
services and make cities safer [7], [8]. Safeguarding urban
areas is extremely important for cities’ growth and prosperity
and citizens’ well-being. Cities increasingly deploy security
cameras to preserve public order in sensitive places such as
airports, train stations, shopping centers, street intersections,
and public spaces. Al is also helping to maintain security
by being used to quickly identify trespassing or other such
incidents based on analysis of large volumes of surveillance
camera footage.

The field of edge Al-enabled video analytics is cur-
rently in its nascent stage, characterized by ongoing research
endeavors focused on intelligent video analytics. This tech-
nology holds immense promise for catalyzing transforma-
tive changes across various sectors, encompassing but not
restricted to public safety, smart buildings, healthcare, and
transportation services. While extant literature, as evidenced
by prior reviews [9], [10], [11], provides a comprehensive
overview of research efforts in video analytics, a notable
research gap persists pertaining to the extensive corpus of
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studies investigating Al-assisted video analytics. This review
aims to fill this gap by thoroughly assessing the current schol-
arly works on edge video analytics, identifying the inherent
challenges within this domain, and elucidating the potential
benefits applications can derive from leveraging Al-assisted
video analytics at the network edge.

A. CONTRIBUTIONS
The contribution of this review paper on edge video analytics
can be summarized as follows:

1) Review of the current state of the art in edge video
analytics, including key technologies, applications, and
challenges.

2) Analysis of the benefits of edge video analytics over
traditional cloud-based video analytics, including real-
time processing, reduced latency, improved privacy and
security, and ability to deploy applications in resource-
limited environments.

3) Synthesis of the current research and development
trends in edge video analytics, including recent
advances in algorithms, hardware, and software solu-
tions.

4) Identification of the key challenges that need to
be addressed to realize the potential of edge video
analytics fully. These challenges essentially concern
improving the accuracy and robustness of the algo-
rithms, reducing power consumption, and facilitating
integration into existing video analytics systems.

5) Provision of insights and recommendations for future
research and development in edge video analytics,
highlighting the need for interdisciplinary collabora-
tion and the importance of addressing the current
challenges and limitations.

Through an in-depth analysis of the existing scholarly
literature, this manuscript endeavors to enhance the current
comprehension of the nascent area of edge video analyt-
ics and establish a foundation for forthcoming research and
development.

B. STRUCTURE OF THE REVIEW

The remainder of this review is organized as follows:
Section II presents video analytics and edge Al fundamentals
and describes their potential to support smart city operations.
Section III discusses the benefits of Al-assisted video ana-
Iytics in general and edge video analytics in particular and
highlights the various Edge Al platforms for video analyt-
ics. The methodology used in this review is described in
Section IV. Section V describes the results of our investiga-
tion and details the taxonomy of the eligible works of this
study. Section VI describes the most important applications
and use cases of edge video analytics in smart cities. The
challenges of edge video analytics and the open research
issues are highlighted in Section VII. Finally, Section VIII
concludes this review paper.
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Il. VIDEO ANALYTICS AND EDGE Al

A. VIDEO ANALYTICS OVERVIEW

Video analytics (VA) has revolutionized various domains,
including traffic management, security operations, health-
care, and retail. By intelligently analyzing video data and
CCTV footage, VA unveils hidden patterns and correla-
tions, empowering informed decision-making and anticipat-
ing future events. It surpasses human monitoring in precision
and efficiency, triggering timely alarms. VA also captures
valuable business data, making it a vital resource for security
managers and commercial sectors.

The escalating imperative for security measures has trig-
gered a surge in the deployment of surveillance cameras
across an expansive array of locations. Airports, train sta-
tions, highways, stadiums, public gatherings, schools, and
supermarkets stand as examples where the prevalence of
these watchful electronic sentinels has witnessed a substantial
increase. Intelligent video surveillance aims to learn the usual
events and detect uncommon events in the observed area.
These unusual events differ from regular events and are called
unusual or suspicious events [12], [13], [14]. They are unseen
activities that occur infrequently and are not repeated.

To differentiate routine activities from potential threats,
software operators create custom rulesets tailored to
site-specific risk factors and specific incident types. These
rules encompass factors like crowd behavior, loitering, and
unusual movement to aid in event detection. Multiple rule
variations are available, dependent on the chosen model,
and ongoing development leads to the creation of new rules.
This adaptability enables security managers to configure
the software for targeted monitoring of specific areas or
scenarios.

Video analysis utilizes a mathematical model of the back-
ground scene to detect objects based on pixel differences.
This enables the detection of security breaches, high-risk
zone entry, license plates, and object placement/removal.
Alerts are promptly generated, either as video pop-ups,
emails, or smartphone notifications, ensuring immediate
action by security personnel. The key benefits of video ana-
lytics are:

o Automated surveillance and increased efficiency. Video
analytics offers remarkable efficacy and precise out-
comes, reducing the need for constant manual CCTV
monitoring and extensive security personnel. Unlike
humans, it operates tirelessly, detecting incidents that
may go unnoticed. This invaluable solution allows
organizations to save costs and time while providing
continuous surveillance.

o Increased likelihood of incident detection and preven-
tion. Video analytics empowers operators to swiftly
respond to incidents using CCTV footage, poten-
tially preventing crimes through early warnings.
Real-time alerts enable security managers to make
informed decisions by accessing live footage, facil-
itating dynamic responses like alarm triggering and
immediate intervention. Additionally, video analytics
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aids in post-incident investigations by offering efficient
query-based searches, saving time by quickly locating
specific events, suspects, or relevant information with-
out manual effort.

o Cost-effective solution. Accurate video analysis enables
end users to potentially reduce the number of security
guards, resulting in long-term cost savings. Addition-
ally, the technology allows operators to selectively store
footage of suspicious events, eliminating the need to
store extensive hours of irrelevant footage and further
reducing costs associated with storage.

o Providing business intelligence dashboards. Video ana-
lytics empowers organizations with valuable business
intelligence through reports, dashboards, and heat maps.
It reveals insights into daily activities, trends, and pat-
terns across departments, including people counting,
customer behavior, traffic tracking, and queue mon-
itoring. Automation streamlines dashboard creation,
focusing on active hours rather than inactive periods for
optimized tracking.

Figure 1 illustrates the architecture of a typical video ana-

lytics engine, which includes the following components:

o Video Inputs. A video input is a system that captures and
digitizes video data streams from IP cameras or video
encoders, empowering the realm of video analytics.

o Video Management System. A system that manages the
video inputs and makes the video streams available for
analytics.

o Object Detection and Tracking. Algorithms that revo-
lutionize video analytics by precisely identifying and
tracing objects within dynamic video streams.

o Event Detection. Algorithms that analyze video streams
to detect specific events such as motion and recognize
faces and changes in scenes.

o Video Indexing. Indexing the video content based on
metadata such as time-stamp, location, and object type.

o Data Storage. A data storage system to store the video
content and metadata.

o User Interface. A user interface that displays the results
of analysis of the video content. It also permits users to
interact with the data for more insights.

o Data Management. A system like a database or data
management system, which allows users to manage and
retrieve the stored video data and analysis results.

e Reporting and Analytics. A system for generating
reports and rendering the data in various ways.

B. EDGE Al OVERVIEW

Edge computing, sometimes called IoT, continues to spread
and has become an essential part of most enterprise strate-
gies in recent years [15], [16], [17]. IoT devices, sensors,
and smartphones are transforming many businesses from the
ground up. Nevertheless, the emergence of Al has a phenome-
nal impact on what happens at the edge. Increasing computing
power at the edge, combined with the ease of using machine
learning and deep learning, makes edge devices extremely
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FIGURE 1. Architecture of a video analytics system.

intelligent [18], [19], [20], [21], [22]. This allows the devices
to provide real-time insights and predictive analytics without
sending data to remote cloud servers. Many intelligent busi-
ness solutions are already being deployed in manufacturing.
Modern factories use various industrial IoT devices to be
alerted to problems in their supply chain and proactively
avoid unplanned downtime [23], [24]. In smart cities, small
devices on a roadside radar can now instantly detect a car
speeding, the occupants in the car, and whether or not the
driver has a license [25], [26], [27], [28].

Al with pre-trained models can empower smart city
decision-makers by enabling them to make informed deci-
sions that benefit the city and its citizens [29], [30]. For
example, many smart city areas will benefit from two typical
image processing-based tasks, image classification and object
recognition, which occur in many edge-based Al applica-
tions [31], [32].

Al continues to penetrate new segments at a rapid pace.
Currently, digital industries such as finance, retail, adver-
tising, and multimedia are the sectors that have used Al
the most. Al has added real value in these areas. Never-
theless, in several other areas, there are crucial problems
that still need to be solved. The solution to cities’ problems
in transportation, energy and water supply, citizen safety,
healthcare, and many others is to replace or improve old and
ineffective technologies. New and Al-driven technologies
have the potential to enable efficient transportation sys-
tems, clean energy, efficient healthcare systems, and efficient
industry [33], [34], [35]. A critical element in these areas
is the deployment and use of intelligence ‘“‘at the edge” of
high-speed and broadband networks [36]. Bringing intelli-
gence to the edge signifies that even the tiny devices deployed
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anywhere are able to sense, learn from, and respond to their
surroundings. For instance, Al empowers devices situated
on specific city streets or public spaces to make higher-
level decisions, operate autonomously, and report noteworthy
anomalies or enhancements to affected users or the cloud
infrastructure.

Edge AI (or edge intelligence) means that Al algorithms
are executed locally on a hardware edge device [37], [38].
The AI device can process data generated on the device
and make decisions independently without requiring con-
nectivity to function correctly. Using Edge Al necessitates
from the device to have sensors connected to a small micro-
controller unit (MCU). The MCU is loaded with specific
machine-learning models trained for typical scenarios the
device encounters. The learning process can also be continu-
ous so that the device learns as it encounters new situations.
The Al response can be a physical actuation in the device’s
immediate vicinity or a notification to a specific user or the
cloud for further analysis and support.

GPU clusters reign supreme in the cloud-based machine
learning and deep learning landscape, empowering Al work-
loads with unparalleled computational prowess. This type
of specialized hardware for machine learning (ML) work-
loads is impractical for many edge resources due to their
size and power requirements. Instead, specialized hardware
has recently emerged to accelerate certain compute- or
I/O-intensive operations at the network’s edge. These edge
hardware accelerators include Google’s Edge Tensor Pro-
cessing Unit (TPU) [39], [40], Nvidia’s Jetson Nano and
TX2 edge GPUs [41], [42], Intel’s Movidius Vision Pro-
cessing Unit (VPU) [43], and Apple’s Neural Engine. They
are explicitly designed for edge computing to support Al
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applications such as visual and speech analytics, face recog-
nition, object recognition, and deep learning inference.

Edge computing and edge Al encompass operations such
as collecting, parsing, aggregating and routing data, as well
as rich and advanced analytics that include machine learn-
ing, event processing, and actions at the edge. Edge Al will
enable the execution of real-time operations, including data
creation, decision-making, and response when milliseconds
count. Real-time operations are essential for monitoring pub-
lic places with crowds, self-driving cars, robots, monitoring
machines in a factory, and many other areas. Edge Al will
reduce data communication costs and thus power consump-
tion, as edge devices process data locally and transmit fewer
data to the cloud, improving battery life, which is extremely
important for edge devices.

Smart cities are ideal for the deployment of edge comput-
ing and edge Al Sensors and actuators deployed in various
city locations and systems can receive commands based on
decisions made locally without having to wait for decisions
made elsewhere, far away. Cities leverage edge computing
for real-time video surveillance, enabling prompt corrective
actions to enhance safety and prevent accidents in streets,
intersections, and buildings. They can also use it for lighting
control, energy and power management, water consump-
tion, and more, shortening end-to-end latency and reducing
network congestion. By processing data generated by edge
devices locally, smart city facilities can avoid the problem
of streaming and storing large amounts of data in the cloud,
which compromises data privacy and leaves them vulnerable
to attacks.

IIl. EDGE AI-ENABLED VIDEO ANALYTICS

A. AI-ENABLED VIDEO ANALYTICS

In recent years, the field of video analytics, alternatively
referred to as intelligent video analytics, has captured sub-
stantial attention and interest from both academia and
industry. Notably, video analytics has revolutionized tasks
that were previously reliant on human intervention, intro-
ducing automation and efficiency. By using Al with video
analytics, a localized framework for intelligent video analyt-
ics emerges, enabling organizations to deploy video systems
that autonomously detect spatial and temporal events directly
at the network’s edge. The applications of such video capa-
bilities extend beyond security, encompassing a wide array of
vital use cases.

Video analytics leverages Al algorithms to facilitate the
autonomous identification of individuals, objects, or events.
What sets Al software apart from conventional software is its
iterative nature, wherein deploying the model in a production
environment is merely one aspect of the overall process.
Instead, the acquisition of pertinent data on a regular basis, the
training and evaluation of the model, and the subsequent rep-
etition of this cycle are imperative to attain the desired level
of accuracy. Al-driven video analytics can be augmented by
two primary categories of Al algorithms: Machine Learning
and Deep Learning (see Figure 2).
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1) MACHINE LEARNING

The machine learning process defines a data science team’s
workflow to build and deliver a machine learning model.
It also defines how the team should work and collaborate
to create the most useful predictive model possible. When
using machine learning for video analytics, raw data is col-
lected from various sources, recorded, and labeled based on
features. After an iterative training process, a fully trained
traditional machine learning model yields a program that can
be used for output in the form of event and image recognition
and identification. As the algorithm continues to perform
its function in production with the given data, it learns and
improves over time. Traditional machine learning method-
ologies rely on fixed and manually crafted features rather
than automatically learned features derived from the available
data, limiting their potential for achieving optimal perfor-
mance and accuracy across various scenarios.

2) DEEP LEARNING
Deep learning, widely regarded as a subdivision of machine
learning, encompasses various algorithms that hinge upon
neural networks as their fundamental architectural frame-
work. The recent prominence of neural networks stems from
the convergence of two transformative factors: the abundance
of Big Data and the accessibility of cost-effective paral-
lel computing hardware like GPUs and computer clusters.
Employing computational intelligence, deep learning is a
preeminent paradigm for knowledge acquisition, experiential
learning, and developing intricate concepts from simple ones.
Deep learning differs from traditional machine learning by
being able to learn features from input data autonomously.
Through the training process, a Deep Neural Network ana-
lyzes thousands of labeled images to develop its classification
capabilities. When the algorithm is shown an input image,
the neural network layers respond to increasingly complex
shapes and structures and compare them to the training data.
Finally, an identification of the image is made. The same
is true for video data. Deep learning possesses the remark-
able capability to autonomously identify and extract relevant
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features, even within concatenated sets, thereby empowering
it to adeptly recognize and classify complex objects.

B. EDGE VIDEO ANALYTICS

The contemporary business landscape has witnessed an
intensified reliance on data, highlighting the significance
and intricacy of information technology (IT) architecture.
Present-day enterprises increasingly adopt a data-driven
approach, leveraging the proliferation of Big Data and
IoT devices. Consequently, these organizations confront an
unprecedented surge in the data points utilized within a given
application. Integrating data obtained from diverse endpoints,
such as IoT sensors and cameras, engenders a proportional
escalation in the magnitude of data necessitating processing,
storage, and management. Furthermore, the advent of Al
applications and the deployment of high-resolution cameras
have engendered a notable upsurge in data accumulation
within video analytics.

Cloud-based data processing, though pervasive, can suffer
from bandwidth bottlenecks and delays, especially in critical
applications like security. Edge Al comes to the rescue in
many of these use cases. Edge video analytics offers several
advantages. For example, bandwidth issues can be avoided,
delays in data access can be reduced, and compliance rules
and regulations can be met. Nevertheless, the most crucial
benefit is that video analytics with Edge Al provides faster
on-site insights and makes critical decisions in real-time.

Of course, video analytics can be performed via centralized
servers or the cloud. Storage and execution of commands
derived from video analytics have only recently been intro-
duced in edge computing and edge Al It is predicted that
64% of all IP cameras shipped worldwide will be Al-enabled
cameras, providing the opportunity to perform much of the Al
work at the edge. As Al moves into the mainstream market,
intelligent video analytics is likely to be integrated into many
cameras due to its impressive capabilities.

Combining Edge Al and video analytics holds immense
practical advantages, poised to revolutionize the security
industry. Al represents the imminent progression of the
CCTV camera market, enabling the automation of camera
footage or live image processing and analysis. Notably, secu-
rity stands as the primary domain poised to reap substantial
benefits from the convergence of Edge Al and Video Ana-
lytics, primarily due to the accelerated on-premises data
processing capabilities, surpassing the efficiency of cloud-
based counterparts. Furthermore, integrating Edge Al and
Video Analytics will strengthen search and monitoring func-
tionalities. The automatic identification of license plates,
faces, and pedestrians and adherence to workplace safety
protocols can be accomplished with greater precision and
practicality, facilitated by the prowess of Edge Al and video
analytics.

In addition, Edge Al video analytics data processing is
done on-site with machines nearby. Let us say something
needs to be fixed with security or quality control (another
important use case for video analytics); the last thing a
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company wants is for its video analytics algorithm to struggle
with latency issues that can occur with the cloud. When Al
and data processing are done on-premises, the time it takes
for the video analytics algorithm to send an alert is shortened,
leaving more time to fix the detected security breach or
quality issue.

C. EDGE Al PLATFORMS FOR VIDEO ANALYTICS

Edge Al platforms redefine the computational landscape by
executing Al models at the network edge rather than in
centralized data centers or the cloud. Edge Al empowers
real-time analysis of locally generated data, eliminating the
need for data transmission to remote locations. This scenario
benefits video analytics applications by allowing immedi-
ate analysis and response to events captured on video data.
Edge Al offers the invaluable advantage of minimizing data
transmission to cloud servers or data centers, streamlining
computational efficiency. It can benefit applications operat-
ing in low-bandwidth or offline environments or applications
that generate vast volumes of data, such as high-resolution
video streams. Nevertheless, Edge Al also has drawbacks.
One of the main challenges is the limited computational
resources of Edge Al devices, making it difficult to run
complex Al models, which can then limit the video analytics
application’s capabilities and the results’ accuracy. Besides,
the cost and complexity of deploying the application on Edge
Al devices can increase when these devices require special-
ized hardware and software. Edge Al platforms thrive in
real-time video analysis applications like traffic monitoring,
security, surveillance, and industrial automation. They are
also helpful for applications working in low-bandwidth or
offline environments. However, a cloud-based Al solution is
better suited for more complex video analysis requiring vast
amounts of data or high accuracy.

Several Edge Al platforms and open-source software are
available for video analytics, including NVIDIA Jetson [41],
[42], Google Edge TPU [40], Intel OpenVINO [43], Qual-
comm Neural Processing SDK [44], and OpenCV [45]. Each
of these Edge Al platforms has its benefits and drawbacks.
Choosing the ideal platform for a particular application
necessitates meticulous consideration of the unique require-
ments inherent to a given application.

IV. METHODOLOGY

This review article employs qualitative research methodology
to synthesize relevant literature on video analytics, foster-
ing a comprehensive understanding of the subject. In light
of the inherent descriptive nature of this study, adopting a
qualitative approach is essential to reviewing and merging a
large body of relevant scientific literature. Without aiming for
complete coverage, a meticulous and systematic examination
strategy has been adopted to achieve the objective of this
undertaking.

A. SEARCH CRITERIA FORMULATION
The search criteria used were:
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o Cl:(“Edge AI” OR “‘edge intelligence”’) AND “Video

Analytics”

o C2: (“AI” OR “edge intelligence’”) AND “Video Ana-
lytics”

o C3: (“AI” OR “artificial intelligence””) AND “Video
Analytics”

o C4: “Edge Video Analytics™

o C5: “Deep learning” AND ““Video Analytics™

o C6: “Machine learning” AND ‘“Video Analytics”

o C7: (“smart” OR “intelligent”) AND ““Video Analyt-
ics”

o C8: “Privacy” AND ““Video Analytics”

The purpose of this review paper is to answer the following

research questions.

o RQ-1: What are the myriad applications of Edge Al
and video analytics in the contemporary smart city
landscape? This research question strives to uncover
cutting-edge efforts and breakthroughs in the use of
Edge AI and Video Analytics technology in key areas
within a smart city.

« RQ-2: What machine learning and Deep learning mod-
els are used in edge video analytics?

o RQ-3: What techniques and methods are used for
privacy-preserving in edge video analytics?

o« RQ-4: What are the potential open research issues
and future directions in Edge Al and Video Analytics
implementations in a smart city? This question seeks to
define the unanswered inquiries and unexplored paths
that hold the key to unlocking the full potential of Edge
Al and Video Analytics within the context of smart
cities. By unraveling the challenges that may hinder
their widespread adoption and delving into research
directions, this query drives researchers to understand
the current landscape of edge intelligence and Video
Analytics, unraveling novel insights and paving the way
for transformative advancements in this domain.

B. SOURCE SELECTION AND APPROACH

An extensive exploration was undertaken utilizing various
authoritative databases and search engines to amass pertinent
research material for this review. Four popular databases
(Scopus, IEEE Xplore, Web of Science, and Google Scholar)
renowned for their comprehensive coverage were used for the
search of scholarly works on the subject. The search strategy
revolved around targeted search criteria, focusing on the key
terms ‘“Edge AI” and ‘““Video Analytics” while augmenting
the search scope with synonymous terminologies such as
“edge intelligence” and “‘edge computing” to broaden the
search outcomes. A time constraint was applied, confining
the search to encompass articles published between 2018 and
2023.

Most of the papers reviewed are Journal articles or confer-
ence papers. They were selected based on journal quality and
relevance to the topic and filtered by The articles’ selection is
based on titles relevant to the topic of this review. References
published before 2017 cited in this review paper mainly con-
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TABLE 1. Distribution of the collected references.

Topic N. of references
VA at the Edge 55
VA using deep learning 44
VA using Machine Learning 41
Intelligent video analysis 36
Federated learning for VA 7
Edge cloud collaboration for VA 21
VA for Surveillance and Security 15
Privacy-preserving VA 7
VA for Transportation 12
VA for Medical Applications 11
VA for Sports and Entertainment 12
VA for Education 7
Intelligent VA for Various Applications 14

cern the background and literature review on edge computing
and video analytics.

V. RESULTS

The initial search for the above search criteria (C1 - C8)
found 109 references from Scopus, 152 from Web of Sci-
ence, 85 from IEEE Xplore, and 406 from Google Scholar.
Howeyver, the total number of references, 752, was reduced to
408 after eliminating duplicates. Further screening permitted
the elimination of 126 references addressing issues far from
the main topic of this review paper. Screening the abstract and
full text permitted the elimination of 170 more references,
mainly about video analytics done in environments other
than at the edge. The final number of references eligible
for this study is 112. These references do not include the
references we cited to provide background information on
Edge computing, Edge Al and Video Analytics.

Figure 3 shows the PRISMA diagram that represents the
different phases of this systematic review process [46]. After
eliminating duplicate references from the four bibliographi-
cal databases used in this study, the analysis of the titles of the
282 references identified permitted to draw a classification of
the different topics addressed in these references.

Table 1 shows the number of references found in each
category (or topic). Figure 4 shows the distribution of the
282 collected references, and Figure 5 depicts the distribution
of the 112 eligible references obtained in the last phase of the
selection process, which consists in eliminating references
that do not use edge computing after screening their abstracts
and full text. The analysis of the abstracts of the eligible
works of this study permits to draw in Figure 6 the taxonomy
of the various topics addressed in these works. The next
subsections describe the findings concerning each class of
this taxonomy.

A. VIDEO ANALYTICS AT THE EDGE

The analysis of the works on Video Analytics at the edge from
our final list of eligible articles resulted in their classification
into two subclasses: Edge-based real-time video analytics and
Optimization and efficiency of edge-based video analytics as
depicted in Figure 6.
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1) EDGE-BASED REAL-TIME VIDEO ANALYTICS
Further analysis of the works in this class permits us to
classify them into three categories:

« Efficient video analytics at the edge

« Advanced techniques for edge video analytics

« Applications of edge video analytics

Table 2 and Table 3 summarize the various works in the
first and second categories. The third category, which is about
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the various applications of edge video analytics, is described
in detail in Section VI.

2) OPTIMIZATION AND EFFICIENCY OF EDGE-BASED VIDEO
ANALYTICS
Further analysis of the works in this class permits classifying
them into three categories:

o Scalable video analytics at the edge

« Ege video analytics for specific applications

« Data-efficient and opportunistic edge video analytics

Table 4 and Table 5 summarize the various works in the
first and third categories.

B. VIDEO ANALYTICS LEARNING MODELS

This section addresses RQ-2. The review of the final list of
eligible references of this study shows that several machine
learning and deep learning models are used in edge video
analytics for various tasks such as object detection, tracking,
recognition, and classification. Besides, several works used
federated learning for the training of their models. Table 2,
Table 3, Table 4, Table 5, Table 6, and Table 7 describe
the various models used in the works of each of the above
categories. The commonly used models are:

o Convolutional Neural Networks (CNN). CNNs are piv-
otal in edge video analytics, excelling in object detection
and recognition. Their capacity to handle substantial
quantities of visual data and discern complicated pat-
terns is of utmost importance in the interpretation of
meaningful observations from visual information.

o Recurrent Neural Networks (RNNs). RNNs serve a piv-
otal function in the realm of video analysis by effectively
managing tasks such as tracking, segmentation, and
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FIGURE 6. Taxonomy of the eligible references of this review.

action recognition. With their proficiency in process-
ing sequential data, RNNs are well-suited for analyzing
videos, essentially temporal image sequences.

You Only Look Once (YOLO). The YOLO model repre-
sents a noteworthy real-time object detection model that
has proven to be highly effective in edge video analytics.
Its inherent capacity for detecting objects in a single pass
renders it a more expeditious alternative to other object
detection models [74], [75].

Mask R-CNN. It is a profound neural network architec-
ture employed for the purpose of detecting objects and
segmenting tasks in the domain of edge video analytics.
Notably, it possesses the ability to effectively detect
objects and yield pixel-level masks for every object
present in an image [76].

e MobileNet. The utilization of the MobileNet deep

learning framework in edge-based video analytics is
a common practice deployed for diverse applications,
including object detection and recognition, primarily
due to its minimalistic design. The fundamental aim of
this framework is to operate with optimal efficiency on
mobile devices that possess restricted processing capa-
bilities [77].

Single Shot Detector (SSD). The SSD model presents a
real-time remedy for the identification of objects within
edge video analytics. Its singular capacity to execute
object detection in a solitary pass elevates its efficiency
beyond that of other models [78].
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o Inception: Inception, a powerful deep learning model,

finds its application in edge video analytics for various
tasks, including image classification and object detec-
tion. With its optimized architecture, Inception excels at
efficiently processing high-resolution images, enhanc-
ing the overall performance of edge video analytics
systems [79].

Various metrics and benchmarks are commonly employed
to assess the efficacy of Edge Al algorithms for video ana-
lytics. The key metrics of utmost significance comprise the
following:

e Accuracy. The evaluation of Edge AI algorithms for

video analytics is commonly conducted by utilizing
accuracy as the primary metric. This metric serves to
gauge the algorithm’s efficacy in detecting objects or
events in a given video stream.

Precision and Recall. Precision and recall are deemed
as essential evaluation metrics for algorithms aimed at
detecting objects. Precision quantifies the ratio of true
positives to false positives, scrutinizing the algorithm’s
precision in correctly identifying objects. In parallel,
recall captures the ratio of true positives to false neg-
atives, shedding light on the algorithm’s capability to
avoid missing objects of interest. These metrics reveal
the algorithm’s efficacy and proficiency in object detec-
tion endeavors.

Intersection over Union (loU). IoU is a crucial metric
for evaluating object detection algorithms. It quantifies
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TABLE 2. Summary of research on efficient video analytics at the edge.

[ Ref. | Year | Application

| Hardware

Learning model

[

Training datasets

| Results (accuracy, ...)

[47] | 2021 | Low-cost edge-based real- | Raspberry Pi 3 | Convolutional the Pascal VOC 2007 and | Approach achieved an accuracy
time video analytics, with | Model B+ as the | Neural Network | MS COCO datasets for | of 82.8% and a processing time
a focus on object detection | edge device and | (CNN) training their object detec- | of 126 ms per frame on the
and tracking in surveil- | a laptop as the tion and tracking models Raspberry Pi 3 Model B+
lance videos server

[48] | 2021 | "Effective video analysis | Raspberry Pi 4 | Deep Neural Net- | The COCO dataset for | Approach achieved 91.8% ac-
on mobile edge devices, | Model B works (DNNs) object detection and the | curacy and 104 ms latency for
with a focus on placing UCF-101 dataset for ac- | object detection, and 89.3%
DNN models on edge de- tion recognition accuracy and 62 ms latency
vices to achieve better per- for action recognition on Rasp-
formance" berry Pi 4 Model B.

[49] | 2021 | Video analytics at the edge | Intel Xeon ES5- | YOLOvV3 (You | PASCAL VOC, MS | Proposed approach achieved

2680 v3 CPU, | Only Look Once | COCO 3x faster processing time than

NVIDIA Tesla | version 3) traditional sequential approach

K40 GPU with high accuracy for object
detection.

[50] | 2022 | Deep video analytics atthe | NVIDIA  Jetson | Residual Neural | UCSD Pedl, | Proposed approach achieved
edge TX2, Raspberry Pi | Network (ResNet) ShanghaiTech, VIRAT comparable accuracy to tradi-

4 Model B tional approach with up to 50%
reduced detection time accord-
ing to evaluation results.

[51] | 2022 | Live Video Analytics atthe | Intel i5 processor | Multiple models, | Not mentioned VPPlus achieves over 95% high
Edge with 16GB RAM including  Faster accuracy level for live video an-

R-CNN and Mask alytics at the edge with signif-

R-CNN icantly lower processing time
(up to 10x faster) compared to
state-of-the-art method.

[52] | 2021 | Low-cost edge video | Raspberry Pi 4 | YOLOV3, 2000 images of vehicles, | Reduced false alarms by 24.2%
analytics system | Model B and a | object detection | pedestrians, and bicycles. and improved processing time
with velocity-based | camera module algorithm by 31.7% compared to the base-
configuration adaptation. line system.

[53] | 2022 | Analyzing real-time video | Not specified YOLOvV3 The KITTI dataset System achieved 92.4% aver-
streams from moving vehi- age precision with potential ap-
cles plications in autonomous driv-

ing, traffic monitoring, and
surveillance.

[54] | 2021 | Methodology to evaluate | N/A N/A N/A Paper provides guidelines for
and compare the perfor- designing efficient edge video
mance of different edge analytics systems.
video analytics systems.

[55] | 2021 | Low-latency video analyt- | Not specified Reinforcement Real-world video analytics | Proposed edge learning frame-
ics learning-based dataset work achieved 30% mean in-

algorithm ference latency reduction com-
for resource pared to baseline method.
allocation and

query scheduling

[56] | 2018 | Live video analytics for | Raspberry Pi 3, | Combination of | PASCAL VOC and Ima- | System achieved real-time per-

drones NVIDIA  Jetson | YOLO object | geNet datasets formance for drone video ana-
TX2, and DJI | detection and KCF lytics with 95% detection rate,
Phantom 4 drone object tracking 2.3 fps on Raspberry Pi, and
algorithm. 29.3 fps on NVIDIA Jetson
TX2. Reduced bandwidth us-
age by 80% through edge com-
puting.

the overlap between predicted and ground truth bound-
ing boxes, assessing algorithm precision in identifying
objects.
o Frame rate. The frame rate metric is paramount as a key .

criterion to assess the algorithm’s performance, quan-
tifying the rate at which images are processed within
a unit of time. In real-time applications demanding
an increased frame rate, ensuring the algorithm stays
in sync with the streaming video’s continuous flow

becomes indispensable.

o Latency. This metric measures the time an algorithm
takes to process a frame and deliver a result. Low latency
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is critical in real-time applications, as it empowers algo-
rithms to present results quickly, leaving no room for
delays.
Power consumption. With the emergence of Edge Al as
a focal point, the imperative of governing power con-
sumption assumes a paramount role. Indeed, optimizing
power consumption prolongs battery life and facilitates
cost reduction, thereby underlining its criticality in this
domain.
e Memory usage. Given the constraints imposed by
limited resources, considering memory consumption
assumes a position of utmost importance in Edge AL
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TABLE 3. Summary of research on advanced techniques for edge video analytics.

[ Ref. | Year [ Application | Hardware | Learning model | Training datasets | Results (accuracy, ...)

[57] | 2022 | Integrating quality control | Not specified ResNet-based Experiments on an edge | Improved video quality and re-
into the video analytics human activity | computing platform duced processing delay.
process. recognition CNN

[58] | 2022 | Adaptive cross-camera | Not specified Spatial and | Market-1501 dataset Comparison with other
video analytics temporal benchmarks considers

correlation models Computational ~cost, Recall

in  cross-camera and precision, Heavy hitter

video analytics analysis, and Sensitivity of
time granularity.

[59] | 2022 | Edge AI Real-Time Video | Analog Matrix | Deep Neural Net- | COCO dataset High performance and energy
Analytics Processor works (DNNs) efficiency compared to digital

alternatives. Pose detector met-
rics: latency, FPS, Power, mAP.

[11] | 2022 | A survey on the state-of- | N/A N/A N/A Paper comprehensively covers
the-art in deep learning- current state-of-the-art, includ-
driven edge video analyt- ing challenges and opportuni-
ics ties.

[60] | 2020 | Using natural language | NVIDIA  Jetson | SENet-154 model | ActivityNet Captions and | Outperforms baseline methods
queries to perform video | Nano pre-trained  with | MSRVTT datasets in terms of F1 score, bandwidth
analytics at the edge ImageNet consumption, and runtime effi-

ciency.

[61] | 2021 | Smart distribution and pro- | NVIDIA  Jetson | YOLOv4 and | Not mentioned Evalutes the change in accu-
cessing of vision modules | Nano OpenCV racy of bounding boxes with
in parallel across available change in input resolution and
edge compute nodes for the change in Memory utiliza-
live edge video analytics tion of blocks.

Exercising due caution becomes imperative as it mini-
mizes memory usage, guaranteeing a seamless operation
on devices with limited resources at their disposal.

C. PRIVACY-PRESERVING IN EDGE VIDEO ANALYTICS

The present subsection explores RQ-3, which pertains to
privacy-preserving techniques and methods within edge
video analytics. These methods play a vital role in safeguard-
ing personal information while concurrently facilitating video
data analysis. A summary of the different scholarly works
examined in this analysis, with a particular emphasis on the
employment of privacy-enhancing methods in edge video
analytics, is delineated in Table 7. The common techniques
and methods used for privacy-preserving in edge video ana-
lytics include:

Encryption. Encryption involves the methodical
conversion of data into an encrypted format using
cryptographic algorithms, making it incomprehensible
without the corresponding decryption key. This power-
ful technique finds application in safeguarding sensitive
information, including but not limited to biometric data,
during its transmission or storage, thereby ensuring an
elevated level of security and confidentiality.
Differential privacy. Differential privacy, an ingenious
technique, introduces controlled perturbations to data
with the dual purpose of safeguarding individual privacy
while simultaneously enabling the extraction of valuable
insights. Its application in edge video analytics proves
particularly advantageous in preserving the anonymity
and identities of individuals captured in video data, thus
reinforcing the protection of their privacy.
Anonymization. Anonymization, an integral process,
entails the meticulous eradication of personally iden-
tifiable information from data, thereby assuring the
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concealment of individuals’ identities. When judiciously
applied, this technique serves as a valuable means to pro-
tect the privacy of individuals featured within video data
while concurrently enabling comprehensive analysis of
the underlying data.

o Edge computing. Edge computing entails the localized
processing and analysis of data at the network edge,
in close proximity to its origin, enabling swift and effi-
cient decision-making. This reduces data transmission,
minimizing the risk of data breaches and unauthorized
access.

o Federated learning. Federated learning represents an
intriguing machine learning paradigm, wherein mod-
els undergo training leveraging distributed data from
numerous devices or locations, all while circumvent-
ing the necessity of data migration towards a central
server. Such a technique holds the potential to ensure the
preservation of individuals’ privacy within video data by
upholding its decentralized nature, thereby amplifying
the overall sense of perplexity and fostering a robust
privacy framework.

o Multi-party computation. Multi-party computation
(MPC) is a technique that ensures the collective com-
putation of a function while safeguarding individual
input confidentiality. It fortifies privacy in edge video
analytics, enabling insightful analyses. By preserving
individuals’ privacy, MPC reinforces security and facil-
itates invaluable analyses.

VI. OPPORTUNITIES AND USE CASES OF EDGE
AI-ENABLED VIDEO ANALYTICS

This section addresses RQ-1. Gartner predicts that 50% of
all inferences will take place at the edge by 2025. It classifies
edge video analytics as being in a youthful stage of maturity
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TABLE 4. Summary of research on scalable video analytics at the edge.

[ Ref. | Year [ Application

| Hardware

[ Learning model

| Training datasets

[ Results (accuracy, ...)

[62] | 2020 | Scalable Video Analyt- | Intel Movidius Neural | Compressed-Domain WIDER FACE and | Higher accuracy (avg. preci-
ics Compute Stick (NCS) | Convolutional Neural | PASCAL VOC datasets | sion of 0.87) than prior meth-
and Raspberry Pi 3 | Network (CD-CNN) for CD-CNN model | ods on the WIDER FACE
Model B+ training, along with a | dataset with CD-CNN model.
custom dataset created | Achieved scalability and near-
from compressed video | real-time performance on Rasp-
frames. berry Pi 3 Model B+.
[63] | 2020 | Live Video Analytics NVIDIA Jetson AGX | Custom DL model | COCO dataset and | Achieved 89.5% accuracy on
Xavier and Jetson Nano | combining CNNs and | custom traffic video | the COCO dataset for object de-
LSTM networks. dataset for DL model | tection and 92.5% on the cus-
training. tom traffic dataset for vehicle
detection. Real-time processing
with significantly lower latency
and communication overhead
compared to traditional cloud-
based methods, up to 4x and 9x,
respectively.

[64] | 2023 | Real-Time Video Ana- | A custom edge device | Deep learning | ImageNet dataset for | Achieved up to 2.4x and 4.3x

lytics for IoT based on the NVIDIA | framework called | the pre-training model | lower latency than traditional
Jetson TX2 and a Rasp- | OsmoticNet, which | and a custom dataset of | cloud-based and edge-based
berry Pi 4 combines a lightweight | traffic videos for fine- | methods while maintaining
CNN  model with | tuning and evaluating | comparable accuracy.
a long  short-term | the model.
memory (LSTM)
model.
[65] | 2020 | Low-latency and accu- | Not specified CNN classifier RetinaNet-50 The median accuracy achieved
rate video analytics by the proposed algorithm in-
creases from 64%,73%, to 76%
when the edge computing re-
source increases from 50, 100,
to 300 GigaFlop/s respectively.

[66] | 2022 | Efficient edge-based in- | Edge Nodes: i) CPU: | Not mentioned EPFL, a multicamera | Used the following
dustrial video analytics Intel(R) Core(TM) pedestrian video | performance metrics:

i7-9750H CPU, 8 GB dataset, VIRAT dataset, | Computational Cost, Accuracy,
RAM. ii) AMD Ryzen a high-resolution video | Reduction Ratio, Latency, and
7 4800H with Radeon surveillance dataset, | Network bandwidth.

graphics, 8 GB RAM. and PETS09 dataset

Cloud server: Intel(R)

Core(TM) i9-10900K

32 GB RAM.

[67] | 2022 | Configuration selection | Not specified Different CNN mod- | Not specified Results demonstrate that the
and bandwidth alloca- els are deployed on proposed solution effectively
tion for multiple video the single edge server balance analytics accuracy, en-
streams in Edge-based to match various video ergy consumption, and system
video analytics resolutions latency across various settings.

[68] | 2022 | Modeling  multi-cell | Not specified YOLOVS and a mathe- | Not specified, simula- | Analyzed impact of system pa-
edge video analytics matical model for opti- | tion experiments rameters on model’s perfor-

mizing the performance mance. Developed a promising
of edge video analytics mathematical model for multi-
systems across multiple cell edge video analytics to op-
cells timize system performance.

[69] | 2019 | Scalable video analyt- | HP Z840 workstation | Faster-RCNN Duke MTMC dataset, | The proposed system shows av-
ics at the edge with 32 GB RAM and VOC 2012 dataset erage throughput gains of more

an Intel Xeon proces- than 4x by trading off a 5%
sor with 10 physical drop in inference accuracy.

(20 virtual) cores and a

dedicated NVidia Titan

XP GPU with 12 GB

RAM.

[70] | 2018 | Large-scale video | Cloud cluster with 8 | Convolutional Neural | The total video dataset | Results showed efficiency
stream analytics at the | compute cloud nodes, | Networks (CNNs) size is 5GB gain of 37% and 71% in
edge Each with 100 GB, Edge-Cloudlet-Cloud and

4 VCPUs and 16 GB Edge-CloudletCloud-Filter
RAM. Configuration of configurations,  respectively,
edge nodes not men- when compared to the cloud-
tioned. only approach.

with transformative potential. The advantages of integrating
edge Al and video analytics are widely recognized, leading
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experts to forecast a growing trend of video analytics appli-
cations migrating toward the edge.
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TABLE 5. Summary of research on data-efficient and opportunistic edge video analytics.

[ Ref. | Year [ Application | Hardware [ Learning model | Training datasets [ Results (accuracy, ...)

[71] | 2023 | Data-efficient continu- | Real-world vehicle | ResNetl8, MobileNet- | CORe50 dataset, and | The proposed system can save
ous learning for edge | cameras V3, and Faster RCNN real-world dataset of | 70% labeling and storage costs
video analytics DashCam while maintaining a competi-

tive accuracy. It achieves up
to 47.84% AP accuracy on the
real-world DashCam dataset.

[72] | 2022 | Edge video analytics | Azure Stack Edge | EfficientDet-DO, UA-DETRAC dataset, | The proposed system improves
that leverages idle re- | Pro equipped with | Faster-RCNN, AICity dataset, | the absolute mAP by 9.02%,
sources of edge nodes an NVIDIA Tesla T4 | YOLOv3 BDD100K dataset, | 11.34%, and 7.27% on average

GPU, and a virtual and COCO dataset for EfficientDet-D0, YOLOV3,
machine equipped with and Faster RCNN, respectively.
an NVIDIA Tesla V100

GPU

[73] | 2022 | Real-time video | Server with an octa- | Tiny YOLO, Nvidia | Not specified Proposed system outperforms
analytics that | core Intel processor | TensorRT, Faster- several baseline systems. It re-
uses spatial- | 3.3 GHz with 16 | RCNN, ResNet101, duces bandwidth usage by up to
temporal redundancy | GB of RAM and | Deep neural network 90% while meeting the desired
suppression to reduce | NVIDIA GeForce accuracy.
data transmission GTX3060 graphics

card with 6 GB of
RAM, and Nvidia
Jetson Intelligent Toy
Car

Edge AI and video analytics are a powerful amalgama-
tion that is poised to redefine the realm of security across
diverse business landscapes, ranging from large corpora-
tions to local enterprises. Additionally, traffic monitoring,
retail analytics, quality control, and recognition tasks are
all set to benefit from the integration of Edge AI in
video analytics. With its numerous advantages, edge sys-
tems for video analytics allow for more diverse and efficient
applications.

There are many different applications of edge video ana-
lytics, and they can be grouped into several categories or
taxonomies. As depicted in Figure 7, an example of taxonomy
for edge video analytics applications includes:

e Surveillance and security. The convergence of video
surveillance, facial recognition, object detection and
tracking, and license plate recognition engenders a mul-
tifaceted ecosystem meticulously devised to enhance
security measures while vigilantly scrutinizing the sur-
roundings for plausible threats.

o Retail and marketing. The deployment of diverse appli-
cations such as people counting, customer behavior
analysis, and queue management within retail environ-
ments encapsulate a rich arsenal meticulously curated
to enhance the customer experience while strengthening
sales revenue.

o Traffic and transportation. An array of cutting-edge
applications, including traffic flow analysis, license
plate recognition, and object detection and tracking,
are vital in the relentless pursuit of optimizing traffic
dynamics and bolstering road safety measures.

o Industrial and manufacturing. Various applications,
including quality control, process monitoring, and
equipment maintenance, revolutionize industrial and
manufacturing environments. This diverse array
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collaboratively fosters enhanced operational efficiency,
decreased downtime, and unrivaled product quality.

e Healthcare. Applications such as patient monitoring, fall
detection, and remote assistance revolutionize health-
care facilities, enhancing patient care, operational effi-
ciency, and cost reduction.

o Environment monitoring. Using cutting-edge technolo-
gies, cities can observe wildlife populations vigilantly,
assess air quality meticulously, and decipher meteoro-
logical patterns.

o Sports and entertainment. The deployment of diverse
edge computing-based applications, encompassing
crowd management, audience engagement, and event
analysis, propels a wave of transformations within sports
and entertainment venues, allowing enhanced fan expe-
rience and augmented revenue streams.

o Education. Video analytics in education permits auto-
mated student assessment, personalized content deliv-
ery, behavior monitoring, adaptive learning, increased
safety, and improved teaching effectiveness and student
engagement.

The field of edge video analytics is steadily advancing at an
unprecedented pace, leading to the proliferation of innovative
applications across diverse industries.

A. SURVEILLANCE AND SECURITY

The utilization of edge video analytics significantly improves
the efficiency of surveillance and security systems by facil-
itating prompt analysis and automated identification of
questionable activities or occurrences. Several studies have
shown the benefits of using edge computing and video analyt-
ics to ensure the safety of citizens in public places from crime,
theft, and violence. As depicted in Figure 8, use cases of edge
video analytics in surveillance and security include intrusion
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TABLE 6. Summary of research on edge video analytics using deep learning and federated learning.

[ Ref. [ Year | Application | Hardware [ Learning model [ Training datasets [ Results (accuracy, ...)

[80] | 2018 | Edge video analytics Backend server | CNNs, Android | The visual object classes | There are tradeoffs in accuracy,
Quad-core  Intel | TensorFlow, (VOC) image dataset [81]. battery consumption, bit rate,
processor (2.7 | Tiny-YOLO, and data usage based on system
GHz, 8GB RAM) | Big-yolo deep characteristics such as model
NVIDIA GeForce | learning model size, offloading decision, video
GTX970 4GB (22 convolutional resolution, and network param-
RAM graphics | layers). eters.
card, and Samsung
Galaxy S7
frontend device

[82] | 2018 | Surveillance.  Real-time | Not mentioned - CNN models: | Classroom Dataset (736 | Accuracy results for Human
object and face detection, AlexNet, images), Community | Sub-Attribute Recognition:
recognition, and analytics. GoogLeNet Center Dataset (5336 | Age: 774 %  (AlexNet

(Human Sub- | images), Traffic Dataset | CNN model - Fine Tuning
Attribute (999  images), Multi- | approach), Gender: 83.8 %
Recognition), Scenario Surveillance | (AlexNet CNN model - Fine
YOLO and Tiny | Dataset (8191 images), | Tuning approach), Apparel
YOLO models, | PETA Dataset, MNIST | Color: 6524 % (AlexNet
Pre-trained CNNs, | dataset, FERET Dataset. CNN model Fine Tuning
Deep Face, approach), Apparel Type: 64.1
DLib-ResNet, % (GooglLeNet CNN model -
OpenFace, Transfer Learning approach)
ResNet-SSD

[83] | 2023 | Video analytics using deep | HUAWEI 10 pro | DNN models: | LFW  dataset, VOC | VocNet experiences a 30%
learning on mobile de- | (6GB, octa-core | VGG, AlexNet, | dataset, MS COCO | decrease in accuracy, while
vices through edge com- | CPU), NPU, | YOLO Small, | Dataset, FCVID dataset, | AlexNet shows an 11% de-
puting and neural process- | HUAWEI DDK. ResNet-152 ImageNet validation | crease in accuracy. The F1
ing units (NPUs). dataset. score for YOLO Small de-

creases to 0.3.

[84] | 2022 | Collaborative video | Not mentioned Faster-RCNN Real-world datasets The proposed approach signifi-
analytics using multiagent Mobilenet 320, cantly improves overall rewards
deep reinforcement Faster-RCNN from 33.6% to 86.4% com-
learning on distributed Mobilenet, pared to competitive methods
edges Retinanet Resnet- (IPPO, Local-PPO, Shortest-

50, Mask-RCNN Queue, Random, and Local).)
Resnet-50

[85] | 2019 | Live video analytics using | FPGA-based The Gaussian | Videos and images taken | The proposed method outper-
FPGA-based smart cam- | smart cameras, | Mixture = Model | with a camera video | forms CPU and GPU solutions
eras Intel Core i7 (3770 | (GMM), the | (360x480 resolution) at a | in processing latency and en-

CPU), NVIDIA | Gaussian traffic intersection. ergy efficiency. It achieved a
RTX 2080 GPU Distribution 49x speedup in frames pro-
Models (GDMs) cessed per second and a 6.1x
improvement in energy effi-

ciency compared to the CPU.

[86] | 2018 | Real-time intelligent video | A desktop (Intel | Deep Neural | Not mentioned High-performance and
analytics using an edge | i7-6700 CPU | Networks (DNNs): optimized inference using GPU
service framework @ 3.40GHz, a | DetectNet neural acceleration and TensorRT.

Nvidia  GeForce | network, YOLO,
GTX 1060 6GB | SSD

and 24GB system

RAM) with

Ubuntu 16.04

LTS.

[87] | 2022 | Context-aware video con- | A Nvidia Jetson | LSTM- MSR-VTT dataset The transformer-based model
tent analysis using deep | Nano, a 128-core | based model, achieves 97% accuracy, while
learning on Internet of | Maxwell GPU, a | Transformer-based the LSTM-based model enables
Things (IoT) devices. Quad-core ARM | model, CNN, low real-time inference.

AS57 CPU. RNN.

[88] | 2022 | Task-oriented communica- | Not mentioned A temporal | The EPFL WILDTRACK | The  proposed = TOCOM-
tion in the context of edge entropy model | Seven-Camera HD | TEM method consistently
video analytics (TEM), MVDet, | Dataset, the EPFL MVMC | outperforms the baselines in

a  ResNet-based | Detection dataset terms of the rate-performance
model tradeoff.

[89] | 2021 | Use of AutoML (Auto- | A mobile device | Deep Neural | COCO dataset Stochastic accuracy and latency
mated Machine Learning) | with a camera, a | Network (DNN) response have been observed
techniques for video ana- | wireless 802.11ac | model, YOLO even with fixed configuration
lytics with edge comput- | Access Point, parameters.
ing. a server with a

GPU for object
recognition
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TABLE 6. (Continued.) Summary of research on edge video analytics using deep learning and federated learning.

[90] 2021 Collaborative cross- | Cameras and an | DNN model, SALSA dataset, VOC2012 | CONVINCE achieves around
camera video analytics at | edge server YOLO dataset 91% accuracy in object identi-
the edge. fication while transmitting only

about 25% of the recorded im-
ages.

[91] | 2021 | Federated video analytics | Four Amazon | An LSTM model, | VeRi dataset (over 50,000 | Ensures the privacy of video
architecture  specifically | DeepLens A generic access | images of 776 vehicles), | images and maximizes the ac-
designed for networked | cameras, a server | network (GAN)- | CityFlow (more than | curacy of video analytics appli-
smart cameras. with an RTX- | based model, 10,000 images of 666 | cations.

2080Ti GPU and | Two CNN-based | vehicles)
an Intel i7 CPU | models
2.4 GHz

[92] | 2019 | A distributed video analyt- | Not mentioned Not mentioned Images from road surveil- | Real-time Object detection and
ics architecture that lever- lance cameras: 960000 li- | identification, Reduction in
ages edge computing and censed vehicles, One mil- | communication latency
federated learning tech- lion CCTV camera
niques.

[93] | 2020 | A federated video ana- | Dell XPS 8930 | Neural Processes | COCO dataset, Video | By employing black-box and
lytics system that utilizes | (Intel core i7-8700 | (NPs), Neural | dataset for detecting | Neural Processes (NPs), the
edge computing 12-Core Processor, | network (NN) | objects and cars in video | system’s performance in terms

Nvidia  GeForce | model frames of latency and accuracy is en-
GTX 1080, 32GB hanced.

RAM), Nvidia

Jetson TX2

[94] | 2019 | A new edge computing | Nvidia Xavier as | TinyYOLOv3 Video Data, Frames of data | Object detection and re-
architecture for | the edge node, | for person detec- | transferred across the net- | identification on the edge server
distributed, scalable, and | Nvidia Titan as the | tion/classification work, MPEG-4 and PNG | don’t scale with increasing
real-time video analytics | edge server. across many | images format Edge node count, Object
based on Deep learning cameras, detection on the edge node

ShuffeNet-based and object re-identification

network for on the edge server can be

generating feature achieved by using a lightweight

vectors re-identification algorithm on
the edge server. Local detection
and re-identification on the
edge node, along with global
re-identification on the edge
server, scale well with several
edge nodes.
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FIGURE 7. Use-cases of edge video analytics.
detection, object detection and tracking, facial recognition,

abandoned object detection, crowd monitoring, and suspi-
cious behavior detection.

1) INTRUSION DETECTION
Edge video analytics can detect unauthorized entry or intru-
sion into restricted areas. Analyzing real-time video streams,
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TABLE 7. Summary of research on privacy-preserving techniques in edge video analytics.

Ref. | Year | Application Privacy- Hardware Learning model Training datasets Results (accuracy, ...)
preserving
approach

[95] | 2022 | Person Edge side | Desktop with | YOLOVSs and | nuScenes dataset, MOT15 | Prevents privacy leak-
counting privacy control | an Intel i9 CPU | YOLOv5Face dataset age under visual data
and Vehicle | that  leverages | and an Nvidia attack with 95% accu-
detection. trajectory RTX 3090 racy and 4x speedup

prediction GPU, An AWS compared to existing
and guarantees | DeepLens privacy control mecha-
privacy leakage | camera nisms.

to a threshold.

[96] | 2022 | Video analytics | Event duration- | N/A Faster-RCNN Porto Taxi Service Tra- | Proposed system
on cameras in | based differential model in | jectory - Prediction Chal- | preserves privacy
public areas. privacy Detectron-v2  for | lenge, ECML PKDD 2015 | across various videos

object detection, | Dataset and queries with an

and  DeepSORT error increase of 1-21%

for object tracking. relative to a non-private
system.

[97] | 2021 | Different Privacy N/A N/A N/A Diverse privacy prefer-
applications of | assistants ences require advanced
video analytics: | help  configure settings. Privacy assis-
(Generic privacy settings. tants and standardized
Surveillance, Standardized APIs are needed for
Petty crime | APIs user notifications and
detection, communicate opt-in/opt-out commu-
people opt-in/opt-out nication.
counting, privacy decisions
) to users.

[98] | 2023 dentification Privacy N/A A deep learning- | A dataset created from | Model achieved 99%
of out-of-body | preservation based image | surgeries recorded at | ROC AUC in valida-
scenes in | in surgical video classifier to | the University Hospital | tion on 3 independent
endoscopic analysis by identify ~ out-of- | of  Strasbourg, Two | datasets.
videos identifying out- body scenes in | independent multicentric

of-body images endoscopic videos | hospital datasets used to
in endoscopic (OoBNet). validate the model.
videos

[99] | 2022 | Identification Autoencoders N/A Double stream | UCF-Crime dataset System accurately de-
of anomalous | and Differential ResNet-50 tected video anomalies
and dangerous | Privacy network and while maintaining pri-
situations YOLOV4 used for vacy, shown by reduced
involving object  detection. face recognition in re-
violence or 4 optimizers: constructed frames.
other harmful AdamOpt,
activities DPSGDOpt,

DPAdamOpt,
DPAdagOnpt.
2021 | Mobile video | Adversarial 6 Mobile de- | Convolutional Affectiva-MIT Facial | System protects private

[100] analytics training extracts | vices and em- | neural networks | Expression Dataset | information with <2%

features for | bedded sensors (CNNs) (AM-FED+) and Privacy | accuracy drop while re-
normal task Evaluation Video Dataset | ducing execution time
classification (PEViD). by up to 82.9% and
and conceals energy consumption by
sensitive task up to 78.8%.
features to
protect  private
information.

2022 | Campus-wide Only meta-data | Raspberry Not mentioned Not mentioned Study compares

[101] video analytics | travels through | Pi 3 Model network bandwidth and
applications the network to | B+, NVIDIA storage  consumption

offer a privacy- | Jetson Nano, with and without CVAF
compliant Dell Precision but lacks  specific
tracking solution. | workstations, performance  metrics.
NVIDIA Jetson Shows improved
TX2. average response
time during peak and

non-peak hours.

the system can identify and raise an alert when a person
or object crosses predefined boundaries or enters restricted
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zones. This helps security personnel to respond quickly and
prevent potential security breaches. In the context of railroad
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security, Zaman et al. in [102] implemented a video analytics
and Al-based system to analyze railroad video cameras and
detect unsafe track violations, thereby minimizing risks and
potential accidents to residents.

2) OBJECT DETECTION AND TRACKING

Edge video analytics algorithms can detect and track objects
of interest within a video feed. This includes identifying and
tracking individuals, vehicles, or specific objects in real-time.
The system is capable of activating alarms or issuing notifi-
cations upon detection of questionable objects or activities by
consistently monitoring the video stream, enabling the imple-
mentation of proactive security measures. Zhang et al. [103]
implemented an alert assistant AMBER based on data analy-
sis from city cameras to monitor suspicious vehicles and help
citizens find missing children or stolen vehicles.

3) FACIAL RECOGNITION

With edge video analytics, cameras can perform facial recog-
nition at the edge without relying on centralized servers. This
enables quick identification of individuals from a database
of known persons or persons of interest. Facial recognition
at the edge enhances security by identifying potential threats
or identifying unauthorized individuals in real-time [9]. The
authors in [ 104] developed an intelligent indoor video surveil-
lance system based on a CNN deep learning algorithm to
analyze and track the content of video cameras to provide
security in prisons.

4) ABANDONED OBJECT DETECTION

Edge video analytics can detect and raise alerts when an
object is left unattended or abandoned for a certain period.
Unattended bags or packages pose a security risk in departure
and arrival terminals of airports and train stations or other
public places where people gather, such as shopping malls.
Automated detection of abandoned objects helps security per-
sonnel respond promptly and mitigate potential threats [105].

5) CROWD MONITORING

Edge video analytics can analyze crowd behavior in real-
time, detecting crowd density, movement patterns, or abnor-
mal behavior within a crowd. This enables security personnel
to identify potential crowd-related incidents, such as over-
crowding, stampedes, or aggressive behavior, and take appro-
priate actions to maintain public safety [9]. An expert system
based on video surveillance has been proposed in [106] with
the aim of ensuring efficient monitoring of shopping malls by
detecting abnormal behavior in real-time. The police can be
alerted quickly when a shooting occurs or a dangerous person
with a criminal history appears. Also, the authors in [107]
addressed the challenges of accurate monitoring and counting
of crowds in public spaces or events. Their practical solution
leverages computer vision algorithms to analyze video data
and extract meaningful information about the dynamics of a
crowd.
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FIGURE 8. Use cases of edge video analytics in surveillance and security.

6) SUSPICIOUS BEHAVIOR BETECTION

Advanced behavior recognition algorithms can detect sus-
picious activities or behavior patterns by analyzing video
feeds at the edge. This includes loitering, unauthorized access
attempts, or suspicious gestures. Real-time alerts can be gen-
erated, enabling security personnel to respond swiftly and
prevent security incidents. The authors in [108] addressed
the need for efficient and accurate anomaly detection in
surveillance systems, which play a crucial role in identifying
abnormal events or behaviors. Their proposed solution for
real-time anomaly detection integrates CNN features from
video frames into bi-directional LSTM networks. It outper-
forms traditional methods by achieving remarkable accuracy.

Numerous research initiatives within the European Union
(EU) have effectively combined video analytics and secu-
rity, exemplifying a dynamic synergy [105]. Noteworthy
among these is the APPS (Advancing Plug & Play Smart
Surveillance) project, a concerted effort aimed at facilitat-
ing the seamless implementation of plug-and-play solutions,
heightening the efficacy of intelligent decision-making, and
engendering resilient communication mechanisms. In a paral-
lel vein, the EWISA (Early Warning for Increased Situational
Awareness) project diligently endeavors to construct an
advanced early warning system, fostering a heightened level
of situational awareness. Moreover, the INSIST (Integrated
service delivery for Citizens’ Safety and Comfort) project
endeavors to create a smart environment wherein video
surveillance and lighting management converge, fostering
both public safety and a sense of comfort.

Since video data extracted from cameras in public places
may contain sensitive data such as people’s faces or car
license plates, users should comply with security and privacy
laws to minimize the potential risks. In [109], Lachner et
al. identified and evaluated the impact of factors that can
be adjusted in Al-assisted privacy for video analytics based
on a face-blurring pipeline and edge computing. In [110],
Grambow et al. explored the geographic distribution of fog
computing servers to ensure the privacy and confidentiality
of citizens’ data. In addition, the work in [111] seeks to pre-
serve privacy and security while accessing the information by
implementing a privacy-preserving edge computing system
for Al-assisted video analytics that restricts the app’s access
to a limited subset of the video stream data.
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B. RETAIL AND MARKETING

Edge video analytics for retail and marketing is an active
area of research. Many efforts focus on using computer vision
and machine learning techniques to analyze retail video data.
These studies primarily focus on using video data to improve
sales and customer experience and gain insights into cus-
tomer behavior. Video analytics in retail stores represents
a widespread utilization wherein the tracking of customers
and products is conducted. Such an approach facilitates the
comprehensive comprehension of customer-product interac-
tions, popular merchandise identification, and identification
of the store’s most frequented areas. The resultant insights
hold significant potential for enhancing store layout, prod-
uct positioning, and personnel allocation. Another area of
research leverages video analytics to improve the customer
experience. This includes using video data to monitor queues,
identify customer needs and ensure staff provides excellent
service.

Video analytics in marketing and advertising reveals cus-
tomer demographics and interactions with digital signage.
This knowledge fuels effective campaigns and targeted
approaches, improving sales and customer experience. It also
provides insights into retail and marketing behavior. Chal-
lenges include privacy concerns and lighting variations, but
ongoing research aims to overcome them.

The supply chain and retail sectors are rapidly evolv-
ing, investing in research and technology for improved
performance. Retailers prioritize customer satisfaction and
data-driven decisions through e-commerce, loyalty programs,
and optimized logistics. Autonomous decision-making pred-
icated on real-time data analysis is poised to revolutionize
the landscape of smart factories and logistics. Edge video
analytics, driven by data sovereignty and reliability, supports
multiple departments by tracking products in logistics, retail,
and marketing. In the realm of Al, diverse models can be
deployed on shared devices and nodes to tackle distinct
tasks. Zhou et al. in [112] proposed a solution wherein com-
plex edge Al models are partitioned into subtasks, enabling
the simultaneous processing of shared data. Although this
strategy may give rise to intricate algorithms, it yields supe-
rior calibration of investments and facilitates more precise
measurements of marketing campaigns, thus enhancing their
overall effectiveness.

According to Sandeep, [113], blockchain is widely used
within the retail supply chain; it has several advantages in
processing data generated by sensors. It can make ship-
ping, tracking, and invoicing efficient. The convergence of
blockchain and edge video analytics is being further explored
by researchers, such as Jahid et al. [114]. Retail blockchain
encompasses product tracking from the supplier or manufac-
turing unit, through the warehouse and retailer, to delivery to
the end consumer. The entire process is fully automated, and
the data is secured, helping develop new methods to improve
connectivity mechanisms, introduce new services, and gain
more insights.
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The future of retail is product personalization, and cus-
tomers need anticipation. With human understanding critical
to future business direction, dynamic dashboards like those
seen in some futuristic movies are not that far off. Video
analytics in retail can spawn numerous applications to under-
stand customer preferences and analyze foot traffic to create
new sales opportunities. Video analytics is also being inte-
grated into Industry 4.0 when it comes to detecting the
lifecycle of equipment in technical areas, lean management,
and maintenance schedules. The potential of IoT devices for
last-mile optimization is enormous.

Cutting-edge research focuses on real-time processing to
engage customers before leaving the store. The 2020 St.
John University business review [115] highlighted case stud-
ies utilizing advanced 3D sensors to identify each customer
and their unique profile. Real-time processing leverages
past preferences and bill analysis for personalized product
recommendations. With customer consent, immediate shelf
replenishment occurs via internal data warehouse communi-
cations. In typical retail settings, linked sensors enable edge
video analytics and integrated data analysis for proactive
customer behavior anticipation. Alerts aid in identifying mar-
keting successes or failures. However, processing the vast
amount of data remains challenging, prompting research on
collaborative edge cloud computing and addressing key IoT
challenges. Also, privacy and ethical concerns arise when
utilizing social media profiles and video surveillance data.

C. TRAFFIC AND TRANSPORTATION

In the context of traffic and transportation, edge video analyt-
ics can provide several benefits and applications. As depicted
in Figure 9, here are the typical use cases in this context:

1) TRAFFIC MONITORING AND MANAGEMENT

Video analytics has proven to help traffic management in
smart cities tremendously [116]. Insufficient traffic manage-
ment measures in response to abrupt surges in highway and
urban traffic can result in increased risks of accidents and
congestion. Hence, edge video analytics solutions can be vital
in this scenario. Indeed, real-time traffic analysis can help
adjust traffic signal control systems dynamically and monitor
congestion on roads and highways. It can also detect danger-
ous situations such as a vehicle moving erratically, driving in
the opposite direction, or stopping at an unauthorized place.
In the event of an accident, these systems make it possible to
collect evidence during a trial. Incorporating edge analytics
capabilities, camera systems exhibit the capacity to detect and
track vehicles, record their traffic volume in specific regions,
and examine the dynamics of traffic flow. Counting vehicles
or distinguishing between various types, such as cars, trucks,
buses, and cabs, provides high-quality statistics that shed light
on traffic [34]. Automatic license plate recognition identifies
cars committing an infraction or detects a stolen vehicle or
a vehicle used for a crime, thanks to real-time search. The
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acquired information proves invaluable in fine-tuning the
synchronization of traffic signals, detecting bottlenecks, and
making informed decisions with regard to traffic management
strategies. Traffic engineers can then spot the peak hours
of traffic congestion, closely examine traffic dynamics at
intersections, and efficiently devise evidence-based strategies
to expand or improve the roadway network.

Also, there are many use cases of edge video analytics
to provide better public transportation services, also known
as smart mobility. For instance, the routing of buses and
trains should rely on actual demand for transportation, not just
predefined routes with a fixed frequency. L. Cui et al. [117]
studied the challenges of uploading video content by thou-
sands of vehicles in terms of bandwidth consumption. They
proposed an algorithm and queuing model for bus stops and
used data from Shenzhen City in China to test the model.
Their solution can be used to monitor vehicles and pedestrians
separately, analyze bus stops and their relevance, and collect
statistics at peak times to improve traffic management. Other
valuable data can be collected via sensors and IoT devices,
enabling more advanced services.

In their work, Albreem et al. [118] introduced an innova-
tive edge visual sensor that effectively gathers data from the
Agnosticity framework. This data, in turn, undergoes onboard
computation facilitated by the real-time tracking algorithm
known as SORT [119]. Singh et al. [120] have thoroughly
investigated Internet of Things (IoT) technologies. They
focused particularly on IoT’s profound impact in the area
of sustainable rail transportation Their study delved into
using the Message Queuing Telemetry Transport (MQTT)
protocol for seamless equipment communications, ultimately
fostering autonomous decision-making capabilities. These
transformative applications are continuously evolving and
eagerly spreading through various transportation domains
that extend beyond the confines of the rail sector to include
dynamic sectors such as shipping.

2) INCIDENT DETECTION

By analyzing video streams at the edge, video analytics
algorithms can detect various traffic incidents such as acci-
dents, breakdowns, or pedestrians crossing in unauthorized
areas [121], [122], [123]. When an incident is detected, alerts
can be generated immediately, enabling prompt response
from traffic authorities or emergency services. This helps in
reducing response time and improving overall safety.

3) TRAFFIC VIOLATION DETECTION

Edge video analytics extends its capabilities to encompass
traffic enforcement, detecting violations such as red light
infractions, parking violations, and speeding. By analyzing
video footage in real time, the system can automatically
detect these violations and generate alerts or notifications
for enforcement agencies [27]. This helps in enhancing traf-
fic law enforcement and promoting safer driving behaviors.
The authors in [124] addressed the need for efficient and
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real-time recognition of anomalous vehicles, such as stolen
or suspicious vehicles, in urban traffic. They proposed a
solution that leverages edge video analytics to perform the
recognition tasks closer to the data source, reducing latency
and improving system performance.

4) PARKING MANAGEMENT

Edge video analytics can assist in parking management by
monitoring parking spaces in real time. Cameras equipped
with edge analytics can identify available parking spots,
detect unauthorized parking, and provide occupancy infor-
mation. Collected data can be used to guide drivers to
available parking spaces, optimize parking space utiliza-
tion, and prevent illegal parking. For example, the authors
in [125] addressed the challenges of roadside occupation
management, such as illegal parking or unauthorized use
of dedicated spaces. They proposed a solution that employs
computer vision algorithms to analyze video data captured
from roadside cameras. The system utilizes object detection
and tracking algorithms to identify and track vehicles and
other objects occupying roadside spaces. It can detect and cat-
egorize various occupation scenarios, such as illegal parking,
loading/unloading, or unauthorized usage.

5) INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

Edge video analytics can be integrated into larger Intelligent
Transportation Systems. By processing video data at the
edge, traffic management systems can have near real-time
access to valuable insights and actionable information. This
enables adaptive traffic control systems, dynamic route
guidance, and improved overall transportation efficiency.
X. Zhou et al. [126] focused on data abstraction strategies
and defined intelligent transportation systems (ITS) into
five main components: traffic sensing, congestion manage-
ment, data monitoring, communication, and control. Usually
located at fixed sites, cameras can be assigned to specific
tasks based on location and interest. During the sixth edition
of the AI City Challenge [127], worldwide researchers gath-
ered to optimize and implement algorithms. The detection-
tracking-counting method remains one of the most powerful
and cost-effective techniques.

In transportation, efforts are underway to improve com-
puter technologies for less human-supervised and more
autonomous decision-making. Autonomous vehicles are one
of the most evolving concepts using edge video analytics.
Vehicle equipment includes adapted sensors and devices for
video capture. Huh et al. noted in [128] that Light Detec-
tion and Ranging (LIDAR) is currently the most advanced
sensor that generates gigabytes of data per second. A cam-
era as a single device can generate an enormous amount
of information about movements, objects, interactions, and
weather conditions. Compared to fixed cameras, cameras in
vehicles pose a greater challenge for video analytics due to
their motion. Javaid et al. [129] propose an edge analytics
conversion of video frames into a discrete Markov decision
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process. Since the vehicle speed is constantly changing,
the calibration parameters need to be further developed.
Al-Ansi et al. estimated in [130] that a single autonomous
vehicle could generate 30 terabytes of data daily. Deep rein-
forcement learning contributes to dynamic object detection
based on the appearance of changing road types, environ-
ments, bicycles, people, pets, etc., to improve autonomous
driving decisions.

It is fair to point out that many challenges still lie ahead
for intelligent transportation technologies. Ke et al. [131]
described several near-crash detections while designing algo-
rithms to process and analyze dashcam video data. The
algorithms should adapt to blurry video due to weather
conditions or other causes and filter out irrelevant motion
in dynamic environments. The development of smart IoT
devices necessitates innovations in wireless communications
and sensor technologies. Notably, The integration of such
innovations becomes indispensable in creating intelligent
devices, such as smart cameras, which play a pivotal role in
deciphering the probable conduct of road users [132]. Lever-
aging advanced filtering techniques, these smart cameras
emerge as indispensable tools in unraveling and comprehend-
ing the intricate behavioral patterns exhibited by individuals
navigating the roadways.

Future research directions of ITS include edge cloud
through B5G/6G [133], which promises extremely low
latency and high bandwidth. To this end, researchers are
also looking at multi-agent reinforcement learning (RL) [134]
to explore complex traffic situations. The energy transition
and the introduction of environmentally friendly technologies
are being considered in computing devices. Using renewable
energy sources to power IoT devices has already been studied
by researchers such as M. Albreem et al. [118], who named
it the Green Internet of Things (GIoT). This critical aspect
needs to be further developed.

D. INDUSTRIAL AND MANUFACTURING SECTORS

In industrial environments, the fusion of computer vision and
machine learning unlocks a realm of possibilities, enabling
comprehensive analysis of video data. These dynamic tech-
nologies empower organizations to optimize operational
efficiency, elevate quality control standards, and strengthen
safety measures within their domains. Video analytics
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finds common applications in monitoring industrial equip-
ment performance, including robots and conveyors. This
enables prompt identification of issues like jams or malfunc-
tions, facilitating overall performance enhancement. Another
research area focuses on leveraging video analytics for man-
ufacturing quality control. Video data detect defects during
production and ensures a smooth and efficient manufacturing
process.

Several research efforts heavily delve into video analyt-
ics for safety monitoring in industrial and manufacturing
environments, encompassing hazard detection, improper pro-
tective equipment, and identification of unsafe behavior.
These efforts demonstrate the potential of video analytics
to enhance efficiency, quality control, and safety. However,
many challenges still require careful attention and a solution.
They include poor lighting conditions, occlusions, and light-
ing variations.

The proliferation of IoT in the industrial sector permits
monitoring equipment and collecting massive amounts of
data that needs to be harnessed. Many research initiatives
focused on optimizing storage resources and computing
latency. Jianyu et al. [139] designed a real-time monitoring
data system prototype integrating Network Functions Virtu-
alization (NFV) and Software-Defined Networking (SDN).
They want to prove the great potential of IoT experimen-
tally in large-scale urban applications. Yi-Yun et al. [140]
studied the concept of Factory Of the Future (FoF). They
used real-time video analytics and developed a cloud-edge
computing architecture with 5G wireless technology to deal
with the resource allocation problem.

The industry is currently witnessing ongoing advance-
ments in the domain of Video Analytics applications, offering
diverse avenues for research and exploration. Among the
prominently investigated areas is the notion of anomaly
detection, which holds immense potential. Significant tech-
nical progress has been made in the realm of detect-
ing precise anomalies utilizing video surveillance cameras.
Devashree [141] investigated this concept and stated that
there are many methodologies for anomaly detection. There
is a growing trend to explore time-critical anomaly detec-
tion using Edge devices. Nevertheless, many challenges
still require careful attention. They include training model
improvement and hardware and software optimization.

E. HEALTHCARE

Edge video analytics has the potential to play a crucial
role in healthcare by leveraging advanced technologies to
analyze video data in healthcare facilities closer to the
source of data generation. It involves using intelligent algo-
rithms and machine learning models to process and interpret
video streams captured from surveillance cameras, wearable
devices, or other video-enabled devices in healthcare settings.
Several studies show the important role of video analytics in
healthcare. Here are some of the applications of edge video
analytics in healthcare (see Figure 10).
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TABLE 8. Summary of research studies on traffic and transportation based on video analytics and loT.

[ Reference | Year | Study target and addressed issues | Methodology and algorithms |
[120] 2022
e Holistic survey of IoT technologies in rail- o Fog computing
way operations o Radio Frequency Identification System (RFID) tech-
o IoT applications in maglev trains nology
e Green IoT applications
[135] 2022
e Overview of emerging Technologies for o Big Data Architectures review
Smart Cities Transportation e Data-driven transportation systems
e Geoinformation and communication tech- o Transportation Empowered by Al
nology (GeoICT)
o Recent trends using integrated deep learning
[124] 2022
o Urban transportation monitoring e SurMon: Smart Urban traffic Monitoring scheme
o Defining database of normal vehicle activity employing drones
patterns on the road e multidimensional Singular Spectrum Analysis
o Identifying anomalous vehicle behaviors in (mSSA) technique
real time
[136] 2022
o Processing and analyzing the data at the edge o Empirically intelligent XGboost (EIXGB)-enabled
of the network logistic transportation system
e Monitoring parameters of the public traffic e Machine learning techniques
management system
[137] 2022
e Vehicle Counting in Intelligent Transporta- o CityCam-to-Edge cooperative learning framework
tion System (ITS) o Deep learning architecture
o Counting performance improvement by ex- o Vehicle counting models, F2F-M and 020-M
ploiting videos captured from multiple city
cameras
[131] 2021
o Real-time near-Crash car detection o Edge computing with traffic video analytics
o Algorithm models development e TTC and horizontal motion estimations
o Experiments and testing on cars and buses
[126] 2021
o Intelligent Transportation Systems (ITS) e Data Pre-Processing
o Traffic Flow Detection o Traffic Pattern Analysis
e Future Research Directions o ITS Sensing, LiDAR and Camera
[117] 2021
e Video uploading problem for moving buses e Video uploading in dedicated access points (AP) for
in public transportation systems video uploading
e Video uploading delay and cost o Water filling placement (WFP) algorithm
o Experimental results o Gradient descent (GD) based algorithm
[138] 2020
e Real-time urban traffic planning o MEMTY, a multi-level edge computing model
o Experimental application on traffic video o Big data machine
stream data
[132] 2020
o Investigating on-camera filtering e Video analytics, deep neural networks, object detec-
o Exploring Reducto, a system that adapts fil- tion
tering decisions according to feature type, o Experimentation of Reducto on a variety of videos
query accuracy, and video content
[116] 2019
e Case study of Liverpool Smart Pedestrians e Deep neural networks
project o SORT tracking algorithm
o Real-Time Traffic Monitoring
e Designing an edge-computing device

1) REAL-TIME MONITORING AND ALERTING
The utilization of edge video analytics enables the continual
surveillance of video feeds derived from diverse sources,
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including patient rooms, operating rooms, and waiting areas,
in order to discern and carefully examine critical events in
real time. This enables healthcare professionals to promptly
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respond to emergencies, monitor patient safety, and identify
potential risks or abnormalities [142]. Also, to assist child-
care providers and nurseries in monitoring and analyzing the
behavior of babies in smart homes or health centers, an intelli-
gent [oT system with image sensors has been proposed [143]
based on the analysis of baby videos and control charts to
detect the baby’s movements and send alerts when abnormal
behavior occurs. As described in [108], an intelligent deep
feature-based anomaly detection framework based on video
image series and a CNN model was presented to detect
anomalous events in video surveillance and reduce human
work. Recently, in [ 144], the authors proposed an autism early
detection system based on machine learning algorithms and
video surveillance of children at home to detect abnormal
events in a real usage context.

2) FALL DETECTION AND PREVENTION

By analyzing video streams, edge video analytics can detect
falls or unusual movements of patients in hospitals or nursing
homes. Healthcare personnel can be notified quickly through
the generation of immediate alerts, thereby facilitating the
provision of timely assistance and the prevention of subse-
quent injuries. Falls are among the most important health
problems, especially for elderly people living alone. There-
fore, several works based on video surveillance analysis have
been conducted to solve this problem and provide quick
first aid in emergencies. In [145], the authors implemented
a non-invasive system based on RNNs and video streams to
monitor fall detection in elderly living alone. The authors
in [146] conducted research on monitoring falls on furniture
in elderly people living at home or in hospitals using deep
learning, R-CNN, activity features, and video scene analysis.
The authors in [147] developed a smart home IoT system
based on video stream analysis and feedback Optical Flow
CNN to detect motion and recognize gestures and fall events.

3) PATIENT SAFETY AND SECURITY

Edge video analytics can enhance patient safety and security
by monitoring restricted areas, tracking unauthorized access,
and identifying potentially dangerous situations. It can also
detect aggressive behavior or unusual activities, ensuring
a safe environment for patients and staff. For example,
enhanced care for the elderly and patients with disabilities
requires a fast and efficient service. Therefore, video surveil-
lance systems must respond promptly by sending real-time
alerts and notifications to healthcare givers. To this end, the
authors in [148] proposed an IoT-based intelligent system
called “Cloud-based Object Tracking and Behavior Identifi-
cation System (COTBIS)” to meet the need for a robust and
secure healthcare video surveillance system. They used IoT
and edge computing to quickly and easily analyze real-time
data, reduce bandwidth, and decrease response time between
video camera devices and the cloud server. They also used
Deep Convolutional Neural Networks for object recognition,
detection, and case activity classification of patients.
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FIGURE 10. Use cases of edge video analytics in healthcare.

Various research efforts have used other types of video
stream content analysis algorithms to improve intelligent
video surveillance. These include computer vision algo-
rithms, artificial neural networks (DNN, RNN, Deep Boltz-
mann Machine (DBM), and Deep Belief Networks (DBN),
etc.) [149]. In [150], the authors used Region-based Con-
volutional Neural Networks (R-CNNs) to accelerate the
detection of moving objects in a real-time video surveil-
lance application. As reported in surveys ([151], [152]),
Cloud Computing, Edge Computing, and Fog Computing
can improve the robustness of the video surveillance system.
In [153], the authors found that biometric features based on
the time domain help optimize security in real-time smart
health applications based on the Internet of Medical Things
(IoMTs).

4) INFECTION CONTROL

Video analytics can aid in infection control efforts within
healthcare facilities. Through the observation of hand
hygiene, mask-wearing, and social distancing adherence, the
system possesses the ability to identify areas of potential
improvement and elevate compliance with infection control
protocols. During the Coronavirus pandemic, an intelligent
video early warning system was developed based on face
recognition storage and data transmission between the edge
device and the cloud server to ensure healthy and safe condi-
tions and increase the safety of workers [154].

5) CLINICAL RESEARCH AND TRAINING

Edge video analytics can be utilized for clinical research,
such as observing patient behavior or analyzing treatment
outcomes [155], [156], [157], [158]. It can also support
healthcare training by capturing video footage for educational
purposes, allowing medical professionals to review and learn
from real-life scenarios.

6) PRIVACY AND SECURITY

Edge video analytics focuses on processing and analyzing
data locally, reducing the need for transmitting sensitive
video streams to remote servers. This approach helps address
privacy concerns and enhances data security since critical
information can be processed and stored within the healthcare
facility’s infrastructure [111].
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F. SPORTS AND ENTERTAINMENT

The field of edge video analytics for sports and entertainment
has witnessed a substantial amount of research in recent
years. As shown in Figure 11, some examples of research
works in this field include:

o Crowd management. Edge video analytics for crowd
management aims to analyze video data from cameras
at sports and entertainment venues to detect and track
people, estimate crowd density, and identify potential
hazards or security threats [159], [160].

o Event analysis. The objective of edge video analytics
for event analysis is to develop algorithms and systems
that are capable of scrutinizing video data emanating
from sports and entertainment events with the aim of
extracting significant details such as player tracking, ball
tracking, and event highlights. This extracted informa-
tion can subsequently be employed to enhance the fan
experience and bolster revenue [161], [162], [163].

o Player tracking. Research on edge video analytics for
player tracking aims to develop systems to track players
and balls in real-time in sports such as basketball, soccer,
and American football [164], [165], [166], [167]. These
systems can provide insights on players’ performance,
the team’s strategy, and overall match analysis.

G. EDUCATION

Numerous scholarly investigations identified within the
scope of this review have delved into the implementation of
edge video analytics within educational environments.

Zhou et al. [168] introduced an innovative video feature
framework employing machine learning and computer vision
techniques. This framework aims to forecast and compre-
hend online video consumption through a content-based lens.
By applying the framework to distinct datasets, the authors
validate its precision in predicting individual-level consumer
behavior and overall video popularity across these diverse
contexts. Furthermore, the authors elucidate the potential for
their findings and methodologies to propel advancements in
management and marketing research.

The authors in [169] use machine learning and virtual
reality to analyze and improve teaching videos for oil painting
art. They propose a deep learning-based object extraction
fusion method and apply aesthetic criteria to filter out low-
quality objects. The images are enhanced through saliency
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expansion, contour matching, and style migration. Virtual
reality technology enhances art appreciation and student
learning experiences, improving aesthetic quality.

In their paper, Li et al. [170] used a classroom-based video
analysis research framework to conduct a micro-level empir-
ical study on the relationship between teaching behavior,
media application, and teacher knowledge structure in the
smart classroom. They developed an analysis coding sys-
tem to slice the classroom teaching video, collate the data,
and analyze the statistics according to the teacher’s teaching
behavior, media use, and knowledge structure in the smart
classroom. The study demonstrated that the integration of
media within the intelligent classroom can have a favor-
able impact on student learning. However, the degree of
this impact is contingent upon the media’s utilization and
its compatibility with the teacher’s pedagogical approach
and cognitive framework. Teachers with a strong knowledge
structure are likelier to use media effectively in the smart
classroom. The utilization of media can help them clearly
understand the educational requirements of their students,
thereby enabling them to offer more personalized guidance.

The authors in [171] developed Engage Al, a system to
help teachers assess student engagement and attention dur-
ing online teaching in the COVID-era. The system uses
video-based machine learning models to detect emotions like
happiness and neutrality, as well as drowsiness. It aggregates
this data in a dashboard that instructors can view in real-
time. This allows instructors to adjust their teaching to keep
students engaged.

To enhance learning in computer laboratories, the authors
in [172] propose a system that recognizes and localizes stu-
dent actions in still images from CCTV videos. The method
combines YOLOV3, a real-time object detection technology,
with image template matching for efficient video process-
ing. The authors create the STUDENT ACTION dataset
using CCTV frames from a university computer laboratory to
address the lack of a standard dataset. Their proposed method
demonstrates excellent performance in recognizing various
actions, particularly those with more samples.

The authors in [173] explored current classroom teach-
ing interaction forms in technology-rich environments and
identified their deficiencies. They analyzed primary math
classrooms using interactive whiteboards, interactive tele-
visions, or mobile terminals using the ITIAS (Informa-
tion Technology-based Interaction Analysis System) cod-
ing system. They selected 20 teaching cases as samples
and applied computer vision for video analysis. Four
aspects were examined and concerned classroom atmosphere,
teacher-student interaction, student-student interaction, and
human-technology interaction. Cluster analysis revealed
three interaction patterns: immediate interaction, waiting
interaction, and shallow interaction.

In [174], the authors presented a visual analysis of click-
stream data generated by learner interaction with course
videos in MOOCs. The aim is to predict learner perfor-
mance and enable instructors to make measures for timely
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intervention. The paper uses an LSTM network on implicit
features extracted from video-clickstream data to predict
learners’ performance. The authors stated that their proposed
LSTM model outperforms baseline Deep learning (GRU) and
simple recurrent neural networks by an accuracy of 90.30% in
the “Mining of Massive Datasets” course, and the “Automata
Theory” accuracy is 89%.

Overall, edge video analytics can be used in an educational
context in a variety of ways, as depicted in Figure 12.

VIl. CHALLENGES AND OPEN ISSUES

This section addresses RQ-4. In the field of edge video ana-
lytics, several challenges and open issues still require careful
attention. They are discussed in this section.

A. REAL-TIME PROCESSING

The imperative for real-time processing presents a significant
obstacle within the realm of edge video analytics. The timely
analysis and subsequent actions upon video data necessi-
tate near-instantaneous processing, an endeavor fraught with
challenges due to the sheer magnitude of data to be processed
and the inherent constraints on processing power encountered
in edge devices. Accommodating the performance require-
ments of video analytics applications becomes pivotal in
order to fulfill the demands of specific use cases and optimize
the user experience. The fulfillment of accuracy, latency, and
throughput requisites assumes utmost significance for mod-
els employed in Al applications. Furthermore, developers
of such models must be aware of the hardware constraints
that may exert influence over the dimensions of model size
and memory requirements. Striking the optimal equilibrium
between model accuracy, inference speed, and model size
often proves to be a formidable task for developers.

B. LIMITED RESOURCES

Edge devices, encompassing an array of IoT devices and
cameras, are commonly characterized by their inherent con-
straints pertaining to processing power, memory, and storage
capabilities. Such limitations render the execution of intri-
cate algorithms and the storage of voluminous data on
these devices a formidable undertaking. The development of
algorithms specifically tailored to operate within the con-
fines of resource-constrained devices assumes paramount
significance for the proliferation of Edge Al applications,
facilitating the utilization of these devices even in remote
or challenging terrains that are otherwise difficult to access.
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Most edge hardware has limited processing power, leading to
inference constraints on object detection models. Efficient,
low-memory, and low-power architectures are crucial for
edge devices, considering heat dissipation limitations.

C. POWER AND ENERGY EFFICIENCY

Edge devices are often battery-powered or have limited power
supplies, so power and energy efficiency are critical con-
siderations. Algorithms and hardware must be designed to
minimize power consumption while providing accurate and
reliable results [175]. High accuracy and low power con-
sumption are paramount concerns in the development of
algorithms for video analytics applications such as object
detection.

D. PRIVACY AND SECURITY

Edge video analytics encompasses a host of critical pri-
vacy and security considerations, primarily stemming from
collecting and analyzing video data within sensitive envi-
ronments, which frequently includes personal information.
Safeguarding the privacy and security of such data emerges as
a significant challenge, demanding meticulous attention and
concerted efforts within this realm. Federated learning is a
distributed approach to machine learning that addresses these
concerns [176], [177], [178]. Federated learning necessitates
the retention of data on edge devices as opposed to centralized
storage in a singular location. The model is trained locally on
those devices before the updated parameters are aggregated
and shared among all participants. The reduction of sensitive
data transmission and centralized storage in edge video ana-
lytics can serve as a solution to address privacy and security
concerns. This approach can significantly mitigate the risk of
security breaches and hacking attempts that may exploit the
vulnerabilities of a centralized storage location.

E. SCALABILITY

A tough challenge awaits regarding the scalability of edge
video analytics solutions. The exponential growth in the vol-
ume of data to process and store is directly attributable to
the rapid proliferation of devices and streams. Developers
seek scalable solutions without breaking the bank, opting to
process multiple high-resolution video streams on a single
device. This cost-effective approach defies convention but
introduces an additional hurdle in achieving commercial via-
bility at a large scale.

F. ROBUSTNESS

Edge video analytics systems must exhibit persistent
resilience in various environmental conditions. They should
be undeterred by challenging situations like low light, fog,
and rain.

G. ADAPTABILITY

Edge video analytics systems must adapt to diverse scenarios
involving different cameras, lighting conditions, and data
types (video, audio, and sensor data).
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H. HUMAN-IN-THE-LOOP

Human input and feedback are important for many edge video
analytics applications, such as video surveillance, to improve
the performance of the system and make it more accurate than
with purely automated systems. In some cases, edge video
analytics applications may require human input to train and
fine-tune machine learning models since these models often
rely on large amounts of labeled data. Humans can provide
this labeled data by annotating or verifying the outputs of
the models. In other cases, edge video analytics applications
may rely on human feedback to improve their accuracy and
reliability. For example, if a video analytics system monitors
a public space for security purposes, it may flag potential
security incidents for human review. The human reviewer can
then provide feedback on the accuracy of these flags, allowing
the system to learn and improve over time. By incorporating
human input and feedback, edge video analytics applications
can better address the challenges of data privacy and security
while also improving accuracy and reliability.

The remarkable advances witnessed in computing
paradigms and artificial intelligence have paved the way for
an exciting realm of possibilities, prompting the identification
of numerous vital research areas poised to propel the field
of edge video analytics toward unprecedented horizons in
the foreseeable future. Some of the most promising areas
include:

I. EXPLAINABLE Al

The development of algorithms capable of furnishing lucid
explanations for their outcomes assumes paramount signif-
icance within the purview of video analytics applications,
particularly in domains such as security and surveillance,
wherein the ability to decipher and comprehend the algorith-
mic outputs holds unparalleled importance.

J. MULTI-MODAL FUSION

Developing algorithms that fuse information from multiple
modalities (video, audio, sensor data) is crucial for enhancing
edge video analytics in applications like surveillance and
event detection.

K. ADVERSARIAL ROBUSTNESS

Developing algorithms that can resist attacks from adversarial
examples will be necessary for many edge video analytics
applications, particularly in security and surveillance, for
which detecting and responding to attacks is essential.

L. EDGE-CLOUD COLLABORATION

Developing algorithms for effective collaboration between
edge devices and the cloud will be necessary for many
video analytics applications. The synergistic partnership
between the edge and the cloud will facilitate the utiliza-
tion of enhanced algorithms and more significant amounts
of data while preserving minimal latency and power
consumption.
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VIil. CONCLUSION

In recent years, the field of Edge Al has surfaced as a tech-
nology with great potential for transforming video analytics.
This technology presents a novel approach characterized by
its ability to facilitate real-time processing, minimize latency,
optimize privacy and security, and accommodate resource-
limited settings. This article has provided a systematic review
of the scholarly works on Edge Al-assisted video analytics
in smart cities. It has undertaken the task of classifying the
diverse research endeavors within a taxonomy. Additionally,
it has thoroughly scrutinized the numerous models of arti-
ficial intelligence, as well as privacy-preserving techniques
employed in edge video analytics. Furthermore, this review
has described various applications of edge video analytics
across a multitude of domains like surveillance, transporta-
tion, retail, manufacturing, healthcare, and education.

Nevertheless, several challenges still need to be addressed
to realize Edge AI’s potential for video analytics fully.
These include enhancing the accuracy and robustness of
algorithms, reducing power consumption and increasing pro-
cessing speed, and ensuring that Edge Al technology can be
easily integrated into video analytics systems close to where
data is generated.

Despite these challenges, edge video analytics holds a
promising future. The revolutionary potential of Edge Al
in analyzing video data and facilitating decision-making is
substantial. Researchers and practitioners must stay updated
on advancements and strive to develop innovative solutions
for video analytics.
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